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On Normality of a Family of

Holomorphic Functions
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Chikara WATANABE*

0. On normality of a family of continuous functions, the theorem of

Ascoli-Arzela is well known. Especially, if we include the case of compact

divergence, for a family of holomorphic functions, normality follows from

the condition of equicontinuity at each point. In this paper we consider the

normality in the wide sense. For a compact metric space K, we can con-

struct another compact metric space <Comp(K)> consisting of all closed

subsets of K. Using this space, in a (7-compact, locally compact metric

space X, we can define the concept of convergence of a sequence of closed

subsets of X and by means of this convergence, every family of closed sub-

sets is always normal. As a consequence of this fact, we can prove that

every family of continuous mappings from a connected, ff-compact and locally

compact metric space to another (T-compact, locally compact metric space

with some additional condition is normal if it is equicontinuous at each

point. The method of our proof described in the section 1 seems to be

interesting.

On normality of a family of holomorphic functions, many results are

obtained by G. Julia [JT|. From them, we denote the following interesting

theorem:

Let g be a family of holomorphic functions in a domain in C2. If

every function /^f? does not take two fixed different values^ then % is normal,

Now, if we consider the normality of a family of holomorphic functions

in a domain D in the strict sense, that is, if every sequence of the family
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has a subsequence which converges uniformly to a holomorphic function on

every compact set in D, then the domain of normality is a domain of holo-

morphy . This is known as < Conjecture of Julia > . Using the word graph

of holomorphic function, this is described in other words as follows.

Let % be a family of holomorphic functions in a domain D in Cn. Sup-

pose that the set $(p) = {/(/0; /ef$} ^s bounded for every point p^D. If
DxC is a domain of normality of the family ©g of graphs of g, then D is

a domain of holomorphy.

We shall give a proof of the above in the section 2.

In the section 3, we give an application of the theorem of Julia cited

above. If D is a domain in the complex plane, then we get the converse

of the theorem of Hurwitz.

1. In this section we consider a (T-compact, locally compact metric

space X = (X, c?x)9 where c?x is a metric in X. Let {£/} be a sequence
of non empty closed subsets of X.

Definition 1. The sequence {Ej} converges geometrically to a closed

set E in X if and only if:

(i) If E is not empty then for any point p^E, there exists a sequence

{pj} such that PJ&EJ and Pj—>p*

(ii) For any compact set K in X with KnE=<j>, there exists a j0

such that KnE = $ for all "£0.

From this definition we have immediately:

(1) Any subsequence of {£/} also converges geometrically to E.

(2) If a sequence {pj} with pj^Ej has accumulating points, then

they belong to E.

(3) The condition (ii) is equivalent to the following:

(ii)' For any positive number e and for any compact set K in X, there

exists a j0 such that for all j*zj0, the set EjftK is included in the set

E^nK, where £ ( f )=U {geX; rfx(9, />)<£>.
p&E

In fact, (1) and (2) are direct consequences of the definition. We

shall show (3).
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(ii)— »(ii)': We may assume that E is not empty. Suppose that there

exists a positive number d and a compact set K such that the set {/; EjCiK

— E(8^<t>} of positive integers is an infinite set. For simpliciy, we may

assume that EjnK—E^=£<j> for all j. Let {pj} be a sequence such that

pj^Ej n K—ES. Since K is compact, this sequence has accumulating points.

Let p be one of them. Then p^E by the property (2). Thus the set

JBx( jp:ff) = {greX; dx(q, p)<d}is included in E(8) and pj^B^(p:d) for

all sufficiently large jr. This is a contradiction.

(ii)'— »(ii): Let K be a compact set with Kr}E=<p. Then there exists

a positive number £ such that Kn£" (6) :=0. Thus there exists a y"0 such

that EnK=<f> for all

Here we explane the necessary fundamentals of the notion of the space

. Let K be a compact metric space. For two non empty closed

subsets F15 F2 of ^, we define the metric d between Fl and F2 by

d(Fl9 F2) = sup inf d(x, j)+sup infd(s, t),

where d is a metric in K.

This metric is called Hausdorff metric. From this metric, Comp

the set of all non empty closed subsets of K, becomes a compact metric

space2). If {Ej} converges to E in Comp (1Q, the following two properties

are easily verified:

(i) For any point p^E, there exists a sequence {pj} such that pj^Ej

and pj— >p.

(ii) For any sequence {pj} with pj^Ej, the accumulating points of

{p^ belong to E.

Now let {Kj} be an exhaution of X by compact sets: Kl(^.K2-..9
X. Take a sequence {Ej} of closed subsets of X. For any compact set KV9

if the set {j; Ejr\Kv3=<f>} of positive integers is finite, we define that {Ej}

converges to a null set. Otherwise, there exists a /0 such that {/; EjHKjo

^0} is an infinite set. For simplicity, we may assume that EjnKjo^<p

for all j. From the compactness of the space Comp (£/„), we can choose

1) More precisely see [1], [7].
2) See [1] section 5, Chapter 2.
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a subsequence {EjJo}} of {£}} such that {E^Jo} n Kjo} converges to a closed

set Fjo in Comp (Kjo). From the sequence {jE"/'0>} we can also choose a

subsequence {£fjy°+1)} such that {E^jo+v nKjo+1} converges to a closed set

Fjo+l in Comp (jKyc+1). We proceed this process. Then it is easily seen

that

is closed and that the diagonal sequence {EV'o+i~1}} converges geometrically

to E. Consequently we have

Lemma 1. Let X be a o~ -compact, locally compact metric space. Then

every family of closed subsets of X is normal in the sense of geometric con-

vergence.

Now let Y = (Y, c?Y) be a (T-compact metric space which satisfies the

following condition:

For any compact set ^cY and for any positive number R, the set

dY(q, p)<R}
.ptr/i

is compact.

The space Y which satisfies the above condition is necessarily locally

compact. Let g be a family of continuous mappings from the connected,

locally compact and o~-compact metric space X to Y cited above.

Definition 2. g is called equicontinuous at peX if and only if given

any positive number e, there exists a positive number r such that dY(f(p'),

/(/?))<£ for all /eg and for all p'^B^p: r).

Let C(X, Y) be the set of all continuous mappings from X to Y. The

topology on C (X, Y) is the usual compact uniform topology.

Definition 3. A sequence {/}} of C(X, Y) is called to be compact

divergence if and only if given any compact set K in X and compact set

Kf in Y, there exists a y'0 such that fj(K)nK' = $ for all ;^;0.

Definition 4* g is called to be normal if and only if given a sequence
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of g, there exists a subsequence which is either compact divergence or

compact uniform convergence.

Theorem I* If $ is equicontinuous at each point of X, then $ is

normal.

Proof. Let @f be a graph of /<=$, i.e., ®/ =

X}. Since f is continuous @f is closed. Let ©={©/; /eg} be a family

of graphs and let d be the metric in X x Y defined by

d((p, q), (/, ?')) = {<*xO>,/)2+dY(g, q'W\

then X x Y becomes a (T-compact, locally compact metric space. Thus by

Lemma 1, © is normal in XxY. Take a sequence {//} from %. Since ©

is normal we can choose a sequence {©v/} such that {©v/} converges geo-

metrically to a closed set 5 in XxY, where ®Vj = ®fv . For convenience,

we may assume that {©y} itself converges geometrically to 5. For a point

, put

o, ?)eXxY; greY}n 5.

Then we shall show

Fact 1. S(p0) contains at most one point.

In fact, suppose that (p0, g), (p0, g') be two different points of S(p0).

Since {©;-} converges to 5 geometrically, there exists two sequences

{(Pj> ft)}. i(p'j> ?y)} such that they converge to (p0, g) and (/?0, g') re-
spectively. From the equicontinuity of g at Po» there exists a positive
number r such that

for all p^Bx(p0:r) and for all /. Since Pj-+p<» p'j-+p0, <lj-*<l and

g^g' respectively, there exists a y'0 such that dx(pj9 jp0)<r, ^xCpj, /?0)

<r, rfyCgy, ?)<£, ̂ y(?y> <zO< £ for all /^/0 . Then it holds that
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Since q^qf this is a contradiction and then Fact 1 is proved.

Put e = {^X; S() = <fi}. Then

Fact 2. e is open.

To prove this, we have only to show the following

Lemma 2. p^e if and only if the sequence {//(/>)} is a divergent

sequence, i.e., for any compact set ^CcY, there exists a j0 such that //(/?)

for all j^j0.

In fact, suppose that Lemma 2 is proved. Let p0^e. Take a positive

number r such that dY(fj(p),fj(p0)}<l for all p^B^(p0: r). Let K be

a compact set in Y. Then there exists a jQ such that fj(p0)&K^ for all

y^y 'o- For every p^Bx(p0: r), since JT is compact there exists a

such that ^y(/X_p)j K)= dy(fj(p), ?/)» where of course gry depends on

Then we have

Therefore fj(p)&K for all ;^/0. This means that 5x(p0 : r)ce and Fact

2 is proved.

Proof of Lemma 2. Let p^e. If {///?)} is not a divergent se-

quence, there exists a subsequence { f V j ( p ) } which converges to some point

greY. Since {(p,fVj(p))} converges to (p, q) and since (p,fv,(p))&®vj9

we have that (p, j)e5. Thus 5(p)^0 and /?^e. This is a contradic-

tion.

Conversely, let {///?)} be a divergent sequence. If (JD, y)e5, then

there exists a sequence {(j0y, ?y)} such that (joy, ^y)e©y, Pj->p and jy— >g.

Let r be a positive number such that dY(fj(p/^fj(p))<l for all p'e

BK(p: r) and for all /. Take a y"0 such that pj^Bx(p'> r) and dY(qj, q)

<1 for all 7^/0- Then we have



NORMALITY OF A FAMILY OF HOLOMORPHIC FUNCTIONS 637

for all j*£J0. This implies that {//(/>)} is not a divergent sequence.

This is a contradiction and then

Fact 3e X-e is open.

In fact, let p0 eX — e, then S(/>0) consists of exactly one point (JPO, g0).

Take a sequence {(PJ, g/)} such that (/>y, gry)e©y, Pj-*p0
 and ?/— > ? ( > •

Take a positive number r such that dY(fj(p^fj(p0^<-^~foYallp^
o

^x(po : r) and for all /. There exists a jr'0 such that dy(qj, <70)<-^-9
o

d-x.(pj, P<,)<r for all y'^/0. Then

for all p^By^p0\ r) and for all /^/0- This means that {//(/?)} contains

a convergent sequence for all p^B^(p0:r'), so that £x(/?0: r)cX — e.

Thus X — e is open.

Since X is connected, as a result of these facts we have that e = (f> or

(1) In the case that e = X:

Let Jfls ^2 be two compact sets in X and Y respectively. Since S=<f>

there exists a y0 such that %n (Kx xK^) = (f> for all j^j0. Thus, if p^Kl

then fj(p)<£K2 for all /^/0. Consequently we have that /yCK\) n ̂ 2 = ̂

for all y '^/oj so that {//} is compactly divergent.
(2) In the case that e = <t>:

For every point peX, S(p)^(j) and it consists of exactly one point.

From this, we can define a mapping ?? from X to Y such that 5 is a graph

of 7], We shall show that the mapping y is continuous in X. Suppose that

TJ is not continuous at p0. Then there exists a sequence {pj} of X such

that Pj-*p0 and dY(rj(pj')9 r/(p0))^8 for some positive number S. Since

(p0, ??(jO)eS, there exists a sequence {(^y, Wj)} such that (^y, Wy)e©y,

qj->p0 and Wj-*i](pQ}. Put £ = -p-<5, then there exists a y"0 such that
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and d^(qj, pQ)<£ for all y^y"0 . Moreover, since g is
equicontinuous at p0, there exists a positive number r such that dx(fj(p),
/y(/>0))<£ for all p^Bx(p0: r) and for all y. Take a point p'^{pj} such

that p'^Bx(p0: -£-). Then

Since (y/, fj(pry) e 5, we can take a sequence {(£/, s/)} such that
,-, sy) e©y, tj-*p' and Sj-*y(p'). Then there exists a &0 such that rfx(^-? J»0

for all '^& 0 . Since -e5 x (? 0 : r ) for all

it holds that

for all y larger than y0 and k0. Since Wy=/X?y)» we have

for all y larger than y"0 and k0. This is a contradiction and we have that

7] is continuous in X.

Now let K1 be a compact set in X. Take a compact set K2 in Y and

put K=KlxK2. Then

any positive number e, 2/z0r£ ejw'sfc « y"

/or all ySy'0.

In fact, suppose that there exists a positive number d such that

{/; fyriK- U {P}x5Y(^): 5)^0}
^e/Tj

is infinite. Then there exists a sequence {(pvj, qv)} such that

- U
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We may assume that pVj-^p^Kl9 qVj^>q^K2. Since pv.^Kl9 we

have that qVj^BY(^(pv^: <J). That is dY(qVj, 7}(pVj)^S. On the other

hand, since y is continuous, there exists a positive number r such that

Take a y0 such that (pvj9 qVj)<=Bx(p: r)xB^(p): -|-) for all y^/0 .

Then we have

for all y"Sy0. This contradicts the fact that dY(qVj, y(pvj)^d9 so that

% n Kc W {/?} x BY(q(p) : e)
/je

for all sufficiently large y. Put

then the following statement holds:

T/xer^ 0j«'s/s « y* 0 SMC/X /Ac/ ©y n (^ X Y) = % n (^ X ^2) /^ «W y ̂  y 0 .

In fact, suppose that this statement does not hold. Then there exists

a sequence { ( p v j , qvj)} such that

Since pVj^Kl9 this means that qvj&K2, that is dY(qVj,

For simplicity, we may assume that pVj—^p0^Kl. Since (JDO, ̂ (y?0))e 5

and since {©v/} converges geometrically to 5, there exists a sequence

i ( t v j > s v j ) } such that (*Wj, svj)<=®vj9 *»,-+?* and s
vj-»y(p*}- Take a P°si"

tive number r such that dY(fVj(p'},fv.(p0)}<-^- for all p'^Bx(p0:r)

and for all y. Then there exists a y"0 such that pvj9 tVj^B^(p0:r) and

j, ?(/O)<-j- for all y^y'0 . It holds that



640 CHIKARA WATANABE

for all 7 ̂ /o - This implies that dY(qVj, ^(X"1))<-j- and this is a contra-

diction. Summarizing these facts, we have that for any compact set j

and for any positive number e there exists a y0 such that

n (^ x Y) - % n (^ x K2) n w {/>} x £ Y0?(/0 : e)

for all 7°^7*0. Thus {//} converges uniformly to y on K10 This complete

the proof of Theorem 1.

2a In this section we consider the case of holomorphic functions. As

a consequence of Theorem 1, we have

Corollary of Theorem 1. Let D be a domain in Cn and let % be a

family of holomorphic functions in D. If $ is equicontinuous at each point

of D, then $ is normal in D.

Now let D be a domain in Cn,

Definition 5, Let {Av} be a sequence of principal analytic sets in D.

This sequence is called to converge analytically to an analytic set A if and

only if given a point joeD, there exists a neighbourhood U of p and holo-

morphic functions {/„},/ in U such that:
( i ) f is not identically zero.

(ii) A.nU=iqeU;f,(q) = 0},AnU={qe-U;fW = 0}.

(iii) The sequence {/„} converges uniformly to f.

From this definition, the following remarks are easily seen.

(1) // A is not empty, then A is a principal analytic set in D.

(2) // a sequence {pv} with pv^Av has accumulating points, then

they belong to A.

(3) The sequence {Av} converges geometrically to A.

Definition 6. A family f$ of holomorphic functions in D is called to

be bounded at joeD if and only if the set SCp) = {/Cp)»/eS} is bounded
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in the complex plane.

Definition 7. An analytic set A in D x C(w) is called to be fine in

w at p if and only if the set A(p) = {(p9 w)^Cn+1} n A has no finite

accumulating point, where C(w) is a complex plane with coordinate w.

From this definition, as is easily seen, A is not fine in w at p if and

only if A includes the complex plane {(z, w); z = p}. For simplicity, we

consider the case of two complex variables x9 y.

Lemma 3. Let {/}} be a sequence of holomorphic functions in D

satisfying the following conditions :

(i) {fj} is bounded at each point of D.

(ii) The sequence {©,-} of graphs of {//} converges analytically to an

analytic set A in DxC(w).

Then {fj} converges uniformly to a holomorphic function on every

compact set in D.

Proof '3). Let E={p^D; A is not fine in w at p}. Then

E is a proper analytic set in D.

In fact, since A is a proper analytic set in D xC(w;), E^C. Take a

point peD and a polydisc JcD with center at p. Since dxC is a

Cousin II domain, there exists a holomorphic function <p(x, y, w) in

such that

x = x, y, we

Then it is easily seen that

En 4 = {(x, j)e J; 0>(#, y, c) = 0 for all complex numbers c}

Thus £ is a proper analytic set in D.

Now, we show that the sequence {fj} is uniformly bounded on every

3) This argument was suggested by Prof. H. Fujimoto as an alternative to a more
complicated original one of the author. We wish to thank him for his kind advice.
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compact set in D. To prove this, we have only to show that for any point

joeD there exists a neighbourhood U of p such that {//} is uniformly

bounded on U. Let p0^D—E. Since {//(/O} 1S bounded, there exists

a subsequence of {//(/? 0)} which converges to a complex number q0. Since

(p0> ?o)e^9 there exists a neighbourhood U=U1xU2 of (p0, q0) with

— E and holomorphic functions {̂ -}, ^ in U such that

yn #={(*, y, w)eZ7; V/*, y,«0 = 0},

={<>, 7, w)€= [7; V(*. j, w) = 0}

and that the sequence {ftj} converges uniformly to V on [7. Since

^(JDO, w;) is not identically zero. Therefore there exists a small positive

number r such that ^(p09w)i=0 if |w — q0\=r. Thus if we choose Ul

sufficiently small, we have ^^0 on U1x&9 where & = {w^C; \w — q0\

= r}. Put m = mm{\ir(p9 w)\; (p, w)^Ulx&}. Since {fij} converges

uniformly to V there exists a y"0 such that \^j — ̂ \<-^- on U1X0 for^

all j^jo- Then for any point p^Ul9 by the theorem of Hurwitz, the

equation ^/(j0> w) = 0 has at least one root Wj in the disc {w&C; \w — q0\

<r} for all j"^j0. Thus {/,-} is uniformly bounded on U^ Let p0&E.

Since JF is a proper analytic set, by a linear change of coordinate if neces-

sary, we can choose a polydisc U= U1 x U2 of p0 such that (dU1 X 9£/2) fl E

= $. Then {fj} is uniformly bounded on dUlxdU2 and by the maximal

principle {fj} is uniformly bounded on Ulx U2.

Now by the theorem of Montel, any sequence of {fj} has a convergent

subsequence. To prove that {fj} converges uniformly on every compact

set in D, we have only to show that the limit function is independ of the

choice of the convergent sequence. Let {/j15} and {/J2)} be two sequences

of {fj} which converge to /(1) and /(2) respectively on every compact set

in D. Then it is easily seen that A = graph of /(1) = graph of /(2), so that

/(1)=/(2). This complete the proof of Lemma 3.

Definition 8. A family of principal analytic sets in D is called to be

analytically normal in D if and only if given a sequence of the family,

there exists a subsequence which converges analytically to an analytic set

in D.
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Definition 9. Let @ (resp. ̂ ) be a family of principal analytic sets

(resp. holomorphic functions) in D. Then D is called a domain of normality

of @ (resp. g) if and only if @ (resp. f$) is normal in D and for any

schlicht domain D in C2 such that D^D, @ (resp. gf) is no longer normal

in D.

For a domain of normality of a family of holomorphic functions, the

so-called conjecture of G. Julia is well known4). In connection with this

conjecture, we have the following

Theorem 2. Let % be a family of holomorphic functions in D. Sup-

pose that S(/0 is bounded at each point p of D. If D x C is a domain of

normality of a family ©^ of graphs of |$, then D is a domain of holo-

morphy.

Proof. Suppose that D is not a domain of holomorphy. Then since D

is not holomorphycally convex, there exists a compact set K in D such that

£={(*, y)eD; |/(*. y)\ £sup|/|
K

for all holomorphic functions in D}

is not compact in D. Put p= d(K9 9D) and take a point p0 = (x09 j0)ej?

such that d(p0, 9D)<-^-. It is well known that any holomorphic function

in D is also holomorphic in the polydisc A = {(#, y)eC2; \x — %0\<p9

Put ^

Since d(p0, 9D)<-|-, J'-D^^. We shall show that

©g /s normal in (D\jA'}xC.

In fact, take a sequence {©„} from ©g. Since ©5 is normal in DxCJ,

there exists a subsequence {©yj.} which converges analytically to an analytic

set A in D X C. Let fvj be the function which represents the graph ®vj.

Then by Lemma 3, { f v j } converges uniformly to a holomorphic function 7]

on every compact set in D. Expand fv. into the convergent Taylor series

in A'\

4) See, [5] page 38.
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/*/*> j) = ̂ </l2(^-^o)fel(j-;

where

^ b i b t — ~ ~ ? T ? i~ "

Put K' = K(r\ where r = --rp. Since K' is compact, it holds that sup sup
4 vj K'

\ f v j \ =M. Then by the estimation of Cauchy, we have

M

Therefore {fvj} is uniformly bounded on A'. Thus there exists a

subsequence of {fvj} which converges uniformly to a holomorphic function

in A'. For simplicity, we may assume that {fvj} converges uniformly to

y in Ar. Since ^ = ^ in J ' f lD, the holomorphic function ? such that ^ = ̂

in D and f = T) in J' is determined. Then {®vj} converges analytically to

the analytic set B = {(/?, £(/>)); /?e A' U D} in (A' U D) x C. Since D X C is

a domain of holomorphy of ©g, this is a contradiction.

Remark of Lemma 3. In Lemma 3, we omit the condition of the

boundedness of {/}} at each point and consider under the condition only

of an analytic convergence of graphs. Put

£ = {p<=D-E; {fj(p)} is bounded}.

It is easily seen that the boundedness at p is equivalent to the condi-

tion that A(p)^(j). Moreover, since A is fine in w at p^D—E it is easy

to see that $ = n(A')—E, where it is the projection given by 7t(p9 w) = p.

Therefore Q is open. Thus if Q is not empty, there exists a holomorphic

function ^ in J2 such that {//} converges uniformly to y on every compact

set in Q. If Q = $, then C(D -]?) x C] n A = $. Since {®y} converges

analytically to A9 for any compact set KI in D — E and for any positive

number o9 there exists a j0 such that ®jr\K=$ for all /^/0, where K

= Klx{weC; \w\^a}. Thus if p^K^ then (p9fj(p»£K, i.e., !///>)I

>a for all j^j0. This means that {/y} is compactly divergent in D—E.
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Let D be a domain of holomorphy and let &^(j>, then it is easily seen that

O is a holomorphic open set, i.e., any connected component of Q is a domain

of holomorphy.

3. In this section, we consider an application of the theorem of G.

Julia :

Theorem ([6], page 67). Let 'D be a domain in C2 and let % be a

family of holomorphic functions in D. If every function /eg does not take

two fixed different values, then % is normal in D.

Lemma 4. Let D be a domain in C2 and let {/„},/ be holomorphic

functions in D. Let A = {a, b, c} be a set consisting of three different com-

plex numbers. Suppose that for any a&A, the sequence {Av a} of analytic

sets in D given by

converges geometrically to an analytic set Aa = {(x, y)eD;/(#, <y) = a}.

Then { f v } is normal in D.

Proof. Take a point joeD. If f(p)£A, then there exists a connected

open neighbourhood V of p such that Fc^D and f(V)r\ A = (f>. Therefore,

A—f(V) = A. If f(p)^A, we can choose a connected open neighbourhood

U of p such that C/c^D and f(U}n[_A — {f(p)Y] = ̂ . In any case we can

choose a connected open neighbourhood U of p such that E/cglD and that

A—f(U) contains at least two complex numbers. Let {a, b}c.A—f(U),

then AanU=<fi and AbnU=(f>. Since {Ava},{Av>b} converge geometri-

cally to Aa, Ab respectively, there exists a v0 such that AVta n U=$, Av>b f| U

= (f> for all y^v0 . That is, the sequence {fv}v^»Q does not take two diffe-

rent values a, b in U. Thus by the theorem of Julia, it is normal in U.

Since p is an arbitrary point of D, {/„} is normal at each point of D.

Then by the diagonal method {/„} is normal in D.

Definition 10. A set a) is called a set of uniqueness if and only if

any holomorphic function in D which is zero on a) is identically zero.

Theorem 3. Let {/„}, / be holomorphic functions in D and let f
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be not constant. Let a) be a set of uniqueness. Suppose that for any ae/(ft>)

the sequence {Av>a} of analytic sets in D converges geometrically to an an-

alytic set Aa^ then {/„} converges uniformly to f on every compact set in

D, where Av^ Aa are the same as that in Lemma 4.

Proof. First, the set /(ft)) contains infinitely many complex numbers.

In fact, suppose that /(ft>) contains only finitely many complex numbers.

Let /(o>) = {al9 a2, . . - , am} . Put S{ = { p e D ; f(p) = a,-} . Then the analytic

set 5= U S{ is given by

S={p^D; g(P) = nLf(p)-"il = V}.

Since f is not constant g is not also constant. But since 5 Do) and
since g=Q on 5, g is identically zero, this is a contradiction. Thus by
Lemma 4 {/„} is normal in D. To prove that the sequence {fv} converges
uniformly to f on every compact set in D, we have only to show that any

sequence of {fv} contains a subsequence which converges uniformly to / on

every compact set in D. Take a sequence {/„,} of {/„}. We may assume

that {fvj} is compact uniform convergence or compact divergence. Since
{AVt0} converges geometrically to Aa and since Aa is not empty, the case

of compact divergence does not occur. Let {fvj} converge uniformly to a
holomorphic function h on every compact set in D. Let jD0eo) and let

a=/(jD0), then since p0^Aa there exists a sequence {pvj} such that pv.

^AVjt0 and pvj-*p0- Let K={p09 pvj; / = !, 2,...}. Since K is compact,
for any positive number e there exists a j Q such that

for all y^ /o- Then we have

|S^^

Since pv.^Av.t0 and since f v . ( p v j ) = a=f(p0\ we have /(/?0) =

That is, /=& on a), so that f=h on D.

Remark. In Theorem 3, we can not omit the condition that / is not

constant. But since Lemma 4 holds in the case that / is constant, by the
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same method we can prove the following:

Let U be an open set in the complex plane such that Z7n/(D)^0. If
{Ava} converges geometrically to Aa for all ae£7, then {fv} converges

uniformly to f on every compact set in D.

Now we consider the case of one complex variable. If a sequence

of holomorphic functions in a domain DcC converges to a non constant
holomorphic function f on every compact set in D, then for any point joeD
and for any complex number a, there exists a positive number r0 which
satisfies the following property:

For any r with 0 < r < r O J there exists a j0 such that the number of a-

points of fj in the disc {zeC; \z— p\ <T} are equal for all j^j0, counted
according to multiplicities.

In fact, if f(p)i=a, then there exists a neighbourhood U of p such that
U(^D and min {|/(z)— a| ; z^U}=S>0. Since {/}} converges uniformly

to f on U there exists a j0 such that

max

for all ;^/0. Then

-*l ^ \f(z}-a\ - !//*)-/« I > -

for all j^j0 and z<=U. That is fj(z}^a in U for all j^j0. If /(/?) = a,
then this is just the theorem of Hurwitz.

Since Theorem 3 holds for a domain in the complex plane, as the

converse of the above, we have

Corollary of Theorem 3. Let {fj}, f be holomorphic functions in

a domain D in C and let f be not constant. Suppose that for any point peD

and for any complex number a, there exists a positive number r0 satisfying

the following property:

For any r with 0<r<r 0 , there exists a j Q such that the number of a-
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points of fj and f are equal in the disc {z^C; \z— p\ <r} for all /^/0,
counted according to multiplicities.

Then {fj} converges uniformly to f on every compact set in D.

Proof. We have only to show that for every point /?eD, the sequence

of analytic sets given by Aj={z^D;fj(z)=f(p)} converges geo-

metrically to an analytic set A = {z^D;f(z)=f(p)}. The condition (i) of

geometric convergence is trivial. Let K be a compact set in D such that
AnK=(f>. For any point q&K, there exists a positive number S such that

/(*)— /OO^O in the disc 4 = {z&D;\z — q\<d}. Evidently we may

assume that d<r0. Then there exists a J0(q} such that fj(z) — f(p) =£ 0
in the disc A for all j"^j0(q). Since K is compact we can choose finitely
many such discs Av with center at qv and radius dv such that Kc. U Av.

Put /0=max/0(grJ. Then since fj(z)—f(p)=£Q in K for all j"£j09 we
V

have that AjftK=$ for all j*zj0. Thus the condition (ii) is proved.
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