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Well-Posedness of the Cauchy Problem for
Some Evolution Equations

By

Katsuju Icarr*

1. Introduction

We consider the forward Cauchy problem, in 27., for the partial
differential equation

(1.1) L[u]=0,u—a(x,t;0,)u

=0,u— 2, a,/(x,t)0%u=0,
lvI=2m

(%,t) in R*x[0, T], T>0, with the given initial value at ¢=0, where
m is a positive integer. Throughout this paper we use the following

P ) 0o 0 0\ 0\ oo
abbreviation: 0,, 0;, 0% stand for B Iy <0x1> (0x,> , V=1,

y,;), respectively. We are concerned with the following problem:

Problem. Under what conditions is the above Cauchy problem well-
posed ?

This problem was studied by many authors. Some of them studied
this problem for equations of more general form, namely for p-evolution
equations. In the case where the coefficients are constant, moreover in
the case where the coefficients are functions of only ¢ as well, we know
the necessary and sufficient condition for (1.1) to be well-posed. Namely
Hadamard’s condition, Petrowsky’s theorem and so on are well-known.
However, in the case where the coefficients are functions of x and ¢, the
situation is much more complicated.

One of the most important results already known is the theorem of
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I.G. Petrowsky and S. Mizohata ([37], [7]). According to this theorem,
we know that the following condition is necessary for (1.1) to be well-

posed: for any x in R’
(C.0) Rea,,,(x, 0; i) <0 for all £ R,

where a,,(x, t; &) stands for the principal part of a(x, t; &).

Our purpose of this article is to seek for the more detailed necessary
condition. More precisely, we consider the case where for some x, and
£9 (#0) in R}

(C.l) Re azm(xo, 0; i$°)=0.

When L is an operator with constant coefficients, we know by Hadamard’s
condition that if

(C.Z) Re a2m—1(i$0) * Oa

the Cauchy problem for (1.1) can not be well-posed in any small neighbor-
hood of t=0. Our purpose is to show, assuming that the coefficients of
the principal part are real-valued functions, that under certain conditions
this is still true (Theorem). We also give the examples which show that
without those conditions this is not true (Example 2 and Proposition).

Our main result is Theorem in section 2. Although this theorem is
far from complete, however it seems that the condition (C.3) stated there
gives a meaningful characterization of the state of degeneracy of the
elliptic operator a(x, ¢;0,).

On the other hand, we know some sufficient conditions for (1.1) to be
well-posed. One of the most useful and well-known equations for which
the Cauchy problem is well-posed in 27%. is, of course, the parabolic
equation. Recently, the Cauchy problem for degenerate parabolic equations
are studied by some authors ([2], [5], [6]). We should remark that the
reasoning shown in [27] is no longer valid in the case m=2.

2. Theorem and Some Examples

We say that the forward Cauchy problem for the equation (1.1) in
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2%,V is well-posed, if
1) for any given initial value uy(x)E 27, there exists a unique solution
u(x,t), t=0, which takes the given initial value uy(x) at ¢=0,
2) this linear mapping wu (x)—u(x,t) is continuous from D3: into
LHESDN

Several examples of equations are known, which satisfy the conditions
(C.1) and (C.2), but for which the Cauchy problem is well-posed in 27%.

Example 1 (J. Takeuchi, [9]). Let L=0,—i0%2—ia(x)0,, x<R.

Suppose that a(x) is a real-valued smooth function with compact
support. Then the Cauchy problem for the equation Lu=f is well-posed
in 9%..

When a(x) is non-zero real constant, it is far from well-posed as
Hadamard’s condition shows. The reader can find a similar example as
the above one in [8]. In view of these examples, it seems difficult to us
to find the necessary condition of the pointwise form as (C.2), in general.
However, if we assume that the coefficients of the principal part a,,(x,
t;0,) are real-valued functions, we have the following theorem.

We assume that the coefficients of a,,(x, t;0,) are real-valued func-
tions in the class &£?(#~), and assume that the other coefficients of
a(x, t; 0,) are complex-valued functions in the class #9(%>). By

1) ha(r; €)= 31 —r Ofaga(x, 0 €)0%an(x, 05 6),
arer #!
we define a homogeneous polynomial &,(x;¢) of & of degree 4m—k.
Theorem. Assume that, for some x, and £°(+0) in R},

(C-l) a2m(x07 0; iéo)zoa

(€.2) Reaz,—1(%0, 05 26°)#0,

1) In this paper, we use the following linear topological spaces: 9%:, &=, &¥(23:),
E¥(#=). We shall explain briefly. u(x)=Z3: means that all its derivatives d%u

(in distribution sense) belong to L%. Z7%: provided with the semi-norm p,(u)= 3]
Ivism
|0%u| is a Fréchet space. ¢(x)E %~ means that all its derivatives d%¢ are contin-

uous and bounded. £ provided with the semi-norm g,(¢p)= 3, sup |d%p]| is a
visn =z

Fréchet space. u(x,t)e&E(D3: or #~) means that t—u(x, t)€P3: (or F~) is

continuously differentiable up to order k.
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(€.3) hy(4; £°)=0,
(S (0:a2,)(%0, 0; i6°) 2 0.

Then the Cauchy problem for (1.1) is not well-posed in any small neighbor-
hood of t=0. Especially in the case m=2, we can remove the condition

(C.4).

Note 1. (C.1), (C.2) and (C.4) are invariant under any regular
transformation of the space-variables x. Moreover, under the fundamental
assumption (C.0), the condition (C.3) is invariant, too. The reader will

easily verify by considering that (0,, @;,)(%, 0, £°)=0 for all j.

Note 2. We can weaken the assumption for smoothness of the
coefficients of the principal part. Namely we need only to assume that
the coefficients of a,,(x, t; 0,) are real-valued functions in the class
&1t (#~), 6>0.

In our theorem, in general, we can not remove the conditions (C.3)
and (C.4). We show this by examples. The following example is related
to the condition (C.3).

Example 2. In (1.1), let a(x,t;0,)=a(x;0,)=0}+a(x,)05+ib(x,)0,,
x=(%q, %,)ER2, where a(x,) and b(x,) are real-valued functions of only
%, in the class #=. Assume that a(0)=0, a(x,)=0, (02a)(0)>0. Assume
also that for any €>0 there exists 0(>0) such that a(x,)=0 for any
xy; | x| =2e. Then, if

22) {0} < 5 (030)(0),
the Cauchy problem for the equation 0,u—a(x;0,)u=f is well-posed in D3..

This is the simplest case where a,,,(x,, 0;26°)=0 but where h,(x,;
£9+#0. We want to show this by the same reasoning as in [2]. For
uE@%},

lZ—a(x; 0))ull?=2%|u|? +|la(x ; 0. )u||*+24(]101u||>+ |Wa(x,) O5u]|?)
—22Re (u, ib(x,)0,u).

Hence, if we show that for ue 2%



WELL-POSEDNESs OF THE CAUCHY PROBLEM 617

2.3)  |10yull®+[Wa(x )0z ul|* —Re (v, ib(x,)0,u) = —const.||u]]?,

we can get the same proposition as Proposition 2 in [2]. Since

<alu, \/%a"(O)xlazu>= —(u, \/—;—a”(();azu>+(\/—;—a”(0)x102u, 31u> ,

we have by (2.2),

2

[ 60)1 < [, 5" )| SI0sullt+ | v a” (0,0,

Using a simple partition of unity, we have (2.3) from the above inequality.
Other theorems and propositions in [ 2] can be obtained in the same way
as above.

Next we consider the case where m=1 and where all of the coeffi-
cients are functions of only ¢. Namely we consider the equation

(2.4) 8,u— kﬁ

J

!
a;(8)0,0,u— 3. b;(£)0;u —c(2)u=0.
1 =1
In this case, we can obtain more detailed conditions for well-posedness by
Petrowsky’s theorem. Assume that the coefficients are continuous, but not
assume that a;,(¢) are real-valued. The following proposition explains the
role of the condition (C.4).

Proposition. Assume that, for some £°(x0) in R’ there exist positive
constants C and 0(>2) such that

(2.5) S;Re kﬁ a;(s)8960 ds < Cee

1

7

in a neighborhood of t=0. Then
1

(2.6) Im _Zl b;(0)§9=0
F=

is necessary for (2.4) to be well-posed.

Inversely, if there exists a positive constant C' such that

@.7) S'min. Re kﬁ a;a(5)E 6y ds = C't2

0él=1 7 1
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in a neighborhood of t=0, (2.4) is well-posed in some neighborhood of t=0
whatever we may take as lower order terms.

Proof. Apply the Fourier transformation for space-variables x to
(2.4). Then

J

(2.8) a,u(t;5)+{ kz';' a,k(t)g,.sk—jzz'l ibj(t)éj—c(t)}v(t;f)zo.

1

!

(2.9) u(t;s)=exp[-g'{ )3 ajk(s)€j$k—ij§ b(5)6;—c(®)} ds |

00, k=1

is the solution of (2.8), which takes the value 1 at t=0. By the theorem
of Petrowsky, the Cauchy problem for (2.4) is well-posed for the future if
and only if there exist positive constant C and p such that for all ¢,
0<t<T, and for all § in R}

(2.10) lo(e; §)| =CA+[£])*.

!
We prove the first half by contradiction. Put Im 2] 5;(0)§}=—k.
j=1

Without loss of generality, we may assume k£>0. For §=t£° we have by

(2.5)
|v(e; T€°)| = exp {—;—ktr— Ctﬂrz}

_1_
in a neighborhood of ¢=0. At t,=(%?kz_—>"_1 s
-2
1

=

lv(z,; 60| = exp{ 1 k<_4_k€)7£_lz_ a

|

Since g%%>0, this is contradictory to (2.10).

Now we prove the latter half. By (2.7), whatever we may take as

lower order terms,

"2
|0(; )| < exp {— C's2|&|2+C"t|&| +C"'t} < exp{_}%w”@}.

Thus (2.10) holds. Q.E.D.



WELL-POSEDNEss OF THE CAucHYy PROBLEM 619

Now we give a rough sketch of the proof of Theorem. At first, we
remark that we can suppose x,=0 and suppose &°=(0,..., 0, 1), because
all of the conditions (C.1)~(C.4) are invariant under any regular trans-
formation of space-variables x (Note 1). Moreover we can assume with-
out loss of generality that

(2.11) Rea,,,_1(0, 0; i€9)>0.

Then consider the operator L, ,=0;—a,,(0, 0; in§%) —Rea,,_1(0, 0; in&?).
We shall prove in section 3 that, so far as we restrict the sequence of
the initial values in a convenient way, this operator gives a good approxi-
mation to L. Now we assume that (1.1) is well-posed, then

(2.12) max. ||u,(x, ||, <C 3 [05u,(x, 0,2 -
ost=T z Ivl=h s

Finally using the inequality obtained in section 3, we show that (2.12) is
a contradiction.

3. Operator L,, Approximating to L

At first, we derive some properties of a,,,(x, ¢;0,) from (C.0), (C.1)
and (C.3). As aforesaid, we can suppose that x,=0 and that £"=(0,..
0,1). Express a,,,(x, t;0,) as follows:

2]

B.1)  agu(x,t;0)= 2 a,(x, 00+ 2 a.(x, £)0; 0m-3
vi=Zm—4 v’

=3
-1 -1
+ 2 a;(x, 1)0,0,07m 724 3 a(x, t)0,07™ 1 +a(x, t)0F™,
AT =1

where v/ =y,..., Y;_1).
By (C.0) and (C.1), we know that

a(0, 0)=0, (—D™a(x, 0) <0.

Therefore by Taylor expansion,

1
a(x,0)= 2, cjpxjx,+r(x), Cjp=Cpjs r:8(0)=0
N

j 1

for all j, k=1,...,1. Now we take an orthogonal matrix I which nor-
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-1
malizes the real symmetric quadratic form }; c¢;,«;x,, and change the
64y

space variables by x = Tx’=(g (1)>x’ Then

=1 =1
a(Tx’, 0)= j;j)c}x}2+ j;lc},x}x;+ cix2+7(x"),

where p is an integer (1= p<1),(—1)"c;<0 for j=p,...,I—1,(=1)"c; <0,
r9#8(0)=0 for all j, k=1,...,1. Besides, if we denote a,,(Tx’,¢;*70,")
by d.(%', 2;0,), the coefficient of 027 of a,,(x’,¢;0,) is a(Tx', t).
Therefore in the expression (3.1) we may assume without the loss of
generality that a(x, 0) has the same form as a(7Tx’, 0). Namely we may

assume that
-1 -1

(3.2) a(x,0)= X c;xi+ Zlcj,xjx,—{—c,x,z-%-r(x),
i=p j=

where p is an integer (1< p<l), (—1)"¢;<0 for j=p,.., -1, (=1)"¢,
<0, r%®(0)=0 for all j, k=1,..., L.

Then by (C.0), (C.1) and (C.3) we can see the following more detailed
properties of the coefficients in the expression (3.1). In the following,
v and y® stand for (vy,..., v,-;) and (¥,,..., ¥;) respectively.

! -1
(3.3) a(x,0)= Y c;x%+ X c;x;2,+ x c,x”+r(x),
j=p i=p

Iy1=3,» 240

where (—1)"c;<0 for j=p,..., -1, (=1D"c, <0, r*(0)=0 for all y;
[v|<3.

!
(3.4) a;(x, 0)=kchk;j x+ri(%), for j=1,..., p—1,
where r{¥(0)=0 for all £=1,..., 1.

a;(x, 0)= fv|=2,zu(2)=/=0 ¢, 2 +ri(x),  for j=p,..,I-1,
where r{*’(0)=0 for all v; |v| 2.

(3.5) a;,(0,0)=0 for j or k=p,..., -1

!
ajk(x, 0)=k§pch;j,kxh+rjk(x) for j and k:P,..., l—].,
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where r{#'(0)=0 for h=1,..., L.
(3.6) a,(0,0)=0  for y=(v', 2m—3); yV=(0,..., 0).

Proof of (3.3)~(3.6). For simplicity, we assume that m is an odd
integer. At first, we show (3.3). At the section x=(0,..., x; 0,..., x,),
1<j<p-1, a(x, 0)=c;;x;%,+c;x}+O0((x?+x7)%2). If we put x;=tx,;
(=0 <r< ),

a(x, 0)=c;txi+c,x}+0((Q+72)%2x3).
If ¢;;#0, putting t=—(1+¢;)/c;;,
a(x, 0)=—x}+0(x3}) in a neighborhood of x=0.

This is contradictory to that a(x, 0)=0. Hence ¢;,=0 for j=1,...,, p—1.
By the same way as above, we can see that ¢,=0 for y; |y|=3 and
y2=0.

Next we show that a;(0, 0)=0. At the section §=(0,..,§;,0,...,1),

a2 (0, 0; £) =a,(0, 0)§;+0(ED).

If a;(0,0)x0, it is contradictory to that a,,(0,0;&)=0 for all £éR'.
Next we show that ¢,;(0,0)=0 for all j. At the section £§=(0,...
$j5 0,'~-9 1)3

a2m(0, 0; §)=a;;(0, 0)§3+0(£3).

Hence a;;(0, 0)=0, because a,,,(0, 0; §)=0 for all £=R".
Next by the condition (C.3), we show that a;;(0,0)=0 for j=p,...
{—1. In fact

ha(0; 6% = X —110%an(0, 03 )0%azn(, 0560 seo,coso

ul=2

1 4 0?

= A 0, 0)¢*
2 m,n=1 agmagn {H§§n—3aV( )6

-1 _ 02
+]}k:1ajk(0, 0)¢;6,65™ Z}m“(% 0)] 20, £=¢0

-1
i=p
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Since ¢;>0 and «;;(0,0)=0 for j=p,...,l—1, we see that a;;(0,0)=0
for j=p,...,l—1. The remaining parts of (3.4)~(3.6) can be shown

easily by the same arguments as above. Q.E.D.

Now we want to show that the operator L, ,=0,—a,,(0, 0; in &)
—Re a,,,_1(0, 0; in&%) gives, in a certain sense, a good approximation to
L, where n is a positive large parameter.

Take a function B(x)eCy, B(x)=0, which takes the value 1 in

{x; | % | g%}, and whose support is located in {x; |x|<1}. Define
1 1 1 1
3.7 Bus(x)=B(n4 0" xy,..., n40 1x, 1, n20 1 xy,..., n2071x,),

where n and 0 are large and small positive parameter respectively. Still

more take a function &(§), which takes the value 1 in {S; |&—¢&0 g—i—}

and whose support is located in {S; |&—£9| g%} Define

. & §p- § §1- §
(3.8) an,s(5)=“< 6n11’2 (AL 6,1;1/12 ’ 671,3/4 A 5,;,3/14 ) '71)

We denote by «, ;(x) the Fourier inverse image of &, ;(%).
At first, apply B, s(x) to (1.1),

(3.9) I8, ul=— % -1 Bui(x)a®(x,t;0,)u,

1=lvT=2m V!

where a®)(x, t;8,) is defined by a)(x, t; &)=0%a(x, t;£). Now it does
not change if we modify the coefficients of a(x, t; 0,) outside the support
of 8, s(x), because L acts on 8, ;u. Take a function {(x)e Cj, which
takes the value 1 in {x; |x| =<1}, and whose support is located in {x;
| x| <2}. Define

1 1 1 1
8.10) &, s(x)=C(n%0"1xy,..., 407 %, q, n207 xy,..., 0207 1x,).
We modify a(x, ¢;0,) by substituting the coefficients a,(x, ¢) by
(3.11) a,(%, 1)=a,(0, 0)+&,, ;(x){a,(x, ) —a,(0, 0)},

and denote it by a(x, ¢;0,). Then we can write (3.9) in the form
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(312)  O—a(m, 63008, pu]=— % L8R, 60,0,

1=ivi=2m

Next, apply the convolution operator «, ;(x)x to (3.12),

(3-13) (at—ﬁ(x9 t; ax))[an,s*(ﬁn,su)]=Ean,s*’ d(x’ t; ax)][ﬂu,su]

1 (v)

"“u,s*{ 7,8 x)d(V)(xa t; ax)u'} )

1slis2m V!

Where [an,s*’ d(x9 t; ax)] [Bn,sujzan,s* {d(x, t; ax) Bn,su} _d(xa t; ax)
@, s%{B,,su}. Denote «, s*(8, su) and the right-hand term of (3.13) by
v®3) and f(?) respectively.

Consider now
(3.14) Sy, 5(8) =lo™ (%, 1)]|32 -
Hereafter we omit the sufix (n, ) of v? and %,
(3.15) S'(t)=2Re (v(t), 0,0()) 2

=2Re (v(t), . sz a,(x, t)050(t))

=
+2Re (v(), iagh- (%, £)07" v (2))
+2Re (v(0), am-,(x, )07 'o(2))

+2Re (O, T a,(x D0:(D)+2Re (00, f0)),

v|s2m—
1=2m—2

where a§l)_,=Red,,,, 5% _,=Ima,, ;.

As aforesaid, we can assume without the loss of generality that
(3.16) (=D=a$%_,(0, 0)>0.

Since, if we take n and 0 sufficiently large and small respectively,
lasZ_(x, t)—as%_1(0, 0)| <(—1)’"—;—d§2,,’,_1(0, 0) in a small neighborhood of
t=0, and since supp Lw(&, t)]csugpp Ca, ;(£)], we see that

(3.17)  2-nd term=2cyn?"1||v||2, co=—;—nz’”"1(—1)’”d§2,,l_1(0, 0)>0.
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Besides, by (C.4), (3.3)~(3.6) we see that
3
(3.18) 1-st term>= — C02n27-1||y]|2, 2 for ¢; 0<t<(02n~1)e%" P,

For simplicity, we show this only to 2Re (v, a(x, £)0?"v). In the case of

m=1,
a(x, t)=a(x, 0)+:a;(0, 0)+¢(a;(x, 0)—a;(0, 0))+0(t2).
By (3.3) and (3.11) we know that sup|a(x, 0)| <C0%n~', and that

1
sup |@;(x, 0)—a;(0, 0)| <COdn 4. Moreover, by (C.4), ,(0,0)<0. Hence
x

2Re (v, a(x, £)0v)= —(C0%n +ta;(0, 0)n2+ Cté‘n_inz—b— Ct?n?)||v||?

= — Co%nl|v]|?, for ¢; 0<t<(02n"1)%/4,
In the case of m=2,
a(x, t)=a(x, 0)+0(2).
Therefore by (3.3) and (3.11),

2Re (v, a(x, £)03™0) = — C(0?*n=+1)n?m||o|2= — Co2n2m=1||v]J2,

for¢; Oété(ﬁzn‘l)g(zm_v. If we note that|l0;v||gC6’“"n%]"“)l%l”(zm‘%” llv]],
we can show (3.18) to the other members in the expression (3.1) by
(3.3)~(3.6) and (3.11).

Moreover we can see that

(3.19) 3-rd and 4-th terms= —an”“l‘%llvllz.
Hence, by (3.17)~(3.19),
S'(£) = (2con?m-1— CO?n2m=1— Cn2m=1-5)|v]2—2]l]||| £1I.
Thus, taking ¢ sufficiently small,
(3.20) S'(t) = con?m 1 |v||2— Cn=2m+1| f]|2, 0<t=<(0%n-1)iem-D),

This is the key inequality to prove the theorem. Hereafter we fix the

2) Hereafter we may use the symbol C in order to represent positive constants.
Sometimes it expresses a positive constant which can be chosen independently of
n and d.
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parameter 0 and omit it.

4. Proof of Theorem

We prove this theorem by contradiction. We assume therefore that
(1.1) is well-posed in 27: in a neighborhood of ¢=0.

At first we define a series of solutions u,(x,t) of (1.1). Namely we
define their initial values. Let @(S) be a function whose support is located
in {5; |€] ‘S‘_}f} We assume that @(5)20, and that S@(E)zd$=l. We
define then

(4.1) Du(8) = §(€ — ngv).
Namely
(4.2) Ga(x) =e2minmigh(x).

Now we define u,(x, t) by
(4.3) Llu,(x, 8)]=0, u,(x, 0)=¢,(x), n=123,....

By the assumption, for some t,(>0), ¢,(x)—u,(x,t) is continuous
from 2% into £}(2%:), 0<t<t,. Therefore there exists a positive integer
h such that

(4.9) max |lu,(x, t)||z2<Cn”.
0sisty z

In fact, IZ ’H@;‘,gbnll <Cn".
vi=h

Next we want to show that
4.5 a,x{B,u,(x, 0)}|=c,n"!4, ¢, is a positive constant.
n 1 1

Since ¢(x) is analytic, and since ¢(0)=S<ﬁ(5)d$>0, taking n large,
(46)  Reg(x)250(0), [Im¢(x)| S59(0), for xesupp[B,]

1 I
Put Dr=4{¢; |§;|<ent for j=1,.., p—1;|&|<eyn for j=p,. .., 1—1;
|&,—n|<efn}. If we take ¢ sufficiently small,

4.7) Re e-wx*f—"f")z%—, Im | e=2miz-(£-nEN)| g—}r,
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for x=supp[ B, ], £D?. Hence for £ D2,
(18,8, 2Refe2rix-en) g, (2)p(x)dv 25 9O {| B0 daf n~" 4
Since &,(&8)=1 on Dz,

@bl = @B SON1 2 {{ ,, 1 B,0,5@) 12}

21-p+1 2l-p+1

2 Lo {(8ax} n " vl D} = ey H 2 e

Thus we have (4.5).
Now we consider the right-hand term of (3.13). We want to show
that it is expressed as follows:

(4.8) f(n)=f(n,s)
=n2m C/(J;’zzc(t)n—gm(”|+—§-|#<2>|—§!x<” l——gu(ﬂtay)*{ﬂ’(’w u, ()}

1+1

+0(n2m1-h)

where ||C".(t)||lg(z2,z2y< constant independent of n; 1=<|u|+|k|=

15 -
8h+21+10; 0<t<n 16%" ™V, @i (x) is defined by F[01a,(&)]; B (%)
=0%8,(%).

To see this, take the most delicate part of (3.13), [&,*, @, (x, ¢)]
0:68,u, |v|=2m. Using the Taylor expansion, this can be expressed as

@9) [y a,(x, )2Buua= 5 DM 400k, ) (wra,) {028, 1.}

1=sfalsg 4!

(=1
lul=g+1 4!

Sd,,,‘(x, ¥, )% — y)ra,(x = y)

LB (N)uay, )1dy,

where ¢=8h+2[+10. Take at first a term of the first part.
llai# (2, £)(xra,)%05 B uu, ]|

<const. sup|al¥ (x, £)|ndv 1+ Pl a® (8,1} .
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By Leibniz,

af(x, )= 2  Char (x, 05 (x)+e MZFIFFCZJY‘“(% DE? (%)

By THy=
By (3.3),
sup|a®(w, t)| < C ndlsV 13D I-1 L Cpndle®i+5ia®1 Hence
lla@(x, 6)(xHa,)*03m[ B u, |
< const. nzm‘ij‘%'ﬂ'Iln%"‘(”‘%“‘“)'aﬁz’”*{ﬁnu}”a
for 0St<n-18?"Y. By the same way as above, we can show (4.8) to

the other terms by (3.4)~(3.6).

Therefore we need only to show that the last part of (4.9) is

O(nz"“l“HTl). These terms are majorized by the form (by Young’s

theorem)
(4.10) sup|afy) (%, y, D102 (x )| 1l Bateal| 2.

~ 14l 1 1
sup[aly (%, y, t)| S C nals Vg Plrgla@ i@l

1 3 1 1 3 3
If we note that a,(x)=n2?"V*10-P*q(n3x,,..., n2%x,_y, B8%,..., N1%;_q,

nxl),
1022(akct,) || 2 < € 5wV I=n@ el
By (4.4), ||B,u,]|<Cn*. Therefore

“4.10)<C n—%I#H 2mAh

Thus we have (4.8).

We consider next all the functions appearing in (4.8). Namely we
make the same process for these functions as for &, s*{B, su.}: we replace
in the above reasoning B,,,B(x)—+n“%"‘“)'"%"““'B,‘,’j’s(x), P P ]
ats. Then we shall have the equations analogous to (3.13). Consider
Sn, 55 (8) =105, 5(#t, £)u,l|?, where

3 5 3 5
(411) 0, (2, B)u,=n 8O I-gls @GO LD g @y |
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Same reasoning as in section 3 will give

(4.12) S,

n 55 (D) Z CenM7LS,,

(t) — Cn—(Zm—l)”f(n,S;/t.lc)”Z,

N

where f (n.8m) are right-hand side of the equations, and can be expressed

as
(413)  fOusmO=pn-lCW, 0, 5, u,+0(n2m1)

where ||CZ . |locz2 12 < const. independent of =n; |u|+|k|+1=Z|u|+
[k, | <8h+21+10, u<u,, £<k,; 0<t<n-ieem-1),

Finally we define

(414) Sn(t)= Z ]wn,s;p,xunllz'

0Slul+161S8k+21+10
We have by (3.20), (4.12) and (4.13)

I+1

Si(8)=con?m18,(t) — Cn2m—3 S, (8)+0(n2m1-55)
Hence we have for large n

I+1

(4.15)  S,@)= conzm 18,() +0(n2m-1-15%) .

(4.16) (exp(-——;—conz”“lt>5”(t)>§gO(nz’”‘l‘l:z—l)exp(——;—conz’”‘lt>.

We know, by (4.5) and (4.14),

(4.17) Su(0) 2 llet, {8, ua(x, O} |PZ cnt .
By integration of (4.16), we have

S,(0) =5 L cln zexp(——%—conzm‘lt).

_15
At t=n"T16%m"1),

(4.18) (n“ 2m= 1’)2—;— %exp(—;—coni%‘z”“”).

On the other hand, since ||, ,u,||?< Cn-1si-4l«i+2k,

n5p, K
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(4.19) S,(£) =0(n2").

Since ¢, and c¢,; are positive constants, (4.18) and (4.19) can not be
compatible, Thus the proof of Theorem is complete.
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