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A Difference Scheme for Solving the Stefan Problem

By

Tatsuo Nocr*

It is the aim of this paper to investigate how solution of the Stefan
problem can be obtained by solving a new difference scheme in a rectan-
gular lattice and taking the limit of such solution as the mesh size of the

lattice tends to zero. For simplicity we shall consider a one-phase Stefan
problem of heat equation

2
¢)) a’ gxuz' - %% =0 (a: positive constant)

in the region 0<¢t< T, 0< x < y(¢), where the boundary conditions
) u(0, )=£(2),

(3) w(x(), £)=0

and the initial condition

4 u(x, 0)=9p(x), 0<x< y(0)=1

are imposed. The function x= y(¢) is the free boundary which is not
known and is to be found together with u(x,¢) by the Stefan condition

(5) y(t)=lc%—( y(©,8)  (&: const.).

With the heat equation we associate an implicit scheme of the form

(6) azu(xj+ls tn)_Zu(Zj; tn)+u(xj—ls tn)__u(xjs tn)_ u(xj’ tn—l)=0_

n
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More precisely we shall introduce a family of rectangular lattices with

space mesh A and time steps k,(n=1, 2,...) where h varies in such a way

that —Z—=J is integer and k,’s are to be found so that the free boundary

h

crosses lattices just at each mesh point (x;.,,, ¢,), where we put

ty= 3k, (n=1,2,.).
p=1

With reference to given positive numbers kb and %, we introduce the divid-

ed differences
1a(, t) = L0500 ) — (), 1)1,
ustjy ) =—pLu G ) = w (i 6]
(% t) =g L1, £) = 205 £)+ (%50, )],

1
u’?(xj’ t”)= A [u'(xj’ tn)_ u(xj, tn—l)]-

Then u=u(x;, t,) shall be the function defined for (x; ¢,) in the lattice

which satisfies the recursion formula

() a®u .z (%), t,) — us(%;, t,)=0

and the boundary conditions

®) u(0, 1,)=f(t.),

€)) u( Y t,)=0, n=1,2,...
where y,=%;,,, and the initial condition

(‘10) u(x;, 0)=9¢(x;), j=0,1,2,.,J.

Our essential idea is that k, shall be determined from an analogue to the

Stefan condition of the form
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h k, _
(11) kn _mu'i(yna tﬂ)+ﬂ\/ﬂ” n""l52, 3a
with an artificial heat flow term Bf% (B is a suitable positive constant).

We can prove that for hA—O, u(x; t,) and ¢y, approach functions
u(x,t) and y(¢) under suitable conditions and this pair of functions
{u(x, t), y(t)} is a solution of (1)-(5).

We have now several works on difference schemes (Douglas and Gallie
[1], Vasilev [2] etc). They treat the case in which an inhomogeneous
Neumann type boundary condition is imposed at a fixed boundary and it is
assumed that the inhomogeneous term is bounded away from zero. In that
case a Stefan condition becomes equivalent to an integral relation which
is effectively used in the iteration calculation. If the condition, for
example,

(12) %—(o, H=1

is imposed instead of (2), then the Stefan’s condition (5) can be replaced
by

(5") y(8)=1+Kt +§(S: @ ux, 1) dx—-S:(o(x)dx).

And we can consider the system (1), (12), (3), (4) and (5') instead of the
system (1), (12), (3), (4) and (5), while in the case of Dirichlet type
boundary condition as here considered by us such replacement cannot be
done and in a case of homogeneous Neumann type boundary condition
such replacement does not play an effective role. In our new scheme
such restriction can be ridden. But essential restriction is that />0 which
may depend only on our method of proof.

Here we consider only the case of Dirichlet type boundary condition.
The case of homogeneous Neumann type boundary condition can be treated
in the same way. More general case including multi-phase problems also
may be treated.
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§1. Statement of the Main Result

We shall essentially concerned with the problem (1)-(5): Find u(x, ¢)
and y(z)>0 such that

.1

(1.2)
(1.3)
(1.4)

(1.5)

zazu

0x2

u(0, £)=/£(2)
u(y(2), £)=0

u(x, 0)=¢(x)

=635 (y(2), )

ou
0t

———=0 (a: const.) for 0< x < y(2), t>0,

where f(¢)<0 and >0,
for >0 and y(0)=1>0,

where ¢(x)=<0,0=x =</, and ¢(0)=£(0),

e()=0,

for ¢>0.

The assumptions <0, ¢ <0 result from the physical background. Existence

and uniqueness theorem about the last problem is well known. Furthermore

it is known that under the assumption the function x= y(¢) is monotone

nondecreasing in ¢ (Friedman [37]).

We consider the following difference

positive {£,} such that

(1.6)
(1.7)
(1.8)
(1.9)

(1.10)
or

(1.10")

azux':?(xj’ tn)— u?(xj’ tn)=07

u(0, 2,)=f(2,) (<0)

u(ym t)=0

u(x;, 0)=9(x;) (<0)

analogue: Find {u(x;, t,)} and

for 0<x;< 5y, £,>0,
for ¢,>0,
for ¢,>0 and y,=1>0,

for 0=<x,<! and ¢(I)=0,

for ¢,>0,
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where

(1.11) Vu=%7in=(]+n)h, Jh=1

n

(1.12) ta= 2 ks

p=1
(1.13) Vp=Uz( Vs L)

Assume that we have already the solutions u(xj, t,), k, for p<n—1.
Then we shall solve the difference scheme (2.6)-(2.8), (1.10) by the
iteration process

(s) 3 — )
(1.14) aZu’(t.;‘?)(xj, tn)_' u (xlg tn)k(s)u(xlg tn—l) =0, ]__:1, 2,..., J+n—1,
n

(1.15) u®(0, £,) =f(tn),

(1-16) u(S)(ym tn)=0s
(1.17) k,‘f“’=\£—Z[—m)}f’+\//czv,‘f”+48\/7], s=1,2,3,..,

(1.18) kW =k, ,.

We have

Theorem. Assume that f(1)e C1(0<t<T), p(x)e C?(0<x<I).
Then

i) At each time step t=t,, the iteration process (2.14)—(2.18)
converges as s—oo and the limits {u(x;, t,)}, k, satisfy the equations
(2.6)-(2.10).

if) The functions {u(x;,t,)}, {y,} determined by (2.6)-(2.10) converge
uniformly to the solution u(x,t), y(t) of (2.1)-(2.5) respectively as
h— oo,

We shall prove this theorem in §3 and §4. Before the proof we shall
give some preliminaries in the next section. In §5 we shall give some
numerical examples.
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§2. Preliminaries
Define for r, j=0,

1 Sw ﬁA;1[e-—i(r—j)m_e—-i(r+j)m]dw

27h ) i=h
(2'1) g(xrs S]; 7 Tp—1)= for szp,
—}L—@m-*) for n=p—1,
1 S'" no s Cilpas
— A= e~ ilr=o 4 g=ilr+i-1)oT d
2mh _,,ql;Ip oL ]
(2'2) G(xrs $]; Ly Tp—l)z for nzp,
1
—h‘a,,]- for n=p—1,
2
where 4,=1+44, sinz%, A= ahlch

Then these functions satisfy the equations

a’g,z— &=0, %G, ;—G;=0,
2.3)
a2g5?+gr=0’ a‘ZGE?_*_GT:O’

and the boundary conditions

g(O’ Ej; Lys Tp—1)= g(xra 0; Ly, sz—l):Os
(2.4)
G,,(O, 6‘7; tﬂ’ Tﬁ_1)=G§(x,, 0; t", fp_l)":o.

Furthermore we have the conjugate relations

gi(xn 5;’; Ly, Tﬁ—1)= _GE(xr: Ej; 78 rp—l)
(2.5)

G.(x,, €15 by Tp-1)=— 8e(x,, &5 Ly fp—l)-
We call g the Green’s function of the first boundary value problem in

*) 5 = 1 (r=}))
”‘{o (r#j)

is Kronecker’s delta.
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x>0 for the equation (2.6) and G the Green’s function of the second
boundary value problem.

Lemma 1. Assume that {k,} are given. Then for the solution of
the mixed initial-boundary value problem (1.6)-(1.9) we have

Un=[l+a2knc§(ym Tns tm Tn—l):rl

J P
(26) XEJ;IhG(ym 6;: tm 0) ¢7E(51)_ p;l kpG(ym 05 tm Tp-l)fr(fp)
n—1
=a* 2, BsGe(ym Up3 b Tp-1)0 ]

where Yn=Xj+ns 77n=$]+m V,= u:‘r(yns tn)-
And we have also

Un=[1+a2kncg(ym Tns tm Tn—l)]—l

(2.7 XL =kuG( Yy 05 L4y Tu1) fo(T0)
J+n-1
+ '72;1 hG(ym 5/'; Ly Tn—l)ué(fj’ Tﬂ—l)]-

Proof. Assume that the functions ¢(&, v) and Y¥(&, v) satisfy
0,2(05._5(5]-, Tp)—¢f($j’ Tp)=0
and a®Yree(€s, Tp1) Y (65 Tp-1) =0,

Multiply the former by hk,y(§;, v,) and the latter by hk,p(¢;, 7,), add
each resulted equation over j=1, 2,...,J+n—1 and p=1,2,., n and
subtract the latter sum from the former. Then we have

” J+b-1

a2p§1 k" = h[w(fja Tp—l) ¢5€($js Tp)—¢($ja Tp)wfé(fja Tp—1):]
n J+0-1

- El k, ,-Z=:1 h[(”'r(ej’ Tp—l)\l’@j» Tp~1)+¢(ej! Tﬂ)“/"?(€j’ Tp)]=0-

Applying summation by parts,

S 20 )= 5 W 00 0+
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+ 2 ¥ <)oy <)
(2.8)
+a2,§1 kp[‘/’(’?p—b Tp—1)¢5(77p—1a fp)_‘:l’;("ip—h Tp—l)(”(ﬂp—ls Tp)]

_azé:lkp[‘/’(oa Tp—l)(”;(O, T,)— ¥ (0, Tp-—l)(o(o’ 'L'p)]-
Now we take

¢($p Tp)z u(ejs fp)s W(SJ’ tp)z g(xn 61; tm Tp).

Then from (1.7), (1.8), (1.9), (2.4) and the equality

u(p-1, Tp)=—hv, (by (1.8))

we have
J
2.9) +a2pzz:1kpg(x,, Nps tus Tp—1)Vp

+a21§1 kyge(x,, 05, t,m)f(T)).
Hence by (2.5)
J
uf(xr’ tn)= _]_§ hGﬁ(xr’ ej; tm O)¢($])
(2.10) —azp}:j,lkpcf(x,, s bus Tpo1))
_a2p§1kpcfg(x,., 51; tn, Tp_l)f(rp)-

Using the equation (2.3) and applying summation by parts to (2.10) we
have

7 3
uf(xfa tn)= jgl hG(xr’ Sj; tm O)¢é($j)_p§1kpc(xr’ 0; tm rp—l)ff(rp)

n
‘“nglkf’cf(x" Nps tus Tp—1)Vp

+G(x15 él; tm Tﬂ)f(rn)-
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In the last equation we take r=J+n and solve this equation regarding

Uz( Yy t,)=v, as unknown. Then we get (2.6) since G(y,, §;; t,, 7,)=0.
In the same way we also have (2.7).

Lemma 2. For small h,

(2.11) 14+a2G (¥, s tas z',,_1)>—i—

Proof.

1+aZG§(}’m Mns tm fn-—l)

ln S” “14in2 @ —_ ln
p _”A,, sin ~2—da)

—1_ , S” 451 sin {2(J + n) ~ 1} o-sin -2 do

>%(1+¢1‘:4—z,,>"n{ - }Y("JZJ’%A’?)”’“’

2(J+m) =}
1 1 2 1 1
=—(1+ — z ——tan~! 41,;'.
2 < \/1+4).n> 71{2(]-%-71,)——;—}[1'1_41” +\/ A, an~1y/ d
Since
(2.12)

{2(J+ n)—%}h>2]h=2[

we have as h, k,—0

1 1 _
1+0205(9’m Mns tns Tn—1)>7<1+\/1+—4,{)—0 (h)_o(‘/kn)

1

Lemma 3.

(213) IG(}’m 05 tm Tp-l)l < 1

at,—Tpq
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Proof.

|G(Yns 05 Ly Tp1) | = I——Zrlch g’:”}z-[p,iq—l(e—i(]+n)m+e—i(1+n—1)m) do

2

1 T n . w -1
gﬁg_,(l +42; lq s1n2—2—-> dw=:n——~
h/1+43 1,
a=p

q=p

1
a\/tn_ Tpr-1

Lemma 4. For any function ¥(€;) we have

@10) S hC(ym &t T )WE)| < max W&
i=1 7=1,2,..,J+p

3 by oeny

Proof. The function
J+p
W(x,, tn)=]'§l hG(x,, 6]; tn’ Tp)‘/’(ej)

satisfies the difference equation (7) for n>p, —0<j<oo and has the
Cauchy data

Y¥(), j=1,2,..,J+p
w(xjs tp)': w(x—j+1), ]=Os ls 2a--~s (J+P)+1
0, otherwise.

Thus (2.14) follows from the well-known maximum principle.

Lemma 5. For p<n, we have

(2.15) E—}FS” 11 4;sin*5-do<—— h .
—wq=p 2y2ad(t,—7y-1—k)2
where
(2.16) IE=I§(p, n)= max k,.
q=p, .0

In particular we obtain for p=n—1 that
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h
4(13\/16,,_ lkn(\/kn- 1 + \/k—nj .

. 1 (= e,
(2.17) ?}TZS_, A1y A7 sin®0-do <

Proof. (2.17) can be obtained by elementary integration. We shall
prove (2.15). First we shall show that there are two partial sums } k,
i
and §k, (g#r) such that

(2.18) =Ty = Dkt Dk,

and

(2.19) >k, and 3, k,>%(z,,—fp_1—1;)
I IT

hold. In fact it is clear that we can select two partial sums ;' k,, 2" k,
such that

M

ky=X'k,+ X"k, +k (g#r, k,#k, k,+k),
4

)
Il

IESHIIERE W
q=p

Hence
Sk, z (3 k—E),
2 "¢=p
’ A 1 @
2 kot szqukq
Let

qu:Z’kq-}-lé, k,=Z” krs
I

which then satisfy (2.18) and (2.19).
It follows from (2.19) that

w

. [
1 S,, smz—g—dw
- . . W
(1 +4};_,‘ 4, sm27>(1 +4§ 2, sm2—2—>

1 (= 2 g O
i) J At do < g

-mg=p
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. w
SIHZT dw

<! S”
wh? )_ 2a? Al . w )2
”{1+7(t,,—rl,-1—k)sm27}

and by elementary integration*’

1 h
R S 3
h2[1+ 2a% o, —k)]z 22 a¥(t,—yq— B2
This proves (2.15).
Denote by ¥, a bound for ki (p=1,2,..., n):
»
(2.20) by,
kp
Then we have
(2.21) (n—p+Dh<(t,—Tp-1)V},
(2.22) (n—ph<(ty=7, 1= BV
Lemma 6. If y=1 (K is arbitrary), or r——z— and K is a half-integer,
then
1
| K[__,z 7z S H A7t sinyw«sin Ko do
(2.23)
<Q+2y2)y, 1 y2y, k

2a Kh\/t —T, —k a Kh(t, z-p_l_[;)slz

or alternatively

3r t,—T,
(2.24) | I | < 5L gtl v,

*) )
sin 2

i T
S_n'—.“w—f do=—1 it

(1+a ssz)z (a: const.)
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Proof. We put
(2.25) i[p A7 sin ro =vr(0) .
Applying integration by parts to Iy we have
| I | =7K}W‘S;~lf’(w) cos Ko do| .
Since

(2.26) v(0)=711 A;l[cos ro— 384,12, sin*2 cosz'fi}
a=p a=p 2 2

it follows that

(2.27) | | <o B do »

7
2Kh*m "'1+4f /Iqsinz—w-
a=p 2

+8 TZ qu” }iA;l sinz—g—- dw:l

qa=p -

or alternatively

(»=pt)r
_ =2 . d
®28) el <) e
1+4qz=}p ¢ SN’
and further that from Lemma 5,
1 V2 ty— Ty
I <——T—'-—'_—‘—‘__— T L p 1 Yy
el < g et & KhGo—era =B
_(+2J2)r 1 V27 E

24" Khit,—t,, @ Kh(t,—t,,—k)3%’

or alternatively

*) d 2
Sx @ T 4

= <—=
—x ;2 @ Y1442 7
1444 sin? 3
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(n—]"l"g—)h?’ <~3l_\/t,,—z',,_1

Ixl < VA | 0 Ly
| x| Kh’at,—<,, 2o Kk

V.
Lemma 7.
|Ge(yn, Tps bus Tp—l)l

2+ 1+2y2 1 1
(2.29) <[ T V. + . .
2J2ad g 2a FntMp Nty—t, 1~k

L oNTk
TCAET N I Te—"

or alternatively

2+m V,
2\/ 2 a3 \/tn_fp—l_le

|G§(ym 771;; [ns rp—l)l <

(2.30)
3\/tn - rﬂ—l

a(yntr )b *

Proof. 1t follows from the definition that

G;(J’m Npt bys 7p~1)

=”ﬁ}T2S ﬁAq.l{‘_ZSinz..‘é’_sin(J+n)wsin(J+p)w

~rwq=p [

+sin —Lg— sin(n — p)w cos —?—1 do—1Ip;.,., (see(2.23)).

Hence by Lemma 5, (2.22) and 6%
[Ge(Fus M5 tus Tp-1) |

Lo p(

1 [
7h Aqlslnz——z—dw+|lzj+n+ﬁ|

—mg=p

2+m (n—p)h
W2ad (b,—ty 1 — k)2

+ I IZ]+n+p| k)

, for |e|<=z

* |sin(n —p)o| <(n—p)|o| <(n—p)7t[sinﬂ2-
**) 24+ (n—p)a<(2+n)(n—p)
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2+m 1+2y2 1 } 1
<
wWea "t T2 T,
V2 k ]
a (yn+77p)(tn_fp—1_k)3/z

or alternately

<

\/tn_rp-]_ —k

24w Vh 3 '\/t —Tp-1

Lemma 8. Assume that k,=k,. If h is small with

(i=1, 2), we have

@31 |0l= |,

or for Kh>3a\Jk,, or alternately

Kh O & h
(232) <W6 av'k; + 1a3 m

Proof. Since
K (~ g ©
' @Kl < —h—z" S_”/I l]AZ ! Sln“—z—‘dw

we get (2.31) by (2.17) in Lemma 5.
Next we put

(2.33) Op=0g,+0gy+0Dgs
where
0. — 1 Sw o sin Ko
K1797h? )_, (1+/lla)2)(1+/12w2)

1 (sin w — w) sin Ko
2= 27zh28 A4, do,

and

1 1
L A4y A+ 00+ 1,07)

2\/—2043 '\/tn"'fp_l—k o0 2a (}’;z+77p)h

g” A7 Az sin w sin Ko do | <=5

]a) sin Ko do.

(%3]

h < const.
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Put w=h&. Then

1 &sin Khé *)
| Dy | <TIS T+ A h2E0) (1 + A,h%€7) d¢

+LS°’ §d¢
T z (14 4,h262)(1 4+ 2,h%E2)
e
_ Xp a\/k—l exp (l‘\/E 1 log Azl 472
= 2a2(k;—k,) Y ona?(h,—ky) 8 A T+nt -
. . . . Kh Kh
Using monotonicity of the function = 3z exp( ik > with respect to k£ for

Kh>3aJk we conclude that

Kh Kh h?
(2.34) | @1 | <WCXP<‘ a\/ﬂ)Jr 2mia?k}
Next by (2.17) in Lemma 5,
» 3 h k)
Aot LN
(Oxs| < gz ) AT 5™ sint=Gdo < {55 s
(2.35)
m3h
< 126 kv,
and
)
”(/11+/12)<a)2—sin2%>+lllz(w4—16sin4%> o
|Ogs] < The So A1 4,(1+ 2,02 (A +2,02) do

*) T m  _m
S € e—e?) (a#D),

0o & sin mé
e aire “= e
4a

——5€ @ (a=b)
)Y le 1,4 7 .0
**) | sin w—w|<—§—]w |<—3—sm -5 for |w|<=

260 o _Agin? @ < L
%) 4sm2<6w,

_16sint @ < L 4o
1651n2<3m
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(2.36) <

(A, 414 Z)S o do T n? S" dw
(/4 h}./{ <1+%42_,{ ) 12A21, 01+4};2S1n22

wh? w3h
<16a? k3 + 2403k Wk,

From (2.33)-(2.36) we get

Kh Kh 1 T \h? h
|0 | <Ta?'lc—§’2—eXp( ok, ) (grva * 16w )kz et ko,

and for small A with %<const. (i=1, 2),

Kh Kh\ 7w h
10| < 3k3’ZEXp<_a\/k_1>+ 13 Fik,

This proves the second part of Lemma 8.

§3. Convergence of the Iteration Procedure

We shall prove the first part of Theorem. It is supposed that we
know already u(x;, ¢,-;) (j=0,1,2,..., J+n—1) and £,_, and have the
estimates

max | uz(x;, t,-1)| < M,
7
(3.1

M
mE}X| U,z( %5, tyo1) | <7 .

In order to prove convergence of the iteration procedure (1.14)-(1.18)
it is sufficient to show that there is a constant 0 (0<d<1) such that

(3.2) |0, —o V| <Ofoe P —os? | (s=3,4,...).

In fact it follows from (3.2) that v’ converges as s—oo and hence k[
also converges to a limit k,. From maximum principle u‘(x;,t,) are
uniformly bounded and hence each subsequence u'*¢(x;, ¢,) converges to
each limit u(x;, t,)(j=0,1,2,..., J+n). It is clear that the limit function
satisfies the equation
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t”)—' u(xjs tn)'—u(xjs tn—l)=0

n

a’zu’xf(xjs

and the conditions u(0, ¢,)=f(t,), u(y,, t,)=0. Since such function is
uniquely determined, the sequence u(S)(xj, t,) itself converges to the same
limits u(x;, t,), (j=0,1,..., J+n).

Now we shall show that (3.2) is valid under some conditions. Applying
the formula (2.7) in Lemma 1 to the solution of (1.14)-(1.16) we have

v)(LS) =[1 +a'2k1(15)c§(ym 77n; tn—-1+k;(15)s 7:n—l)j—l
Jtn—1
(33) X[ j;. hG(yn! 'Ej; tn—l+k7(15)1 fn—l)ué(éja rn—l)
—G(ym 0; tn—1+k1(23)’ z'n-l){f(z'n—l_l_kr(tS))_f‘(fn—l)}‘:l .

First we get from Lemmas 2, 3, 4

o <4+ ),

3/4
Since £ is at most \]/l[;’;* from (1.17), we have for small A

(3.4) [0 | <dM+1=M, s=1,2,3,...

Hence it follows from (1.17) that

h ) [
k,‘f) ='2—(\/lczv,(,5‘1’z+43\/h+ le,‘f_“)
(3.5) <kM +%\W
<2tM
for small A.

We consider the difference v\’ —v/*~!: using the notation

D((k5)) = (k) =+ (k2~Y)

we have
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|08 —0if | < [ DA TR Tk

J+n=-1
+ [k~ j;l ED(G(yy, €5 tart k2, Ta-D)us(§s Tu-1)|

(3.6)
+16( s 05ty + £, T DD +EE)]

+k7(18_1) I ff(fn) I ° |D(G(ym 05 tn—1+kr(;8)9 Tn—l)l]
where

rl(kr(tS))=1+azk:18)G E(ym en; tn—1+k1(13)s z-n--l) H
J+n—1
(3'7) Fz(kf(zﬂ)= jgll hG(ym Ej; tn—1+k}(t8)’ Tn—l)ué(eja Tn—l)

—k;zS)G(ym Oa tn—1+k1(1S)s Tn—l)'f-r(rn) .
It is easy to see that from Lemmas 2, 3, 4, and (3.5)
(B.8)  |I'T' k)| <4

3.9 |Cy(k)|<2M  (for small A)

(s)
B10)  [G(yp 0 by +h, rn-1>D<f<rn_1+k:,s>>>|cl'—’@%"—)—'

(CF—\/WL”’I),

and from Lemma 5,

| B2 (E) DG (Yas 05 taos +EE, Tu)) |

4a?k VM,

< whd

S” (A A¢=1)~1 gin z%deD(kﬁf’ﬂ
(3.11)
a0 My | DO
BT T DA+ T)

C,
—L Dk
<\/h &),

where
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A =14+42 sin? 2=, A V=1442570 sinz%,
(3.12)

2L (s—1)
s-n -2 ky
n 2

Zk(s)
l;ls)z ahzn
By the mean value theorem
|D(rfl(k;f)))| <16|[a'26§(ym 77n; tn—1+ks fn—l)
27, dG . yA (s)
+a?k —37,;_(}’”, Mns tn~1+k:o Tn—l):“ ° |D(kn )I

_ 16a? Bn
2 _ 2
Th* | ) (1 +47 sinZ%)

)
ssz dw

+

S,, sin %sin {2(]+ n)— %} odw

- 2
I (1 +42 sinz-czo—)

| 1)

Bl

- - g2
where k£ is a value between k(¥ and k{0, l=ahz . By (2.18) in

Lemma 5 and (2.24) in Lemma 6,

| DT (k) | <[~2— ,—c~}3",—2+8(1+4\/—2—)a {2” )1 i }hﬁ}ww;ﬂn
tn)—5

(3.13)
<C,

[D(ksD| o _42Z(EM)Y? | 48+ 2)ayEM
F ’ 2= a + l .

(by (3.5))

Finally we consider the sum

J+n—1

(314) B~=— hD(G(ym Ej; tn—1+k7(15)’ fﬂ—l))ué(ej’ rn—l) .

ji=1
Here
D(G(ym Ei; tn—1+k7(33)s Tn-l))

T 2 . .
= _2—71171—S_ _‘%};‘T sin? %(A(s)A(s—1))*1[6—1(f+n—1)w
+ e—i(]+ﬂ+i-1)m]dw,D(k:ls))

=a?0.:(§,)D(k;),
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where
0E)= 271rh S';(A(s)A(s—1))—1[e—i(]+n—j)m+ e~ iU+n+i=DoT] g,
Hence
J+n—1
B:azD(k(S)) o h@;g(f,)ug(g_,, fn_l)
=
=azD(k(S))[mE(ﬂn—1)u(77n—13 Tn—l)_wf(o)ué(o’ fn—l)
J+n—-2
- &, hme(Ej)UEg(éj, Tp1)].
Thus
(3.15) | B| <a?[ M|0, (7,-,)| + M|0,0)]
\r J+n—2
+ 2 M0 T D).
7=0
Here

0.(&)= _?ZEZ—S:,{A(S)A(S—I)}_I sinz-% sin (J+ n)w sin jo do

gt L0y T d

_ 271-1h2 S" {A(s)A(s—l)}‘l sin w sin (J+ n +j)a) do

and from Lemma 5 and Lemma 8

h 4 +u;\ . Coh
D.(E; . Yn i (_ Yn J> gt
10:CD| <oyt T aaskee iz )T

n j n— Xj Ch —
jzf—agﬁ;‘e)(p<——9‘;—\/:’§i)+ 2\77 (fOI' yn—xj>3a\/k)

+ or alternatively

L Cs(%;:/ -IE; %)
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. . 3
where k=max (k;‘S), k,(f—l)), k =min (k;,‘g), k,(.,s—l)) and Cs= 47;3 °

(26 M )32
kv'< vh

Using (3.4) we have Hence

I 5( )‘< 3]23/2 eXp< a > \/h

4 skslz p("_‘—ﬁj—> (for yn—$j>3a\/f)

(3.16) + J or alternatively

l CS(yn-ff)
\ T

<C4=E%3uﬂ+263(/cM)3’2>.

In particular

n 1\, €
3.17) | @ (7, 1)|<y” 3’:;'73I21exp( yna—l:/%l 1 +Q:5
and
(3.18) 0.0 <5 Skm )

(Cs = C4 + (2/5M)3I263).

From (3.13)-(3.16) we have

B 2 I:yn+77n 1 __y”+77”—1 Yn —_ yﬁ_
|B| <a?M| 2 34312 exp( i >+2a3153/2 p( a\/12>

2Cs Dk 17 YutEi _ YatEi
+\/h:|i ()1 + [JZ«:) 43k3/23p< o )

(3.19)

C477n- yn—ei
Nh j=o k“”z exp( a )+
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J+n—2
C - (s)
+C B b ]|D<k ),

where J,=max {j; y,,—é,>3a«/7?}. Here we note that
2l< _')",,+77n-—1<2l+2Mtn,
<y, <l+ Mt,.

It follows from (3.19) that

IBl<a2M[éIS%t,’Z' {(exp( \/k>+ exp( \/llf;)} 525] | D(k$) |

+M|:WS {(y,, x)exp< y"\/k >+(y,,+x)exp< 33%x>}dx

90262 + C4(l + Mtn)

* 2k Vh

R

and further for small A(k)

4a2 M M (= 9a2C, M
<[ +—TS ge-vdg+92°C2 M
[BI< 7 T aay )’ 0 5

Cy(l+Mz,) M . L (s) Ce (s)
(3.20) + G| | DGk < 2 Dk
(cﬁ=4a2M+%(%+9azc3> \/EM+C4(Z+MT)II7I>.

Consequently we get from (3.6), (3.8)—(3.11), (3.13)-(3.14) and (3.20)

3.21) o4 =0 | < LD,

C,=2MC,+4(2C,+Cy).
Here we have from (1.17)

(3.22) | Dk <R

I,v'(ls—l) _,Ur(ls—-ZJ .
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It follow from (3.21) and (3.22) that

|08 — s | < Cé’C [ps=1 —pls=2) |,
If B is chosen so large that
(3.23) o= Cé" <1

then (3.2) holds with 0 smaller than 1. Thus we have proved convergence

of our iteration procedure.

§4. Convergence of the Scheme as h—0

We assume that

4.1) max | f(z)|, max |g(x)| <M,
0=t=T 0=x=l
(4.2) max | f(t)|, max |¢(x)| <M,
0<t<T 0<x<1
and
(4.3) max |¢(x)| < M,.
0<x<I

By the maximum principle we have from (4.1)

(4.4) max |u(x;, t,)| <M,
0=x7Syn
0<tasT

and also from the assumption ¢ <0, f<0,
(4.5) u(x;, t,) =0.

We shall see that it is sufficient for convergence proof to show a

priori estimate

(4.6) max |v,| <M.
ta<T

In fact we have then for small A

(4'7) | u?(yn—l’ tﬂ)l <2rM?
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because

0= ui(Yaess 64) = = v, = — 2 (RPE+ 4B+ kv,

The system which z=uj; satisfies is

(azzﬁ(xj, t,)—zi(x;, t,)=0, 0<x;<y,,;, 0<t,<T,

) Z(O, tn) =f7(tn)ﬂ 0<tn< T’

(4.8) {
i z(yn—h tn)=u7(yn—1= tn)’ 0<tn< T’

kz(xja O)=a‘2¢x5(xj)y 0<x]<l

By the maximum principle we get from (4.2), (4.3) and (4.7)

(4.9) max |uz(x;, t,)| < M=max {M,, a?M,, 2c M?
t 7
0<x <yn
T
and
(4.10) max | u,s(x;, 1,)] <AL
“FE ¢

Using the identity

Jta-1
ux(xj’ t,,)=’1.7”—- Z uxi(xr, t,,)h
r=j+1

and (4.6), (4.10) we obtain

(4.11) max |u,(x,, t,)| <=M+ (1 26MT) .
0<% ;<yn a

talT

We shall show convergence from a priori estimates (4.4), (4.6), (4.9)-(4.11).
Let h, tend to zero as a¢—oo. From (1.10) corresponding %,, tends to
zero as a—oco. Denote by y,(¢) the broken line crossing each right-end-
mesh-point (y,, t,). Then we have from (1.10)’, (4.6)

(4.12) Iy, (t)<1+2cMT, 0<t< T
and also

(4.13) 0< y,(t2) — yo(t)<EM(2—1Y),  0<t'<s<T.
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Since last inequalities means that the sequence of functions {y,(#)} is
uniformly bounded and equi-continuous, it follows that there is a subse-
quence (which we denote again by {y,(¢)} which converges to a continuous
function y(¢) uniformly in 0<¢t< 7. The limit function satisfies by (4.12)
and (4.13)

(4.14) ISy(@)sI+2MT, 0<:<T
(4.15) 0< y(t2) — y(tV) <k M(2%—11), o<tz T.

Let u, be the solution of system (1.6)-(1.10) corresponding to h,. It is
shown from (4.4), (4.6), (4.9)-(4.11) and (4.15) that a subsequence of
{u,} converges to the solution u of (1.1)-(1.4) with the boundary x = y(z)
above defined uniformly in 0<x < y(¢), 0<t<T. (see Petrowsky [4])

We shall show that the pair of functions (y(¢), u(x, t)) satisfies also
the Stefan’s condition (1.5) (hence all the system (1.1)-(1.5)). We can
define {u,(x, ¢)} for all (x,t) extended from {u,(xj, t,)} appropriately.
Then we have from (4.10)

(4.16) | uaz(x, ) —uz(x’, t)|<7iw—2—|x—x’|, 0<t<T
and

(4.17) a“g’;’ ) a“(axx ) <———| x—x'|, 0<t<T.
Hence the limits

(4.18) xlirqt)uaf(x, t)=v,(¢) (uniformly in )

and

(4.19) x}gn ———-(x t)=v(2) (uniformly in £)

exist. Consequently it follows from (4.18) and (4.19) that

(4.20) limv,(¢)=v(t) (uniformly in 2).
a—re

By (1.10)’
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YaO=1+{ O di=1+ Ty

t
0
=1 +—;—an(\/;¢21;§”+45\/77 +Kv,,) .
Here take ae—oo. Then we get by (4.20)

t
y(t) =1 +/¢S o(t)ds.
0
This means that y(¢) is differentiable and

y(8) =ro(t)

which is not but the Stefan’s condition.

Since the solution of the system (1.1)-(1.5) is unique (Friedman [3]]),
it follows that not only a subsequence but also the full sequence {y,(¢)},
{uq(x, t)} themselves converge to y(t) and u(x,t) respectively.

It remains to show (4.6). Applying the formula (2.6) to the solution
of (1.6)-(1.10) we have

(4.21) v,= A7 [ A+ 43+ 4,],
where

Ay =1+40%k,G (Y N5 tys Tu1) s

J
Az =].A::“1 hG(y”, 5/'; 7 O)¢é($j) )
(4.22)

”
A3= - Pglkpc(ym O; Lps fﬁ—l)f-r(rp)
n
and A= _“Zpglkpcs(ym Up3 bns Tp-1)0p -
Directly from Lemmas 2 and 4 we get
(4.23) |4, <4,
(4.24) | 4,] < M,.

By Lemma 3,
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Mlg'n de  _2M, —
(4.25) 2 <M Ven

Now we consider A4,:
Ay=Ay+ Ay,

(4'26) A41= _aZ Z . kpcf(ym 77_1;; tna Tp—l)v[n
2h3
VB8

Ap=—a> N kGCp (Yu Wps by Tpe1)Ve
2h
VB

tn—Tp—1>

NS

th—7p-1<

First we have from (2.30)

dnl<{ = | iz [riVatrs]
>2i by =7, —k(n, p)
v B

T Tk p) L

tn—rp- 1>M(t —Tp— 1—-k1,(n P))z
where

loll= max v,
p=1,.,n-1

_ 247 _(14+2y2)a _
"= e T TS

m[‘ Q

J21

and V, is a bound for—kh— (p=1,...,n—1) as in §2. Since £(n, p)< \/B
b

3

. tn- 4 (t,-2h8
|A41| <[\/2 (Tl Vh_*_-rz)g 2 \/th +2\/2 TSh g VB df §i| ”UH
0 n—T \/B 0 (t,—1)2

@21) <[V a+TWNe+73he ] o]

<ri=2«/'2-rl, =Ty ri=-L8 )

Using (2.31) we have
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B V
4al<] =z D Telah =z, Ly I
PR l<2h4 \/t —k(n, P)
_ 3a
<T4_4—l>'

Since kq>Wth— from (1.10") we have

Ve, — 1,1 —k(n, p)>\/

Ellv]|
Hence
IR 1 V tn P
| Ays) <[271 \/%Vh o T4h h gt"_ %_%Jt,,—z‘dr}
1 1 , 1
(4.28) =[rihtVllol2+713h8V ] ||o]]
(r’{=2r1 o= 2““)
B 384
We obtain from (4.26)-(4.28)
’ ’ e ! 3 1 ]
Al <CIVa+ 1ot + 73R8+ 11 R4V 4 |0)|2
’ 1 1
+73h3V ]|l
Here
— 1
Vi<t|lv]|+VB At
from (1.10"). Put
, 3 ) a3 — 1 1
| Ayl <[r3h8+71B h8+714B h2||v||2
(4.29) +74hdllol |+ 77 mh4llvllz+(rz+r1«/3 2

+riellolDVe, Jlloll = Ly(lloll, ¢4, B) .
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It follows from (4.23)-(4.25) and (4.29) that

@30 ol <d Mo+ 2ye s Lol 6 B |.
Put
(4.31) M=4M,+1

and take A so small that
1 « o
T2 +71WB A+ TIEM<2(ry+718M), and

(4.32) (rihé + 7 B b3+ 7INB MERE + e Bl

1

A3 1 A
+T’1’ICM 2h4)M<T

and take ¢ so small that

(4.33) {—1%1— + 0+ r;xM)M}\/T<% :
Then if we assume that
[lv]|= max Ivj,|<]fl
p=1,0yn-1
t,<0
we have from (4.30) and (4.31)
|v,| < I

Thus we get the local a priori estimate

(4.34) |v*| <M  for t,<¢ and sufficiently small A.

Hence convergence follows from the last estimate for 0<¢ <0 as we noted

above and existence of a local solution of the differential problem (1.1)-

(1.5) is established as a by-product. It is well known that global existence

in our problem follows from local existence (see Friedman [37]).

fore we have a priori estimate
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(4.35) du (s, t)l <M,

0=zy() l 0x
0<t=T

where M 1 is a constant. From convergence properties as noted above we
have for sufficiently small A

(4.36) max |uz(x;, £,) ] <2ﬂ21§M1.
0<xj=yn

Put

(4.37) M=4M,+1

and take 0, so small that

A

(4.38) P+ (a4 e MG, <
(see (4.33)). Then we get
(4.39) o) <M  for 0<t,<0<0,

as above. Here ¢, is depending only on M,, not on ¢, In the same
way, we also have

lv@ )| <M  for 0<t,<0+20,
and so on. Thus we get a priori estimate

o(e,) | <M for 0<t,< T,

which was desired.

§5. Numerical Experiment

We show some results of our numerical experiment using our difference
scheme. We take, for example, the following data in the problem (1.1)-

(1.5):
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and
o(x)=x—1, 0<x<1.

We solved this problem by the scheme (1.6)-(1.10) in the three cases:

i) £=0.05, h=0.1 ii) B=0.05, ~=0.01 iii) @=0, A=0.1.

Here by 8=0 we mean the case without the artificial heat flow term in

(1.10), that is, we use the formula
h

Ev.S

k 7(}5* =
instead of (1.17) in the iteration procedure. Fig. 1 shows the position of
In the third case the calculation could

the free boundary in each case.
not be continued because the iteration determining k£, did not converge

t
3.0
——__(B=0.05
h=0.1
@=0.05
h =0.0l |
e (B =0 |
h=0.l |
/
/
2.0 /
/
/
/
)/
/

20

1.0

0.0
Fig. 1
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In the first two cases with artificial heat flow term the calculations could
be done as far as we desired and the iteration at each time step converged
within check bound |k —k{~1| <0.0001 by 5~8 times (the first case)
or 3~4 times (the second case). From comparison of the first two cases
we know that even the first calculation rough mesh size A=0.1 shows
sufficiently convergent feature.
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