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1. Introduction

The purpose of this paper is to investigate the asymptotic behavior
of the solutions of non-autonomous differential equations of the form

(1.1) Z4a@®)z+b@)%+c(t)x = p(2),

(1.2) %+a(t)i+b(t)i+c(Dh(x)= p(t, x, &, %),

(1.3) %+a(t)f(x, &)%+b(2) g(x, %)% +c(h(x)= p(t, %, #, &),

(1.4) #4+a@)f()%+b()P(%, %)+c(t) g(%)+ d@®)h(x)= p(t, x, %, %, %)

where functions appeared in the equations are real valued. The dots indi-
cate differentiation with respect to ¢ and all solutions considered are as-
sumed to be real.

The problem is to give conditions to ensure that all solutions of (1.1),
(1.2), (1.3) and (1.4) tend to zero as t—oo. This problem has received a
considerable amount of attention during the past twenty years, particulary
when equations are autonomous. Many of these results are summarized in
[147].

In [17] K.E. Swick considered the behavior as t—oo of solutions of
the differential equations

(1.5) %+ak+ g(x)x +h(x)=e(t),
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(1.6) %+ p()% +q(2) g(%) +h(x)=e(?)

where o is a positive constant. In [16] he also considered the asymptotic
stability in the large of the trivial solution of the equations

A7) x4+ p@)i+q() g(x)+r(t)h(x)=0,
1.8) x+f(x, %, t)%+q(t) g(%)+r(t)h(x)=0.

In [6] the author established the conditions under which all solutions
of the non-autonomous equations (1.1)~(1.3) tend to zero as t—oo.
In this paper we obtain the conditions weaker than that obtained in

[6].

Recently the author ([97) studied the asymptotic behavior of solutions of
1.9)  x+a@)f(x, %, %)% +0(0)g(x, %)+ c@)h(x)=p(t, x, %, %)

under the condition that
M) 2050 (x0).

But here we consider the equations (1.3) and (1.4) under the weaker con-
dition that

H(x)sSZh(é)d{-‘—»oo as |x]— oo,

In [7] the author also investigated the asymptotic behavior of the
solutions of the equation

(1.10) %+ f(%)%+ (%, %)+ g(%)+h(x)=p(t, x, %, %, %).

This time we study the non-autonomous equation (1.4). The results
obtained here contains the author’s result in [7].

The main tools used in this work are Liapunov functions and the gene-
ralized Yoshizawa’s Theorem ([21; Theorem 14.27).

The author whishes to express his appreciation to Dr. M. Yamamoto

of Osaka University for his invaluable advice and warm encouragement.
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2. Assumptions and Statements of the Results

Theorems 1 and 2 are concerned with the differential equation (1.3).

We assume the following assumptions on the functions appeared in (1.3).

Assumptions for Theorems 1 and 2.

(a1)

(a3)
(a3)
(ay)

a(t), b(t), c(t) are positive and continuously differentiable functions
in I=[0, o).

p(t, x, y, z) is continuous in IX R3.

h(x) is continuously differentiable for all x < R'.

f(x, »), fo(x, ), g(x, y) and g,(x, y) are continuous for all
(%, y)eR2

Hereafter we use the following notations.

a’ (t) =max (a'(¢), 0), a’ (t)=max (—a’(t), 0)

so that a/(t) =a/ (¢) —a’(¢). Likewise, we denote

b.(t)=max (b'(¢), 0),  b'(¢) =max (—b'(s), 0),

¢, (t) =max (c’(¢), 0), c’(t)=max (—c'(t), 0).

Theorem 1. Suppose that the assumptions (a,)~(a,) hold and the
following conditions are satisfied:

(i)
(ii)
(iii)
(iv)
(v)
(vi)

Aza(t)Zaey>0, Bzb(t)=2b,>0, C=c(t)=c,>0 for tel,
fi2f(x, N=fo>0, yf.(x, y)=0 for all (x, y)ER?,
g1= 8(x, )= g>0, yg.(x, y)<0 for all (x, y)€R?,
xh(2)>0 (320), H)=(h@de—co as|x| oo,

b ’
_‘%_00[9_51>h1;h (=),

24 (O)f 1 —a’ (£)f o} + {b'.(8) &1 — b(&) go}
¢ (O, < by g0 Chy

where p is an arbitrarily fixed constant satisfying

Ch,
bogO <ﬂ<a0f0,
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(vii) S'c;(t)dmoo, (£)—=0  as t—oo,
0

viil) | p(, %, ¥, 2)| < pr(8)+ po(8) {H(x) + y2+ 27} #/2
+A(y2+z2)2
where 0, 4 are constants such that 0=p=1, 4=0 and p,(2),
p2(t) are non-negative continuous functions satisfying,

(ix) S:pi(t) dit<oo (=1, 2).

If 4 is sufficiently small, then every solution x(t) of (1.3) is uniform-
bounded and satisfies

x%(t)—0, %(t)—0, #(t)—0 as t— oo.

As an immediate consequence of Theorem 1, we have the following

result on (1.1).

Corollary 1. Suppose that the assumption (a,) and the conditions (i),
(vii) of Theorem 1 hold and in addition the following conditions are satisfied:

(v)' apby—C>0,
i) e (£)+ () ———c'(8) < by — C (£< r<a )
U 0 bo 0 />
(ix)’ g: | p() | di < oo.
Then every solution x(t) of (1.1) is uniform-bounded and satisfies
x%(2)—0, %(2)—0, £(t)—0 as t— oo,

And also we have the following Corollary 2 concerning the equation
(1.2).

Corollary 2. Suppose that the assumptions (a,)~(as) and the condi-
tions (i), (iv), (vii) of Theorem 1 hold and the following conditions are

satisfied:

vy b sk zh(a),

SN/ ’ ’ __1 ’ _ Chl _ﬁ.
(Vi)' 8/ (6) +b'(8) ~ S (8) < rby — Chy (bo <u<ay, "'hl)’
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i) | p(t, %, 3, 2)] < i),
@ { p@di<e.

Then every solution x(t) of (1.2) is uniform-bounded and satisfies
x%()—0, x(t)—0, i(t)—0 as t— oo,

Remark. Theorem 1 extends the author’s earlier results, that is,
Corollaries 1 and 2 coincide with Corollary 1 and Theorem 1 in [67] respec-
tively.

In [47], J.O.C. Ezeilo studied the equation

2.1 ¥+ f1(x, %)%+ f2(2)+f3(x)=pQt, x, %, %)

where p(t, %, y, z) satisfies the condition (viii) of our Theorem 1. He
required the boundedness and integrability of the functions p;(#) and p,(t).
Here we only assume the integrability of p,(t) and p,(z).

Observe that the condition (v) in Theorem 1 is the usual < generalized
Routh-Hurwitz conditions>.

Theorem 2. Suppose that the assumptions (a,)~(ay) hold and the
Sfollowing conditions arve satisfied:

(i) 4dzae(®)zaey>0, Bzb(t)z2by>0, C=c(t)=cy>0 for te1,
() fx D2fo>0, ¥fulw, NSO for all (x, Y)ER?,
(i) gz, )= g0>0, yg.(x, )0 for all (x, y)R?,

(iv) xh(x)>0 (x=0), H(x)zgzh(é)ds—mo as | x| — oo,
(v) Zebefodos > h(x),

(vi) S:{a;(t)+b'+(t)+|c'(t)|}dt<oo, ¢(t)—0 as t— oo,

(i) | p@, x, ¥, 2)| < () + po(O) {H(%) + y2+ 22} 12+ A (y2 4 22)1/2
where 0, 4 are constants such that 00=1, 4=0 and p,(t), ps(t)
are non-negative continuous functions satisfying,

(vii) S:p,-(t)dt<oo (i=1, 2).

If 4 is sufficiently small, then every solution x(t) of (1.3) is uniform-
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bounded and satisfies
x(t)—0, x%(t)—0, %(&)—0 as t— .

Remark. In Theorem 2 the functions f(x, y) and g(x, y) are not
generally bounded above. Here also we do not need the boundedness
of the functions p,;(t) and p,(t). Theorem 2 is the extension of the au-
thor’s earlier result ([6; Theorem 27).

We turn now to the fourth order differential equation (1.4). We make

the following assumptions on the functions appeared in (1.4).

Assumptions for Theorem 3.

(4,) a(e), b(t), c(t) and d(t) are positive and continuously differen-
tiable functions in I=[0, o).
(4;) f(z) is continuously differentiable for all z< R*.

(43) o¢(y, z) and g—ff(y, z) are continuous for all (y, z)e R2.

(4y) g(y) is continuously differentiable for all ye R!.
(45) h(x) is continuously differentiable for all x < R,
(4e) p(t, x, v, 2z, w) is continuous in IX R*.

In Theorem 3, the following notations are used:

gm:i(yyl (y#0),  &(0)=g'(0),

@=L r@d G0, fO=10.

Theorem 3. Suppose that the assumptions (A,)~(Ag) hold and that

there exist positive constants such that

(i) Aza(®)=ae>0, Bz=b(£)=b,>0, C=c(t)=c,>0,
D=d()zdy>0  for tel,

(ii) f(z2)zfo>0 for all ze R,

(i) g1(y)= 8e>0 for all yeR', g(0)=0,

() h()>0 (3#0), H=| h@de—o  as |x]-o,
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_ aofoao ’
ZCogoD éh (x)ého,

(v) éy(y 2)=0, ¢(y,0)=0 in R?,

i 2 e 3 o3
o) 0s#2D g <8l 20

where €, is a sufficiently small positive constant,
(vii) @gboco fobogo—C?gog'(y) — A*Dfoho f(2)20,>0
for all (y, z)ER?,

0

o _2Dhedy
(vii)  g'(y)— g (y)=0< Ca, focigl’

(ix) f1(z)—f(2) éj{%}frg}l—o ,

) (@I +0 @+ 16O+ Oy di <o,
d’'(t)—0 as t—oo, where b’ (t)=max (b'(t), 0),

i) | p@, %, 3, 2, w)| < pi(8) + pa(){H(x) + y2 + 2% +w?}el?
+A(y2+22+,w2)1/2
where 0, 4 are constants such that 0<p=1, 4=0 and p,(t),
Ppa(t) are non-negative continuous functions satisfying,

(xii) S:pi(t)dt<00 (i=1,2).

If 4 is sufficiently small, then every solution x(t) of (1.4) is uniforimn-
bounded and satisfies

x(t)—0, % (£)—0, % (2)—0, %(t)—0 as t— .

Remark. Theorem 3 extends the author’s result [7] to the non-
autonomous equation (1.4). Theorem 3 also contains the results obtained
by J.O.C. Ezeilo [4], M. Harrow [11] and M.A. Asmussen [1]. Note
that also we do not require the boundedness of p;(t) and p,(¢) here.

3. Auxiliary Lemmas
Consider a system of differential equations

(3.1) X=F(t, X)

where X=(x,, .., x,) and F(¢, X) is continuous in IX R*(I=[0,)).
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The following Lemma 1 is well-known ([217]).

Lemma 1. Suppose that there exists a continuously differentiable func-
tion V(t, X) defined on t<1, ||X||= R, where R may be large, which sat-
isfies the following conditions:

G) e(|XID=V(E, X)Sb(| X)), where a(r)e CI (a family of conti-
nuous and increasing functions), a(r)— oo as r—oo and b(r)eCl,
(ii) V(3.1)(t, X)=o0.

Then the solutions of (3.1) are uniform bounded.
Next we consider a system of differential equations
3.2) X=F@, X)+G(t, X)

where F(¢, X) and G(¢, X) are continuous on IXQ (I=[0, ), Q: an

open set in R*). We assume

(3.3) IG(2, Xl =G.1(2, X)+G2(X)

where G,(¢, X) is non-negative continuous on IxQ and StGl(s, X)ds is
bounded for all ¢ whenever X belongs to any compact sulo)set of Q, and
G,(X) is non-negative continuous in Q.

The following Lemma is a simple extension of the well-known result
obtained by T. Yoshizawa [21; Theorem 14.27].

Lemma 2. Suppose that there exists a non-negative continuously differ-
entiable function V(t, X) on IXQ such that V(s_z)(t, X)s—-W(X), where
W(X) is positive definite with respect to a closed set £ in the space Q.
Moreover, suppose that F(t, X) of the system (3.1) is bounded for all t
when X belongs to an arbitrary compact set in Q and that F(¢, X) satisfies
the following two conditions with respect to £:

(@) F(t, X) tends to a function H(X) for X8 as t—oo, and on
any compact set in 2 this convergence is uniform.

() Corresponding to each €>0 and each Y< 2, there exist a 0(c, Y)
and a T(e, Y) such that if || X—Y||<0(, Y) and t=T(e, Y), we have
I|F(¢, X)—F(@, Y)||<e. And suppose that
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() G4(X) is positive definite with respect to a closed set 2 in the
space Q.

Then, every bounded solution of (3.2) approaches the largest semi-inva-
riant set of the system X=H(X) contained in £ as t— .

Proof of Lemma 2. The proof runs analogously as the original proof
[21; p.52~p.61] using the fact that for any 4>0

t+n
S Cy(x(s))ds—0  as t— oo
t

whenever x(¢) approaches to £ as t—o e.g.

4. Proof of Theorem 1

In this section it will be assumed that X=(x, y, z) and |X]||
=yxl+ yiiz?
We consider, in place of (1.3), the equivalent system

(=
@1 (j=z
z=—a()f(x, y)z—b()g(x, y)y—c(@®)h(x)+ p(t, x, v, z).

Consider the Liapunov function defined by
¥
@2 Volt, %, 3, )= neH@)+ Ry + b0 gCx, Dyndy

+ ua(t) SZf(x, ydy+uyz +—;—z2+k

where %k is a non-negative constant to be determined later in the proof.

Let V=—h’u—, then we have
1

Vomg 4e@{2H() + Zh(x) y +— 57}

+%Sz () g(%, 1) —c(@)}ndy
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+ i {a)f o, )= 1+ e+ my)+ k.

Since h,=h'(x), we have 2h,H(x)=h?(x).
Then it follows

| yIV2h  H(x) 2 (%) y= — | y|v2h, H(x)

and
(4.3) (JZH(_x')+-J79;TIT)Zg{ »Zlhl 2}
Lyl \?
<\/2H(x) 7 hl)
The left hand side of (4.3)=20 H(x)+(42—(ﬁ“)ﬁ(a oyl )2
R ’ W —00)h;
b
~ =By 7
The right hand side of (4.3)=260H(x)+(«f2(T—W — \/m(ll L (I? 7 )2
—VYo)ih1
o

2
=6, 7

Hence we have

pe(£)8,H(x) +—;— ﬂc<t>{ 2(1—00)H(x) +E\/(1I%yclsom‘}z

5 OG5 b8 D= ndn
+ @ f )~ dpndn+ 3G+ wyy+b

= Vo= pe(t)d,H(x) +%ﬂc(t) {\/m ‘;TJ_*%*—)E} 2

5o gy A g D= e
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o+ {a)f o, 1) = mndn + (o 1y P+

If we take 0, as 1— ¢ >0,>0, we have
Vbogo
Voz ne@0uHGx)+ - b (0) g (e, 1) =25 n
Y Jo 1-0,

+ 0§ @ Of Gy )~ sy 1dn + e+ )+ b

= ue(06H (x)+1{ fob0) g, -G A1y

o+ {al)f ey )= =

0

_l_ 2 z }2 1 2
+ 2oyt AT AT T At

Here we take 0, as M’;—l_—-ﬁ>61>0, then

Vozue o @)+ Po@gte, m—LD dnay

1—60

+ ﬂSZ{a(t)f(x, 77)_/‘_”61}776177+—6—~—z2+k,

1
2(1+0,)
and we can find a positive number D; such that

4.4) Vo(t, x, y, 2)2D;{H(x)+ y2+ 22+ k} .

659

It is easy to see that there exist two continuous functions w,(r) and

w,(r) such that

(4.5) w, ([|XID=Vo(2, %, y, 2) Swy (]| X))

for all Xe R? and t= I where w,(r)e CIP (a family of continuous increas-

ing positive definite functions), w,(r)— o0 as r—oo and w,(r)eCL.

Along any solution (x(¢), y(¢), 2(¢)) of (4.1), we have

(4.6) Vou.1y=—Lub(t) g(x, y)—c(®h'(x)]y?~[a(®)f(x, y)—#]z?
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T ,ac’(t){ZH(x)+—z— h(x) y+—/71;y2} +b(t)yS:gx(x, 7 7dy

+20(®)y|] ., D1dn+ (g +2) pee, 5, . 2)
y I3 / 1 4
+So{ﬂa (&) (x, 1) +6'(2) g2, ) —-¢ (t)}vidv-
By the conditions (ii), (iii) and (vi),

70(4.1) g _(ﬂbogo— Chl)yz— (aofo_ﬂ)zz + C;((tt)) Vo

(b go— Chy) y2+ L+ )| y1 + | 21D pCt, %, 3, 2)]

S = -(tbo o= Chy) y* (a0 fo—t) 2+ 587

V2 A+ {pr(0) + p(O)(H(x) + y2 + 22)P/2H (2 + 2212
240+ )y +22).
Note that
(4.7) (H(x)+ y2+z2)p2 <14 (H(x)+ y2+ z2)1/2

ﬂbﬁ)—g'o"chl aLfo""ﬂ
W2(1+p) ° J2(1+a)

and if we take A<min{ }, we can find a positive

number D, such that
(4.8) Vourny < "Dz(}’2+52)+£é%-Vo

V2 A+ m{pi )+ p2()} (y* + 2912

+V2 L+ 1) po()(H(x) + y* + 2%).

Now we define

(4.9) VG, %, y, 2)=e~fer V2, 5, y, 2)

where
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1) =S HELED (5,54 p 3}

Then it is easily verified that there exist two continuous functions
w,(r), W,(r) satisfying

(4.10) o1 ([|XID=V (@, %, 5, 2) <d,(/| XD

for all Xe R® and t< I where #,(r)eCIP, i,(r)— o as r—o and 4,()e
CIL

Along any solution (x(2), y(t), z(z)) of (4.1) we have
I7(4.1)-'=‘3_j:’7(3)ds‘[ 70(4.1)‘—T(t)Vo:|
<eJor 9L~ Dy(y 2+ 22+ 2 (L+ ) {py(0) + pa(t)}(y2 + 222
—V2A+m){p1(®) + po(O}H{H(x) + y* + 2%+ 2k} ]
ge’J;"‘s"”-[—Dz(yz-l-zZ)
X rrro LY 1
2+ AP+ pOH (7 F 57— 5 ) =428 |
Setting kg-é—, we can find a positive number Dj; such that

(4.11) V= —Dy(y*+22).

From the inequalities (4.10), (4.11) and Lemma 1, we see that all the
solutions (x(t), y(t), 2(¢)) of (4.1) are uniform-bounded.
In the system (4.1) we set

F(t, X)= ¥y 1
—a(t)f(x, y)z—b(t)g(x, y) y—c()h(x) J
(4.12)
0
G, X)= 0 ,

p@, %, v, z)



662 TAapayukr HAra
then
IG(t, XDI| < pr(8)+ po(){H(x) + y2+z2}e2+ A(y? + 22)/2

Let G,(¢, X)=p,(t)+ p2(e){H(x)+ y2+ 2z%}#/2 and G,(X)=4(y*+z2)!2,
It is clear that F(¢, X) and G,(¢, X) satisfy the conditions of Lemma 2.
Let W(X)=D;3(y%+ z%), then

V@, %, y, 2) < —W(X)

and W(X) is positive definite with respect to the closed set 2={(x, y, z)|
x€R!, y=0, z=0}. It follows that on £

( 0
F(t, X)= 0
{ —c(@®)h(x)

By the condition (i) and (vii), we have c¢(¢)—c. as t—o where
0<cy=<c.=<C. It is also clear that if we take

0
(4.13) AX)= 0 B
—c.h(x)

then the conditions (a) and (b) of Lemma 2 are satisfied.

Moreover G,(X) is positive definite with respect to the closed set £2
and the condition (c) of Lemma 2 is satisfied.

Since all the solutions of (4.1) are bounded, it follows from Lemma 2
that every solution of (4.1) approaches the largest semi-invariant set of
X=H(X) contained in £ as t—oo.

From (4.13), X=H(X) is the system

(4.14) £=0, §=0, z=—c.h(x)

which has the solutions x=¢;, y=c;, z=c3—c.h(c;)(t—12,). To remain
in 2, ¢;=0and ¢3—c.h(c,)(t —2,)=0 for all t=¢, which implies ¢; =¢3=0.

Therefore the only solution of X=H(X) remaining in £ is X=0,
that is, the largest semi-invariant set of X=H(X) contained in £ is the
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point (0, 0, 0). Then it follows that

x(t)—0, x()—0, x(t)—0 as t—oo. Q.E.D.

5. Proof of Theorem 2

Here we consider the system (4.1) and the Liapunov function (4.2),
and denote X=(x, y, z) and || X||=vyxZ+ y2+22.

By the same arguments as before we obtain the estimates (4.4), (4.5)
and (4.6). Then,

(6.1) V0(4 1= —(ubogo—Chy) y2—(ao fo—#)z%+ |6(:'((tt))|

+ “+((tt)) ua(t)g Sz mmdy+ +((t) b(t)S g(x, n)ndy

+'—c,§—t)_ly2+(1+ﬂ)(|y|+lz|)|p(t, %, ¥y, 2)|

where 4 is an arbitrarily fixed constant satisfying b(;};lo <u<agfy.

Note that
ﬂa(t)SZf(x, n)vdv=ﬂSZ{a(t)f(x, N —ﬂ61}77d77+—;~u2(1+61)y2

< Vot u(1+8,) 7%

b)) gCe mrndn=—{ {0 6o, =G ndn+55 505

C
=Vt gti—sy

where 0, §; are positive constants determined in the Proof of Theorem 1.
Then we have

Vo)< —(Ubogo— Chy) y2 —(aq fo— 1) 2*

t) a’(t) AQ) 2
+|c((t)lV + ((t) Vot LA
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COLR) oy 1@

bi(t) 2
+ Vot o0 =6,550) y

b(z)

+V2 (A +{p1(0) + p2((H (%) + y2 + 22)r1 2}y + 222

+V 24+ 1)y + 22).

. . sy . . ,abo go - Chl
Using the inequalities (4.4) and (4.7), and taking 4< m1n{~_——,
g q (4.4) (4.7) g 1)

a—°_f°_—'a}, we can find positive numbers D, and D; such that
V2(1+4)

(5.2) 70(4.1)§ =D (y*+2)+D[a’,(t)+b.(0)+ |c'(®)| 1V,
+V2 1+ ) {p1 () + p2(0)} (2 + 22)1/2
V2 1+ 2) p(0)(H(x) + y2 + 22).

Now we define

(5.3) Vi, x, v, z)=e‘J;7(s’ds-Vo(t, %, Y, 2)

where
4 ’ ’ 2 [2
7(6) =Da(@(s) +5:(5) + 1D + B2 LED ,)+ pu@}.
Then there exist two continuous functions 4,(r), w,(r) such that

(5.4) o (IXID= V@, 2, 3, 2) <@((1 X1

for all X R® and ¢t where @w,(r)€ CIP, #,(r)—c as r—oo and i,(r)

eCl.
As in the Proof of Theorem 1,

Vwny=eTe [ =Dy (y2+ 29 +V2 1+ £){pi(0) + pu(O)H(y2+ 292

=21 +2{p1(0) + p2(} {H(%) + y2 + 22+ 2k} ]

sl -p )
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7 o LY 1 o
—ZA+ PO+ pu Ny F 27— ) —+2k |-

Setting kg—é-, we can find a positive number Dg such that

(5.5) Vs —De(y*+22).

The remainder of the proof proceeds just as in the Proof of Theorem 1.

Q.E.D.

6. Proof of Theorem 3

In this section it will be assumed that X=(x, y, z, w) and ||X||=
Vol y2 422wl
The equation (1.4) is equivalent to the system

[
(6.1) y=s
zZ=w
1 w=—a(@)f(2)w—b(t)$(y, z) —c(t) () — d(®)h(x) + p(t, %, y, z, w).

Our main tool is the function Vy=V,(t, », y, z, w) defined by

62) 27, =284 h@)dé +2¢(0)|) gr)dn+ 206"y, D1t

+2a(0) | FOTd+280(0) 5]} FQ A+ {BBb()—ahod (1)} y*

— Bz +aw?+2d(t)h(x) y +2ad(t)h(x)z +2ac(t)z g(y)

+28 yw+2zw+k
1 _ hyD .
where a= +e, B= +¢ and ¢, k are positive constants to be deter-
aofo €080

mined later in the proof. We have

63 2Vy= Ot fi() i)} +2ed 0 b ae
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x [ Dh,  d() ) y ,
+2d() )| 2o HONE ag 1 o) Lo~ &' D dn

+2ab(O)] {8(5:0) = B} L+ {8hob(D) — thod (D) — Ba()fu(2)} y*

+a® [ {fO - ALOR AL+ {adob(D) - B~ ae(®) gu()} 2

w?+ c(t) {d(t)h(x)-i- y&(y)z +“g1(y)z}z+ .

1
+{a—a’(t)f1(z)} s(Nlc(®)

An elementary computation yields

I: Dhy,  d@)R'(8) }

cogo c@) gy

z Dhy, _ d(DK' (&)
Zd(t)goh(e)[%go c(t)gl(y)]dé‘go’

Dhocogo —Cy goDh’(E) >
coc(t) gogi(y)

v

0,

2ab(®)| {6 (5, ) =4iK} dL20.
From the condition (vii), we have

b , b
(6.4) ay ofgéfo(éo > g'(y), aoAOZCB‘ZZgo >f(z),

then
{B8dob(t) —ahod(t) — B%a(t)f1(2)}
=B{ob(¢) —ac(?) g1(y) — Ba(®)f1(2)} +a{Bc(t) g1(y) —hod(£)}

= B{pob(0) — 5/ (1)~ 2o a() ()| ~eB1e(0 /() +ef ()

+a{Bc(t) g1i(y) —hod()}

ﬁé‘o _ aoboCofo¢o aoboco¢o &o { hOD _ }
= agCo fo8&o 68{ 9 + ADh, }+a <Cogo +5)Cogo hoD

Vv

1
=W {ACDho0,—eafboct fo gobo(AfoDho+ C god}
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+ ACDho:oCofo 2 {ACDh 0 —eadbochfo 8obo(AfoDho+ C go)} +eacy go-
If we take
ACDh 0
6.5 < 000 ,
(6-5) ¢ agboC%fogo¢o(AfoDho+Cgo)
we have

{Bob ()~ ahod () =80 (I} > gy (ACDhSs

—eagbocifogobo(ADf oo+ Cgo)}t.
Also using (6.4) we have

{apob(2) — B —a’c(t) g1( 1)}

1
2 CaidooDf3gahy VACDhdo—eatboct fo godo(AfoDho+C g0}

+m{A0Dhoao “Ea%bo‘?%fo go¢o(ADfoho + Cgo)} +eBay fo.

By (6.5), we have

{agob(2) — B —a’c(t) g1( )}

1 .
> ACa%fgcogoDho{ACDhoao —eadbocl fogobo(AfoDho+ Cgo)}

Further,

e -gmrranz Ly,

O FO-FOWdE — 205

w?=ew?.

o aora!

Then we obtain
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2V0225d(,g:h($) dé

+ +{AC(2Dho0o— Ca, foct g30)

2
2A4Ca,foc g}l

—2€a§boc§fo go¢o(AfoDho + Cgo)}

2
+ 2A4Ca} %co goDh, {4C(2Dh0y— Ca, foc§g50)

—2eadbocd fo gobo(AfoDho+ C go)}y +ew? + k.
If we take

AC(2Dhy0,— Ca, foct giod)
2a8bocifogobo(AfoDho+Cgo)’

(6.6) e<

then there exists a positive number D; such that
6.7 VozD{H(x)+ y*+ 22 +w?+ k}.

From (6.4) it follows the boundedness of the functions g;(y) and
f1(z), and we can see easily that there exists a positive number D, satisfy-

ing
(6.8) Vo= D{H(x)+ y?+ 22+ w:+k}.
Therefore we have
(6.9) D,(H(x)+ y*+ 22 +w) SV < D,(H(x) + y*+ 22 +w? + k).

Next along any solution (x(t), y(t), z(t), w(t)) of (6.1),

2V se.1y= —=26e(2) 81(9) 32| 12D o(0) ()~ d(OH () ]

—2[aa(0)f(z) —1]w?—2[$ob(t) —ac(®) g'(y) — Ba(t)f1(2)] 2°

o[ 90(o+f+  s0f 40 0]

+2ab(t)zgz 8,(5, ©)dZ —2ad(t) Cho—h'(x)]yz
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+2(By+z+aw)p(t, x, y, 2, w)+2 06V0

—2¢eco gyt —2[aa(t) f(2)—1Jw?

—2[¢ob(t) —ac(?) g'(y) — Ba(t) f1(2)] 2* +a—22d(t) Cho—h'(x)]2?

2
+.%_b(t)|:ﬂ%_z),_¢o1yz+2(ﬁy+z+aw)p(t, x, ¥, aaV;o .
If we take
. AC(ZDhoao_Caofocggga) 1 Dho
g <<eL { 5 s 3
0 i 2afbocifogobo(AfoeDho+Cgo) ° agfo’ cogo
ACDh 0, }
2a8bochfogobo(AfoDho+Cgo) )’
we can find a positive number Dj; such that
6V0

Vo(e.n.- —2D3(y2+ 22+ w?)+(By+z+aw)p(t, x, y, z, w)+

Let D,=max (a, 8, 1), then

Voo S —2Da(y? 452+ wd) +3D,( y2+ 52+ wd)2] plt, 2, , 5, w)| + 070

< —2D3(y%+ 224+ w?)
+V3Dy(y+ 22+ w2 py(8) + po(){H (%) + y2+ 22+ w?}el2

_I_A(y +z2+w2)1/2:l+ a170

D,
Taking 4<—+=>— 3D, we have

(6.10) Voee.1yS —Ds(y?+ 22 +w?)

V3 D4y + 22+ w) L py () + po(t){H(2) + y? + 22 +w?}el?]

oV,

+0t'
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From the assumptions in Theorem 3 and (6.4) we have a positive
number D satisfying

(611 070 <D {10/ ()| +H) + ||+ D[}V

Note that
(6.12) (H(%)+ y2+ 22+ wh)rl2 <14+ (H(x) + y2+ 22+ w?)/2,
(6.10), (6.11) and (6.12) show that
(6.13) Voo.y< —Da(y2+ 22 +w?)
+Ds{la’ ()] +0L()+ '@+ d' () [}V,
V3D A+ p ()} (2 + 22 + w2
+V3 D, py()(H(%)+ y2+ 22+ w?).

Now we define

(6.14) Ve, =, vy, z, w)=e‘“"’(s“’s-Vo(t, X, Y, 2, W)

where

rO=Dy(|@] +8.0)+ 1O+ OD+ 2P {p )+ pio)}-

Then it is easy to see that there exist two continuous functions w,(r),
w,(r) satisfying
(6.15) w (| XISV, %,y 2, w) Sw, (|| X))

for all Xe R* and t=I where w,(r)e CIP, w,(r)— o as r—co and w,(r)
eCl
Along any solution (x(t), y(¢), z(¢), w(¢)) of (6.1) we have

V(5.1)= C_Iﬂymds'[ VO(G.I) 1)Vl

= e’“"’“"’se[—Ds(yZ+ z:+w?)
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+V3 Dy { pr(®) + pa(OH(y 2+ 22+ w2

—V3Dy{pi(®)+ po(OIHH(%) + y2+ 22+ w? + 2k} ]

ée—_[;ﬂs)ds.[_ps(yz_l_zz_l_ w?)

—V3 DA+ paOH{ (Vo7 F 7w -

Setting k= 1

(6.16)

14

, we can find a positive number Dy such that

Vie.ys —De(y2+ 2%+ w?).

From the inequalities (6.15) and (6.16), we obtain the uniform bounded-
ness of all the solutions (x(2), y(¢), 2(¢), w(¢)) of (6.1).
In the system (6.1) we set

Ft, X)=

(6.17)

G@, X)=

then

" |
)

—a(D)f (Dw— by, )= () g(3) — d(Dh(2)
0 )

0

0

p(E, %, y, 2, w)

1G(2, D)= pr(8) + p2(){H(2) + y*+ 22+ w}e 2 + A(y 2 + 2%+ w?) 2,

Let

G1(t, X)=p:1(&) + pa(){H(x) + y?+ 22 + w?}e!2

and

Go(X)=d(y?+ 22+ w?)t2,
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It is clear that F(¢, X) and G,(¢,X) satisfy the conditions of Lemma 2.
Let W(X)=D¢(y%*+z%+w?), then
Ve (ts %, ¥, 2, w)< — W(X)

and W(X) is positive definite with respect to the closed set 2 ={(x, ¥, z, w)|

( 0
0 l

| —d@hx) )

x€R, y=0, 2=0, w=0}.
It follows that on £

F(t, X)=

By the conditions (i) and (x), we have d(t)—d. as t—oo where
0<dy<d.=D. It is also clear that if we take

0
(6.18) HX)= ,
0

—d.h(x) J

then the conditions (a) and (b) of Lemma 2 are satisfied.
Moreover G,(X) is positive definite with respect to the closed set 2
and the condition (c) of Lemma 2 is satisfied.

The remainder of the proof is analogous to that of Theorem 1.
Q.E.D.
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