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On the Growth of Solutions of
Nonlinear Diffusion Equation
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Kyuya MASUDA*

1. Introduction

In connection with the model, proposed by R. Fisher Q2], of the nat-

ural selection in biology, A. Kolmogoroff-I. Petrowsky-N. Piscounoff £6]

discussed the asymptotic behavior for £— >oo of solution of nonlinear diffusion

equation

Here and in what follows /(#) is assumed to be a continuous function

with O^/^l. Recently, N. Ikeda-Y. Kametaka Q7] considered the non-

linear diffusion equation of the form

(2) ut=Au + G(u) (x<=RN,t>0)

where G(s) is a C°°-function on [0, 1] with G(0) = G(1) = 0 such that

G"(s)<0 (O^s^Jl), and showed that the zero solution is unstable, while

the constant function 1 is stable in the sense that any solution of (2)

converges to 1 as £—»oo uniformly on any compact set if the nonnegative

initial data is not identically zero however "small" it may be. There are

many interesting equations of the form (2) such as ut=Au + (l — u)u

(Logistic equation with dissipative effect in the population growth); ut =
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— u2}u (a special case of E. Abrahams-T. Tsuneto equation in

the superconductivity QD). However the proof due to Ikeda-Kametaka, based
on a reduction to the case of bounded domain, is not applicable at least

directly to Eq. (1) discussed by A. Kolmogoroff-I. Petrowsky-N. Piscounoff,

since the condition G';(s)<0 does not hold. The purpose of the present
note is to study quantitatively the asymptotic behavior for t— >oo of solutions

of not only Eq. (2), but also Eq. (1). More precisely, Let us consider the
equation :

(3) ut= &u+a(x, t, u) (x&RN,t>0)

Q2 Q2
(ut = du/dt: RN; JV-dimensional Euclidean space: A = Q 2 H ----- \- Q 2 )

with the initial data u(x, 0) =/(#), where a(x, t, 5) is assumed to be a
continuous function of x, t, s(x^RN, £>0, O^sgl) satisfying the following
condition.

Condition on a(x, t, s); there exist positive constants c0, CQ, real m

and m/ with m^l9 m'^I, such that

for x<=RN, t^Q and 0<s<l.
Our result is the following.

Theorem. Under the above condition on a, let /(#) be a continuous

function on RN such that 0^/(#)^1;/(*)^0; /O)^l (x^RN). Let u
be a solution of Eq. (3) with the initial value f(x). Then we have:

(I) (the lower bound for u); For any compact set K in RN there

exist constants M and £ 0 >0 such that u(x, t) is estimated from below

for t-»oo:

for all x&K and t>t0.

(II) the upper bound for &); If for some R>Q

sup/O)<l (\*\>K)
X

then u(x9t) is estimated from above for ^->oo:
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for all xE:RN and t>tQ where tQ, k, M' are positive constants depending

on /.
Applying the above theorem to Eq. (1) and Eq. (2), we see that any

solution HI, u2 of Eq. (1) (Eq. (2)) with a nonnegative initial value

/(#) (Ofgjf^l, /^O, /^l) such that /(#) has compact support, converges
to 1 in the following manner: For any compact set K,

for x^K and t>tQ respectively where M1? M'l9 M29 M'2, k, tQ are positive
constants depending on / and K.

The proof of the theorem is based on the well-known comparison

theorem for parabolic equations (Westphal-Prodi Theorem; e.g., see S.

Kaplan [4], J. Szarski [10], Protter- Weinberger [9]). If the initial func-
tion /(#) is uniformly positive, i.e.,

inf/O) ( = r)>0 (x^RN)
X

Then the part (I) of our theorem is a direct consequence of the compari-
son theorem (For probabilistic approach to this case, see M. Freidlin [3]):
it suffices to notice that u(x, t) is estimated from below by the solution

v(t) of the ordinary differential equation t^ = c0(l — #)"*# (yt = dv/di),

v(fy=T' In tne interesting case that /(#) has compact support, we need
more sophisticated treatments.

2, Proof of Theorem

We first show that u(x, i) has the following estimates from below

and above:

(4) »*(*, O^B(*, 0

(5) v*(x, i)^u(x, 0 (x*=R», t>0)



678 KYUYA MASUDA

where

and

»*(*, 0=1- ^

Since Q^a(x, t, u)^cf
Q(\ — u) by the assumption, u satisfies

ut-^ A u + CQ(! — u)

and

i^2> A u

with the initial value u(x, 0)=/(^), while the v* and v* satisfy

and

dv*/dt =

Hence, applying the comparison theorem, we have the desired bound (4)

and (5).

Using these estimates, we shall construct comparison functions to

derive more refined bounds for u.

After choosing s0 so that s0>2m+lNCQ1
9 we put

and

(7) ^0

note that 0<M<1 since f(y)>Q for some y. Then the function

v( X, 0 = l - M - L - 1 " " exp ( - (* - *0) V(4* + 2s0))

has the following properties:

(i) v(*, 0)gu(^, 50)
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(ii) vt^&v + a(x9t + sQ,v), (x<=RN,

Indeed, by (6) we have

^u(x, s0), Cby (4)H

showing (i). To see (ii), we set

h(.t)=i-M(jb

and

Then, after noting that v = h(t}e(x, t}, a straightforward calculations show

llrn

(^, 0

We shall show that {•••} is non-positive. Since h(t)^l — M and

by 0^/gl, we have
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£0, [by (7)]

showing that {•••}^0. Hence,

vt ̂  A v + c0(l - h(t)}mv .

Since by the assumption

, v),

we have (ii).

Since u(x, £ + s0) *s a solution of ut = Au+a(x, t + sQ, u)9 we can
apply the comparison theorem to u(x, £ + s0) and v(x, t\ and obtain the

inequality u(x, t + So)^v(x9 t) (x^RN, £^0). In particular, at X = XQ we

have

U(XQ,

for XQ&K and ^^0, from which the estimate in the part (1) of Theorem

follows. Next we turn to the proof of the part (11). By the assumption

Since the function v(x, t) defined by

(8) »(*, 0 = «eJ

is a solution of vt=Av + c'0v with the initial data f(x), it follows from

the comparison theorem that

u(x, t)^*v(x, 0-
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If we set n=sup/(^) (\x\^K), and if we take tl9 so small that rie'o'1
X

= ri + -q-(l~ 7i) (note r i<l)» then we have

for all x^RN. On the other hand, then exists an R0 such that

for | x\ >R0. Combining (10) with (9), we have v(x, t)<?2 for \x\ >R0,

where r2 = ri + 2(l-ri)/3 (<1). Hence,

u(x, ^)<r2 (\x\>R0)

Since, by (5) u(x, tl)<l for all x in l ^ l ^ ^ o (note /^l), and since

f 2 <l , there exists a constant Ts<l such that

for all x^RN. Using the solution v(^) of the ordinary differential equation

vt = c'Q(I — v)m, v(fy = Y3 which has the following properties;

(i') v ( f f ) > u ( x , t j (ii) v t

we can see that u(x, t-\-t1)<v(t) (x&RN,t>0). Since the v(f) is ex-

plicitly given by

the desired upper bound for u easily follows. Theorem is thus proved.

The main result of the present paper has been reported at the sympo-

sium on the Navier-Stokes equations and the related topics (November 1971),

held at the Research Institute of Mathematical Sciences (Kokyuroku of the
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Research Institute of Mathematical sciences Report Number 164 (1972)

151-158.)
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