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Well-Posedness of the Cauchy Problem for
Some Evolution Equations
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1. Introduction

We consider the forward Cauchy problem, in ^^2, for the partial

differential equation

(1.1) L[_u} = dtu-a(x, t\dx}u

= dtu- Z av(x, 09jK = 0,
\v\^2m

(x,i} in jR'xp), T], T>0, with the given initial value at £ = 0, where

m is a positive integer. Throughout this paper we use the following

abbreviation: dt, 9,, 9; stand for -|-,

Vj), respectively. We are concerned with the following problem:

Problem. Under what conditions is the above Cauchy problem well-

posed ?

This problem was studied by many authors. Some of them studied

this problem for equations of more general form, namely for p-evolution

equations. In the case where the coefficients are constant, moreover in

the case where the coefficients are functions of only t as well, we know

the necessary and sufficient condition for (1.1) to be well-posed. Namely

Hadamard's condition, Petrowsky's theorem and so on are well-known.

However, in the case where the coefficients are functions of x and t, the

situation is much more complicated.

One of the most important results already known is the theorem of
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I.G. Petrowsky and S. Mizohata (£3], [[7]). According to this theorem,
we know that the following condition is necessary for (1.1) to be well-
posed: for any x in Rl

(CO) Rea2m(x, 0; jf)^0 for all Sell',

where a2m(x, t; f) stands for the principal part of a(x9 t; f).

Our purpose of this article is to seek for the more detailed necessary
condition. More precisely, we consider the case where for some x0 and
£° (=£0) in Rl

(C.I) Rea2w(*0,0;i£°) = 0.

When L is an operator with constant coefficients, we know by Hadamard's
condition that if

(C.2) Reaa^Ctf0)^,

the Cauchy problem for (1.1) can not be well-posed in any small neighbor-

hood of £ = 0. Our purpose is to show, assuming that the coefficients of

the principal part are real-valued functions, that under certain conditions

this is still true (Theorem). We also give the examples which show that
without those conditions this is not true (Example 2 and Proposition).

Our main result is Theorem in section 2. Although this theorem is

far from complete, however it seems that the condition (C.3) stated there
gives a meaningful characterization of the state of degeneracy of the
elliptic operator a(x, t;dx).

On the other hand, we know some sufficient conditions for (1.1) to be

well-posed. One of the most useful and well-known equations for which

the Cauchy problem is well-posed in ^^2 is, of course, the parabolic

equation. Recently, the Cauchy problem for degenerate parabolic equations
are studied by some authors (£2], pT), £6]). We should remark that the
reasoning shown in £2] is no longer valid in the case m^2.

2. Theorem and Some Examples

We say that the forward Cauchy problem for the equation (1.1) in
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^£2
 1} is well-posed, if

1) for any given initial value i£0(tf)e^£>, there exists a unique solution
u(x, £), £^0, which takes the given initial value UQ(X} at £ = 0,

2) this linear mapping UQ(X)— >u(x, t) is continuous from D^ into

Several examples of equations are known, which satisfy the conditions

(C.I) and (C.2), but for which the Cauchy problem is well-posed in

Example I (J. Takeuchi, [9]). Let L = dt-id
2

x-ia(x)dx9 x

Suppose that a(x) is a real-valued smooth function with compact

support. Then the Cauchy problem for the equation Lu=f is well-posed

in ®12.

When a(x) is non-zero real constant, it is far from well-posed as

Hadamard's condition shows. The reader can find a similar example as

the above one in £8]. In view of these examples, it seems difficult to us

to find the necessary condition of the pointwise form as (C.2), in general.

However, if we assume that the coefficients of the principal part a2m(x9

t ; dx) are real-valued functions, we have the following theorem.

We assume that the coefficients of a2m(x, t;dx*) are real-valued func-

tions in the class $1(38°°\ and assume that the other coefficients of

a(x, t;dx) are complex-valued functions in the class <sfj)(^°°). By

(2.1) hk(x;$)=
\fi\=k f* •

we define a homogeneous polynomial hk(x;g) of ? of degree km — k.

Theorem. Assume that, for some x0 and f°(^0) in JR',

(C.I) fl2*(*o,0;tf°) = 0,

(C.2)

1) In this paper, we use the following linear topological spaces: j^^2, ^°% ^\(^°b\
$t(&°°)' We snall explain briefly. u(x)^^2 means that all its derivatives dv

xu
(in distribution sense) belong to Zz. ^^2 provided with the semi-norm pm(u)= ]£

M^m||3£i* || is a Frechet space. (p(x)&<%°° means that all its derivatives d"x(p are contin-
uous and bounded. ^°° provided with the semi-norm qn(<p)= ^ sup |d£^| is a

IvISra x
Frechet space. u(x, t)G.&t(&1* or &°°) means that t-»u(x, £)e^2 (or ^°°) is
continuously differentiate up to order k.



616 KATSUJU IGARI

(C.3) h2(Xo;$°) = G,

(C.4)

Then the Cauchy problem for (1.1) is not well-posed in any small neighbor-

hood of t = Q. Especially in the case m^2, we can remove the condition

(C.4).

Note I» (C.I), (C.2) and (C.4) are invariant under any regular

transformation of the space-variables x. Moreover, under the fundamental

assumption (C.O), the condition (C.3) is invariant, too. The reader will

easily verify by considering that (dxj a2m)(x0, 0, f°) = 0 for all /.

Note 2. We can weaken the assumption for smoothness of the

coefficients of the principal part. Namely we need only to assume that

the coefficients of a2m(x, t; dx} are real-valued functions in the class

*l+f(a~), <r>o.
In our theorem, in general, we can not remove the conditions (C.3)

and (C.4). We show this by examples. The following example is related

to the condition (C.3).

Example 2. In (1.1), let a(x, t ' , d x ) = a( x; dx} = dl + a(x1)d^ + ib(x1)d29

x = (xl9 x^&R2, where a^x^ and b(xi) are real-valued functions of only

xl in the class @°°. Assume that a(0) = 0, a(xl)^Q, (9?a)(0)>0. Assume

also that for any e>0 there exists £(>0) such that a(xl)^S for any

x1; | xl\ 2^e. Then, if

(2.2)

the Cauchy problem for the equation dtu—a(x ; dx}u=f is well-posed in ^2.

This is the simplest case where a2m(x0, 0; &"f°) = 0 but where h2(x0;

. We want to show this by the same reasoning as in [_2~], For

^^^^

Hence, if we show that for &
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we can get the same proposition as Proposition 2 in [2T\. Since

we have by (2.2),

Using a simple partition of unity, we have (2.3) from the above inequality.

Other theorems and propositions in Q2] can be obtained in the same way

as above.

Next we consider the case where m = 1 and where all of the coeffi-

cients are functions of only t. Namely we consider the equation

(2.4) dtu- 2 ajk(t)djdku~¥ibj(t)djU-c(t)u = Q.
j,k=l j=l

In this case, we can obtain more detailed conditions for well-posedness by

Petrowsky's theorem. Assume that the coefficients are continuous, but not

assume that ajk(t) are real-valued. The following proposition explains the

role of the condition (C.4).

Proposition. Assume that^ for some £°(=^0) in Rl, there exist positive

constants C and p(>2) such that

(2.5)

in a neighborhood of t = Q. Then

(2.6) Img
/~i

is necessary for (2.4) to be well-posed.

Inversely, if there exists a positive constant C' such that

(2.7) f 'min .Re 2
Jo 111 = 1 j,k=i
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in a neighborhood of £ = 0, (2.4) is well-posed in some neighborhood of t = 0

whatever we may take as lower order terms.

Proof. Apply the Fourier transformation for space-variables x to

(2.4). Then

(2.8) dtv(t ; f ) + E ajkMSfk - S »/0*j - c&v(t ; £ ) = 0.
iy,*=i y=i

(2.9) »(«; f)=exp["-('{ . £ a,,(s)|
L jo \j, k=~L y=i

is the solution of (2.8), which takes the value 1 at t = 0. By the theorem
of Petrowsky, the Cauchy problem for (2.4) is well-posed for the future if

and only if there exist positive constant C and p such that for all t,

O^t^T, and for all f in Rl

(2.10)

We prove the first half by contradiction. Put Im 2 &/0)£J = - k.

Without loss of generality, we may assume &>0. For f = r£°, we have by

(2.5)

\v(t; rf°)| ̂  exp {^-Air-

in a neighborhood of i = 0. At ir = - T - ' > " 1

_

w(tr ; rf «) | ̂  exp {^ A (^P r '"' } .

Since ^^r>0, this is contradictory to (2.10).p 1
Now we prove the latter half. By (2.7), whatever we may take as

lower order terms,

Thus (2.10) holds. Q.E.D.
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Now we give a rough sketch of the proof of Theorem. At first, we

remark that we can suppose xQ = Q and suppose f° = (0,..., 0, 1), because

all of the conditions (C.1)~(C.4) are invariant under any regular trans-
formation of space-variables x (Note 1). Moreover we can assume with-

out loss of generality that

(2.11) Rea2 w_1(0,0;^°)>0.

Then consider the operator L0>n = dt — a2w(0, 0; z'raf0) — Rea2w-i(0, 0; ing°).

We shall prove in section 3 that, so far as we restrict the sequence of

the initial values in a convenient way, this operator gives a good approxi-
mation to L. Now we assume that (1.1) is well-posed, then

(2.12) max. \\UH(X, t}\\L^C % \\9v
fuH(x9 0)]|£2 .LX LX

Finally using the inequality obtained in section 3, we show that (2.12) is
a contradiction.

3 e Operator LQ „ Approximating to L

At first, we derive some properties of a2m(x9 £;9*) from (C.O), (C.I)
and (C.3). As aforesaid, we can suppose that x0 = Q and that f° = (0,...,

0,1). Express a2m(x9 t;dx) as follows:

1-1 _ i-i

j,k=i Jk J j=i J

where i/ = (v l9..., v^).

By (C.O) and (C.I), we know that

a(0, 0) = 0, (-l)wa(:

Therefore by Taylor expansion,

for all j,k = l9...9l. Now we take an orthogonal matrix T which nor-
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/-I
malizes the real symmetric quadratic form 2 cjkxjxk-> anc* change the

J,k=i
/ rr\ Q\

space variables by x=Tx' = ( Q i J^'- Then

where p is an integer (1^/^Z), (-l)wc;<0 for j = p,..., Z-l, (-l

r(y.*)(0) = o for all /, A = 1 , . . . , / . Besides, if we denote a2m(Tx', t; 'Tdx>)

by a2m(xf,t;dx')9 the coefficient of 9*P of <z2w(A;', £; 9,.') is a,(Tx',i).

Therefore in the expression (3.1) we may assume without the loss of

generality that a(x, 0) has the same form as a(Tx', 0). Namely we may

assume that

(3.2) a(x, 0)= 2]cy#?+ 'E
J=P y=i

where p is an integer (l^jo^/), ( — l)wc;-<0 for y = jo,..., Z — 1, (•~l) ;7 fc /

^0, r(^*)(0) = 0 for all /, A = l,..., Z.

Then by (C.O), (C.I) and (C.3) we can see the following more detailed

properties of the coefficients in the expression (3.1). In the following,

v(1) and v(2) stand for (i^,..., vp-i) and (v^ . - . jV , ) respectively.

(3.3) a ( x , f y = J Z c j X J + l Z c j l X j X l + E cvx
v + r(x)9

j=p j=p I y 1 = 3, v (2^0

where (-l)wcy<0 for j = p,...,l-l9 (-l)wc /^0, r(y)(0) = 0 for all v;

(3.4) o/*s 0)= E c,;y «4 + rX«), for ; = !,..., p-1,
&=/>

where rjfe)(0) = 0 for all A = l,..., Z.

v;^
y+rXA;), for / = /?,..., Z- 1,

I v 1 = 2, y t

where rjv)(0) = 0 for all v; |v| ^2.

(3.5) ay^(0, 0) = 0 for / or k = /?,..., Z-l.

/
(*) for / and k = p,..., Z-l,
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where r)J)(0) = 0 for & = !,..., I.

(3.6) oy(0, 0) = 0 for v = (v', 2/71-3); v(1) = (0,..., 0).

of (3.3)~(3.6). For simplicity, we assume that m is an odd
integer. At first, we show (3.3). At the section # = (0,..., xj9 0,..., #/),
1^/^jo-l, a(#, 0) = c<;./^a?/ + c /^? + 0((^| + ^f)3 /2). If we put xj =
(-oo<r<oo),

If cy/^O, putting r=-(l + c/)/cy/,

a(#, 0)= — #2 + 0(A;3) in a neighborhood of # = 0.

This is contradictory to that a(x, 0)^0. Hence c^ = 0 for / = !,..., jo— 1.
By the same way as above, we can see that cy = Q for v; | v |=3 and
v(2) = 0.

Next we show that a/0, 0) = 0. At the section f = (0,..., fy, 0,..., 1),

If a/0, 0)^0, it is contradictory to that a2m(Q, 0 ; f ) ^0 for all
Next we show that 0//0, 0)^0 for all /. At the section f = (0,...,

Hence ayy(0, 0)^0, because a2w(0, 0 ; f )^0 for all
Next by the condition (C.3), we show that aj7(0, 0) = 0 for

I — I. In fact

)0;a2m(*, 0;

S a,(o,o)f

= 2i;«y;(0, 0)c~0.
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Since cj>0 and ayy(0, 0)^0 for / = /?,..., Z-l, we see that oyy(0, 0) = 0
for j = p,...,l — l. The remaining parts of (3.4) — (3.6) can be shown
easily by the same arguments as above. Q.E. D.

Now we want to show that the operator LQiH = dt — a2m(09 0; ing°)
— Re a2m-i(Q, 0; in$ °) gives, in a certain sense, a good approximation to
L, where n is a positive large parameter.

Take a function /?(^)eCj, /?(#)^0, which takes the value 1 in

<x; | # | ^— L and whose support is located in {x; \x\^l}. Define

(3.7) 0Hti(x) = 0(nl*d-lxl9...9 n*d-lxp-l9 ?i*8'lxp9...9 rcV1*,),

where n and d are large and small positive parameter respectively. Still

more take a function d(£), which takes the value 1 in <$; \$ — $°\^-£-

and whose support is located in jf; |£ — f°|^-y-L Define

(3-8)

We denote by o:B)S(a;) the Fourier inverse image of
At first, apply £„,,(*) to (1.1),

(3.9) L[^,s«]=- E --/Siri^V"^.

where a(v\x9 t; dx) is defined by a(v\x, t; $) = d%a(x9 t; f). Now it does
not change if we modify the coefficients of a(x, t\ d^) outside the support
of @ntS(x)9 because L acts on @nsSu. Take a function £(x)^C%9 which
takes the value 1 in {#; |# |<U} 5 and whose support is located in {x;
\x\ <2}. Define

(3.10) C».8(«)

We modify a(x, t; dx) by substituting the coefficients av(x, t) by

(3.11) av(x, 0 = 0y(0, 0) + C,,SWK(^9 0-«p(0, 0)},

and denote it by a(x, t\dx}. Then we can write (3.9) in the form
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(3.12) (dt-a(X, t- (

Next, apply the convolution operator aBiS(#)* to (3.12),

(3.13) (9,-a(x, t; 9*))raB,s*(/?K,8")>[a«,s*, a(x, t;

where QtfWfS*, ^(^? t\ ®*)DC$»,su^l = an,s* {<*(#» *j 9*) @n>su} —a(x, t; dx)
an,s*{@n,su}- Denote <%n,s*(@n,su) an(i tne right-hand term of (3.13) by

v(n,s) and/ (w 's ) respectively.

Consider now

Hereafter we omit the sufix (n, <J) of v^n'8^ and f^n>s\

= 2Re(t;(0,

+ 2Re(w(0. ««2zm-i(*.

+ 2Re(»(0,

where aiil-
As aforesaid, we can assume without the loss of generality that

(3.16) (-1)»«^_1(0,0)>0.

Since, if we take n and S sufficiently large and small respectively,

1«2
2»UO, 0-«S-i(0, 0)1 <(-l)"-^ffi-i(0, 0) in a small neighborhood of

= 0, and since supp[j;(f, ^)I]csuppQd;BjS(f)3> we see that

(3.17) 2-nd term^2Co«2»-1||t;||2, c0 = --7rz«-1(-l)"«a-i(0, 0)>0.
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Besides, by (C.4), (3.3) -(3.6) we see that

(3.18) 1-st term^-CTV^IHI2, 2) for t; Q^t^(d2n~l^(2m'1} .

For simplicity, we show this only to 2Re(#, a(x, t)d1mv}. In the case of

771=1,

fi(x, *) = «(*, 0) + WKO, 0) + *(<*;(*, 0) -*;(<), 0)) + 0(*2) .

By (3.3) and (3.11) we know that sup \a(x, 0)| ^ Cd2n~l, and that
X

sup &'t(x, 0)-<&;(0, 0)1 ̂ Cdn~*. Moreover, by (C.4), ^(0,0)^0. Hence

v)^ -(CS2n

^-a2^]|i;li2, for t',0£t£(d2n

In the case of m^2,

a(x, i) = a(x,

Therefore by (3.3) and (3.11),

1'^

we can show (3.18) to the other members in the expression (3.1) by

(3.3)~(3.6) and (3.11).

Moreover we can see that

(3.19) 3-rd and 4-th terms^ - Cn2m~l-\\\v\\2 .

Hence, by (3.17) -(3.19),

S\t}^(2cQn2m-l-Cd2n2m-l-Cn2m-l-\}\\v\\2-

Thus, taking S sufficiently small,

(3.20) Sf(t}^c^n^-l\\v\\2-Cn-2m+l\\f\\\ O^^O^-1)!^-1'.

This is the key inequality to prove the theorem. Hereafter we fix the

2) Hereafter we may use the symbol C in order to represent positive constants.
Sometimes it expresses a positive constant which can be chosen independently of
n and d.
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parameter S and omit it.

4. Proof of Theorem

We prove this theorem by contradiction. We assume therefore that

(1.1) is well-posed in &1* in a neighborhood of £ = 0.

At first we define a series of solutions un(x, t) of (1.1). Namely we
ys.

define their initial values. Let 0(f ) be a function whose support is located

in If; |f|^-lj. We assume that 0(f)^0, and that U?)2df = l. We

define then

(4.1)

Namely

(4.2) $n(x) = e2*inxi<I)(x).

Now we define un(x, t) by

(4.3) £!>,,(*, 0>0, «„(*, 0) = «&.(*), n = l,2,3,....

By the assumption, for some t0(>fy, <jjn(x)—>un(x, t) is continuous

from <^£2 into ^l(^22^ 0 ^ £ ^ £ o - Therefore there exists a positive integer

h such that

(4.4) max \\un(x,

In fact, S ||dj0
UI^/J

Next we want to show that

(4.5) \\an*{$nun(x, 0)})|^c17i~ / /4, cx is a positive constant.

Since 0(#) is analytic, and since 0(0)= \0(?)df>0, taking TJ large,

(4.6) Re0(*)^-i-0(0), |Im0W|^-i-0(0), for ^

Put D% = {£; \£j\£en for /=!,..., />-!; |?y|^£/^ for j = p,...9l-l;
. If we take e sufficiently small,

(4.7) Re c-2^-(f-»f°)^
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for #esuppjj9,J, $ e£^. Hence for

Since an($) = l on D%9

I 1/2

2l-p+l
—

Thus we have (4.5).

Now we consider the right-hand term of (3.13). We want to show

that it is expressed as follows:

(4.8) /<">=/<».«

where HC'^COII.ws.iJ)^ constant independent of n; 1^ \ft\ + \K\

0£,t£n~™(Zm~1}; a™(x) is denned by

To see this, take the most delicate part of (3.13), \jxn*, 3v(x9 ^)]

nuni |v|=2/?i. Using the Taylor expansion, this can be expressed as

(4.9)

where g = 8A + 2Z + 10. Take at first a term of the first part.
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By Leibniz,

*(f\*> 0= S CJX*1' (*, O)c<r2) (*) + * 2 cj^c*, OC;*^*).
fl1+fl2 = fL IL1+p2 = p

By (3.3),

sup|a(*>(*, Ol^Cfii1^'^'''-^ Cfni^ ( 1 ) | +^ ( l ) | . Hence

for 0^^ n~TQ(2m~1} . By the same way as above, we can show (4.8) to

the other terms by (3.4) ~ (3.6).
Therefore we need only to show that the last part of (4.9) is

O(n2m~l 4~~). These terms are majorized by the form (by Young's
theorem)

(4.10) SUP|*i#(*,

If we note that an(x)=ri2(p~l^+lu~p^+la(n2xl9...9 n~2xp-l9 nlxp,...9 nlxt-i,

By (4.4), \\&nun\\£Cnh. Therefore

(4.10)^C7i-4^M 2 w H / 2 .

Thus we have (4.8).

We consider next all the functions appearing in (4.8). Namely we

make the same process for these functions as for ctntS*{0ntSun} : we replace

in the above reasoning ^w,s(^)->^-|u(1)|-|u(2)1^^(A;)9 a^-^i^i+l^i

QL%\. Then we shall have the equations analogous to (3.13). Consider

S,.»;f..(f) = \\6nit(fl, K)un\\\ where

(4.11) 0,it(ft, /c)MB = n-!'«(I'i-|'«(2^!^(1)i+!i
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Same reasoning as in section 3 will give

(4.12) 5;.,

where y<». *;/*»*) are right-hand side of the equations, and can be expressed

as

(4.13) /(*'S;^W2--llZC^Bl^

where | C^ltKl \\^(L2,L2)^ const, independent of n; \f£\ + \ic\+l^i\ti1\ +

\icl\£Sh + 2l + 10, fJL^/JL^ IC^K!', Q^t^n~&2m-l).

Finally we define

(4.14) S.(0= 2 ||fl,.,;ft.«.H2.
OSI/.I + UIS8A + 2/ + 10

We have by (3.20), (4.12) and (4.13)

Si(0 ̂  Cora2™-1 5,(«) - C»2"-|5,(0 + 0(re2m-

Hence we have for large re

(4.15) S^)^-core2""1

(4.16)

We know, by (4.5) and (4.14),

(4.17) Sn(0)^\\an*{(3nun(X,

By integration of (4.16), we have

At t = n-(2m-1\

(4.18) 5B(re-r6-t2'"-1

On the other hand, since
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(4.19) S,,(0 = 0(n").

Since c0 and cl are positive constants, (4.18) and (4.19) can not be

compatible. Thus the proof of Theorem is complete.
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