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Orbit Computation in Celestial Mechanics
by Urabe's Method

By

Rene VAN DOOREN*

Abstract

The numerical computation of orbits in celestial mechanics can be per-
formed by applying Urabe's method for the Galerkin procedure. High order
Galerkin approximations are computed for two examples: Hill's variation orbit
of the moon and the orbit of an artificial earth satellite. Excellent agreement
with known results is obtained.

I. Introduction

In £1-2]] Urabe introduced a complete criterion for the study of

periodic solutions of certain periodic non-linear ordinary differential equa-

tions. This procedure permits to compute high order Galerkin approxima-

tions with a very high precision by applying Newton's iterative method and

using an electronic computer, to discuss the existence and the stability of

an exact isolated periodic solution in a small neighborhood of a numerical

computed Galerkin approximation and to determine the error bound of this

Galerkin approximation. Urabe £2-3] applied this method to a highly non-

linear equation which had been first studied by Cesari £4] using a different

existence analysis more topological in character, to a weakly non-linear

van der Pol equation, and also to a Duffing equation in order to determine

a subharmonic solution. Bouc £5] reexamined these examples under a diffe-

rent viewpoint taking into account the symmetry of the considered equa-

tions. In £6-10] we applied Urabe's complete method to coupled Duffing

equations with two degrees of freedom. In all these examples the right
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hand side of the considered system x = X(x, x, t) is a polynomial in x

and x with periodic coefficients.
The purpose of this study is to show that high order Galerkin approxi-

mations can be obtained without difficulties by Urabe's method when

X(x, x, t) has no longer the mentioned properties. This is especially the
case for perturbed Keplerian motion in celestial mechanics. As an illustra-

tion we compute Galerkin approximations of high order for Hill's variation

orbit of the moon and for the orbit of an artificial earth satellite. The

numercial results are in excellent agreement with known results obtained
by Hill [11-12].

2. Galerkin Approximations by Urabe's Method

We consider a real periodic differential system of the form

(2.1) x=X(x,x,t)

where x, x and X(x, x, t) are vectors of the same dimension and X(x9

x, t) is periodic in t with period 2n. A dot means differentiation with

respect to t. We seek an approximate periodic solution of (2.1) with

period 2n represented by a trigonometric polynomial of the form

m
(2.2) xm(t) = aQ+ 2 (a2w_isin nt + a2ncosnt) .

n = l

The unknown coefficients av are determined by a balance procedure applied
to the following equation

(2.3) *.(*)= *«(*«(«), *«(«), 0

in which Xm(xm(t), xm(t), t) represents the Fourier series of X(xm(t),

xm(t), t) truncated after the harmonics of order m

(2.4) Xm(xm(t), xm(t), 0 = ̂ 0+2 (A2n-1w
n=l

The Fourier coefficients Av are given by
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1 C 2re

2if-l=— \ XE-Xm(S)> *^(5)> 5Hsi

" Jo

2n = -~\ *X[xm(s)9 Xm(s), S]COS
K Jo

71 = 1, 2, . . . , 771 .

Equating the coefficients of 1, sin nt and cos nt with 7i = l, 2,..., TTI in

(2.3), we obtain the determining equations for the coefficients av

(2.6) F0(a)=-^42irZl>.,W. *»(»). *]ds =0
lit Jo

1 f 2*
^2«-l(aO=— \ XL*m(s)> Xm(s),

7T Jo
sn 715 s+ 7l02 i i - l

2n
2\.I X«M\5), X»w\5 ), 5 I COS 7Z»S

0

with 7i = l, 2,..., 77i and a = (a0, o l5..., a2 w_ l 9 a2w).

This method to determine the coefficients of the approximate solution

(2.2) of the system (2.1) is the Galerkin method (see also [13-17]). The

trigonometric polynomials (2.2) are called Galerkin approximations of order

77i. The equations which determine the coefficients av can be rewritten as

follows

(2.7) *V(a)=0 # = 0, 1,..., 277i.

Suppose a = (a0, a ls..., a2m-i, a2m) is an approximate solution of (2.7) and
let us apply Newton's iterative method to solve these non-linear equations.

Then for the imposed approximate solution a, we have

2m
(2.8) F*(£)+ Z Ju.v(&)hv=Q ju = Q,I9...,2m

where

(2.9) hv=av-av /„„ (a) =

/*, y = 0, 1,..., 2771.

Urabe [2] described a numerical approximation method to calculate the
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values of F^ and their partial derivatives dF^/dav which occur in Newton's

iterative method, when the values of an approximate solution a of (2.7)

are given. This approximation method is based on the computation of the

Fourier coefficients Av in (2.5) by the following approximation formulae

2N2
N

2N

with /& = !, 2,. . . , //i N>m

(2.11) ^^

For further details we refer to

By solving numerically the linear equations (2.8) with respect to the

unknowns hv we obtain the values of the coefficients av. The starting

values in Newton's iterative method are found either by applying the

balance method of the first harmonics or by using the known results of a

slightly different system.

3* Hill's Variation Orbit

Hill's equations for the motion of the moon in a rotating coordinate

system can be written as p. 1-1 2]

(3.1) ^1

— 3-^2

with

(3.2) r = (xl + x$112 and ^ =

Hill obtained a trigonometric series solution and calculated a numerical
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solution to fifteen decimal places with the following values of the para-

meters e and $

(3.3) 6 = 0.080848933808312 and 0 = 0.999093141975298 .

The numerical results are

(3.4) x M = 0.991304253038460 cos t + 0.001515871270049 cos 3 t

+ 0.000005881116971 cos 5 t + 0.000000030043916 cos 7 t

+ 0.000000000175332 cos 9 t + 0.000000000001107 cos lit

+ 0.000000000000007 cos 13*

x2(i) = 1.008695746961540 sin £ + 0.001515543689077 sin 3 t

+ 0.000005876196185 sin 5 t + 0.000000030019348 sin 7 t

+ 0.000000000175204 sin 9 £ + 0.000000000001107 sin 11 1

+ 0.000000000000007 sin 13 t .

Now let us apply Urabe's method to obtain Hill's variation orbit. The
equations (3.1) can be rewritten as follows

(3.5) x1 = Xl(xl9 x2, x2)

with

(3.6)

Although Xl and X2 do not contain t explicitly, we may look for appro-
ximate periodic solutions of (3.5) with period 2n represented by trigono-
metric polynomials of the form

m
(3.7) #i(0 = 0o+L (a2fi-i sin nt + a2ncos nt)

n=l

m
x2(f) = b0 + 2 (&2»-i sin nt + *2» cos nt)

n=l

where the unknown coefficients av and bv should be determined by Urabe's

method for the Galerkin procedure as described in Section 2. The starting
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values in Newton's iterative method are taken as follows

(3.8) a0 = 0 «i = 0 a2 = l a s=a4= •••=a2m = Q

The computations carried out on the computer CDC 6400 at the University

of Brussels, yield the following Galerkin approximations of order m = l3

by Urabe's method with j(V"=35 and a required precision of 14 decimal

digits for the coefficients av and bv obtained after 4 iterations

(3.9) X l ( f ) =0.99130425303848 cos £ + 0.00151587127005 cos 3 t

+ 0.00000588111697 cos 5 t + 0.00000003004392 cos 7 t

+ 0.00000000017533 cos 9 t + 0.00000000000111 cos lit

+ 0.00000000000001 cos 13 t

x2(f) = 1.00869574696158 sin t + 0.00151554368908 sin 3 t

+ 0.00000587619619 sin 5 t + 0.00000003001935 sin 7 t

+ 0.00000000017520 sin 9 t + 0.00000000000111 sin 11 1

+ 0.00000000000001 sin 13 t .

Compared to Hill's results (3.4) we notice an excellent agreement (about

13 decimal digits).

4. Artificial Satellite of the Earth

The differential equations of the motion of an artificial earth satellite

perturbed by the dominant oblateness term of the earth are £18]

with

(4.2)
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In the determination of the parameter k only the dominant oblateness

term has been taken into account.
Let us assume that the unperturbed motion (& = 0) is circular

(4.3) #!(*) = cos*

#2(0 =cos * sin t

#3(z) = sin isint

where i is the inclination of the orbit of the satellite.

Then following Urabe's method we can seek approximate periodic

solutions with period 2n of the perturbed motion described by (4.1) which

are represented by truncated Fourier series. The starting values in the

iterative procedure are taken from the known solution (4.3) of the unper-

turbed motion. The following values of the parameters i and k are adopted

(4.4) *'=-?- 4 = 0.0014.z

The selected value of k corresponds to an altitude of the satellite of

approximately 492 km above the surface of the earth at perigee.

The Galerkin approximations of order m = 9 obtained after 4 iterations

with N= 25 and a precision of 14 decimal digits for the unknown coeffi-

cients, are as follows

(4.5) *!(*) = 0.99982458758998 cos t + 0.00017515869991 cos 3 t

- 0.00000001878087 cos 5 t + 0.00000000000276 cos 7 t

+ 0.00000000000000 cos 9 t

x2(t)= 0.00000000000000 sin t + 0.00000000000000 sin 3 t

+ 0.00000000000000 sin 5 t + 0.00000000000000 sin 7 t

+ 0.00000000000000 sin 9 t

Xz(t) = 0.99970759298578 sin t + 0.00017516895755 sin 3 t

- 0.00000001878254 sin 5 t + 0.00000000000276 sin 7 t

+ 0.00000000000000 sin9*.

The two examples clearly show that Galerkin approximations of high order

for perturbed Keplerian motion in celestial mechanics can be computed with

a very high precision by applying Urabe's method for the Galerkin procedure.
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