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Abstract

A family of numerical quadrature formulas is introduced by application of
the trapezoidal rule to infinite integrals which result from the given integrals
f b
\ f(x)dx by suitable variable transformations x = <j)(u}. These formulas are char-

acterized by having double exponential asymptotic behavior of the integrands in
the resulting infinite integrals as ii-»±oo, and it is shown both analytically and
numerically that such formulas are generally optimal with respect to the ecomony
of the number of sampling points.

§ 1. Introduction

For the numerical evaluation of an integral over an infinite interval
(-00, 00)

(1.1) 7

in which g(u) is analytic over ( — 00, oo), it is known Ql]] that the uni-

formly divided trapezoidal formula

(1.2) Ih = h 2] g(nK)
n=-°°

is optimal in efficiency among quadrature formulas having the same densi-

ty of sampling points, and hence application of (1.2) after carrying out

suitable transformation on the variable x gives a very efficient quadrature

formula for finite or infinite interval. Such quadrature formulas are often
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superior to the Gaussian and other formulas based on polynomial fitting of

the integrand in that they are rather insensitive to the singularities which

may be present in the original integrand at one or both ends of the inter-

val as was noted by C. Schwartz [_2~]. In a preceding paper Q3], we have

given a general recipe for application of variable transform to the numerical

integration based on the above ideas together with an error analysis for

these formulas.

Obviously the efficiency of such quadrature formulas, i.e. the number

of sampling points required for obtaining a given accuracy, strongly depends

on the mapping function $(u) being used, and there seems to have been

no systematic theory which can tell which mapping function to use for a

given integrand. The purpose of the present paper is to show, on the basis

of an error analysis using contour integral method, that the mapping is in

a certain sense optimal when the transformed integrand function behaves

in a double exponential way in the infinite sum, and to give a number of

practical mapping functions that give such good quadrature formulas.

Let the given integral be

(1.3) I

and let a variable transform

(1.4) x = <f>(u) where 0( — oo) = a, 0(oo) = 6

be applied to (1.3), so as to change the interval (a, b) into the infinite

interval ( — 00, oo) so that

(1.5) /=(" g(u)du,
J-co

where

(1.6) gM=fMuW(u).

One or both of the limits a and b in the original integral may be infinite.

Application of the trapezoidal rule to (1.5) with mesh size h yields a quad-

rature formula

(1.7) Ih = h
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Obviously, the infinite sum must be appropriately truncated in actual ap-
plication.

The degree of approximation of the formula (1.7) to true value (1.3)
can be evaluated p] in a form of a contour integral

(1.8)

where

(1.9) S(w) =

The path C of integration should consists of any two infinite paths running

in both sides of the real axis bounding an infinitely extended strip such
that f(<f>(w))(f>'(w) is regular over the strip (Fig. 1). Now, if we know

real axis

Fig. 1 Path C of the integral (1.8)

the singular points WQ of g(w) which lies nearest to the real axis in the
w-plane, the contour integral (1.8), which gives the quadrature error J/^5

can be roughly estimated according to a formula

(1-10) M/Al

by making the path C pass through the saddle point that is located in the

close neighborhood of w0. The saddle point appears owing to the rapid
decay of 1 0(w) \ ~ 2n exp ( - 2n \ Im w \ /h) as w goes away from the real axis

and the steep growth of g(w) towards the singularity at WQ [Y]. If spe-

cifically wQ is a simple pole of g(w) having a residue A, we have \AIh\

~ \A\exp( — 27i:\ImwQ\/h). In any case the problem to estimate the error
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is reduced to that of finding the position WQ of the singular point of g(w)

which is located nearest to the real axis in the w-plane.

In evaluating the various quadrature formulas obtained from various

types of mapping functions $(&), two generally conflicting factors have al-

ways to be taken into account. As have been already shown Q3], the

practical quadrature error consists of two terms, namely (1) the proper er-

ror AIh of the original quadrature formula involving infinite summation,

and (2) the error AIt caused by the truncation of the infinite sum. In order

to keep the truncation error sufficiently small and still not to have to use

too many terms in the sum, one may wish to have the summand in (1.7)

to die out very rapidly as n goes to infinity, and this requirement favors

any mapping function $(u) which tends to the limiting values as fast as

possible. The extreme in this direction is obviously the use of a mapping

function which maps the original interval onto a finite interval as has been

proposed by Iri, Moriguti and Takasawa \JT\. In this case no truncation

error exists since the quadrature formula consists of only a finite sum. In

order to keep the quadrature error of the ideal formula involving infinite

sum, on the other hand, it will be shown that it is usually better to use

formulas based on mapping functions which tend to the limiting values

more or less slowly. For the type of mapping functions x = !/{! +

exp( — cu2n+1)}9 for example, the asymptotic behavior of AIh for h—>0 will

be shown to have a form

(1.11) M/Jccexp(-a/A).

The formula which involves a finite sum has an error formula with as-

ymptotic form [jl]

(1.12) | AIh | oc exp ( -a/VT).

§2e The Best Formula for Integrals over the Finite

Interval (-1,1)

Before going into a general discussion of the best mapping function,

we will compare several different mapping functions for the integral

(2.1) I=(l f(x}dx (/(*): analytic on (-1, 1))
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to serve heuristic purposes. /(#) may have algebraic or logarithmic sin-

gularities at x = ±l as long as it is integrable over ( — 1, 1).

(2-a)

(2.a.l) x=tanhum, m = l9 3, 5,...

- - for which | g(u)\ ~ exp( — | u \ m) as w-»±oo

By this mapping function we have

If the trapezoidal rule with a step size h is applied to (2.a.2) we have

(2.a.3) Ik = h Z f(tanhnmhm) ^"^ "* •
^ ' h

 n=^-~ ycosh2(?iwAw)

The function for m = l

(2.a.4) z = tarihw

maps the whole z -plane onto an infinite number of strips Wk parallel to

the real axis:

(2.a.5) Wk=wk— . 7 r < I m W < i + - - * r ; A = 0, ±1, ±2,....

In Fig. 2 we show the strip WQ with the images of the lines parallel to

the real and the imaginary axes in the z -plane. Take m = 3 for 7ra>l, for

example. The mapping by z=tarihw3 is obtainable by composing the two

mappings z =tanhC, C = w3- And C = w3 maps the whole C-plane onto the

three sectors in the w-plane bounded by w=reie, 0=±n/3, it. Hence the

image of the whole z -plane by ,2r=tanhw3 in the w-plane is as shown in

Fig. 3.

Except the uninteresting case /(z)= constant, the integrand /(z) of

the original integral has at least one singular point somewhere on the z-

plane including z = oo . One such point will be mapped by z = $(w) = tanh wm

onto an infinite array of singularities of g(w) located in the finite w-plane

on account of the multivaluedness of the inverse function

(2.a.6) w = $-l(z} = (artanh z}llm
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-2

Fig. 2 Mapped images of the lines parallel to the real axis and
the imaginary axis in the z-plane (z=x + iy) by w —
artanh z

-1. Si-
Fig. 3 Mapped images of the real and the imaginary axes and

of the lines x = ±l and y=±l in the z-plane (z=#
by w = (artanh z)1/s
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Let ZQ be one of the singularities in the z -plane including z = oo. Then

the corresponding singularities in the w-plane are given explicitly as

(2.a.7) W = 0-K*o) = exp {-1- log (-*- log ~

=—-log
l-ZQ

= {s2 + (t + 47r)2}2^ exp j—farctan t + k7i: + 2nl}\ ;
I 771 V 5 /J

4=0, ±1, ± 2 , . . . ; Z = 0, ±1, ±2,...

i r,
(2.a.8)

where

(2.a.9)

(2.a.lO)

That is, they are all distributed on 277i infinite radial straight lines in the

w-plane emanating from w = Q and making equal angles, as also seen from

Fig. 3. Besides these singularities arising from those of /(*), the integrand

/(tanh wm)mwm~lcosh~2wm has an infinite number of poles which are due

to the zeros of cosh w.

Let WQ be one of these singular points that are located nearest to the

real axis in the «;-plane. The imaginary part of w0 is given from (2.a.7)

if we put k=l=0

where

(2.a.l2)

(2.a. 13) ri= arctan = arcsin\ / I i s
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Hence from (1.10) the order of magnitude of the error of (2. a. 3) is given

by

(2.a.l4) |j/J

(2.a.l5)

Note that ff is of the order of unity or less except when ZQ is extremely
close to ±1 and that \Tl\<n/2.

Now, to get a rough estimate of the number N of the sampling points
necessary in order to keep the error | A Ih \ below a given bound d, we put

(2.a.l6) \AIt\~\AIh\~8,

where AIt is the error due to the truncation of the summation (2. a. 3).
Then we have

(2.a.l7)

and this equation yields

(2.a.l8) h~(27i:^ y^N~^~N~^, TTI-+OO.

Substituting this into (2. a. 15) we have an error formula in terms of N:

( / I T I
(2.a.l9) \4IN\=8~exv\-2x(sm-&

[ \ 771

( OTT I —
_^l r i

m

If 77i is varied for fixed N, the error | AIN\ decreases with increasing TTI,
but from 9| dIN\/dm = Q we see that it attains a minimum

(2.3.21) M^l.i.

at
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(2.a.22) m = log7\Tmin (7Vmin = em),

and then it turns to grow as m is further increased. This situation is il-

lustrated in Fig. 4.

t
log |AINI

Fig. 4 \og\JIK\ of (2.a.l9) and (2.b.l5) (a) • (2.a.l9), (b) • (2.b.l5)

(2-b)

\ 2 /

for which | g(u)\ ~ expf — -^— exp| u \ J as u—*±oo

As we have already seen, the error of (2.a.3) is essentially contribut-

ed by the specific singular point

(2.b.2) wQ = (sz + t2^
771

which correspond to k=l=Q, while other singular points on the same line

are not responsible for it. This situation can also be seen from Fig. 3.

From the general theory of optimization, it will be intuitively clear that a

better mapping function would be those for which two or more singular
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points make equal contribution to the error. Specifically, a better situation

would be that in which the singular point ZQ in the £-plane is mapped

onto any straight line in the w;-plane which is parallel to the real axis. A

mapping function satisfying this condition really exists and is given by a

function of double exponential type, such as

(2.b.3) z = tanh f-|- sinh

If we use (2.b.3) as a mapping function, we obtain the formula

cosh nh(2.b.4) Ih = h £ / t a n h - - s i n h
cosh2 f -=— sinh nh J

The mapping from the 2-plane onto the w-plane is most easily understood

by considering the intermediate plane £:

(2.b.5) C — —?j- sinh W = artanh z.&

We already know that any singular point in the z-plane is mapped by £ =

artanh z onto an infinite array of points on a straight line which is paral-

lel to the imaginary axis in the C-plane. And then these points are map-

ped by w = arsinh —^—C onto an infinite array of points in the w-plane lying&
asymptotically along lines Imw = (l±I/2)n;) l = Q, ±1, ±2,... as we can

easily understand from Fig. 5 in which the image of the whole z-plane

with the lines Re z = ± 1 and Im z = ± 1 by w — arsinh ( artanh z } is

shown. This situation is also seen from the explicit representation of loca-

tion of the singular points

(2.b.6) w = lni + (-

-l~jVW(% + -|- + A;7r)2

±1, ±2,...; 1 = 0, ±1, ±2,...

~ Ini + ( - l) /arcosh 2k ±
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TTi

-Hi
Fig. 5 Mapped images of the real and the imaginary

axes and of the lines x = ±1 and y=±l in the

z-plane (z=x + iy) by w = arsinh f - a r tanhz j

where s and t are defined in (2. a. 9) and (2. a. 10).

Now let us see what occurs if the decay rate of g(u^) is further in-

creased. For this purpose consider

(2.b.7) z

as an example. Then for l = Q and for large k in (2.b.6) we have

(2.b.8) w = ( arcosh 2 A ± -£- if* .
\ £ /

The line on which the singular points lie in the C-plane (C^artanhz) is

now mapped by C = (tf/2) sinh wm onto a curve which approaches the real

axis asymptotically as |Rew;|->oo as seen from (2.b.8). Hence the path

of integration must approach the real axis at both ends, and the main con-

tribution to the error comes from this part of the contour and will give

rise to a greater error, as will be evident in the example below. Hence

we can say with much confidence that the decay rate of

(2.b.9) | f f (u ) |~exp(— J-exp|a|)
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corresponding to (2.b.3) is optimal for the quadrature efficiency.

It would be instructive to check the optimal property of (2.b.4) by

explicit error estimation. The error of (2.b.4) is essentially determined by

the singular points WQ of (2.b.6) located nearest to the real axis. If we

put k = l = Q we have

(2.b.lO)

where

2t
7 = arcsm

from (2.b.6). If we truncate (2.b.4) at ±uoa=±Nh, the resulting trunca-

tion error is about

(2.b.l2) |J/,|=exp( — f-expzj),

and putting \AIt\ = \AIh\ we have

(2.b.l3) h=^rlog^-.

An approximate solution of the transcendental equation (2.b.l3) will be ob-

tained by using h = l/N as a zeroth approximation and substituting it into

the right hand side of (2.b.l3)9 yielding

(2.b.U) A ~ i

Thus we have an error estimate of (2.b.4) in terms of N:

(2.b.l5) l

We have now come to the step to compare the result (2.b.l5) with

(2.a.l9). Note that [ t^ l and |r2| are quantities with the same order of

magnitude as seen from (2. a. 13) and (2.b.ll). As is evident on compar-

ing the two results, (2.b.l5) is the approximate lower limit of (2. a. 19).
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In other words, if we plot log| AIN\ as a function of N9 we will find that

(2.b.l5) gives an approximate envelope of the family of curves given by

(2.a.l9) somewhat as shown in Fig. 4, since |4/y|min in (2.a.21) is ap-

proximately equal to (2.b.l5). Therefore we can suppose with all probabil-

ity that a mapping function of the form

(2.b.l6) x = <f>(u)

is optimal with respect to the efficiency.

The point that has been made in this section can be summarized to

the statement that the transformed function g(u) should have a decay

property

f 7? \
(2.b.l7) £•(&) —exp( —?:— e x p l & l ). u-*±oo

or, equivalently, that g(w) should have an infinite array of singular points

lying asymptotically parallel to the real axis.

§3. Double Exponential Formulas

In the preceding section we have found the best quadrature formula

for integrals over ( — 1, 1) among those obtained by the variable transfor-

mation, and we have seen that what is essential in the transformation is

the decay property at w—»±oo of the transformed function g(u) which is

to be integrated over ( — 00, oo). That is, it is best to choose a mapping

function that results in such a transformed integrand g(u) as behaves like

(2.b.l7). And hence not only for integrals of /(#) over ( — 1, 1) but also

for those over any interval including (0, oo) or ( — 00, oo) we would obtain

the best quadrature formula by investigating the analytic behavior of /(#)

and by choosing a mapping function according to the principle that g(u)

should have the decay property as (2.b.l7), provided that /(#) is analytic

and integrable over the given interval. For instance, if the given integral

has by itself the property (2.b.l7), as in \ exp( — cosh x + iax)dx, for ex-
J-oo

ample, no variable transformation is needed, the direct application of the

trapezoidal rule with an equal mesh size giving the best result.

We will give here a few typical examples of the formulas.
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(3-a) Finite interval ( — 1, 1)

(3.1)

(3.2) x = tanh (-%- sinh u]
\ £ /

„ A(3-3) /, =-f-A £ /(tanh (-£- sinh2 ,._. V V2

(3-b) Half-infinite interval (0, °o)

(3.4) /=£/(*)«**

(3.5) # = e x p f - — sinh

»*

(3.6) Ih = --h 2 / e x p - sinh w A c o s h 7iA)exp-y- sinh 71 A.

Many of integrals over (0, oo) encountered in the practical problems have

an exponential factor in their integrands:

(3.7) /(*)=/!(*>-'.

In this case the integrand has already the decay property as a single ex-

ponential function at &-*+oo, and hence we have only to choose such a
mapping function as adds one more exponential decay at ^-> + oo, together

with the double exponential decay at u—> — oo.

(3.8) x =exp (u — exp ( — &))

(3.9) Ih=h f; /(exp(7iA-exp(-7iA))){l + exp(-7iA)}o
W=-00

•exp(nA— exp( — nti)) .

(3-c) Infinite interval (—00 , oo)

(3.10) J
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(3.11) # = sinh f-|- sinh u\

(3.12) Ih =-%-h S /fsinhf-f^sinh 7&&Y)(cosh nh)cosh(-^~smh nh]
£ n=~°o \ \ Z // \ & /

This formula is used in order to change a slowly convergent integral into

a rapidly convergent one.

Since each of these mapping functions gives |g(w)| which decays as

a double exponential function of u as u—>±oo, as seen in (2.b.l7), we

will call any quadrature formula having such a property as double expo-

nential formula. We can find many other double exponential formulas for

different types of integrals.

The double exponential formulas shown above have a practical advan-

tage that the positions of the sampling points and the weights can easily

be generated in the process of integration in the computer with the aid of

the exponential function. Since the distribution of the sampling points is

equidistant, one can make use of the values computed at preceding steps

when one employs an automatic procedure in which the step size is halved

repeatedly until the required precision is attained.

In the actual computation of improper integrals one should be aware

of the loss of significant figures due to cancellation occurring as x tends

to the end points of the interval. For example, it occurs as x—>±1 when

the integrand in (3.1) has a factor (1 + x}a(\ — x)0. In such a case one

can avoid the loss of significant figures by a direct substitution of

exp ( ± -^- sinh u )
/ q i q \ + _i _ ! _ - _ _ \ * /_^o.ioy L — i in j(t -j ^r—

cosh f —fr- sinh u )
\ ^ /

~2exp(±7rsinh u), #-»+!.

§48 Numerical Examples

The double exponential formulas are applied to the following examples

and are compared with formulas obtained by other mapping functions.

dx ^7^-=-1.9490...
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= -0.69049...

(4-iii) -- dx = ̂ (1) = 0.21938.
1 + x

-i \jl-x

- = 2.3962...

- = 2.2214....

The transformations used for the sake of comparison are as given be-

low for each interval concerned:

Interval ( — 1, 1)

(4-a) TANH-rule

(4.1) x=tanhu (| g(u)\ — e x p ( ~ - 1 u |) as M-»±OO)

(4-b) ERF-rule

(A 9\ r _ p r f , / __J:{4.6} x — err u —
Y>6 JO

(I g(u)I ~exp( — u*) as u—»±oo)

(4-c) TSH3-rule

(4.3) *=tanh(-!-sinh i^3)
\ ^ /

(Given as an example of a mapping function which gives a decay

rate greater than double exponential)

(4-d) IMT-rule [4]

(4.4)

(Mapping the interval ( — 1, 1) onto itself)
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Interval (0, oo) (with such an integrand as (3.7))

(4-e) EXP-rule

(4.5) x =exp u

( |g-( iOI-exp(-exp|w|) as u-> + oo, \ g(u)\ ~exp(- | u |)

as &—» — oo )

(4-f) LERF-rule

2(4.6) x=log
l — e r f u

(Giving exactly the same weight exp( — n2h2) as in the case of

the ERF-rule (4.2), so that | g(u)\ ~exp(- u2} as u-+±oo)

Interval ( — 00, oo)

(4-g) SINH-rule

(4.7) x=smhu (| g(u}\ ~exp( — | u |) as u— >±oo)

(4-fa) TAN-rule

(4.8) x = tan u

NI2- -
(4.9) A=

(Mapping the infinite interval ( — 0 0 , 0 0 ) into a finite interval

( — 7T/2, 7T/2), and applicable only to functions regular at #=±oo)

Figs. 6-10 show the errors of various formulas as function of the num-

ber N of sampling points actually required1 \

In the case of finite interval, the transformation x = tanh ( -^- sinh u3 )
\ ^ /

is inferior to the double exponential one, as has been anticipated. The

IMT-rule is not good either, as discussed in §1. It should be noted that,

1) In obtaining these plots a special care has been taken to adjust the step size and
the truncation point so as to attain the highest precision for each TV. Although
this was necessary for the purpose of obtaining a smooth plot, it is not at all
necessary in practical application of our formulas.
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as is shown in Fig. 8, the double exponential formula (3.9) is even better

than the Laguerre-Gauss formula for the specific example (4-iii) which has

an exponential factor e~x in the integrand, and for which it is commonly

agreed as reasonable to apply the Laguerre-Gauss formula. In the example

(4-v) in which the integrand is regular at infinity, the TAN-rule is seen

to be better than the double exponential formula. This is not hard to un-

derstand since the double exponential formulas are "robust" formulas which

are rather insensitive to singularities of various types that may occur at

the end points.

200 250 N

Fig. 6 The computed error of I/ {(x-2)(l-x)1^(l + x)^Ji}dx

double exponential formula (3.3), - Q - ERF-rule,
-A - TANH-rule5 -- V -- TSH3-rule, -- x -- IMT-rule
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0 50 100 150 200 250 N
/•i

Fig. 7 The computed error of \ (cos nx)IJl — xdx

O double exponential formula (3.3), Q ERF-rule,
A TANH-rule, V TSH3-rule, x IMT-rule

0.25

0 50 100 150 200 250 N

Fig. 8 The computed error of (°°exp (-l-x)/(l + x)dx
J o

O double exponential formula (3.9), Q LERF-rule,
A EXP-rule, - — X Laguerre-Gauss formula
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0 50 100 150 200 250 N

Fig. 9 The computed error of (°° (l + x2)~5/*dx

O double exponential formula (3.12), A SINH-rule

*«*0 50 100 150 200 250 ft

Fig. 10 The computed error of (°° (l + x^dx
J-oo

O double exponential formula (3.12), A SINH-rule,
X TAN-rule
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Summary

It has been shown by analytic means that, among the various variable

transformations that can be applied to convert a given definite integral into

rapidly convergent integrals over (—00, oo), those which give a double ex-

ponential decay of the resulting integrands at ± oo are in general the most

efficient ones for the purpose of numerical quadrature using trapezoidal

rule with a uniform sampling interval. This statement has been confirmed

numerically by applying several formulas having that property to a few

simple quadrature problems.

Note added In proof: In our formulas, owing to the exponential asymp-

totic dependence of the error on the inverse step size (cf. eq. (2.b.lO)),

halving the step size approximately doubles the number of significant

figures. This fact makes them especially suitable for very high precision

calculation and for automatic integration, and it has been shown on several

test problems that our formula for finite interval compares favorably to

the Romberg method even for regular integrands, whenever a precision of

about fifteen decimal places or more are needed.
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