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On Cohomology Theories of Infinite
CW-complexes, IV

By

Zen-ichi YosiMURA™

Let E and X be CW-spectra and {X*} the set of all finite subspectra
of X. The cohomology group E*(X) is topologized by taking the sub-
groups F*E*(X)=Ker{E*(X)— E*(X*)} as neighborhoods of zero in
E*(X). In general E*(X) is not Hausdorff. In the previous papers [II]
and [IIT] with the same title we studied conditions on CW-spectra E and
X under which E*(X) is Hausdorff. We are going to continue the in-
vestigation.

There arises a natural question whether E*(X,Y) is Hausdorff when
E*(X) and E*(Y) are Hausdorff. In the present paper we treat of this
question and give the following answer for well-known cohomology theo-
ries E*=(reduced) ordinary cohomology H%*, complex K-cohomology K*
and complex cobordism MU*,.

Theorem. Let E* denote H*, K* or MU* and X and Y be CW-
spectra. Assume that Y has finite skeletons. If both E*(X) and E*(Y)
arve Hausdorff, then E*(X\Y) is so, too.

First we attack our question in a few special cases when E*(X) is
Hausdorff. If H(X)®R is a free R-module, then we get a desirable
answer under certain restrictions on 74(E) where R is a subring of the
rational numbers Q (Theorem 1). Applying it to E*= MU* we perform
the proof of Theorem in the case E*=MU* (Theorem 3).

Next we restrict ourselves to the cohomology theory E*=H* or K*,
The universal coefficient theorem gives a necessary and sufficient condi-
tion on E4(X) under which ER*(X) is Hausdorff (Theorem 4). With the
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aid of this new criterion we discuss conditions that ER*(X,Y) is Hausdorff
(Theorem 5). As a corollary we obtain Theorem in the cases E*=H*
and K*,

We adopt all notations and notions used in [III].

1. Ring-spectrum E with Coherent Ring = .(E)

1.1. As typical examples of E*(X) which are Hausdorff we have
the following:

I) X is a finite CW-spectrum,

I) n,(E) is a finite abelian group for each degree n, or wu(E) is a
Q-module [ 111, Propositions 3, 4],

1) zn,(E) is a finitely generated R-module for each degree n and
Tx(X)®Q=0 [III, Theorem 27,

IV) =n,(E) is a finitely generated free R-module for each degree n and
X is a connective CW-spectrum such that H(X)XR is a free R-module
[III, Theorem 5],
where R is a subring of the rational numbers Q.

First of all, we are going to make an attack on our question in the
above special cases I)-IV). In the case II) we have nothing to do be-
cause E*(X) is always Hausdorff. On the other hand, it is evident that
T (X Y)®Q=0 whenever 74(X)®Q=0. So we see

(1.1) E*(X\Y) is Hausdorff for any CW-spectrum Y in the case III).

1.2. Chase [24] proved that over a coherent ring A direct products

of flat A-modules are flat. Using this we show

Lemma 1. Let A be a coherent ving and {A,} be an inverse sequence
of flat A-modules with lim'A,=0. Then limA, is a flat A-module.
n r
Proof. There is an exact sequence
00— limd, — 14, — I14,— 0

of A-modules as lim'4,=0. II4, is flat by the result of Chase [247], so

we see immediately that lim4, is flat.
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Remark. If a coherent ring A satisfies the property that every finitely
presented A-module has finite projective dimension as a A-module (for
example A=, (MU)), we can slightly generalize Lemma 1. Thus lim4,
is a flat A-module for an inverse system {4,} of flat A-modules with
lim?4,=0 for all p=1.

Let E be a ring-spectrum with 74(E) a coherent ring and X a CW-
spectrum. If G is a (-module, then there is an isomorphism

(ECYH(X)= TLHNX; my(E)®G) = ITHom (H,(X), 74(E)RC)

by Dold’s theorem [197] (or see [III, (1.3)]. Hom (H,(X), 7n4x(E)®G) is a
direct product of copies of 74 (E)®G, and hence it is a flat 7 (£)-module.
Thus we get

(1.2) (EGY*(X) is a flat my(E)-module.

(1.2) implies that (EG)*(X) ® E*( ) forms a cohomology theory on
x (E)
the category of finite CW-spectra. And the multiplication

(1.3) (ECY*(X) @ EX(Y) — (EC*(XA\Y)

is an isomorphism for any finite CW-spectrum Y.
For the case I) we obtain the following answer under certain restric-
tions on m4(E).

Proposition 2. Let R be a subring of Q and E be a ring-spectrum
such that wy(E) is a coherent ring and it is of finite type as an R-module.
If E*¥(X) is Hausdorff, then so is EX(X\Y) for any finite CW-spectrum
Y.

Proof. Consider the following commutative square

(E2YH(X) @ E*(Y)=25 (52/Z)*(X) @ EX(Y)

: ]

(EZXXAY) 2> (BZ/Z)*(XAY).

The top horizontal map £,®1 is an epimorphism by means of [III,
Theorem 17, and the right multiplication Z is an isomorphism because of
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(1.3). So we find that the bottom map k£, is an epimorphism. Thus
E*(X,Y) is Hausdorff.

1.3. Let R be a subring of Q and E be a ring-spectrum such that
the R-module 74(E) is a coherent ring. Further let Y be a finite CW-
spectrum and W be a connective CW-spectrum such that H(W)QR is
a free R-module. First recall [23, Proposition 177] (or see [28]) that

(1.4) E*(Y) is a finitely presented mwy(E)-module for any finite CW-
spectrum Y.

H,(W)®R is a direct sum of copies of R, i.e. H(W)R®R=)R,.
Using the universal coefficient theorem and (1.4) an easy calculation

shows
(1.5) E*( Y)”% )H”(W s TR(E)) = EX( Y)”%)HomR(Hn<W YR, m(E))

=E*(Y) @ I1Hompg (R, mx(E))= IHIE*(Y),.

e (

Thus E*(Y?r*é(% )H”(W; 74(E)) is a direct product of copies of E*(Y). So
we obtain that H*(W; m,(E)) is a flat m.(E)-module.

Here we need to add another assumption on 7w,(E) that it is flat as
an R-module. Let {F”E*(W )} be the usual decreasing filtration of E*(W)
defined by skeletons. Since the Atiyah-Hirzebruch spectral sequence for
E*(W) collapses [III, (3.3)], there is an exact sequence

1.6) O0—-HYW;n(E))—EX(W)/F**E*(W)—>E*(W)/Fr"E*(W)—0
for each degree n. Moreover we have

a.7) E*(W)sl_iﬂmE*(W)/F”E*(W) and ﬁTmﬂE*(W)/F”E*(W)zo
for all p=1. By induction on n and use of Lemma 1 we get

(1.8) E*(W) and EX(W)/F*E*(W) are flat n*(E)-modules,
because H*(W; w4(E)) is flat. In virtue of (1.8) the multiplication

(1.9) EX(Y) @ EX(W)— EX(Y,W)

becomes an isomorphism for any finite CW-spectrum Y.
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E*(Y) has a projective resolution of finitely generated m,(E)-modules
by means of (1.4). Then, by [8, Theorem 2] we have two spectral
sequences {E,}, {E£,} associated with the same graded 7.(E)-module such
that

Ebe =1i_nrgPTor’i*q‘E’ (E*(Y), EX(W)/F"E*(W))
and
E% 1 =Tor™'B(E*(Y), l'Tun‘lE*( W)/FrE*(W)).
By use of (1.7) and (1.8) we compute
E%?=0 unless ¢=0, and
E%?=0 unless (p, q)=(0,0).
This implies
(1.10) E*(Y,\W)EE*(Y)”*%)E*(W)EHTmE*(Y)m%)E*(W)/F”E*(W),
and HTmPE*(Y)”%)E*(W)/F”E*(W)=0

for all p=1.

Using the above results we prove the following satisfactory result for
the case IV).

Theorem 1. Let E be a ring-spectrum with a coherent ring my(E)
which is free and of finite type as an R-module, and W be a connective
CW-spectrum such that Hy(W)QR is a free R-module where R is a subring
of Q. If EX(X) is Hausdorff, then EX(X\ W) is so, too.

Proof. Let {X*} be the set of all finite subspectra of X. By [III,
Theorem 1] we notice that lim?E*(X*)=0 for all p=1.

Consider the two spectral sequences {'E,} and {"E,} associated with
lim* E*(X*) ®E E*(W)/F*E*(W) such that
»n 7w (E)

"B} =lim?lim EX(X*) @ E*(W)/F"EX(W)
* n x (E)

and
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"E%1 =lim lim*E*(X*) ® E*(W)/FrE*(W)
(see [8] or [T]). The exact sequence (1.6) yields exact sequences
0— EX(X) ® H'(W; ny(E)) — EXX¥) @ EX(W)/F*1E*(V)
— E*(X’")”%)E*(W)/F"E*(W) —0
by the aid of (1.8). Using (1.5) we compute

' E*(X) © H'(W; ()= I F*(X"), = [Tim* E*(X*), =0,
A T e a a M\

for all k=1. Applying inverse limit functors lim* on the above exact

sequences and using induction on n we have that
lim BX(X*) @ E*(W)/F"EX(W) — ImEX(X*) @ E*(W)/FrEX(W)
by 7y (E) A 7 (E)

is an epimorphism, and

im*E*(X) @ EX(W)/F"E*(W)=0

by x (E)

for all k=1. We use the previous result (1.10) and the above ones to
calculate the ‘E,- and ”E,-terms. Thus we see

'E$?=0 wunless ¢=0, and

"E%?=0 unless (p, ¢)=(0, 0).
This implies

===

lim? EX( X\ W)= 'E30=0
A

for all p=1.
So it follows from [III, Proposition 27] that

%) EX(X W) =1im EX(X*\ V).
A

On the other hand, by Proposition 2 we see

%) EX(X W) =1im EX(X "\ %)
»
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where {W*} is the set of all finite subspectra of W. Putting %) and sx)
together we conclude that E*(X,W) is Hausdorff.

1.4. Let E be a CW-spectrum such that 7,.(E) is free and of finite
type as an R-module and Y be a CW-spectrum with finite skeletons such
that E*(Y) is Hausdorff. Further we assume that E*(Y) satisfies Condi-
tion R described in [III], i.e., for each a € E*(Y') there exists a connective
CW-spectrum W, with H (W ,)QR a free R-module and a map f,: Y-W,
such that acIm{f%: E¥(W,)—E*(Y)}. Then we have a connective
CW-spectrum W with Hy(W)®R a free R-module and a map f: Y—-W
which induces a monomorphism fy: 74 (Y)@Q—-7nx(W)®Q [IlI, Theorem
7).

Consider the following commutative square

T(X) @mye(Y)RQ - my(XAY)R®Q
1®f*l lmf)*

Tx(X) @ (W)QQ —5 m(XAW)RQ.

The multiplications #, and 4, are isomorphisms. So it follows from the
injectivity of 1® fy that the right vertical map (Ixf)s: T4 (X Y)®Q —
Tx(XAW)®Q is a monomorphism.

Therefore, Theorem 1 combined with [III, Theorem 2] shows

Theorem 2. Let R be a subring of Q and E be a ring-spectrum
with a coherent ring wy(E) which is free and of finite type as an R-
module. Assume that Y is a CW-spectrum with finite skeletons and that
E*(Y) satisfies Condition R. If both E*(X) and E*(Y) are Hausdorf,
then this is also true for E*(X\Y).

Let MU denote the unitary Thom spectrum. As is well known,
T«(MU)QR is a coherent ring (see [287]). Further (MUR)*(X) satisfies
Condition R for an arbitrary CW-spectrum X [III, (4.4)]. As a corollary
of Theorem 2 we obtain

Theorem 3. Let R be a subring of Q and Y a CW-spectrum with
finite skeletons. If (MUR)Y*(X) and (MUR)*(Y) are Hausdorff, then
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(MURY*(XA\Y) is so, too. (Cf., [267]).

2. Cohomology Theories H*, K* and W-groups

2.1. For an abelian group 4 we denote by T A the torsion subgroup
of A4, i.e., TA=Tor(4, Q/Z). We shall require the following elementary

lemmas on abelian groups.

Lemma 3. Let f: A—B be a homomorphism such that the tensored
homomorphisms with Q and Q/Z are isomorphisms. Then f induces an
isomorphism A/TA—B/TB.

Proof. Applying ““five lemma” in the following commutative diagram

0— 4/TA— ARQ — ARQ/Z — 0

lf’ 1!’@1 ‘lf@l

0—> B/TB —> BQQ — BRQ/Z —> 0.

with exact rows, we get that f': 4/TA—B/TB is an isomorphism.
Lemma 4. A®XB/T(AQXB)=A/TARB/TB.
Proof. Consider the following commutative diagram

0—> T(A®B) —> AQB —> AQBRQ

| |

A/TAR®B/TB — A/TAQB/TBRQ

with an exact row. The left vertical map is an epimorphism, and the
right one is an isomorphism. And the bottom horizontal map is a mono-

morphism. A diagram chasing argument shows that
0— T(ARB) — A®B — A/TAQB/TB — 0
is exact.

Let R be a subring of ). An abelian group A4 is called a WZ-group
if it satisfies Ext(4, R)=0. By definition,

(2.1) an arbitrary divect sum of WR-groups is a WE-group, and every
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subgroup of a WE-group is so, too.

Particularly the torsion subgroup T4 is a WZ&-group if A4 is so.
Since a similar discussion to [II, (5.4)] shows

Ext(T4, R)=0 if and only if TAQR=0,

(2.2) AQR is a flat R-module (i.e., it is torsion free as an abelian
group) whenever A is a WER-group.

By definition it is evident
(2.3) A is a WR-group if AQR is a free R-module.

Stein and later on Rotman proved that the converse of (2.3) is valid
under the countability restriction on 4 in the case R=Z (see [25]). We

give a new proof based on Gray’s result [ 127] in the general case R.

Proposition 5. If A4 is a countable WR-group, then AQR is a free
R-module.

Proof. We may write 4 as a union of a countable sequence of
finitely generated subgroups:

A,cA,c---cd,c--, A=\UA,.

Note that A4,®R is a free R-module for each n. With the aid of [II,
(1.4)] we obtain an isomorphism

lim'Hom (4,, M)=Ext (A4, M)

for any R-module M because Ext(4,, M)=Exti(4,®R, M)=0. The as-
sumption that Ext(4, R)=0 means lim'Hom(4,, R)=0. According to
Gray [127] this is equivalent to the property that the inverse system
{Hom(4,, R)} satisfies the Mittag-Lefler condition (ML). Since
Hom (4,, R)Y® M= Hom (A4,, M), the inverse system {Hom (4,, M)} satisfies
(ML) for any R-module M. As is well known, this implies that
lim'Hom(4,, M)=0. Therefore Ext(4, M)=0 for any R-module M.
Thus A®R is a free R-module.

Next we discuss a certain relation between tensor product & and
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WR-groups.

Lemma 6. i) Assume that AQR is a free R-module (hence A is a
WER-group). If B is a WR-group, then the tensor product AQB is so.

ii) Let A and B be non-zero and torsion free. If the tensor product
AR®B is a WE-group, then both A and B are so.

Proof. i) By [II, (1.9)] there is an exact sequence
0 —Ext(4, Hom (B, R)) »Ext(A® B, R) »Hom (4, Ext(B, R))—0

because Hom (Tor(4, B), R)=0. From hypotheses on A4 and B Ext(4,
Hom (B, R))=Hom (4, Ext(B, R))=0. So we see that ARQB is a W=A-
group.

ii) Let A4, be a non-zero finitely generated subgroup of 4. Consider

the following exact sequence
Hom (4, Ext(B, R)) —»Hom(4,, Ext(B, R))—Ext(4/4,, Ext(B, R)).

Using the previous exact sequence again, Ext(4A®B, R)=0 implies that
Hom (4, Ext(B, R))=0. On the other hand, by use of [II, (1.9)] we
compute that Ext(4/4,, Ext(B, R))=Ext(Tor(A/A,, B), R)=0. Con-
sequently Hom (4,, Ext(B, R))=0. Since 4, is non-zero and free we get

immediately
Ext(B, R)=0.

Similarly we have Ext(4, R)=0.

2.2, Now we restrict our interest to the Eilenberg-MacLane spectrum
H and the BU-spectrum K. Let us denote by FE either H or K. The
cohomology theory E* has a relation with the homology theory E, by
the following universal coefficient sequence (see [16]): There is a natural

short exact sequence
(2.4) 0— Ext(E,-,(X), G)— (EG)"(X) — Hom (E,(X), G)—0
for any coefficient group G.

Using the universal coefficient sequence (2.4) we give a condition on
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E.(X) under which (ER)*(X) is Hausdorff in the cases E=H, K.

Theorem 4. Let E denote either H or K. Let R be a subring of Q
and X a CW-spctrum. (ER)"*Y(X) is Hausdorff if and only if E,(X)
|T(E (X)) is a WER-group.

Proof. We may assume that R is a proper subring of (. Consider
the following commutative diagram

0—Ext(E,(X)®Q, R)—» ER"(X; 2/Z)— Hom (E,.(X)®Q, R) -0

| l
0— Ext(E,(X),R) — ER**Y(X) — Hom(E, ,(X),R) -0
in which ER*( ;Z/Z) is defined by ER*(X; Z/Z)=ER"**(XAS,) using
the co-Moore space S; of type (Z/Z, 2) constructed in [II]. Two rows
are exact by the universal coefficient sequence (2.4). Moreover, Hom
(E,.(X)®Q, R)=0. The left vertical map admits a factorization

Ext(E,(X)®Q, R) — Ext(E,(X)/TE,(X), R) — Ext(E,(X), R)

such that the former is an epimorphism and the latter is a monomorphism.
According to [III, (2.5)] (rather than [III, Theorem 17J), ER"*1(X) is
Hausdorff if and only if 0: ER"(X; Z2/Z)—ER"*\(X) is trivial. So we see
easily that FR**'(X) is Hausdorff if and only if Ext(E,(X)/TE,(X), R)
=0, i.e., E,(X)/TE,X) is a WE-group.

As an immediate corollary of Theorem 4, we get

Corollary 7. Let E denote either H or K. If E (X)/T(E,(X))®R
is a free R-module, then (ER)***(X) is Hausdor/f.

2.3. Let M, be the mapping cone of the map S'—S! of degree ¢
as in [1]. Assume that the Hopf map 7: S3— S? induces 74x=0: E4(S?)
—E4(S%). The cofibration sequence S'— M ,— S? yields an exact sequence

(25) 0— E;;(X)®Zq —> E71+1(X/\Mq) __3_) Tor (En—l(X)7 Zq) — 0.
The dual argument to [ 1, Proposition 2.2] shows

(2.6) EWXAM,) is a Z;-inodule for any q>1.
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Let d denote the gratest common measure of ¢ and r. By virtue of
(2.6) we have the following commutative square

E(X)RZ,RZ, *®5 E, ((XAM)RZ,
| e

Eu(X)®Zd - n+1(X/\Md)'

Obviously the left canonical map is an isomorphism. So we find by the
aid of (2.5) that the top horizontal map p®1 is a monomorphism. Thus
the above sequence (2.5) is a pure exact sequence. Since E,(X)®Z, is
bounded, it follows from [ 25, Theorem 147 that

(2.7) the above exact sequence (2.5) is Z-split. (Cf., [1])).
The complex homology K-theory K, has Bott’s isomorphism
(2.8) B: K, (X) — K,.5(X).
So we can define the Z,-graded homology K-theory Ky by putting
Ky(X)=Ky(X)DK,(X)

and identifying K,,(X) with Ky(X) and K,,,,(X) with K,(X) via Bott’s
isomorphism £.

Here we again restrict ourselves to E=H or K. Denote by Ey either
Hy or Ki. Recall that the Kiinneth formula holds in our case Ey=H,,
Ky (see [16, 23]): There is a natural short exact sequence

(2.9) 0— E4(X)QE4(Y) > E4(XA\Y) — Tor (Ey(X), Ex(Y)) — 0.
As is easily seen,
(2.10) #®1: Ey(XN)REy(Y)®Q — Ey(X,Y)RQ

is an isomorphism.

Next, consider the following commutative square
Ey(X)QEy(VIQZ, *85 Ey(X\Y)QZ,
o I

Ey(X)QEy. (YAM,) == Ey ((XAYAM,).
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The left vertical map 1®p is a monomorphism by virtue of (2.7) and so
is the bottom multiplication # because of (2.9). Hence the top horizontal

map #&®1 is a monomorphism. Thus
(2.11) the above Kiinneth sequence (2.9) is a pure exact sequence. (Cf., [ 27]).

This implies that the multiplication # induces a monomorphism (and an
isomorphism by means of (2.10))

(2.12) #®1: Ey(XN)QEHY)QQ/Z — Ey(XAY)®Q/Z.

We use Lemmas 3 and 4 to obtain

Lemma 8. Let Ey denote either Hy or Ky. Then the multiplication
X induces an isomorphism

Ey(X)/TEy(X)®Ey(Y)/TEy(Y)=Ey(X\Y)/ TE4(XAY).

Using a new criterion Theorem 4 for Hausdorff-ness of H*(X) and
K*(X), and Lemmas 6 and 8 we obtain

Theorem 5. Let E denote either H or K. Let R be a subring of Q
and X, Y CW-spectra.

i) Assume that EY)/T(E.(Y)®R is a free R-module. If
(ER)*(X) is Hausdorff, then (ER)*(X,\Y) is so, too.

it) If (ER)*(XAY) is Hausdorff, then either mwy(X) or ny(Y) is a
torsion qroup, or both (ER)*(X) and (ER)*(Y) arve Hausdorff.

E,(Y) becomes a countable abelian group when Y has finite skeletons.
By the aid of Proposition 5 we have a corollary of Theorem 5 i).

Corollary 9. Let E denote either H or K and Y be a CW-spectrum
with finite skeletons. If (ER)*(X) and (ER)*(Y) are Hausdorff, then this
is also true for (ER)*(XAY).
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