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§1. Introduction

We consider the first order partial differential equation in R? X[ 0, 7],
T>0,

1.1) L[u]:aitu—ji]lAj(x, t)aix_u—B(x, Hu=f(x, 1),

where 4,(x,t) and B(x, t) are matrices of order m, infinitely differentiable
with respect to ¢ and x=(«,,..., x,), and z and f are vector-valued
functions with m components. We consider the Cauchy problem for this
equation with intial values given at t=t,>0. We say that the Cauchy
problem for (1.1) is uniformly well posed, if for any f(x, t) infinitely
differentiable and for any intial value u(x, t,) infinitely differentiable,
there exists uniquely the infinitely differentiable solution u(x,t) of (1.1)
in £(xg, tg, 8)={(x,8); |x— x| Sty +e—1), t,<t=t,+¢&} for any ¢,
0<e=<e, where (xg, t,) is an arbitrary point in R?Xx[0, 7] and 4, and
g, are positive constants. We denote by L, the principal part of L,
that is, L0=%—2Aj(x, t)a—i.—. We say that L, is strongly hyperbolic,
if the Cauchy problem for (1.1)] is uniformly well posed for any lower
order B(x, t) infinitely differentiable.

We suppose that the multiplicity of the characteristic roots is independ-
ent of x, ¢t and £. More precisely

(1.2) det(A— X 4,(, D)E,) =,i11 A=Az, t: E))"1
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598 Kunmiko KAjiTant
where v;(j=1, 2,..., I) are positive integers independent of (x, ¢, §) and
(1.3) Ai(x, t:8)#F2(x,t: 8) G@#j).

Then we have

Theorem 1.1. Suppose that (1.2) and (1.3) are valid. Then L, is
strongly hyperbolic, if and only if Y, A;(x, t)€; is diagonalizable.’

Remark 1. When the coefficients of L are constant matrices, K.
Kasahara and M. Yamaguti proved in [7] that L, is strongly hyperbolic
if and only if }]4,£; is uniformly diagonalizable.

Remark 2. In the case of variable coefficients, it is known that
2 A4;(x, t)§; is necessarily diagonalizable for LZ2-well posedness of (1.1)

(cf. [47], (6], [147]).

We note that the statements in Remark 1 and Remark 2 hold without
the hypothesis that the multiplicity of characteristic roots is constant. But
our Theorem 1.1 is not valid, if we do not assume that the multiplicity of

characteristic roots is constant. For example,

o ([t '\ o
L=5r=\, _, )%=

is strongly hyperbolic, that is

{ (Lo+ B(x, ))u(x, t)=f(x, t)

(1.4)
u(x, 0)=uo(x)

is well posed for any lower order 2 X2 matrix B(x, t), inifinitely differen-
tiable. We can see from Remark 2 that (1.4) is not L2-well posed. But
we have a positive integer s, such that there holds for any non-negative
integer k,

2)
’

Hu(@lls S C{lolliragt |1 lnsends)

1) We say that 3 4,(x, t) §; is diagonalizable, if for any fixed point (x, ¢, £) there
exists a non-singular matrix N so that N(2A,(#, t)§;,)N-! is a diagonal matrix.
2) This estimate is obtained by use of the result which O.A. Oleinik derived in [1].
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where

l@ii=_Z_ {|(2) (%) w0l d=.

In this example L, is not diagonalizable at ¢=0.

We say that the Cauchy problem for (1.1) with intial plane £,=0 is
L2-well posed, if for any uy,(x) in L2(R?) given at t=0 and for any
f(x,t) in &Y(L*(R?)), there exists the solution u(x,t) in &9(LZ(R?))
satisfying

lu@lsCludll+ I 7@lds}, for >0

where || -

Now we assume instead of (1.3),

. ’ . , L —l , t: g 0.
(1 3) (% 't)ellrzllfxa[;:o T] M‘(x ¢ S) J(x t E)l 0>
,iti

Then it follows from Theorem 1.1 that,

Corollary. We suppose that (1.2) and (1.3)' are valid. Then the
following statements are equivalent:

(i) Ly is strongly hyperbolic.

(ii) 2 A4;(x, t)§; is diagonalizable.

(iii) The Cauchy problem (1.1) is L%-well posed.

Theorem 1.1 implies ()= (ii). (ii))=(i) is trivial. We note that
T. Kano proved directly (iii)=>(ii) in [5].

Though S. Mizohata has proved already in [10] and [117] the suffi-
ciency of Theorem 1.1 and (ii)=>(iii) in Corollary, we shall explain these
facts. Namely, under the assumptions (1.2), (1.3) and the diagonalizability
of 2 A;(x, t)§;, we can construct locally the symmetrizer of }; 4;(x, t)§;
and can derive the finite propagation speed of the solution of (1.1) and
the existence of the solution of (1.1) for any u, and f(x,t), in L2(R?)
and in £9(L%(R?)), with compact supports, respectively. We put as the
symmetrizer of A(x,t: &)= A4;(x, t)§;,

(1.5) S(x,¢:8)=

273

_§F(A—A(x, t: &) (A— A(x, t: &)1

X Py(x, t: , &) 1P(x, t: A, £)dA,
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where A(x, t: £)* is the adjoint matrix of A(x, ¢: &), P(x, t: 4, &) is the
determinant of (A—A(x, ¢: §)), Py(x,¢: 4, $)=_6@/I—P(x’ t: 2,8, and I is
a Jordan’s curve which contains the characteristic roots of A(x,¢: &) and

does not contain the poles of P P;!(x,¢:4,&). Then S(x,t¢:&) has the
following properties: if A(x, ¢: &) is diagonalizable and (1.2), (1.3) are valid,

(1.6) <S(x,t:6)h, h> z0(x,t:8)|h]|2,

where, for any compact set K in R?,

.7) el 8, t: &)= d(K)>0,
and
(1.8) (S(x, t: &) A(x, t: &))*=S(x, t: ) A(x, t: &)

Moreover under the assumption (1.3)’, we have

1.7) inf (s, £:6)=do>0.

(z, )ERPx[0,T
1€1=1

The proof of these properties is due to K.O. Friedrichs [3]. The suffi-
ciency of Theorem 1.1 can be proved by use of the properties (1.6), (1.7)
and (1.8) and (ii)=>(iii) in Corollary by use of (1.7)" (See S. Mizohata
[10], [11D.

In the next section we shall prove the necessity of Theorem 1.1 by
use of the modified method which P.D. Lax introduced in [8].

0
’ 0x
of homogeneous order m, it is known that the characteristic roots of

P(x,¢; 2,&) are real distinct, if and only if P(x, t; 6%’ %) is strongly
hyperbolic. This fact follows from the results which S. Mizohata and

Y. Ohya in [127] and [13], and H. Flaschka and G. Strang in [27] proved.

Remark 3. For the single higher order equation P(x, t: aa—t

§2. Proof of Necessity of Theorem 1.1

Here we shall prove that > A4;(x, t)§; is diagonalizable if L, is
strongly hyperbolic. We need an inequality derived by the closed graph
theorem. If the Cauchy problem (1.1) is uniformly well posed, it follows
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from the closed graph theorem that there exists a positive constant C(£)
and a positive integer s, such that

2.1) lulo,e=C{| Luls, o+ |uls,p}s

where |+|, o is a supremum norm of C°(2), and £={(x,t); |x—xo| =
o' —1t), ty<t=<t’} and D=8n{t=t,}. We note that a constant C(£2)
may be generally dependenton £. We put .QF={(x, £); |x— x| glo<zo+

%—t), t0§t§t0+/z“1}and D,=82,n{t=t,}. Then we have

Lemma 2.1. Suppose that the Cauchy problem of (1.1) is uniformly
well posed. Then there exist positive integers sy, s, and a constant C, such
that it holds for any u=1 and for any u(x,t) in C°(2,),

(22) [uIO,!]uécoﬂsl{lLu[so,ﬂu_{_lulsn,D,,}i

where s, s; and C, are independent of x.

Proof. Suppose that there exist functions u F(x, t) for any u such that
(2'3) |uplO,ngﬂS(M){ILU’;LIS(],.Q”+Iu/alsu,Dy}a

where s(y#)— oo for g—oo. Without loss of generality we may assume
|w,lo,0,=1. We put Lu,=f,, and u (%, to)=g,. We can extend f,(x, t)
and g,(x) to the domain £,={|x—xo| <Ay(to+1—1), to=t=ty+1} such
that

f:‘(x, t)=f.(x,1) in 2,
&.(x)=g.(x) in D,
and

i fﬁlsu,ﬂléMZIOgZFI fpl 50,80

l gﬂlsu,DléMlogw ] gﬂlslth’

(2.4)

where M is independent of #.3) Let #,(x,t) be the solution of (1.1) for

fﬂ(x, t) and g,(x). Then the uniqueness of the solution implies

3) These inequalities will be proved in appendix.
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#,(x, )=u,(x,t) in £,

Hence we have

(2.5) |ﬁﬂlo,glzl.

On the other hand, by virtue of (2.1), we have

I ap.l 0,!11§C(‘91)(| f~[ll sn,ﬂl+ I gpl so,Dl) s

from which we get, combining with (2.3) and (2.4), the following
inequality

1, ] 0, 0, < C(2,)(M20E) =50,

This and (2.5) cannot be compatible if # is sufficiently large.

Now, we shall prove our theorem by contradiction. Assume that
2 A;(x, t)§; is not diagonalizable. Then for some B(x,t), the Cauchy
problem for differential operator L.+ B(x,t¢) can not be uniformly well
posed.

Lemma 2.2. Assume that (1.2) and (1.3) are valid. Then there
exist an open set U, in R?x[0, TIx(R*—{0}) and a mnon-singular
matrix N(x, t; &), of which elements are as smooth as those of A(x,t;§)
in U,, such that,

D, 0)
(2.6) N(x,t:&)A(x,t:E)z( De | N(x,1:8)

i

\ 0 . D,
where D; are m;X m; Jordan’s forms, that is,

li(x, t: 5) 1 0

@.7) D= , (i=1,2,..., k),

.'1 |
0 A(x,t:8))

m;=m.

We shall prove this lemma in the appendix.

Remark. It is known that characteristic roots 4;(x, ¢t: &) of A(x, ¢: &)
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are real, if the Cauchy problem of (1.1) is uniformly well posed (cf. S.
Mizohata [97).

Now we assume that A(x, ¢: &) is not diagonalizable, that is, for some
ip we have m; =2. We may assume i,=1 without loss of generality.
Moreover we may assume that an open set U, in Lemma 2.2 is a neighbour-
hood of (0, 0, &y). We note that characteristic roots 4;(x, ¢: &) are analytic
with respect to §&. We write 4,(x, ¢: §)=a(x, ¢: §). Then we can find
an analytic function A°(x, ¢) (real valued) satisfying

29(x, t)=j+1uZ|]§ru(j!v!)‘l(tfx“)<a—at>j(6~a;>ua(0, 0; 29)

A%, 0)=x-&,

Then we have

A =a(x, t: 1) +0(x* ), o+ jo=ro+1
2.8)

lO(x’ 0) = x'$0

We put No(x, t)=N(x, t: 2%(«x, t)). Then we note that

2.9) No(x, t)A(x, t: ANy (=, t)=< 5 >+0(x"“tf°)
0

where

a(x,6:23) 1 0

D= 1 |, m;Xm; matrix.

0 a(x, s:29)
We transform L by Ny(x,t). We put v=N,u. Then we have

f[vjz%v— % Ay, 0 ai v+ 31 Nod;Nilo
J

+ NoNgtv—NyBNylv,
where

A‘j(.X, t)=N0AJ(x, t)No_l.



604 Kunmiko Kajrran:
Now we choose B(x, t) such that
NyA;Ng},— NoNg} —NoBNy' = B,,

where (m,, 1) element of B, is —1 and the other elements are zero.
We consider the Cauchy problem for L, that is,

I001=( = B, Dt Bo o, 0)=f(x, )

(2.10) {
v(%, 0)=v,(x)

Then the Cauchy problem for (2.10) is uniformly well posed, if the Cauchy
problem for L is uniformly well |Jposed. Hence the inequality (2.2) with
(%9, to)=(0, 0) holds for L, that is, for any #=1,

(2.11) lv|0,g”§Co/z“{[zv]sD,g”+ [v] s0,0,}

Our purpose is to construct the asymptotic solution {v(x, ¢)} of (2.10)
with f~ =0 and v,=0, which violates the inequality (2.11).
We construct the asymptotic solution of the following form,
(2.12) v(x, t: n)= ), et rnp poilm,
i=0

where h; are constant vectors of forms (h{V,..., A", 0,...,0), AP (i=1...

m,) being constant numbers and A(x, ¢: n) is of form as

(2.13) Az, t: n)= 2 (A%x, t)+0;8)n~7/™, (g; constant.)
jZ0
We Write, h(n): Z hjn‘j’ml ,
jz0

o(n)= ), o;n-ilm,
7=0
e(n): Z n,‘j/ml,
i=o
d RO(n)= 2 H(A,..., him))n—ilm,
an (n) jg)(: ;)

Applying L to v defined in (2.12) we have
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i[vj:in(l,(x, b:m)— éﬁk@k(x, . n)——ri—B(,)h(n)
(2.14)
A(n)h°(n)
=in < 0 )+0(nxnti1), lyll+j1=r0
where i=y—1, and
o(n) . —e(n)_ 0
A(n) ={ 0 ..—-e(n)w‘, (my X m, matrix) .
L—:b— 0 ' G(n))

We determine ¢(n) such that det A(n)=0, that is,

det A(n)=0(n)™ +_i_e(n)m,-1

(215) =(Z(7jn-flml)ml+%_(Zn-j/m1)ﬂh—l
=ZF.n"J'/ml’
F=

where
my\fmy—Yo my—Yo—=Vy Vi

Fj= Z ayooy!
st i\ ve J\ vy vy
(2.16)

ml——l ml—l—Vo—"'—Vj_z
+1 Z e .
detVy=my—1
4 2Zvp et Gom)y jomy=j-mi \ Yo Yi-1

From this formula, we have Fy=07!. Hence we have
0,=0
which implies F;=0 (j<m;). Next, we obtain
F, =0p+i=0
Hence we can choose ¢; such that

(2.17) Im ¢, <0.

R k)
GJ

605
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As 0, is zero, we have generally from (2.16)
(2.18) Fj=mlo'i'“'ldj_mlﬂ—i-Pj(O‘l,..., Gj—m1)=05 j> my,

where P; is polynomials of (0,,..., 0;_,,). Hence we can determine ¢; so
that (2.18) holds.
Next we determine A%(n) such that A(n)A°(n)=0. As we can write

(0(n) —e(®) w hy(n)
AR (y=| 0 . ’ S -
_L i —e(n)J =

Y 7(n) ) b, (n)

we obtain the relations,

hy(n) =( g((:’;)) )””_" B (), k=1,..., my—1.

We choose A, (n)=0(n)™"1. Then we have h,(n)=e(n)™ *o(n)* 1.
Hence we can expand h%(n) as

.19) ho(n)= X hIn-ilm,
=0
where h? are constant vectors. Here we note
(2.20) hy=*(1, 0,..., 0) 0.
Now, we define vy(x, t: n) as
N
UN(x, i n)= Z einhN(x,#n)hjn—j/m;,
=0
where
N .
An(z, t:n)= ), (A%x, t)+0;t)n=iIm
i=o
and h;='(h}, 0,...,0). Then we have
2.21) Llvy]=e™5(0(n ")+ 0(nx*141)), |v;| +ji1=r4

where NN; becomes larger and larger if we choose /N larger and larger.
We put '
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o(n, #)= max {—Imndy(x, t: n)}.

(x,)EZ,
Then by virtue of (2.17), we obtain
p(n, ﬂ)gcnl_”’”’ﬂ_l

where ¢ is independent of n and x. Here we choose g =n(mi-1)/2m
Then we have

(2.22) o(n, ﬂ)>cn(’"1‘1)/2’”1_
From (2.21), we obtain
(2.23) | Loyl 5o, 0, Sconst. epnm(p=Nitsoq psotl y=rotso)

where const. is independent of n and # and r,=vy;+j;. Noting that
Im Ay(%, 0; n)=0, we have

(2.29) |y 5,0, ScOnSt. noo,

On the other hand we obtain by virtue of (2.20),

(2.25) lvnlo g, Zciern,

Hence it follows from (2.11), (2.23), (2.24) and (2.25) that
(2.26) Clep(ﬂ,#)éconst. {ep(n,ﬂ)(nsu—I\H_l_ nsg+1—(ro—su)(ml—l)IZml)

+ nso}nsl(ml—l)/Zml-

Here we choose N; and r, such that N,=s,+1+s,(m;—1)/2m,; and
So+1—(ro—sg)(m;—1)/2m;=—1—s,(m;—1)/2m;. Then (2.26) and (2.22)
can not be compatible, if n is sufficiently large. This proves the necessity
of our Theorem 1.1.

Appendix

Lemma A.l. Let g(x) be in C=°(D,), where D,={x€R?, |x| <y '},
u#=1. Then there exists g(x) in Cs(D;) such that

(A1) &(x)=g(x) in D,

and
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(Az) I glsu,D1§MlogZFl ngO,Du’

where M is independent of p.

Proof. Under the change of variables, |x|=r, the domain D, is
transformed into the domain f)ﬂ={(r, 0w), 0=r<u™!, we S*71}, where
5?71 is the unit sphere. And g(x) is transformed into g(r, w) in C*(D,).

We extend g(r, ») to the domain D} ={(r, »), 0=r=247', w€ S?7'},

gV, w)=g(r, w), 0sr<ul, we S

so+1 y
— . -1_ 1 _ -1 -1 < -1
iz;la,g(/z 30+1(r u ),w>,ﬂ <rs2u7?,

so+1 ; ]
where n}i ai<s :_1)]=1,j=0, 1,...,50. Then g¥(r, ») belongs to Cs (DY)
i=1 0

and satisfies
| &P 0.0 M| gl 0,0,
Next, we extend g¥(r, ») to a domain D2 ={(r, w), 0Sr<4p~?, we S#1},

g, w)=gW(r, w), 0=r=2471,

sot1l ;
- (D) -1t _9,-1
& ugCu =g (r=2u7), 0),

2ut<r<4pt,
Generally, for any positive integer m we define g‘»*1(r, w) as

g(m+1)(r, a))= g(m)(r’ w), 0<r<2my-t

_ sgla (m)<2m i (r—2mu1) a)>
T A Y%E # so+1 “
2’”,&'1 <r§2"‘+1ﬂ'1.

Then g™*V(r, ») belongs to C°(D{*1), where D" D={(r, ), 0=r=
2m*+ly=1 e §P71}, and satisfies

| g™, pimeo < M| g™, pim

éM'n+1 I g[ su,D,,'
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Hence, if we put m+1=log,#, we have D*V=D, and g(x)=g"*V(r, )

satifying (A.1) and (A.2). a
.E.D.

Corollary. Let f(x,t) be in C°(2,), where 2,={(x, t), |x|<a,
(p1—1),0<t<u"'}, u=1. Then there exists f(x,t) in C(82,) such
that

flx, £)=f(x, t) in L2,

and
|f| so,!?1< Mzloesm |f] 50, 24"

We can prove this corollary by the same method as in Lemma A.1, if
we change variables (x, ¢) into (r, w,7) as r=|x|, c=g"1—¢t—r.

Lemma A.2. Let A(z) be a mXm matrix of which elements are
infinitely differentiable functions of z in an open set B, in R" and of
which eigenvalues arve all zero. Then therve exists a non-singular matrix
N(z) of which elements are infinitely differentiable in an open set BcC B,
such that

Ji 0
(A.3) N(2)"14(z)N(z)= Je ) !, for z in B
o J,J
where
(0 .1 ] 0
J; =’L 1
0 0

Proof. Since the eigenvalues of A(z) are all zero, there exists an
integer v(z) for any z such that A4(z)*=0 and A(z)*"'#0. We put
vo= max (2) =(z,),
2€B;
Then we have a neighbourhood B, of z, in B; such that A(z)**=0 and

A(z)*71#0 for any z in B,. Moreover we have an open set B; in B,
such that the rank of A(z)’ is constant for any i=1, 2,..., y,—1 and for
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any z in B;. We define W;(z) as
Wi(z)={heC™, A(z)’h=0}.
Then we note that dim W;(z)=m; is constant for z in Bj; and
Cm=W,(z)DW,,_(z2)D---DW,(2).

We put r;=m;—m;_, (i=2,...,v,) and r;=m,;. Then there exist constant
vectors {hky,..., h,, } such that

W,(2)=4hy.... b, }+ W, _1(2) (direct sum)

for any z in BycC B;, where B, is some open set in B;. Then we have
A(z)h; in W, _1(z) and {4(2)h,,..., A(2)k, }NW, _,(z)={0} for any
z€B,. Hence we have r, <r, ;. Hence there exsit constant vectors

{hs,+15--» By, } such that

Tyo

W,D_l(z)={h1,..., Ahr”, h7v0+1""’ hfvn-l}
+W,,-2(2) (direct sum)

for any z in B;c B,, where Bj is some open set in B,. Then we have
A(z)*hi(j=1,...,r,,) and A(2)ki(j=r,,+1,...,1r,,-;) in W, _5(z) and
{4(2)2hy,..., A(z)%h,,, A(2)h,, 15..., AR, INW, 3 (2)={0} for z

in B;. Hence we have r, _;<r Similarly, we have r, <r, _;<---

vo="wvo—

such that,

vo—1 vp—2°

=r;. Therefore we can choose constant vectors #&,,..., h,,

i=1,..., Vo
Wi(z)={4(z)*""hy,..., A(z)*"h,,, A(z)* " h,, 1, ..o
A(z) 7 h,, e By B}
+W;-1(2) (direct sum)

for z in By,;CBy.;—;, where B,,; is some open set in B,,;;. Then
A=)k, 150 AR)ER,, (0=1,2,..., vo; k=0, 1,...,2—1) become the
basis of W, (z)=C™ for z in Bj,,,

N}i)(z)=(hj5 A(z)hja---a A(z)i_lhj)s j=ri+13---5 .

Then we obtain
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/01 0
ADNP(2)=N¥(2) | - 1
0 0

We put

N(z)=(Npo,... Neo, Nerb,., NewD, | NO, . N©

Ty ? Tyg-1 2"

Then N(z) satisfies (A.3) for z in B=B, ;.

Proof of Lemma 2.2. For the fixed point z,=(x,, ty, &) we denote
by {h{",..., B2} the basis of the generalized eigenspace of A(z,) corre-
sponding to the eigen value 4;(z,) of A(z,). We put

1

(i) =
hi? () 277-'\/“1%[7»—M(zo)l=rn

(A—=A(z) ki dR, (j=1,...,m,).

Then {A{"(2),..., hi(2)} constructs the hasis of the generalized root space
of A(z) corresponding to 4;(z) the eigenvalue of A(z), for z in a neigh-
bourhood of z,. We put N,(2)=(h{"(2),..., b3 (2)..., h{P(2),..., BP(2)).
Then we have

A,(z) 0
Ny() ANy (=)t = 4(%)
0 4,(2)

where A;(z) has only the eigenvalue 4;(z). Hence we can apply Lemma
A.2 to (1,(2)—A4;(2)) for z in B,.
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