On Cohomology Theories of Infinite CW-complexes, IV

By

Zen-ichi YOSIMURA*

Let E and X be $\mathbb{C}W$ -spectra and $\{X^{\lambda}\}\,$ the set of all finite subspectra of X. The cohomology group $E^*(X)$ is topologized by taking the subgroups $F^{\lambda}E^*(X) = \text{Ker} \{E^*(X) \to E^*(X^{\lambda})\}$ as neighborhoods of zero in $E^*(X)$. In general $E^*(X)$ is not Hausdorff. In the previous papers [II] and \lceil III \rceil with the same title we studied conditions on $\mathbb{C}W$ -spectra E and X under which $E^*(X)$ is Hausdorff. We are going to continue the investigation.

There arises a natural *question whether* $E^*(X \wedge Y)$ is *Hausdorff when* $E^*(X)$ and $E^*(Y)$ are *Hausdorff*. In the present paper we treat of this question and give the following answer for well-known cohomology theories $E^* =$ (reduced) ordinary cohomology H^* , complex K -cohomology K^* and complex cobordism MU^* .

Theorem. Let E^* denote H^* , K^* or MU^* and X and Y be CW^* spectra. Assume that Y has finite skeletons. If both $E^*(X)$ and $E^*(Y)$ *are Hausdorff, then* $E^*(X \wedge Y)$ *is so, too.*

First we attack our question in a few special cases when $E^*(X)$ is Hausdorff. If $H_*(X) \otimes R$ is a free R-module, then we get a desirable answer under certain restrictions on $\pi_*(E)$ where R is a subring of the rational numbers Q (Theorem 1). Applying it to $E^* = MU^*$ we perform the proof of Theorem in the case $E^* = MU^*$ (Theorem 3).

Next we restrict ourselves to the cohomology theory $E^* = H^*$ or K^* . The universal coefficient theorem gives a necessary and sufficient condition on $E_*(X)$ under which $ER^*(X)$ is Hausdorff (Theorem 4). With the

Communicated by N. Shimada, September 12, 1973.

^{*} Department of Mathematics, Osaka City University, Osaka.

aid of this new criterion we discuss conditions that $ER^*(X \wedge Y)$ is Hausdorff (Theorem 5). As a corollary we obtain Theorem in the cases $E^* = H^*$ and K^* .

We adopt all notations and notions used in $\lceil \text{III} \rceil$.

1. Ring-spectrum *E* with Coherent Ring $\pi_*(E)$

1.1. As typical examples of *E*(X}* which are Hausdorff we have the following:

I) *X is a finite CW-spectrum,*

II) $\pi_n(E)$ is a finite abelian group for each degree n, or $\pi_*(E)$ is a *Q-module [III,* Propositions 3, 4],

III) $\pi_n(E)$ is a finitely generated R-module for each degree n and $\pi_*(X)\otimes Q=0$ [III, Theorem 2],

IV) $\pi_n(E)$ is a finitely generated free R-module for each degree n and *X* is a connective CW-spectrum such that $H_*(X) \otimes R$ is a free R-module [III, Theorem 5],

where *R* is a subring of the rational numbers *Q.*

First of all, we are going to make an attack on our question in the above special cases I $)-IV$). In the case II) we have nothing to do because $E^*(X)$ is always Hausdorff. On the other hand, it is evident that $\pi_*(X \wedge Y) \otimes Q = 0$ whenever $\pi_*(X) \otimes Q = 0$. So we see

(1.1) $E^*(X \wedge Y)$ is Hausdorff for any CW-spectrum Y in the case III).

1.2. Chase $\lceil 24 \rceil$ proved that over a coherent ring A direct products of flat Λ -modules are flat. Using this we show

Lemma 1. Let Λ be a coherent ring and $\{\Lambda_n\}$ be an inverse sequence *of flat A-modules with* $\lim_{n} A_n = 0$. Then $\lim_{n} A_n$ is a flat A-module.

Proof. There is an exact sequence

 $0 \longrightarrow \lim_{n} A_n \longrightarrow \prod_{n} A_n \longrightarrow \prod_{n} A_n \longrightarrow 0$

of *A*-modules as $\lim^{-1} A_n = 0$. $\prod A_n$ is flat by the result of Chase [24], so we see immediately that $\lim_{n \to \infty} A_n$ is flat.

Remark. If a coherent ring *A* satisfies the property that every finitely presented Λ -module has finite projective dimension as a Λ -module (for example $A = \pi_*(MU)$, we can slightly generalize Lemma 1. Thus $\lim_{\alpha} A_{\alpha}$ is a flat Λ -module for an inverse system $\{A_{\alpha}\}\$ of flat Λ -modules with $\lim_{\alpha} {}^{\beta} A_{\alpha} = 0$ for all $p \ge 1$.

Let E be a ring-spectrum with $\pi_*(E)$ a coherent ring and X a $\mathbb{C}[W]$ spectrum. If G is a Q -module, then there is an isomorphism

$$
(EG)^*(X) \cong \prod_p H^p(X; \pi_*(E) \otimes G) \cong \prod_p \text{Hom}(H_p(X), \pi_*(E) \otimes G)
$$

by Dold's theorem [19] (or see [III, (1.3)]. Hom $(H_p(X), \pi_*(E) \otimes G)$ is a direct product of copies of $\pi_*(E){\otimes} G$, and hence it is a flat $\pi_*(E)$ -module. Thus we get

(1.2) $(EG)^*(X)$ is a flat $\pi_*(E)$ -module.

(1.2) implies that $(EG)^*(X) \underset{\pi_*(E)}{\otimes} E^*(\)$ forms a cohomology theory on the category of finite $\textit{CW}\text{-}\text{spectra}.$ And the multiplication

(1.3)
$$
(EG)^*(X) \underset{\pi_*(E)}{\otimes} E^*(Y) \longrightarrow (EG)^*(X \wedge Y)
$$

is an isomorphism for any finite $\mathbb{C}W$ -spectrum Y .

For the case I) we obtain the following answer under certain restrictions on $\pi_*(E)$.

Proposition *2. Let R be a subring of Q and E be a ring-spectrum* such that $\pi_*(E)$ is a coherent ring and it is of finite type as an R-module. If $E^*(X)$ is Hausdorff, then so is $E^*(X \wedge Y)$ for any finite CW-spectrum *Y.*

Proof. Consider the following commutative square

$$
(E\hat{Z})^*(X) \underset{\pi_*(E)}{\otimes} E^*(Y) \overset{\kappa_1 \otimes 1}{\longrightarrow} (E\hat{Z}/Z)^*(X) \underset{\pi_*(E)}{\otimes} E^*(Y)
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
(E\hat{Z})^*(X_{\wedge}Y) \overset{\kappa_2}{\longrightarrow} (E\hat{Z}/Z)^*(X_{\wedge}Y).
$$

The top horizontal map $\kappa_1 \otimes 1$ is an epimorphism by means of [III, Theorem 1], and the right multiplication $\bar{\mu}$ is an isomorphism because of

(1.3). So we find that the bottom map κ_2 is an epimorphism. Thus $E^*(X \wedge Y)$ is Hausdorff.

1.3. Let R be a subring of Q and E be a ring-spectrum such that the R-module $\pi_*(E)$ is a coherent ring. Further let Y be a finite CW spectrum and W be a connective $\mathbb{C}W$ -spectrum such that $H_*(W) \otimes R$ is a free R -module. First recall [23, Proposition 17] (or see [28]) that

(1.4) $E^*(Y)$ is a finitely presented $\pi_*(E)$ -module for any finite CW *spectrum Y*.

 $H_n(W) \otimes R$ is a direct sum of copies of R, i.e. $H_n(W) \otimes R \cong \sum R_\alpha$. Using the universal coefficient theorem and (1.4) an easy calculation shows

$$
(1.5) \quad E^*(Y) \underset{\pi_*(E)}{\otimes} H^n(W; \pi_*(E)) \cong E^*(Y) \underset{\pi_*(E)}{\otimes} \text{Hom}_R(H_n(W) \otimes R, \pi_*(E))
$$

$$
\cong E^*(Y) \underset{\pi_*(E)}{\otimes} \prod_{\alpha} \text{Hom}_R(R_{\alpha}, \pi_*(E)) \cong \prod_{\alpha} E^*(Y)_{\alpha}.
$$

Thus $E^*(Y) \underset{\pi_*(E)}{\otimes} H^n(W; \pi_*(E))$ is a direct product of copies of $E^*(Y)$. So we obtain that $H^n(W; \pi_*(E))$ is a flat $\pi_*(E)$ -module.

Here we need to add another assumption on $\pi_*(E)$ that it is flat as an R -module. Let $\{F^nE^*(W)\}$ be the usual decreasing filtration of $E^*(W)$ defined by skeletons. Since the Atiyah-Hirzebruch spectral sequence for $E^*(W)$ collapses [III, (3.3)], there is an exact sequence

$$
(1.6) \qquad 0 \to H^{n}(W; \pi_{*}(E)) \to E^{*}(W)/F^{n+1}E^{*}(W) \to E^{*}(W)/F^{n}E^{*}(W) \to 0
$$

for each degree *n.* Moreover we have

$$
(1.7) \qquad E^*(W) \cong \lim_{n} E^*(W)/F^n E^*(W) \quad \text{and} \quad \lim_{n} E^*(W)/F^n E^*(W) = 0
$$

for all $p \ge 1$. By induction on *n* and use of Lemma 1 we get

(1.8)
$$
E^*(W)
$$
 and $E^*(W)/F^nE^*(W)$ are flat $\pi^*(E)$ -modules,

because $H^{n}(W; \pi_*(E))$ is flat. In virtue of (1.8) the multiplication

(1.9)
$$
E^*(Y) \underset{\pi_*(E)}{\otimes} E^*(W) \longrightarrow E^*(Y \wedge W)
$$

becomes an isomorphism for any finite $\mathbb{C}W$ -spectrum Y,

 $E^*(Y)$ has a projective resolution of finitely generated $\pi_*(E)$ -modules by means of (1.4) . Then, by $\begin{bmatrix} 8, \end{bmatrix}$ Theorem 2 we have two spectral sequences ${E_r}$, ${E_r}$ associated with the same graded $\pi_*(E)$ -module such that

$$
E_2^{p, q} = \varprojlim_n^p \operatorname{Tor}_{-q}^{\pi_*(E)}(E^*(Y), E^*(W)/F^n E^*(W))
$$

and

$$
\bar{E}^b_2.^q=\mathrm{Tor}_{-p}^{\pi_*(E)}(E^*(Y),\, \varprojlim_n^q E^*(W)/F^nE^*(W)).
$$

By use of (1.7) and (1.8) we compute

$$
E_2^{b,q} = 0 \quad \text{unless} \quad q = 0, \quad \text{and}
$$

$$
E_2^{b,q} = 0 \quad \text{unless} \quad (p, q) = (0, 0).
$$

This implies

$$
(1.10) \quad E^*(Y \wedge W) \cong E^*(Y) \underset{\pi_*(E)}{\otimes} E^*(W) \cong \varprojlim_n E^*(Y) \underset{\pi_*(E)}{\otimes} E^*(W) / F^n E^*(W),
$$

and
$$
\lim_{n}^{p} E^*(Y) \underset{\pi_*(E)}{\otimes} E^*(W)/F^n E^*(W) = 0
$$

for all $p \geq 1$.

Using the above results we prove the following satisfactory result for the case IV).

Theorem 1. Let E be a ring-spectrum with a coherent ring $\pi_*(E)$ *which is free and of finite type as an R-module, and W be a connective CW-spectrum such that* $H_*(W) \otimes R$ *is a free R-module where R is a subring of Q. If* $E^*(X)$ *is Hausdorff, then* $E^*(X \wedge W)$ *is so, too.*

Proof. Let $\{X^{\lambda}\}\)$ be the set of all finite subspectra of X. By [III, Theorem 1] we notice that $\lim_{h \to 0} E^*(X^{\lambda}) = 0$ for all $p \ge 1$.

Consider the two spectral sequences $\{E_r\}$ and $\{E_r\}$ associated with $\lim_{\lambda, n^*} E^*(X^\lambda) \underset{\pi_*(E)}{\otimes} E^*(W)/F^nE^*(W)$ such that

$$
E_2^{\underline{b},q} = \underbrace{\lim_{\lambda} \underline{p}_{\lim_{n}q} E^*(X^{\lambda})} \underset{\pi_*(E)}{\otimes} E^*(W)/F^n E^*(W)
$$

and

712 ZEN-ICHI YOSIMURA

$$
''E_2^{\ell,\,q}=\varprojlim_n {}^\ell \varprojlim_\lambda {}^qE^*(X^\lambda)\underset{\pi_*(E)}{\otimes} E^*(W)/F^nE^*(W)
$$

(see $\lceil 8 \rceil$ or $\lceil \rceil$). The exact sequence (1.6) yields exact sequences

$$
0 \longrightarrow E^*(X^{\lambda}) \underset{\pi_*(E)}{\otimes} H^n(W; \pi_*(E)) \longrightarrow E^*(X^{\lambda}) \underset{\pi_*(E)}{\otimes} E^*(W)/F^{n+1}E^*(W)
$$

$$
\longrightarrow E^*(X^{\lambda}) \underset{\pi_*(E)}{\otimes} E^*(W)/F^nE^*(W) \longrightarrow 0
$$

by the aid of (1.8) . Using (1.5) we compute

$$
\varprojlim_\lambda {}^k E^*(X^\lambda) \underset{\pi_*(E)}{\otimes} H^n(W;\, \pi_*(E)) \cong \varprojlim_\lambda {}^k \underset{\alpha}{\Pi} E^*(X^\lambda)_\alpha \cong \underset{\alpha}{\Pi} \varprojlim_k {}^k E^*(X^\lambda)_\alpha = 0,
$$

for all $k \ge 1$. Applying inverse limit functors $\lim_{k \to \infty} k$ on the above exact sequences and using induction on *n* we have that

$$
\lim_{\lambda} E^*(X^{\lambda}) \underset{\pi_*(E)}{\otimes} E^*(W)/F^{n+1}E^*(W) \longrightarrow \lim_{\lambda} E^*(X^{\lambda}) \underset{\pi_*(E)}{\otimes} E^*(W)/F^nE^*(W)
$$

is an epimorphism, and

$$
\lim_{\lambda^*}{}^k E^*(X^\lambda) \underset{\pi_*(E)}{\otimes} E^*(W)/F^nE^*(W)=0
$$

for all $k \ge 1$. We use the previous result (1.10) and the above ones to calculate the $'E_2$ - and $'E_2$ -terms. Thus we see

$$
{}^{\prime}E_{2}^{\rho,\,q}=0 \quad \text{unless} \quad q=0, \quad \text{and}
$$

$$
{}^{\prime\prime}E_{2}^{\rho,\,q}=0 \quad \text{unless} \quad (p,\,q)=(0,\,0).
$$

This implies

$$
\lim_{\lambda}{}^p E^*(X^{\lambda}{}_{\wedge} W) \cong {}'E_2^{\rho,0} = 0
$$

for all $p \ge 1$.

So it follows from $\left[\text{III} , \text{ Proposition 2} \right]$ that

$$
\ast) \qquad \qquad E^*(X \wedge W) \cong \lim_{\lambda} E^*(X^{\lambda} \wedge W).
$$

On the other hand, by Proposition 2 we see

$$
(*)\qquad \qquad E^*(X^{\lambda} \wedge W) \cong \lim_{\mu} E^*(X^{\lambda} \wedge W^{\mu})
$$

where $\{W^{\mu}\}\$ is the set of all finite subspectra of W. Putting $*)$ and $**$ together we conclude that $E^*(X \wedge W)$ is Hausdorff.

1.4. Let E be a CW-spectrum such that $\pi_*(E)$ is free and of finite type as an R -module and Y be a $\mathbb{C}W$ -spectrum with finite skeletons such that $E^*(Y)$ is Hausdorff. Further we assume that $E^*(Y)$ satisfies *Condition R* described in TIII , i.e., *for each* $\alpha \in E^*(Y)$ *there exists a connective CW*-spectrum W^{α} with $H^* (W^{\alpha}) \otimes R$ a free R-module and a map f^{α} : $Y \rightarrow W^{\alpha}$ *such that* $\alpha \in \text{Im}\{f_a^*: E^*(W_a) \to E^*(Y)\}.$ Then we have a connective CW-spectrum W with $H_*(W) \otimes R$ a free R-module and a map $f: Y \rightarrow W$ which induces a monomorphism $f_*: \pi_*(Y) \otimes Q \to \pi_*(W) \otimes Q$ [III, Theorem 7D-

Consider the following commutative square

$$
\pi_*(X) \otimes \pi_*(Y) \otimes Q \xrightarrow{\mu_1} \pi_*(X \wedge Y) \otimes Q
$$

\n
$$
\pi_*(X) \otimes \pi_*(W) \otimes Q \xrightarrow{\mu_2} \pi_*(X \wedge W) \otimes Q.
$$

\n
$$
\pi_*(X) \otimes \pi_*(W) \otimes Q \xrightarrow{\mu_2} \pi_*(X \wedge W) \otimes Q.
$$

The multiplications μ_1 and μ_2 are isomorphisms. So it follows from the injectivity of $1 \otimes f_*$ that the right vertical map $(1 \wedge f)_* : \pi_*(X \wedge Y) \otimes Q \rightarrow$ $\pi_*(X \wedge W) \otimes Q$ is a monomorphism.

Therefore, Theorem 1 combined with *[III,* Theorem 2] shows

Theorem 28 *Let R be a sitbring of Q and E be a ring-spectrum* with a coherent ring $\pi_*(E)$ which is free and of finite type as an R*module. Assume that Y is a CW-spectrum with finite skeletons and that* $E^*(Y)$ satisfies Condition R. If both $E^*(X)$ and $E^*(Y)$ are Hausdorff, *then this is also true for* $E^*(X \wedge Y)$.

Let MU denote the unitary Thom spectrum. As is well known, $\pi_*(MU)\otimes R$ is a coherent ring (see [28]). Further $(MUR)^*(X)$ satisfies Condition *R* for an arbitrary CW -spectrum $X \mid III$, (4.4)]. As a corollary of Theorem 2 we obtain

Theorem 3. *Let R be a subring of Q and Y a CW-spectrum with finite skeletons. If (MUK)*(X) and (MUK)*(Y) are Hausdorff, then* $(MUR)^*(X_\wedge Y)$ is so, too. (Cf., [26]).

2. Cohomology Theories H^* , K^* and W -groups

2.1. For an abelian group *A* we denote by *TA* the torsion subgroup of *A*, i.e., $TA \cong Tor(A, Q/Z)$. We shall require the following elementary lemmas on abelian groups.

Lemma 3. Let $f: A \rightarrow B$ be a homomorphism such that the tensored *homomorphisms with Q and Q/Z are isomorphisms. Then f induces an isomorphism* $A/TA \rightarrow B/TB$ *.*

Proof. Applying "five lemma" in the following commutative diagram

$$
0 \longrightarrow A/TA \longrightarrow A \otimes Q \longrightarrow A \otimes Q/Z \longrightarrow 0
$$

\n
$$
\downarrow f'
$$

\n
$$
0 \longrightarrow B/TB \longrightarrow B \otimes Q \longrightarrow B \otimes Q/Z \longrightarrow 0.
$$

with exact rows, we get that $f' : A/TA \rightarrow B/TB$ is an isomorphism.

Lemma 4. $A \otimes B/T(A \otimes B) \cong A/TA \otimes B/TB$.

Proof. Consider the following commutative diagram

$$
0 \longrightarrow T(A \otimes B) \longrightarrow A \otimes B \longrightarrow A \otimes B \otimes Q
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
A/TA \otimes B/TB \longrightarrow A/TA \otimes B/TB \otimes Q
$$

with an exact row. The left vertical map is an epimorphism, and the right one is an isomorphism. And the bottom horizontal map is a monomorphism. A diagram chasing argument shows that

$$
0 \longrightarrow T(A \otimes B) \longrightarrow A \otimes B \longrightarrow A/TA \otimes B/TB \longrightarrow 0
$$

is exact.

Let *R* be a subring of *Q*. An abelian group *A* is called a W^R -group if it satisfies $\text{Ext}(A, R) = 0$. By definition,

(2.1) *an arbitrary direct sum of W^R -groups is a W^R -group, and every*

subgroup of a W^R -group is so, too.

Particularly the torsion subgroup TA is a W^R -group if *A* is so. Since a similar discussion to $\lceil \text{II}, (5.4) \rceil$ shows

 $Ext(TA, R) = 0$ if and only if $T A \otimes R = 0$,

(2.2) *A®R is a flat R-module (i.e., it is torsion free as an abelian group) whenever A is a W^R -group.*

By definition it is evident

(2.3) A is a W^R -group if $A \otimes R$ is a free R-module.

Stein and later on Rotman proved that the converse of (2.3) is valid under the countability restriction on *A* in the case $R = Z$ (see [25]). We give a new proof based on Gray's result $\lceil 12 \rceil$ in the general case R.

Proposition 5. *If A is a countable W^R -group, then A®R is a free R-module.*

Proof. We may write *A* as a union of a countable sequence of finitely generated subgroups:

$$
A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots, A = \bigcup_n A_n.
$$

Note that $A_n \otimes R$ is a free R-module for each *n*. With the aid of [II, (1.4) we obtain an isomorphism

$$
\lim_{n} {}^{1}\mathrm{Hom}\left(A_{n}, M\right) \cong \mathrm{Ext}\left(A, M\right)
$$

for any R-module M because $Ext(A_n, M) \cong Ext_R^1(A_n \otimes R, M) = 0$. The assumption that $\text{Ext}(A, R) = 0$ means $\lim_{h \to 0} H \cdot (A_n, R) = 0$. According to Gray $\lceil 12 \rceil$ this is equivalent to the property that the inverse system ${\rm Hom}(A_n, R)$ } satisfies the Mittag-Leffler condition (*ML*). Since $Hom(A_n, R) \otimes M \cong Hom(A_n, M)$, the inverse system $\{Hom(A_n, M)\}$ satisfies (ML) for any R -module M . As is well known, this implies that \lim^1 Hom $(A_n, M) = 0$. Therefore $Ext(A, M) = 0$ for any R-module M. Thus $A \otimes R$ is a free *R*-module.

Next we discuss a certain relation between tensor product \otimes and

W R -groups.

Lemma 6. i) Assume that $A \otimes R$ is a free R-module (hence A is a *W*^R-group). If B is a *W*^R-group, then the tensor product $A \otimes B$ is so.

ii) *Let A and B be non-zero and torsion free. If the tensor product A®B is a W^R -group, then both A and B are so.*

Proof. i) By $\begin{bmatrix} \text{II}, (1.9) \end{bmatrix}$ there is an exact sequence

 $0 \rightarrow \text{Ext}(A, \text{Hom}(B, R)) \rightarrow \text{Ext}(A \otimes B, R) \rightarrow \text{Hom}(A, \text{Ext}(B, R)) \rightarrow 0$

because Hom $(Tor(A, B), R) = 0$. From hypotheses on A and B Ext (A, B) $Hom(B, R)) = Hom(A, Ext(B, R)) = 0.$ So we see that $A \otimes B$ is a W^R group.

ii) Let A_λ be a non-zero finitely generated subgroup of A . Consider the following exact sequence

 $Hom(A, Ext(B, R)) \rightarrow Hom(A, Ext(B, R)) \rightarrow Ext(A/A, Ext(B, R)).$

Using the previous exact sequence again, $Ext(A \otimes B, R) = 0$ implies that Hom $(A, Ext(B, R)) = 0$. On the other hand, by use of [II, (1.9)] we compute that $\text{Ext}(A/A_\lambda, \text{Ext}(B, R)) \cong \text{Ext}(\text{Tor}(A/A_\lambda, B), R) = 0.$ Consequently Hom $(A_{\lambda}, Ext(B, R)) = 0$. Since A_{λ} is non-zero and free we get immediately

$$
Ext(B, R)=0.
$$

Similarly we have $Ext(\Lambda, R) = 0$.

2.2. Now we restrict our interest to the Eilenberg-MacLane spectrum *H* and the BU-spectrum *K.* Let us denote by *E* either *H* or *K.* The cohomology theory E^* has a relation with the homology theory E_* by the following universal coefficient sequence (see $\lceil 16 \rceil$): There is a natural *short exact sequence*

$$
(2.4) \qquad 0 \to \text{Ext}(E_{n-1}(X), G) \to (EG)^n(X) \to \text{Hom}(E_n(X), G) \to 0
$$

for any coefficient group G.

Using the universal coefficient sequence (2.4) we give a condition on

 $E_*(X)$ under which $(ER)^*(X)$ is Hausdorff in the cases $E=H, K$.

Theorem 4. *Let E denote either H or K. Let R be a subring of Q* and X a CW-spctrum. $(ER)^{n+1}(X)$ is Hausdorff if and only if $E_n(X)$ *j* $T(E_n(X))$ *is a* W^R -group.

Proof. We may assume that *R* is a proper subring of *Q.* Consider the following commutative diagram

$$
0 \to \text{Ext}(E_n(X) \otimes Q, R) \to ER^n(X; \hat{Z}/Z) \to \text{Hom}(E_{n+1}(X) \otimes Q, R) \to 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \to \text{Ext}(E_n(X), R) \to ER^{n+1}(X) \to \text{Hom}(E_{n+1}(X), R) \to 0
$$

in which $ER^*($; \hat{Z}/Z) is defined by $ER^*(X; \hat{Z}/Z) = ER^{n+2}(X \wedge S)$ using the co-Moore space S_l of type $(\hat{Z}/Z, 2)$ constructed in [II]. Two rows are exact by the universal coefficient sequence (2.4). Moreover, Hom $(E_{n+1}(X)\otimes Q, R)=0$. The left vertical map admits a factorization

$$
Ext(E_n(X)\otimes Q, R) \longrightarrow Ext(E_n(X)/TE_n(X), R) \longrightarrow Ext(E_n(X), R)
$$

such that the former is an epimorphism and the latter is a monomorphism. According to \lceil III, (2.5)^{\rceil} (rather than \lceil III, Theorem 1^{\rceil}), $ER^{n+1}(X)$ is Hausdorff if and only if δ : $ER^n(X; \hat{Z}/Z){\rightarrow}ER^{n+1}(X)$ is trivial. So we see easily that $ER^{n+1}(X)$ is Hausdorff if and only if $Ext(E_n(X)/TE_n(X), R)$ $= 0$, i.e., $E_n(X)/TE_n(X)$ is a W^R -group.

As an immediate corollary of Theorem 4, we get

Corollary 7. Let E denote either H or K. If $E_n(X)/T(E_n(X))\otimes R$ *is a free R-module, then* $(ER)^{n+1}(X)$ *is Hausdorff.*

2.3. Let M_q be the mapping cone of the map $S^1 \rightarrow S^1$ of degree q as in [1]. Assume that the Hopf map $\eta: S^3 \to S^2$ induces $\eta_* = 0: E_*(S^3)$ \rightarrow *E*_{*}(S²). The cofibration sequence $S^1 \rightarrow M_q \rightarrow S^2$ yields an exact sequence (2.5) 0 — $E_n(X) \otimes Z_q \xrightarrow{\rho} E_{n+1}(X \wedge M_q) \xrightarrow{\partial} \text{Tor}(E_{n-1}(X), Z_q) \longrightarrow 0.$

The dual argument to $\lceil 1$, Proposition 2.2 shows

(2.6)
$$
E_*(X_\wedge M_q)
$$
 is a Z_q -module for any $q>1$.

Let *d* denote the gratest common measure of *q* and *r.* By virtue of (2.6) we have the following commutative square

$$
E_n(X) \otimes Z_q \otimes Z_r \xrightarrow{\rho \otimes 1} E_{n+1}(X \wedge M_q) \otimes Z_r
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

\n
$$
E_n(X) \otimes Z_d \xrightarrow{\quad \rho \qquad} E_{n+1}(X \wedge M_d).
$$

Obviously the left canonical map is an isomorphism. So we find by the aid of (2.5) that the top horizontal map $\rho \otimes 1$ is a monomorphism. Thus the above sequence (2.5) is a pure exact sequence. Since $E_n(X) \otimes Z_q$ is bounded, it follows from $\left[25,$ Theorem 14] that

(2.7) the above exact sequence (2.5) is Z-split. $(Cf, \lceil 1 \rceil)$.

The complex homology K-theory K_{*} has Bott's isomorphism

(2.8) *\$:Kn(X)-^Kn+z(X).*

So we can define the Z_2 -graded homology K-theory K_\sharp by putting

$$
K_{\sharp}(X) = K_0(X) \oplus K_1(X)
$$

and identifying $K_{2n}(X)$ with $K_0(X)$ and $K_{2n+1}(X)$ with $K_1(X)$ via Bott's isomorphism β .

Here we again restrict ourselves to $E=H$ or *K*. Denote by $E_{\#}$ either H_* or K_{\sharp} . Recall that the Künneth formula holds in our case $E_{\sharp} = H_*$, K_{\sharp} (see [16, 23]): There is a natural short exact sequence

$$
(2.9) \quad 0 \longrightarrow E_{\sharp}(X) \otimes E_{\sharp}(Y) \longrightarrow E_{\sharp}(X_{\wedge}Y) \longrightarrow \text{Tor}(E_{\sharp}(X), E_{\sharp}(Y)) \longrightarrow 0.
$$

As is easily seen,

(2.10)
$$
\mu \otimes 1: E_{\sharp}(X) \otimes E_{\sharp}(Y) \otimes Q \longrightarrow E_{\sharp}(X_{\wedge}Y) \otimes Q
$$

is an isomorphism.

Next, consider the following commutative square

$$
E_{\sharp}(X) \otimes E_{\sharp}(Y) \otimes Z_{r} \xrightarrow{\mu \otimes 1} E_{\sharp}(X_{\wedge}Y) \otimes Z_{r}
$$

$$
\downarrow \otimes \rho \qquad \qquad \downarrow \rho
$$

$$
E_{\sharp}(X) \otimes E_{\sharp+1}(Y_{\wedge}M_{r}) \xrightarrow{\mu} E_{\sharp+1}(X_{\wedge}Y_{\wedge}M_{r})
$$

The left vertical map $1\otimes\rho$ is a monomorphism by virtue of (2.7) and so is the bottom multiplication μ because of (2.9). Hence the top horizontal map $\mu \otimes 1$ is a monomorphism. Thus

 (2.11) the above Künneth sequence (2.9) is a pure exact sequence. $(Cf, \lceil 27 \rceil)$.

This implies that the multiplication μ induces a monomorphism (and an isomorphism by means of (2.10))

$$
(2.12) \qquad \mu \otimes 1: E_{\sharp}(X) \otimes E_{\sharp}(Y) \otimes Q/Z \longrightarrow E_{\sharp}(X_{\wedge} Y) \otimes Q/Z.
$$

We use Lemmas 3 and 4 to obtain

Lemma 8. Let E_{\sharp} denote either H_{*} or K_{\sharp} . Then the multiplication *fi induces an isomorphism*

$$
E_{\#}(X)/TE_{\#}(X)\otimes E_{\#}(Y)/TE_{\#}(Y)\cong E_{\#}(X_{\wedge}Y)/TE_{\#}(X_{\wedge}Y).
$$

Using a new criterion Theorem 4 for Hausdorff-ness of $H^*(X)$ and $K^*(X)$, and Lemmas 6 and 8 we obtain

Theorem 5. *Let E denote either H or K. Let R be a sabring of Q and X, Y CW-spectra.*

i) Assume that $E_*(Y)/T(E_*(Y))\otimes R$ is a free R-module. If $(ER)^*(X)$ is Hausdorff, then $(ER)^*(X \wedge Y)$ is so, too.

ii) If $(ER)^*(X \wedge Y)$ is Hausdorff, then either $\pi_*(X)$ or $\pi_*(Y)$ is a *torsion group, or both* $(ER)^*(X)$ and $(ER)^*(Y)$ are Hausdorff.

 $E_*(Y)$ becomes a countable abelian group when Y has finite skeletons. By the aid of Proposition 5 we have a corollary of Theorem 5 i).

Corollary 9. *Let E denote either H or K and Y be a CW-spectrum with finite skeletons.* If $(ER)^*(X)$ and $(ER)^*(Y)$ are Hausdorff, then this *is also true for* $(ER)^*(X \wedge Y)$.

References

 $[1]$ -[8], [9] -[15] and [16] -[22] are listed at the end of papers [I], [II] and [III]. [23] Adams, J. F., Lectures on generalized homology theories. *Lecture notes in Math.* 99, Springer (1969), 1-138.

- [24] Chase, S. U., Direct products of modules, *Trans. Amer. Math. Soc.* 97 (I960), 457-473.
- [25] Griffith, P. A., *Infinite abelian group theory,* Chicago Lecture in Math., Univ. of Chicago Press.
- [26] Landweber, P. S., Coherence, flatness and cobordism of classifying spaces, *Proc. Adv. Study Inst. Alg. Top. Aarhus* (1970), 256-269.
- [27] Mislin, G., The splitting of the Künneth sequence for generalized cohomology, *Math. Z.* 122 (1971), 237-245.
- [28] Smith, L., On the finite generation of $\Omega^{\gamma}_{*}(X)$, *J. Math. Mech.* 18 (1969), 1017-1023.
- [I], [II] and [III] Yosimura, Z., On cohomology theories of infinite CW-complexes I, II and III, *Publ. RIMS, Kyoto Univ.* 8 (1972/73), 295-310, 483-508 and 9 (1974), 683-706.