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Let E and X be CJF-spectra and {Xx} the set of all finite subspectra

of X. The cohomology group E*(X) is topologized by taking the sub-

groups FxE*(X) = Ker{E*(X) —>£'*(Xx)} as neighborhoods of zero in

E*(X). In general E*(X) is not Hausdorff. In the previous papers plj

and pll] with the same title we studied conditions on CJF-spectra E and

X under which E*(X) is Hausdorff. We are going to continue the in-

vestigation.

There arises a natural question whether E*(X^Y) is Hausdorff when

E*(X) and £"*(F) are Hausdorff, In the present paper we treat of this

question and give the following answer for well-known cohomology theo-

ries j?* = (reduced) ordinary cohomology H*, complex .K-cohomology K*

and complex cobordism MZ7*.

Theorem. Let £"* denote H*9 K* or MU* and X and Y be CW~

spectra. Assume that Y has finite skeletons. If both E*(X) and JE*(F)

are Hausdorff, then l?*(JfAF) is so, too.

First we attack our question in a few special cases when E*(X) is

Hausdorff. If H*(X)®R is a free J?-module? then we get a desirable

answer under certain restrictions on n*(E) where R is a subring of the

rational numbers Q (Theorem 1). Applying it to E* = MU* we perform

the proof of Theorem in the case E* = MU* (Theorem 3).

Next we restrict ourselves to the cohomology theory E* = H* or K*.

The universal coefficient theorem gives a necessary and sufficient condi-

tion on E*(X) under which ER*(X) is Hausdorff (Theorem 4). With the
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aid of this new criterion we discuss conditions that ER*(X^Y) is Hausdorff
(Theorem 5). As a corollary we obtain Theorem in the cases E* = H*

and K*.

We adopt all notations and notions used in [HI].

I, Ring-spectrum E with Coherent Ring ic*(E}

1.1. As typical examples of E*(X} which are Hausdorff we have

the following:

I) X is a finite CW-spectrum,

II) 7tn(E} is a finite abelian group for each degree n, or n*(E) is a

Q-module [III, Propositions 3, 4],

III) nn(E) is a finitely generated R-module for each degree n and

x*(X)®Q = Q [III, Theorem 2],
IV) ftn(E) is a finitely generated free R-module for each degree n and

X is a connective CW-spectrum such that H%(X)(S)R is a free R-module

[III, Theorem 5],

where R is a subring of the rational numbers Q.

First of all, we are going to make an attack on our question in the

above special cases I)-IV). In the case II) we have nothing to do be-

cause E*(X) is always Hausdorff. On the other hand, it is evident that

) = 0 whenever 7T*(JF)<g)> = 0. So we see

(1.1) E*(X^Y) is Hausdorff for any CW-spectrum Y in the case III).

1.2. Chase [24] proved that over a coherent ring A direct products

of flat yl-modules are flat. Using this we show

Lemma le Let A be a coherent ring and {An} be an inverse sequence

of flat A-modules ivith ]imlAn = Q. Then ^mAn is a flat A-module,

Proof. There is an exact sequence

0 - > ljmA - > HA - > n - > 0

of ^-modules as ^m1An = 0. UAn is flat by the result of Chase [24], so

we see immediately that lim^w is flat.
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Remark. If a coherent ring A satisfies the property that every finitely

presented yf-module has finite projective dimension as a ^-module (for

example A = 7Z*(MU)), we can slightly generalize Lemma 1. Thus \\mAa

is a flat yi-module for an inverse system {Aa} of flat ^-modules with

a = 0 for all p^l.

Let E be a ring-spectrum with n*(E) a coherent ring and X a CW-

spectrum. If G is a (^-module, then there is an isomorphism

by Dold's theorem [19] (or see [III, (1.3)]. Hom(^(Z), n*(E)®G) is a

direct product of copies of ft*(E)®G9 and hence it is a flat 7T>lc(£
f)-module.

Thus we get

(1.2) (EG)*(X) is a flat n*(E)-module.

(1.2) implies that (EG)*(X) (x) £"*( ) forms a cohomology theory on
K*(E)

the category of finite CfiF-spectra. And the multiplication

(1.3) (£G)*(X) ® J^*(F) - > (£G)*(-TAr)
w*(£)

is an isomorphism for any finite C JF-spectrum Y.

For the case I) we obtain the following answer under certain restric-

tions on

Proposition 2. Let R be a subring of Q and E be a ring-spectrum

such that 7t*(E) is a coherent ring and it is of finite type as an R-module.

If E*(X) is Hausdorjf, then so is E*(X^Y) for any finite CW-spectrum

Y.

Proof. Consider the following commutative square

*

I'
The top horizontal map A^®! is an epimorphism by means of [III,

Theorem 1], and the right multiplication ft is an isomorphism because of
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(1.3). So we find that the bottom map tcz is an epimorphism. Thus

) is Hausdorff.

1 .3* Let R be a subring of Q and jE1 be a ring-spectrum such that

the Jf?-module n*(E} is a coherent ring. Further let Y be a finite CW-

spectrum and W be a connective CJF"-spectrum such that H*(W}®R is

a free ^-module. First recall [23, Proposition 17] (or see [28]) that

(1.4) E*(Y) is a finitely presented n*(E}-module for any finite CW-

s pec t rum Y.

Hn(W}®R is a direct sum of copies of R, i.e. Hn(JP)®R=%Ra.

Using the universal coefficient theorem and (1.4) an easy calculation

shows

(1.5) £*(F) ® H*(W- **(£)) s£*(r) ®
TT* (JE1) TT* (£")

(g)
T* (£") a

Thus £'*(F)(x)^(JF; 7T*CE)) is a direct product of copies of £t*(T). So
*•*(£)

we obtain that F«(F; ?:*(£)) is a flat 7rsi,(£')-module.

Here we need to add another assumption on n*(E) that it is flat as

an .R-module. Let {FnE*(W}} be the usual decreasing filtration of J£*(JF)

defined by skeletons. Since the Atiyah-Hirzebruch spectral sequence for

E*(W} collapses [III, (3.3)], there is an exact sequence

(1.6) ^

for each degree n. Moreover we have

(1.7) £*(jr)sym£*(r)/F»£*(r) and
n n

for all jo2>l. By induction on n and use of Lemma 1 we get

(1.8) £*(JT) and E*(W}/FnE*(W} are flat n*(E}-modules,

because Rn(W\ n^E}} is flat. In virtue of (1.8) the multiplication

(1.9)

becomes an isomorphism for any finite CJF-spectrum Y,
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jE*(F) has a projective resolution of finitely generated 7T*(J£)-modules

by means of (1.4). Then, by Q8, Theorem 2] we have two spectral

sequences {Er}, {Er} associated with the same graded 7T^(£')-module such

that

EP
2>

 9 = Hm* Tor^(£) (£*( F), £*( W}/FnE*( W}}
n

and

E% q =Tar?p
(E} (£*( F), lim«E*( W)/FnE*( JF)) .

n

By use of (1.7) and (1.8) we compute

E£q = Q unless g=0, and

E£q=0 unless (/?, ?)=(0, 0).

This implies

(1.10)
*# (E) n ** (£")

and ljm^*( F) (x) £*( JT)/F» J?*( JT) = 0
w TT* (J?)

for all p^l.

Using the above results we prove the following satisfactory result for

the case IV).

Theorem 1. Let E be a ring-spectrum with a coherent ring

which is free and of finite type as an R-module, and W be a connective

CW-spectrum such that H*(W)®R is a free R-module where R is a subring

of Q. If E*(X) is Hausdorff, then E*(X^W) is so, too.

Proof. Let {Xx} be the set of all finite subspectra of X. By [III,

Theorem 1] we notice that lim^*(Xx) = 0 for all p^l.

Consider the two spectral sequences {'Er} and {"Er} associated with

E*(W}/FnE*(W} such that
X, n ** (E)

*•*(£)

and
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(g) E*(W)/F*E*(1P)
n \ *•* (El

(see Q8J or PQ). The exact sequence (1.6) yields exact sequences

0 - > E*(X^ (g) H»(W;
K* (E)

by the aid of (1.8). Using (1.5) we compute

for all A^l . Applying inverse limit functors lim* on the above exact

sequences and using induction on n we have that

is an epimorphism, and

f* (E)

for all A SI. We use the previous result (1.10) and the above ones to

calculate the fE2- and ''JE^-terms. Thus we see

'£•£•* = 0 unless 9=0, and

VE£ q = 0 unless (p, q) = (0, 0).

This implies

for all

So it follows from pll, Proposition 2] that

*) £*(XA w ) = jun JE:*(ZX
A

X

On the other hand, by Proposition 2 we see

**)
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where {W*} is the set of all finite subspectra of W. Putting *) and **)

together we conclude that E*(X^W} is Hausdorff.

1.4. Let E be a C £F-spectrum such that n*(E) is free and of finite

type as an jR-module and Y be a C fF-spectrum with finite skeletons such

that J£*(F) is Hausdorff. Further we assume that J?*(F) satisfies Condi-

tion R described in QEQ, i.e., for each aeJ£*(F) there exists a connective

CW-spectrum Wa with H^W^^R a free R-module and a map fa\ Y-*Wa

such that a e Im{/* : J?*(JFa) -»£*( F)}. Then we have a connective

CF-spectrum W with H*(W}®R a free .R-module and a map /: Y-*W

which induces a monomorphism /*: n*(Y}®Q— >n*(W}®Q [III, Theorem

7D-
Consider the following commutative square

I t l A

The multiplications jul and /^2
 are isomorphisms. So it follows from the

injectivity of I®/* that the right vertical map (IA/)*-' 7t*(X/\Y)®Q-+
K*(X^W)®Q is a monomorphism.

Therefore, Theorem 1 combined with [III, Theorem 2] shows

Theorem 28 Let R be a sitbring of Q and E be a ring-spectrum

with a coherent ring n*(E) which is free and of finite type as an R-

module. Assume that Y is a CW-spectrum with finite skeletons and that

£*(F) satisfies Condition R. If both E*(X) and E*(Y} are Hausdorff,

then this is also true for

Let MU denote the unitary Thorn spectrum. As is well known,

n*(MU)(S)R is a coherent ring (see [28]). Further (AfZ7/Z)*(Jf ) satisfies

Condition R for an arbitrary CJF-spectrum X [III, (4.4)]. As a corollary

of Theorem 2 we obtain

Theorem 3. Let R be a subring of Q and Y a CW-spectrum with

finite skeletons. If (MUK)*(X) and (MUK)*(Y) are Hausdorff, then
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(MUK)*(X^Y) is so, too. (Cf., [26]).

2. Cohomology Theories H*, If* and FF-groups

2.1. For an abelian group A we denote by TA the torsion subgroup

of A, i.e., Ty4 = Tor(y4, Q/Z). We shall require the following elementary

lemmas on abelian groups.

Lemma 3. Let f:A-*Bbea homomorphism such that the tensor ed

homomorphisms with Q and Q/Z are isomorphisms. Then f induces an

isomorphism A/ TA -*B/TB.

Proof. Applying "five lemma" in the following commutative diagram

0 - > A/TA - > A®Q - > A®Q/Z - > 0

I/' |/<g)i |/®i

0 - > B/TB - > B®Q - > B®Q/Z - > 0.

with exact rows, we get that f': A/TA—*B/TB is an isomorphism.

Lemma 4. A®B/T(A®B)^ A/TA® B/TB.

Proof. Consider the following commutative diagram

0 i i
A/TA® B/TB - > A/TA®B/TB®Q

with an exact row. The left vertical map is an epimorphism, and the
right one is an isomorphism. And the bottom horizontal map is a mono-

morphism. A diagram chasing argument shows that

0 - > T(A®B} - > A®B - > A/TA® B/TB - > 0

is exact.

Let R be a subring of Q. An abelian group A is called a WR- group

if it satisfies Ext(A, R) = Q. By definition,

(2.1) an arbitrary direct sum of WR-groups is a WR-group, and every
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subgroup of a WR-group is so, too.

Particularly the torsion subgroup TA is a JF^-group if A is so.

Since a similar discussion to pi, (5.4)] shows

Ext(TA, JR) = 0 if and only if

(2.2) A®R is a flat R-module (i.e., it is torsion free as an abelian

group) whenever A is a WR-group.

By definition it is evident

(2.3) A is a WR-group if A®R is a free R-module.

Stein and later on Rotman proved that the converse of (2.3) is valid

under the countability restriction on A in the case R = Z (see Q25]). We

give a new proof based on Gray's result Q12] in the general case R.

Proposition 5. If A is a countable WR-group, then A®R is a free

R-module.

Proof. We may write A as a union of a countable sequence of

finitely generated subgroups:

Note that An®R is a free jR-module for each n. With the aid of pi,

(1.4)] we obtain an isomorphism

WHomG^, M)^Ext(A, M)
n

for any .R-module M because Ext(AH, M)^Ext]?(^w(x)jR, M) = 0. The as-

sumption that Ext(A, R) = Q means lim1Hom(^w, R) = Q. According to

Gray [12] this is equivalent to the property that the inverse system

{Hom(^M, R)} satisfies the Mittag-Leffler condition (ML). Since

Hom(An, R)®M^ Hom(^4w, M), the inverse system {Rom(An, M)} satisfies

(ML) for any .R-module M. As is well known, this implies that

lim1Hom(Jw, M) = 0. Therefore Ext(J, M) = 0 for any i?-module M.

Thus A®R is a free ^-module.

Next we discuss a certain relation between tensor product (x) and
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WR-groups.

Lemma 6. i) Assume that A®R is a free R-module (hence A is a

WR-group). If B is a WR-group9 then the tensor product A®B is so.

ii) Let A and B be non-zero and torsion free. If the tensor product

A®B is a WR-group, then both A and B are so.

Proof, i) By pi, (1.9)] there is an exact sequence

0->Ext(^, Hom(J5, /?))-> Ext ( A ® B, K)->Uom(A, Ext (B, £))-> 0

because Horn (Tor (^4, 5), J?) = 0. From hypotheses on A and B

Horn (5, JS)) = Hom(,4, Ext (5, #)) = 0. So we see that A®B is a WR-

group.

ii) Let Ax be a non-zero finitely generated subgroup of A. Consider

the following exact sequence

Horn 04, Ext(J5, £))-*HomC4, Ext(S, R)')-^Ext(A/AX3 Ext(B, R)).

Using the previous exact sequence again, Ext(J(x)J5, ./?) = 0 implies that

Hom(^,Ext(5, J?)) = 0. On the other hand, by use of [II, (1.9)] we

compute that Ext (A/ Jx, Ext (B, R)) ^ Ext (Tor (A/AX, B), R°) = 0. Con-

sequently Hom(./4x, Ext(jB, J?)) = 0. Since Ax is non-zero and free we get

immediately

Similarly we have Ext(^, J?) = 0.

2.2. Now we restrict our interest to the Eilenberg-MacLane spectrum

H and the BU-spectrum K. Let us denote by E either H or K. The

cohomology theory E* has a relation with the homology theory E* by

the following universal coefficient sequence (see [16]): There is a natural

short exact sequence

(2.4) 0->Ext(.EJI-1(Jr), G)->(£'G)w(Z)->Hom(£t
w(Z), G)-»0

for any coefficient group G.

Using the universal coefficient sequence (2.4) we give a condition on
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under which (ER)*(X) is Hausdorff in the cases E=H, K.

Theorem 4. Let E denote either H or K. Let R be a subring of Q

and X a CW-spctrum. (ER)n+1(X) is Hausdorff if and only if En(X}

jT(En(X)} is a WR-group.

Proof. We may assume that R is a proper subring of Q. Consider

the following commutative diagram

\ R) -»0

in which ER*( ; Z/Z) is defined by ER"(X; Z/Z} = ER^\X^Sl} using

the co-Moore space S/ of type (Z/Z, 2) constructed in [II]. Two rows

are exact by the universal coefficient sequence (2.4). Moreover, Horn

= Q. The left vertical map admits a factorization

) — > Ext(En(X)/TEn(X\ R) — » Ext (£„(*), R)

such that the former is an epimorphism and the latter is a monomorphism.

According to [III, (2.5)] (rather than [III, Theorem 1]), ER»+l(X) is

Hausdorff if and only if S: ERn(X; Z/Z)-*ERH^(X) is trivial. So we see

easily that ER»+l(X) is Hausdorff if and only if Ext(Efl(X)/TEn(X), R)

= 0, i.e., EH(X)/TEH(X) is a JT*-group.

As an immediate corollary of Theorem 4, we get

Corollary 7. Let E denote either H or K. If En(X)/T(En(X}}®R

is a free R-module, then (ER)n+1(X) is Hausdorff.

2.3. Let Mq be the mapping cone of the map S1— >S1 of degree q

as in [1]. Assume that the Hopf map ^: S3— >S2 induces ^ = 0: E*(S3)

-*E*(S2). The cofibration sequence Sl-*Mq— >S2 yields an exact sequence

(2.5) 0 — E,,(X)®Zq -*U EH+1(X*MJ -^ Tor (En^(X\ Zt) — > 0.

The dual argument to [1, Proposition 2.2] shows

(2.6) E*(XAMq) is a Zq-module for any
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Let d denote the gratest common measure of q and r. By virtue of

(2.6) we have the following commutative square

Eu(X)®Zq®Zr^^Et

( q l d ) *

Obviously the left canonical map is an isomorphism. So we find by the

aid of (2.5) that the top horizontal map p(x)l is a monomorphism. Thus

the above sequence (2.5) is a pure exact sequence. Since En(X}®Zq is

bounded, it follows from Q25, Theorem 14] that

(2.7) the above exact sequence (2.5) is Z-split. (Cf., [IT).

The complex homology J£-theory K* has Bott's isomorphism

(2.8) $:Kn(X)-^Kn+z(X).

So we can define the Z2-graded homology J^-theory K% by putting

and identifying K2n(X) with KQ(X) and K2n+l(X) with K^X) via Bott's

isomorphism /?.

Here we again restrict ourselves to E=H or K. Denote by E% either

H% or K%. Recall that the Kiinneth formula holds in our case E% = H*9

K% (see Q6, 23]): There is a natural short exact sequence

(2.9) 0 — » £ft(Z)(g)£ft( Y) -^ £fi(JTAF) — Tor (E^, £S(F)) — » 0.

As is easily seen,

(2.10)

is an isomorphism.

Next, consider the following commutative square
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The left vertical map l(x)p is a monomorphism by virtue of (2.7) and so

is the bottom multiplication /JL because of (2.9). Hence the top horizontal

map #(x)l is a monomorphism. Thus

(2.11) the above Kunneth sequence (2.9) is a pure exact sequence. (Cf.,

This implies that the multiplication fj. induces a monomorphism (and an

isomorphism by means of (2.10))

(2.12)

We use Lemmas 3 and 4 to obtain

Lemma 8* Let E% denote either H* or K%. Then the multiplication

fi induces an isomorphism

Using a new criterion Theorem 4 for Hausdorff-ness of H*(X) and

K*(X), and Lemmas 6 and 8 we obtain

Theorem 5. Let E denote either H or K. Let R be a sabring of Q

and X, Y CW-spectra.

i) Assume that E*( Y)/T(E*(Y))(& R is a free R-module. If

(ER)*(X) is Hansdorff, then (ER)*(X^Y) is so, too.

ii) // (EK)*(X^Y) is Hausdorff, then either u*(X) or ?r*(F) is a

torsion group, or both (ER)*(X) and (ER)*(Y) are Hausdorff.

becomes a countable abelian group when F has finite skeletons.

By the aid of Proposition 5 we have a corollary of Theorem 5 i).

Corollary 9. Let E denote either H or K and Y be a CW-spectrum

with finite skeletons. If (ER)*(X} and (ER)*(Y) are Hausdorff, then this

is also true for (£jR)%X"Ar).
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