
Publ. RIMS, Kyoto Univ.
9 (1974), 543-575

A Difference Scheme for Solving the Stefan Problem

By

Tatsuo NOGI*

It is the aim of this paper to investigate how solution of the Stefan
problem can be obtained by solving a new difference scheme in a rectan-
gular lattice and taking the limit of such solution as the mesh size of the
lattice tends to zero. For simplicity we shall consider a one-phase Stefan
problem of heat equation

(1) « 2 - r - - = 0 («• positive constant)u x ot

in the region 0 < £ < T, 0< x< y(t)> where the boundary conditions

(2) «(0,0=/(0,

(3) u(*(0. 0 = 0

and the initial condition

(4) «(*, 0) = PO),

are imposed. The function x = y(t) is the free boundary which is not
known and is to be found together with u(x, t) by the Stefan condition

(5) ?(0 = *-|j-(XO,0 («: const).

With the heat equation we associate an implicit scheme of the form

9 tn) + u(xj-l9 Q u(xj9 tfl)-u(xj, ^n- i)_n~ -0.
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More precisely we shall introduce a family of rectangular lattices with

space mesh h and time steps kn(n = I, 2,...) where h varies in such a way

that -y— = / is integer and kn's are to be found so that the free boundary
tit

crosses lattices just at each mesh point (xj+n, tjz)9 where we put

xj = jh (; = 0, ±1, ±2,.. .),

t»=Ekp (/* = !, 2,...).
P=I

With reference to given positive numbers h and kn we introduce the divid-

ed differences

= -~_u(xj+l9 tn)-2u(xj, tn)+u(Xj_l9 tj],

Then u = u(xj9 ttt) shall be the function defined for (#,-, ̂ «) in the lattice

which satisfies the recursion formula

(7) a2it,s(^, O-^(^.O = 0

and the boundary conditions

(8) «(0, t,)=/(O,

(9) «(*,•*«) = °. » = 1,2,...

where yn = xj+n, and the initial condition

(10) it(*y,0) = ?»(*y), y = 0, 1,2,..., /.

Our essential idea is that &„ shall be determined from an analogue to the
Stefan condition of the form
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(11)

k
with an artificial heat flow term /?-= (/? is a suitable positive constant).

V h

We can prove that for &-»0, u(xj9 tn) and jw approach functions

u(x9 £) and y(z) under suitable conditions and this pair of functions

{u(x9 *)> XO} is a solution of (l)-(5).

We have now several works on difference schemes (Douglas and Gallie

Ql], Vasilev Q2] etc). They treat the case in which an inhomogeneous

Neumann type boundary condition is imposed at a fixed boundary and it is

assumed that the inhomogeneous term is bounded away from zero. In that

case a Stefan condition becomes equivalent to an integral relation which

is effectively used in the iteration calculation. If the condition, for

example,

(12) |j(M) = 1

is imposed instead of (2), then the Stefan's condition (5) can be replaced

by

(5')

And we can consider the system (1), (12), (3), (4) and (5') instead of the

system (1), (12), (3), (4) and (5), while in the case of Dirichlet type

boundary condition as here considered by us such replacement cannot be

done and in a case of homogeneous Neumann type boundary condition

such replacement does not play an effective role. In our new scheme

such restriction can be ridden. But essential restriction is that />0 which

may depend only on our method of proof.

Here we consider only the case of Dirichlet type boundary condition.

The case of homogeneous Neumann type boundary condition can be treated

in the same way. More general case including multi-phase problems also

may be treated.
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§1. Statement of the Main Result

We shall essentially concerned with the problem (l)-(5): Find u(x, t)

and y(f)>§ such that

(1.1) a 2 - - — - = 0 (a: const.) for 0<x<y(t),

(1.2) u(Q,t)=f(t) where f(t)^0 and £>0,

(1.3) tt(XO»0 = ° for *>° and j(0) = />0 9

(1.4) u(x,Q) = q>(x) where (p(x)^Q, Q^x^l, and

(1.5) f(0 = * - - ( X O , 0 for

The assumptions /^0, ^?^0 result from the physical background. Existence
and uniqueness theorem about the last problem is well known. Furthermore

it is known that under the assumption the function x = y(f) is monotone
nondecreasing in t (Friedman pT]).

We consider the following difference analogue: Find {u(xj9 tn)} and
positive {kn} such that

(1.6) a2n«(*y, *„)-**?(*/, O = 0, for 0<*y<y l f , ^>09

(1.7) u(0, O=/(O (^0) for ^>05

(1.8) IA(JB, ^w) = 0 for *n>0 and J0

(1.9) w(AJy, 0) = ̂ y) (^0) for Og^-gZ and

(1.10) - = KVn + 0 for ^>09

or

(1.100 --=
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where

(1.11) yn=xJ+n = (J+n-)h, Jh = l

(1.12) t,= Z kp,
p=l

(1.13) vn=uy(yH9tn).

Assume that we have already the solutions u(xj9 tp\ kp for p<^n — l.

Then we shall solve the difference scheme (2.6)-(2.8), (1.10) by the

iteration process

(1.14) aXl'(*,, O- "'"(*" *"lT."(*" '"-0 - = 0. /=!. 2,..., /+B-1.
«»

(1.15) M<*>(0,O=/0»),

(1.16) u <•>(*,, «.) = 0,

(1.17) *<« + » = t -*«<«> + V ' 2 + 4/9VT], 8 = 1,2,3,...,

(1.18) *;» = *„-!.

We have

Theorem. Asswwe that f(t)tECl(Q<t<T)9 (p(x)<E.C2($<x<F).

Then

i) A£ ^c/? time step t = tn, the iteration process (2.14)-(2.18)

converges as s^>oo and the limits {u(xj, tn)}9 kn satisfy the equations

ii) The functions {u(xj9 tn)}9 {yn} determined by (2.6)-(2.10) converge

uniformly to the solution u(x , t), y(t) of (2.1)-(2.5) respectively as

h— >oo.

We shall prove this theorem in §3 and §4. Before the proof we shall

give some preliminaries in the next section. In §5 we shall give some

numerical examples.
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§ 2. Preliminaries

Define for r, /^O,

(2.1)

* n
-7tq=p

for n ̂  p,

/ 1

ff\ n\ C* ( <v- & • f 7- "\ for 7i §; p,

for n = p —19

where Aq = l + 4:^qsm2-^-, Aq= ,2
g

 B

Then these functions satisfy the equations

«2 #** - S* = 0 > a2G^^ - G? = 0,
(2.3)

and the boundary conditions

, fy; «„, rp-i)=g(xr9 0; *„,
(2.4)

Furthermore we have the conjugate relations

(2.5)

We call g the Green's function of the first boundary value problem in

~y is Kronecker's delta.
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#>0 for the equation (2.6) and G the Green's function of the second

boundary value problem.

Lemma 1. Assume that {kn} are given. Then for the solution of

the mixed initial-boundary value problem (1.6)-(1.9) we have

(2.6) XCS hG( yn, €,1 tn, 0) ?»(£,)- kpG( yn, 0; tn, r
3-1 P=1

-a2 2 *jGf(y»» fy; *», ^-iK]

And we have also

(2.7) xC-A

+ l

Proof. Assume that the functions <p(g , r) and ^(f , t1) satisfy

and a2

Multiply the former by hkpir(gj9 rp) and the latter by hkp<p($j, rp), add

each resulted equation over / = !, 2,..., J+n — 1 and /?=!, 2,..., n and

subtract the latter sum from the former. Then we have

y=i

Applying summation by parts,

- " - - - • • -o )+
y^i ' — '
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(2.8)

+a2

-a2

/>=!

Now we take

Then from (1.7), (1.8), (1.9), (2.4) and the equality

u(ijp-l9rp)=-hvp (by (1.8))

we have

/
u xr> n - ,=i

(2.9) +a2 £kpg(xr9 fip\ tn9 -Cp-^Vp

+ a2 S kpgt(xr9 0; tn, Tp-Jf&p).

Hence by (2.5)

3 = 1 f ^ 3* J

(2.10) -a2 2 kpG^(xr9 -qp\ tn9 Tp^)vp
p=i

n
^ 2j "'/>^|:|\-^'r» » 1 ? ^»> tp—\)J\Cp)m

Using the equation (2.3) and applying summation by parts to (2.10) we
have

-a2 ;
p-i
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In the last equation we take r = /+ n and solve this equation regarding
ux(ym tn) = Vn as unknown. Then we get (2.6) since G(yrn ?x; tn, rj = 0.

In the same way we also have (2.7).

Lemma 2. For small h,

(2.H) l+a*Gt(yn, yn; tn, rll_1)>-i-

Proof.

71 J-jr £ TC J-

Since

(2.12) J2(/+7i) -- }-

we have as A, fcw-»0

^ 4 '

Lemma 3.

(2.13)
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Proof.

1 /V n

>")<&»

«=p * } hJl + 4£ A
,=* "

Lemma 4. For any function

/+*
(2.14) l

y=i» 2, .

Proof. The function

satisfies the difference equation (7) for n> p, — oo < y < oo and has the

Cauchy data

; = 0, 1, 2,...,

0, otherwise.

Thus (2.14) follows from the well-known maximum principle.

Lemma 5. For p<n, we have

(2.15)

(2.16) fi = fc(p9 n)= max A
«=/>,...,»

/w particular we obtain for p=n — \ that
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/"> 17\ -I " A-i A-I - 2 °
(2'17) "^P")./-1^ Sm"l

Proof. (2.17) can be obtained by elementary integration. We shall

prove (2.15). First we shall show that there are two partial sums £ kq

and £ kr ( tf^r) such that

(2.18) *«-r^.i = i:

and

(2.19) 2 kq and £ A ^ - - r £)
i ii *

hold. In fact it is clear that we can select two partial sums ^ kq, £'' kr

such that

* q=P

Hence

Let

which then satisfy (2.18) and (2.19).
It follows from (2.19) that

ft) W . ft)
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. 9 o)

and by elementary integration510

2V2 03(«,, -Vl-

This proves (2.15).

Denote by FA a bound for -7 — (/? = !, 2,..., ra):

(2.20) -F-
ftp

Then we have

(2.21) (n

(2-22) (B

Lemma 6. If f=l (K is arbitrary), or ? = —- and K is a half-integer,

then

^K^ = ~2nh?)-«^p

(2.23)

1 f71" n

-j:2~\ II ^g1 sin
^^ J-irq=p

2a

alternatively
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Proof. We put

(2.25) [
q=P

Applying integration by parts to IK we have

Since

n r
(2.26) ^'O) = rII A-A

q=p Lq=P L q=P &

it follows that

do) *>

-7tq=p

or alternatively

and further that from Lemma 5,

,
a

or alternatively

*)
dw 2?r/•*

J-
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~ ~ ~

Lemma 7.

(2.29) <[ 2±g r, I 1+2VT, * ] X

+ v^" ^

or alternatively

(2.30)

e It follows from the definition that

+ sin -y- sin (/i -/?)«) cos -y- rfo) - 72/+ll+^ (see (2.23)).

Hence by Lemma 5, (2.22) and 6*}

cir, ...„. , . ^ + ̂  |

2 + 7 T - ,

*' |sin(7i-j

**'

, for | <w | < TT
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<|_2+£-F/k + l + 2 > / 2
2V 2 a3 * 2a JB + ̂  V^-r^ -I

or alternately

2 + 7T _

2V 2 a3 Vt.-ty-!-* 2a

Lemma 8. Assume that kL^k2. If h is small with -^- < const.
fc*

i = ls 2), i(;

(2.31) \0K\-

or for Kh>3a^kl9 or alternately

/O QO^ ^ J-^-li ,-r— i /t
(Z .OZ) <-:—o-=—oTo-e fl1/A* +~1—q

4a d K I ' * 4a d

Proof. Since

we get (2.31) by (2.17) in Lemma 5,

Next we put

(2.33) 0x = 0

where

/« __ 1 f * ^ sin jfft) 7
'

(sin a) — a)) sin

« 2 s s « - - i — «;
and

Q) Sin ^Q)
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Put o) = h$. Then

*)

Tt
" h

Kh\ ( Kh\
-- rj= — eXD — — 7y= )

oVA?!/ FV a\lkzJ
1 1! \z _ _ 1 2

2a2(k1-k2)
 + 2na2(k1-k2)

 io§ A

1^-7 y J^/I \

Using monotonicity of the function -py^- exp ( — — T^= J with respect to k for

Kh>3a\/k we conclude that

,0 OA. .M , Kh / Kh \ h2(2.34) i^i

Next by (2.17) in Lemma 5,

^ f "" ^-1 ^ 1 • 2
" ^i ^2 sm

(2.35)

and

*) ft _m _m

$ sin m£ ,t
 2(ffl - )

<-^rsin2-f- for

4 — 16 sin4-
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From (2.33)-(2.36) we get

Kh ( Kh \ ( 1 _ TT \ h2 7T3 hx - ~ ~
and for small A with -y—< const. (i = l, 2),

A;,-

Kh

This proves the second part of Lemma 8.

§3. Convergence of the Iteration Procedure

We shall prove the first part of Theorem. It is supposed that we

know already u(xj9 £ w _ x ) (y = 0, 1, 2,..., J+n — 1) and kn-l and have the

estimates

(3.1)

max|u^(^y, «n- i ) |<— r-
y a

In order to prove convergence of the iteration procedure (1.14)-(1.18)

it is sufficient to show that there is a constant 5 (0<5<1) such that

In fact it follows from (3.2) that v(
n

s} converges as s-»oo and hence k(
n

s}

also converges to a limit kn. From maximum principle u^s\Xj, tn) are

uniformly bounded and hence each subsequence u ( S i } ( x j , t^) converges to

each limit IL(XJ, tn)(j = Q9 1, 2, . . .9 /+ n}. It is clear that the limit function

satisfies the equation
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xx\j^ n -- T. --
Kn

and the conditions &(0, tn)=f(tfl), u(yn, tfl) = Q. Since such function is

uniquely determined, the sequence u(s\xj9 tn) itself converges to the same

limits u(xj, tn\ (/ = 0, 1,..., J+ri).

Now we shall show that (3.2) is valid under some conditions. Applying

the formula (2.7) in Lemma 1 to the solution of (1.14)-(1.16) we have

(3.3) x['2~
.7=1

-G(yn, 0; t^ + k

First we get from Lemmas 2, 3, 4

Since k(^} is at most .-̂ - from (1.17), we have for small h
VP

(3.4) |t4s) |<41f+l = M3 5=1,2,3, . . . .

Hence it follows from (1.17) that

h 1 x , n . ,

(3.5)

<2icM

for small h.

We consider the difference v(
n

s} — v(
n
s~l] : using the notation

we have
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(3.6)

B, 0; «,,-!

B, 0; *„_!

where

(3.7) r2(*i'>) =

-Ai-'GCy,, 0; t.-^Ai", r.-O-AC

It is easy to see that from Lemmas 2, 3, 4, and (3.5)

(3.8) |rrH*i'-")l<4

(3.9) |r2(A;^ ))l<2^' (for small A)

(3.10) |G(Jn, 0; «._!

and from Lemma 5,

B, 0; «,_!

(3.11)

where
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(3.12)

By the mean value theorem

rT

}
•'-*'

f-f

) — a da)

— i
where k is a value between k(

n
s} and Ai*~1}, ^ = -^4-. By (2.18) in

/i
Lemma 5 and (2.24) in Lemma 6,

(3.13)

(by (3.5))

Finally we consider the sum

(3.14) B= J+f'

Here
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where

Hence

.7 = 0

Thus

(3.15) 1 5 1 <o'C#| 0, (^-O | + Jff| (5f (0) |

a y=o

Here

sin ̂  sn

or alternatively

7 l> s i n f t ) da)

- X, 2 r {^(*)^c*-1)}-1 sin a) sin (/+ n+j)u) du>

and from Lemma 5 and Lemma 8
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where k = max(k(
n
s\ k (

n
s ~ l } ) , k=min(k(

n
s\ k(

n
s~1}) and

Using (3.4) w e have - . m Hence
v A

(3.16) + J or alternatively

Cofy.-f,)

In particular

and

From (3.13)-(3.16) we have

P

(3.19)
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where /1 = max{y; yn — f,->3aV^}. Here we note that

It follows from (3.19) that

2V k V h

and further for small h(k)

(3.20)

= 4a2 M + -— + 9o2 C

Consequently we get from (3.6), (3.8)-(3.11), (3.13)-(3.14) and (3.20)

(3.21) \v?-vjf-»\<-£l
V fi

Here we have from (1.17)

(3.22)
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It follow from (3.21) and (3.22) that

\v™-v?-"\<4f-\v}f-»-v}r-»\.

If $ is chosen so large that

(3.23) tf = _£z*<i

then (3.2) holds with d smaller than 1. Thus we have proved convergence

of our iteration procedure.

§48 Convergence of the Scheme as h—>0

We assume that

(4.1) max | /(O |, max | <p(x) \ < M0

(4.2) max | f ( t ) \, max | <p(x) \
Q<t<T Q<x<l

and

(4.3) max \<p(x)\ <M2.
Q<x<l

By the maximum principle we have from (4.1)

(4.4) max | u(xj9 tn) \ < MQ

and also from the assumption #>^0, /^O,

(4.5) u(x • t ) <0.

We shall see that it is sufficient for convergence proof to show a

priori estimate

(4.6) max | vn \ < M.
tn<T

In fact we have then for small h

(4.7) |
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because

The system which z = Uf satisfies is

(4.8) Z

By the maximum principle we get from (4.2), (4.3) and (4.7)

(4.9) max | u-t{xh tn} \ < M=max {Ml9 a2M2, 2/cM2}
Q<xj<yn

tn<T

and

(4.10)

Using the identity

f+n-l

and (4.6), (4.10) we obtain

(4.11) max \ux(xj,

We shall show convergence from a priori estimates (4.4), (4.6), (4.9)-(4.11).

Let ha tend to zero as a-*oo. From (1.10) corresponding kna tends to

zero as a— >oo. Denote by ya(t) the broken line crossing each right-end-

mesh-point (yH9 tn). Then we have from (1.10)', (4.6)

(4.12) l£ya(t)

and also

(4.13) 0 < ya(*
2) - ya(t^ < KM(t* - ^), 0<tl<t2<T.
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Since last inequalities means that the sequence of functions {ya(f}} is
uniformly bounded and equi-continuous, it follows that there is a subse-

quence (which we denote again by { ya(t)} which converges to a continuous

function y(t) uniformly in O^t^T. The limit function satisfies by (4.12)

and (4.13)

(4.14) l^y(t)^l + 2MT, Q<t<T

(4.15) 0< y(t2)-y(tl)<icM(t2-tl), Q<tl<t2<T.

Let ua be the solution of system (1.6)-(1.10) corresponding to ha. It is

shown from (4.4), (4.6), (4.9)-(4.11) and (4.15) that a subsequence of

{ua} converges to the solution u of (1.!)-(!.4) with the boundary x = y(f)

above defined uniformly in Q<x<y(t)9 Q<t<T. (see Petrowsky £4])

We shall show that the pair of functions (j(0> u(x9 t)) satisfies also
the Stefan's condition (1.5) (hence all the system (1.!)-(!.5)). We can

define {ua(x, t)} for all (x, t) extended from {ua(xj9 tn)} appropriately.

Then we have from (4.10)

(4.16) \uax(x9 t)-ualf(x'9 t)\<-^-\x-x'\9 Q<t<T

and

(4.17) 0<t<T.
dx dx

Hence the limits

(4.18) lim uay(x, t) = va(t) (uniformly in t)

and

(4.19) lim -^-(x9 t) = v(t) (uniformly in t)
X-*y(t) OX

exist. Consequently it follows from (4.18) and (4.19) that

(4.20) \imva(f) = v(t) (uniformly in f),

By (1.10)'
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7 i T̂"
1 7 H

Here take #— »oo. Then we get by (4.20)

\ v(t)dt.
Jo

This means that y(t) is differentiable and

which is not but the Stefan's condition.

Since the solution of the system (1. !)-(!. 5) is unique (Friedman [>T|),

it follows that not only a subsequence but also the full sequence {ya(0}»

{ua(x, t)} themselves converge to y(t) and u(x, t) respectively.

It remains to show (4.6). Applying the formula (2.6) to the solution

of (1.6)-(1.10) we have

(4.21) vH = Att

where

J

(4.22)

A3= - ZikpG(yn, 0; tn9 r^

and ^4= -a2 2 kpG%(yn9 -qp\ tn,p=i

Directly from Lemmas 2 and 4 we get

(4.23) Mi l<4 ,

(4.24)

By Lemma 3,
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Now we consider

(4.26) ^41=-o2 S kpG((yn,Tip;tn,Tp-Jvp,

First we have from (2.30)

where

|= max |
#=1, ..,»-!

and FA is a bound for-r— (p = l, ...,n — 1) as in §2. Since fe(^5 n)<-y=9
^^ VP

(4.27)

Using (2.31) we have
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<

Since kq> ... ..- from (1.10') we have
K \\V\\

Hence

(4.28)

302

We obtain from (4.26)-(4.28)

Here

from (1.10'). Put

\A*.\< Lr'ztf+rWFP+r

(4.29)
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It follows from (4.23)-(4.25) and (4.29) that

(4.30) |^|<4[jf1+^LV^ + /ii(IMI, *„ A)].

Put

(4.31) M

and take h so small that

(4.32)

r'2 + rW/TA* + r(fcM< 2(r'2 + ri/cM), and

and take (T so small that

(4.33)

Then if we assume that

= max
/>=!,...,«-!

we have from (4.30) and (4.31)

Thus we get the local a priori estimate

(4.34) \vn\<M for tn«J and sufficiently small h.

Hence convergence follows from the last estimate for 0<t«T as we noted

above and existence of a local solution of the differential problem (1.1)-

(1.5) is established as a by-product. It is well known that global existence

in our problem follows from local existence (see Friedman p]). There-

fore we have a priori estimate
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(4.35) max -^-(*, 0 <Ml

where M1 is a constant. From convergence properties as noted above we

have for sufficiently small h

(4.36) max | u^(xj9 *n) | < 2Ml = M^
0<xj^yn

tn<<r

Put

(4.37) M

and take ff1 so small that

(4.38) { JL + (ri + riKM)M}fa < -^

(see (4.33)). Then we get

(4.39) | v(tn} \<M for 0 < tn < a < ffl

as above. Here (f1 is depending only on Ml9 not on tn. In the same

way, we also have

\v(tn)\<M for

and so on. Thus we get a priori estimate

\v(tn}\<M for Q<tH<T,

which was desired.

§5. Numerical Experiment

We show some results of our numerical experiment using our difference
scheme. We take, for example, the following data in the problem (1.1)-
(1.5):

a=1.0, Z = 1.0, * = 1.0,

f-cos-j-f, 0 < « < 2

' 0 ,
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and

We solved this problem by the scheme (1.6)-(1.10) in the three cases:

i) /9 = 0.05, & = 0.1 ii) £ = 0.05, & = 0.01 iii) 0 = 0, & = 0.1.

Here by /? = 0 we mean the case without the artificial heat flow term in

(1.10), that is, we use the formula

instead of (1.17) in the iteration procedure. Fig. 1 shows the position of

the free boundary in each case. In the third case the calculation could

not be continued because the iteration determining k7 did not converge.

t
3.0

2.0

1.0

----- /<
i -O.I

0.0 !80 290
Fig. 1
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In the first two cases with artificial heat flow term the calculations could

be done as far as we desired and the iteration at each time step converged

within check bound \k^}—k^"1}\ <0.0001 by 5 — 8 times (the first case)

or 3~4 times (the second case). From comparison of the first two cases

we know that even the first calculation rough mesh size h = 0.1 shows

sufficiently convergent feature.
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