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On Cohomology Theories of Infinite
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Let A* be an additive cohomology theory and X be a based CW-
complex which is the union of all finite subcomplexes X*. The subgroups
FMp¥(X) =Ker{h*(X)—h*(X*)} gives a topology in the cohomology group
h*(X). In the second paper [II| with the same title we investigated
conditions on A* and X under which A*(X) is Hausdorff. The purpose of
the present paper is to continue the investigation.

A based CW-complex X is regarded as a (—1)-connected CW-spectrum
in the stable category [16, 17]. Then every additive cohomology theory
h* defined on the category of based CW-complexes is represented by a
suitable CW-spectrum E. In the sequel we shall work in the siable cat-
egory of CW-spectra rather than in the category of based CW-complexes.
An (additive) cohomology theory is written E* in place of A*. Now it
seems natural that a cohomology theory (EG)* with coefficient G is defined
by using a Moore spectrum of type G following Adams [16], but not by
using a co-Moore spectrum of type G as in [II].

In the previous paper we restricted ourselves to the case when h* is
of finite type as an abelian group. We shall slightly relax the restriction.
Thus we shall discuss mainly conditions that E*(X) is Hausdorff, under
the assumption that 7w (E) is of finite type as an R-module where R is
a subring of the rational numbers Q.

First we extend some results of [II] to a CW-spectrum X and a
cohomology theory E* such that w,(E) is of finite type as an R-module.
Then we find that Hausdorff-ness of E*(X) is closely related to the exact
sequence
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— E"(X) — (EZ)"(X) — (EZ/Z)"(X) — E*"{(X) —

corresponding to the coefficient sequence 0—Z—Z—2/Z—0 (Theorem 1).
This is a very important criterion for Hausdorff-ness of E*(X).

This criterion gives sufficient conditions on X under which E*(X) is
Hausdorff (Theorem 2). And also we show with the aid of it that Hausdorff-
ness of E*(X) is shared by E*(X?) where X? denotes the p-skeleton of
X (Theorem 4). Using the same criterion we discuss Hausdorff-ness of
E*(W) for W having a free R-module H,(W)®R, under a certain restric-
tion on 7m4(E) (Theorem 5).

Next we give some criteria for Hausdorff-ness of E*(Y) for Y having
finite skeletons (Theorems 6 and 7). Then we apply the above results to
E*= MU*, complex cobordism, or K*, complex K-cohomology. In partic-
ular, we get that E*(BG) is Hausdorff for an arbitrary compact Lie group
G if wu(E) is free and of finite type as an R-module.

In [27] we constructed a spectral sequence for a based CW-complex X
which is a version of the Milnor’s short exact sequence. In Appendix we shall
extend the spectral sequence to that for CW-spectrum, whose existence
allows us to study Hausdorff-ness of E*(X) of a CW-spectrum X as well
as a based CW-complex.

Several results of [II]] are repeated, since they are presented here in
greater generality.

Throughout this paper we understand by H,, H* the reduced ordinary

homology and cohomology theories.

1. Cohomology Theories of CW-spectra

1.1. Suppose given a CW-spectrum E. Then we define the homology
and cohomology groups of CW-spectra X with coefficient in E by

En(X) ={Ss E"X}m E”(X)Z{Xa E}—n'

We remark that every additive homology or cohomology theory defined on
the category of based CW-complexes is representable with some CW-
spectrum E.

Let X be a CW-spectrum and Uy={X*} the set of all finite subspectra
of X ordered by inclusions which is directed. We introduce subgroups
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F*E®(X) of E*(X) by
F*Er(X)=Ker{ EM(X)—E*"(X")}.

The inverse system {F*E*(X)} gives E”(X) the structure of a topological
group. The inclusions i,:X*c X induces a continuous homomorphism

7 =1imi ¥: E*(X)—1lim E*(X*)
A A

where lim E*(X?*) is topologized by the inverse limit topology.
According to Adams [9, Theorem 1.8],

(1.1) 7: E*¥(X)—lim E*(X*) is an epimorphism for any CW-spectrum X.
A

The proof in [97] is actually given for a based CW-complex X, but it
is easily extended to a CW-spectrum.
By the aid of (1.1) we obtain

Proposition 1. The following conditions are equivalent:
) SM(X)=NFE"(X)={0},

i) E*(X) islHausdorﬁ‘,

iii) E*(X) is complete and Hausdorff,

iv) m: E”(X)—'Lif;g En(X™) is an isomorphisin.

The proof is just the same as that of [II, Proposition 27].

Let X be any CW-spectrum which is the union of a direct system of
subspectra X, over a directed set, i.e., X=UX,. Then we can give a
version of the Milnor’s short exact sequence [ 6] (see also [217]) in a form
of a spectral sequence:

(1.2) There exists a spectral sequence {E? 1} associated with E*(X) such
that

Ept=lim?E(X,).
a

And the edge homomorphism of the spectral sequence

EMX)—-E%"cE}"=lim E"(X,)
a

coincides with the natural epimorphism .
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In the case of a based CW-complex X the spectral sequence mentioned
above was constructed in [27] (or see [16 ]). But we can construct it for
a CW-spectrum as well as a based CW-complex. For the sake of complete-
ness we shall give a proof in Appendix.

Using the spectral sequence (1.2) a standard argument shows

Proposition 2. If lim?E*(X*)=0 for all p=1 where X* runs over
A
all finite subspectra of X, then E*(X) is Hausdorff.
If 7,(E) is a finite abelian group for each degree n, then so is
E»(X*). Since [I, Corollary 5] implies that lim? E¥(X*)=0 for all p=1,

we have

Proposition 3. Assume that n,(E) is a finite abelian group for each
n. Then E*(X) is Hausdorff for any CW-spectrum X.

Let us denote by Q the field of rational numbers. Assume that 7w4(E)
is a Q-module. Then Dold’s theorem [197] (or see [II, Theorem 6 ]) insists
that there exists a natural isomorphism

(1.3) E”(X)EIkIH"(X; T p—n(E))
for any CW-spectrum X.
Making use of [II, (1.4)] we compute

(1.4) lim ?E*(X™) = lim PHom(74(X™),  74(£))=0
A A
for all p=1. So we get

Proposition 4. If ny(E) is a Q-module, then E*(X) is Hausdorff
for any CW-spectrum X.

1.2, Let G be an abelian group. We can always construct a Moore
spectrum M(G) of type G, ie., 7w, (MG)=0 for r<0, H(MG)=G and
H,(MG)=0for r>0. Given any homomorphism ¢: G—G’ of abelian groups,
we can find a corresponding map f: M(G)—M(G") of Moore spectra with

H,(f)=¢. Therefore there exists a cofibering sequence
(1.5) M(G)—M(G"Y—-M(G")

associated with a short exact sequence 0—-G—G'—G"—0.
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For any CW-spectrum E we define the corresponding spectrum with
coefficient group G by

EG=E.M(G).

The homology and cohomology theories represented by EG are written

EGy, EG*. For them we have universal coefficient sequences as follows
[16, Proposition 6.6]:

(1.6) i) There exists an exact sequence
00— En(X)®G — (EG);;(X) - TOI‘(E”._l(X), G) —0

for any CW-spectrum X, and

ii) if X is a finite CW-spectrum or G is finitely gencraled, there exists
an exact sequence

0 —> E*(X)®G — (EG)*(X) — Tor(E**1(X), G) —> 0.

If there exists a co-Moore spectrum M*(G) of type G, then we may
define a cohomology theory E*( ; G) by

E*(X; G)=E*(X~M*(G)).

The two cohomology theories EG* and E*( ; G) with the same coefficient
G don’t necessarily coincide with each other. (For example, see (2.4)).
So we have to distinguish between them. However we can find a natural
isomorphism between EG* and E*( ; G) in virtue of S-duality [ 21, Theorem
13.27] whenever G is finitely generated.

Let us denote by 7 the completion of Z with respect to all of its

subgroups, i.e., Z =Ext(Q/Z, Z). The cofibration (1.5) yields an exact
sequence

(1.7)  — ENX) —— (EZ)(X) —~ (EZ/Z)"(X) = E**{(X) —

corresponding to the coefficient sequence 0—Z—Z—2/Z—0 (cf., [11I, (4.4)7).
Since both Z and Z/Z are torsion free, (1.6) implies that there are
natural isomorphisms

(1.8) EX(Y)QZ=(E2)*(Y), EXY)®Z/Z=(EZ/Z)*(Y)
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for any finite CW-spectrum Y. Moreover, by means of Dold’s theorem

(1.3) there exists a natural isomorphism

(1.9) (EZ/Z)”(X)ElkTHk(X;ﬂk-n(E)(@Z/Z)

for any CW-spectrum X, because 74 (E; 2/Z)=n«(EYQRZ/Z is a Q-module.

In the following commutative diagram

—EMX) —t, (BZX) = (EZ/Z)(X) —

Pl 5

0—lim E*(X*)— lim (EZ )" (X*)— lim (EZ/ Z)"(X»)—,

the upper row is exact by (1.7) and the lower one is exact by virtue of
(1.8). All vertical maps are epimorphisms because of (1.1) and in particular
Proposition 4 says that 73 is an isomorphism.

A diagram chasing argument shows

Proposition 5. E*(X) is Hausdorff if and only if (EZ)(X) is
Hausdorff and ¢: E*(X)—(EZ)(X) is a monomorphism.

2. Localization Z,

2.1. Let R be a subring of the rational numbers Q with unit. Recall
that it is just the integers localized at | where [ is the set of all primes
which are not invertible in R, and it is frequently denoted by Z;,. Putting
R’'=Z,, where I’ is the set of primes such that I[Nl'={¢} and [UIl'=
{all primes}, an easy argument shows that

(2.1) 0—> Z—s ROR' —> Q —> 0

is exact.
Consider the following commutative diagram

— E(X) — BROR)X) — (EQHX) —

71 2 73

0—lim E"(X*) — lim E(R® R')"(X*) — lim(EQ)"(X*) —

with exact rows. The right vertical map 7; is an isomorphism by Proposi-
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tion 4. If we assume that E?(X) is Hausdorff, i.e., m, is an isomorphism,
then the middle one 7, becomes a monomorphism with an application of
“four lemma” and hence it is an isomorphism because of (1.1). Thus
E(R®RN*(X) is Hausdorff. So we obtain

Proposition 6. If E"(X) is Hausdorff, then (ER)"(X) is so for any
subring R of Q.

2.2, Assume that m4(FE) is an R-module where R is a subring of Q,
i.e., R=Z2,. (For example, we might have E=FR). ﬂ*(E)®ﬁ’ is a Q-
module because so is R®I?’§R®Ext(R/Z, Z), where R'=Z; and INl'=
{#}, LUl’={all primes}. By Proposition 4 (ER")*(X) is always Hausdorff
for any CW-spectrum X. On the other hand, recall that

(2.2) R=2,=112, and Z=R®R'.
pEl
Then we get immediately

Lemma 7. Assume that n (E) is an R-module. Then (EZ »(X) is
Hausdorff if and only if (Eﬁ)”(X) is so.

A graded R-module A is said to be of finife type as an R-module if
each A, is a finitely generated R-module.

Here we show that (EZ)*(X) is Hausdorff under certain finiteness
assumption on 7w4(E).

Proposition 8. Assume that n(E) is of finite type as an R-module.
Then (EZ)*(X) is Hausdorff for any CW-spectrum X.

Proof. By Proposition 2 and Lemma 7 it is sufficient to show that
lim* (ERY*(X*) =0
A

for all s=1 where X* runs over all finite subspectra of X. Note that
E*(X*) is of finite type as an R-module. Using (1.6), (2.2) and [I,
Corollary 5] an easy calculation shows

lim* (ERYX(XY) = lim* EX( XM Q 12, = lm* TLEX(X») Qlim Z¢
2 Y R pEl x psl R &

= [T lim* EX(XM)® Z,: =0.

PEIN R R
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Now we obtain an important criterion for E*(X) being Hausdorff.

Theorem 1. Let R be a subring of Q and E be a CW-spectrum such
that ny(E) is of finite type as an R-module. Fix a degree n and let X
be an arbitrary CW-spectrum. Then the following conditions are equivalent:

i) E™(X) is Hausdorff,

ii) liTmlE”"l(X M) =0 where X* runs over all finite subspectra of X,

iii) ¢: EM(X)—(EZ)(X) is a monomorphism.

Proof. Combining Proposition 5 with Proposition 8 we see that i) and
iii) are equivalent. On the other hand, the spectral sequence (1.2) yields

a short exact sequence
0 — lim!E*»"1(X*) — E*(X) =, limE*(X*) — 0,
A A

because lim? E*(X*)=0 for all p=2 [14, Theorem 27 (or see [II]). This
implies that i) and ii) are equivalent.

Remark. The condition ii) means that lim?E*(X*)=0 for all p=1.

Let M, M and S, be the co-Moore spaces of type (Z,, 2), (2, 2) and
(Z/Z, 2) given in [II]. By use of them we define cohomology theories
with coefficients Z,, Z and Z/Z which are written E*(; Z,), E*(;2)
and E*( ; Z/Z) respectively. Assume that 74 (E) is of finite type as an
R-module where R is a proper subring of Q, i.e., R=Z,, [+{¢}. Then a
parallel discussion to [II, Propositions 8 and 97 shows that

(2.3) 0: EX(X; 2)— M lm EX(X; Z,)
PELl R

is an isomorphism for any CW-spectrum X, and there are natural isomor-

phisms
(2.4) EXNY;2)=E*(Y)®R and EXY;Z2/Z)=E*(Y) QR/Z

for any finite CW-spectrum Y, because E*(My:)=0 for each p¢I. More
precisely speaking, we have natural isomorphisms between (Eﬁ)* and
E*( ;2) and between (ER/Z)* and E*( ;2/Z).

Further we continue a parallel discussion to [II,4] so that we get
the following result.
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(2.5) Assume that R is a proper subring of Q and wy(E) is of finite type
as an R-module. Then E®(X) is Hausdorff if and only if ¢: E*(X)—
E*(X;2) is a monomorphism.

2.3. Let 4 be an abelian group and G a non-zero @-module. An
easy argument shows

(2.6) ARQ =0 if and only if Hom (A4, G)=0.
The universal coefficient theorem yields an isomorphism
2.7 H*(X; G)=Hom (H«(X), G)

for any CW-spectrum X. So this implies

(2.8) H,(X)®XQ0=0 1if and only if H"(X; G)=0.

Let f: X—Y be a map of CW-spectra. In the following commutative
diagram

Hom (H(Y), G)
l

N\
0 — Hom (Im fy, G) — Hom (Hy(X), G) — Hom (Ker fy, G) — 0,

the row is exact and the vertical map is an epimorphism. By the aid of
(2.6) and (2.7) we get immediately

(2.9) fy: H(X)QQ—H,(Y)RQ is a monomorphism if and only if f*:
H"Y; G)->H"X; G) is an epimorphism.

Lemma 9. Assume that my(E) is a non-zero Q-module.

1) 7m(X)®Q=0 if and only if E*(X)=0.

ii) Let f: XY be a map. fu:s(X)Q@Q—-74(Y)RQ is a monomor-
phism if and only if f*:E*(Y)—E*(X) is an epimorphism.

This is immediate, using (2.8), (2.9) and Dold’s theorem (1.3).
Taking EZ/Z as E in the above lemma and using Theorem 1 we
obtain

Theorem 2. Let R be a subring of Q and E be a CW-spectrum such
that wy(E) is of finite type as an R-module.



692 ZEN-IcHI YOSIMURA

i) Let X be a CW-spectrum. If m(X)®Q=0, then E*(X) is
Hausdorff.

ii) Let f:X—Y be a map of CW-spectra which induces a monomorphism
[ (X)Q@Q-ny(Y)RQ. If E*(Y) is Hausdorff for some degree n,
then E*(X) is so, too.

2.4. Let ¢: F—-E be a map of CW-spectra for which ¢y : T, (F)QRQ—
Tx(E)®Q is an epimorphism. Then it induces an epimorphism

(FZ/Z)¥(X)—(EZ)Z)X(X)

for any CW-spectrum X, by virtue of Dold’s theorem (1.9). From Theorem
1 (and Proposition 5) we obtain

Theorem 3. Let ¢: F—E be a map of CW-spectra which induces an
epimorphism ¢y Tx(FYRQ—-7+(E)RQ, and assume that mw.(E) is of finite
type as an R-module where R is a subving of Q. If F™(X) is Hausdorff,
then E*(X) is so for the same CW-spectrum X and degree n.

Let us denote by K, KO the BU- and BO-spectrum and by MU,
MSO and MO the Thom spectrum for U, SO and O. The corresponding
cohomology theories K*, KO* are ‘“‘complex’ and ‘‘real”” K-cohomologies,
and MU*, MSO* and MO* ‘‘complex”, ‘‘oriented”” and ‘‘unoriented”

cobordisms. The inclusions U(n)c SO(2n)cO(2n) yield realifications
r: K— KO, s:MU— MSO.

It is known that Tx: ﬂ*(K)@Q-’ﬂ*(KO)@Q and Sx + ﬂ*(MU)@Q—)ﬂ*(MSO)
®Q are epimorphisms, so we have

(2.10) i) (KOR)*(X) is Hausdorff if (KR)*(X) is so, and
ii) (MSOR)X(X) is Hausdorff if (MUR)*(X) is so.

On the other hand, 7,(MO) is a finite abelian group for each degree
n. By Proposition 3 we note

(2.11) (MOR)*(X) is always Hausdorff for any CW-spectrum X.

Let k£ be the connective BU-spectrum and denote by £* the connective
K-cohomology. The Thom map g,: MU—K is lifted to a morphism ¢:
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MU—E, i.e., it coincides with the composite morphism
MU 2K

of ring-spectra. Further the usual morphism #: MU— H admits a factoriza-
tion

MUt k2> H

in which H is the Eilenberg-MacLane spectrum, and both { and % induce
epimorphisms in homotopy.

(2.12) If (MUR)*(X) is Hausdorff, then this is also true for (HR)"(X),
(ER)"(X).

Let X be a connective CW-spectrum, i.e., (m—1)-connected for some
m. Recall that the homomorphism of coefficients

Ay wi(k) — w(K)

is an isomorphism for each non-negative integer i. Making use of Dold’s

theorem (1.9) we see easily that the map A: £—K induces an isomorphism
(kZ2/Zy"(X) — (KZ/Z)"(X)

for each degree n, n<m.

Remark that complex K-cohomology K* possesses the Bott periodicity,
i.e., the Bott homomorphism

(2.13) B: K"(X) —> K" 2(X)

is an isomorphism for each degree n. Therefore, for any connective CW-
spectrum X we get

(2.14) (KR)*(X) is Hausdorff whenever (kR)*(X) is so.

3. Atiyah-Hirzebruch Spectral Sequences

3.1. Let X be a connective CW-spectrum, and X? denote its p-skel-
eton. Observe the Atiyah-Hirzebruch spectral sequences {E,} and {E,}
associated to the skeleton filtration of X? for the cohomology theories (EZ )*
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and (EZ /Z)*. We have the following commutative diagram

H/(X?; n_(EYR2)=EY?'—E4 = HN(X?;n_(E)®Z/Z)
!
Eta__, E‘p q
n
(EZ)rra(X?) 22, (EZ/Z)””(X")

The top horizontal map and two vertical ones are obviously epimorphisms.
In particular the right one becomes an isomorphism because the spectral
sequence {F,} collapses in virtue of Dold’s theorem (1.9). So the middle
horizontal map is an epimorphism, and this implies that the composite map

(3.1) (EZ)y"(X?) == (EZ/Z)(X?) =ITHx*; T-(EYRZ/Z)

— H(X?; 7, (EY®RZ/Z)

is an epimorphism.

Lemma 10. Let X be a connective CW-spectrum. If k: (EZ)"(X)—
(E2/Z)"(X) is an epimorphism, then this is true for each p-skeleton X?.

Proof. Consider the following commutative square

(EZ)”(X)—”>(EZ/Z)"(X)EI;IH"(X; T4-n(EYRZ/Z)

1l I

(EZ)"(X?) =2, (EZ/ Z)"(X?) = [IH(X?; - (B Y®Z/Z)

where i: X?c X is the inclusion. Take any element xe(EZ/Z)"(X?),
ie., x= {xk}EHHk(Xi’ Ty n(EYR®Z/Z). Because of (3.1) we may choose
an element ye& (EZ )*(X?) with £?(y)=x,. On the other hand, there exists
an element ze(EZ/Z)"(X) with i*(z)=x—=x,. Therefore it follows from
the surjectivity of £ that x?: (EZ)*(X?)—(EZ/Z)*(X?) is surjective.

Now we show that Hausdorff-ness of E*(X) is shared by E*(X?).

Theorem 4. Let E be a CW-spectrum such that wy«(E) is of finite
type as an R-module where R is a subring of Q, and X be a connective
CW-spectrum. Fix a degree n. Then E™(X) is Hausdorff if and only if
E*(X?) are Hausdorff for all p and in addition HTmlE”‘l(XP)=O.
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Proof. First consider the following commutative diagram

0— ImlE"Y(X?) — Ex(X) _™, lmE"(X?) —0

| P e

0—1im'(EZ )"~} (X*) — (EZ )"(X) 2 lim(EZ "(X?)—0

involving Milnor’s short exact sequences (two rows). Recall (2.2) that
Z2=R®R". By the aid of (2.3) and [I, Proposition 6 ] we compute

lim (ER)*(X?) = lim EX(X?; Z) = lim lim E*(X?; Z,) =lim'E* (X?; Z,) =0.
b 4 b4 q b.q

On the other hand, since 7 (E)Q@R’ is a Q-module we have

lim! (ER")*(X?) = lim Hom (74(X?), 74(E)®R")=0
» b

by use of [II, (1.4)]. Thus lim'(EZ)*(X?)=0. So 7, becomes an isomor-
phism.

The “only if” part: Since ¢: E*(X)—(EZ)"(X) is a monomorphism,
lim'E*~1(X?)=0 and by Lemma 10 ¢*: E*(X#)—(EZ)"(X?) is a monomor-
phism, i.e., E*(X?) is Hausdorff.

The ““if” part: The injectivity of ¢? for each p yields that lime?:
limE”"(X?)—1lim(EZ)"(X?) is injective. And 7,: E*(X)—lmE*(X?) is an
isomorphism because lim!E”~1(X?)=0. Hence ¢: E"(X)—(EZ)*(X) is a
monomorphism, i.e., E7(X) is Hausdorff.

3.2. Let R be a subring of Q and W be a connective CW-spectrum
such that Hy(W)QXR is a free R-module. Assume that 74(E) is a flat
R-module. Note that an R-module is flat if and only if it is torsion free
as an abelian group. We observe the Atiyah-Hirzebruch spectral sequence
{E,} for E*(W).

First recall that the inclusion Zc @ induces a natural homomorphism

(3.2) ch: EX(X) — (EQ*(X)=I1HXX; 7, (E)QQ)

k

for any CW-spectrum X, called the Chern-Dold character.
Let {'E,} denote the Atiyah-Hirzebruch spectral sequence for (EQ)*(W).
The Chern-Dold character ch: E¥(W)—(EQ)*(W) yields a morphism

{E,} —{'E;}
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of spectral sequences. Consider the following commutative square

HXW; n(E)) — Hom(Hy (W), m4(E))

*)
H*(W; 74(E)®Q)— Hom(Hy (W), m4(E)XQ) -

Since Ext(Hy (W), n4x(E))=Exti(Hy(W)QR, 7x(E))=0 and Ext(H.(W),
Tx(E)®Q) =0, the duality homomorphisms (two horizontal maps) become
isomorphisms by applying the universal coefficient theorem. The right
vertical map is a monomorphism because 7x(E) is torsion free. This means
that E,—’FE, is a monomorphism.

On the other hand, the spectral sequence {’E,} collapses in virtue of
Dold’s theorem (1.3). Therefore we find

(3.3) the Atiyah-Hirzebruch spectral sequence {E,} for E*(W) collapses.

Lemma 11. Assume that ny(E) is a flat R-module. If W is a connec-
tive CW-spectrum such that Hy(W)Q®Ris a free R-module, then ¢: E*(W)—
(E2YX(W) is a monomorphism.

Proof. Let {E,} and {E,} be the Atiyah-Hirzebruch spectral sequences
for EX(W) and (EZ)*(W) respectively. Since both 7w(E) and w4 (EZ)=
7+«(E)®Z are torsion free, the spectral sequences {E,} and {E’,} collapse
by (3.3). Then we note that they are strongly convergent [ 2, Proposition 9].
Moreover we see that H*(W; n4(E))—H*(W; nx(E)®Z) is a monomor-
phism, replacing Q by Z in the previous diagram %). This means that
¢: EX(W)—(EZ)*(W) induces a monomorphism ¢,: E2—+E'2 and hence so
is to: E.—k..

Consider the following commutative diagram

0—>  FPEX(W)/FPEXW) —>  EX(W)/FPEXW)

0— FHEZYX(W )/ F** ELY<(W)— (EZ)(W)/Fr*\(EZ)* (W)

—  EX(W)/FPEXW) —0

—— (E2)X(W)/F*(EZ)*(W)—0
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with exact rows in which {FPE*(W)} and {F?(EZ)*(W)} are the usual
decreasing filtrations of E*(W) and (EZ)*(W) defined by skeletons.
The left vertical map is a monomorphism because ¢o: EZ*>EL* is so.

Hence an induction on p shows that

EX(W)/FPEX(W)—— (EZ)*(W)/FNEZ)*(W)
is a monomorphism for each p. Remark that
EX(W)=lm EX(W)/FPEX(W), (EZ)*(W)EHT?(EZ)*(W)/F"(EZ)*(W)
since the spectral sequences {E,} and {E,} are strongly convergent. Then
we pass to inverse limit and get that

¢: EX(W) — (EZ)X(W)

is a monomorphism.

Lemma 11 combined with Theorem 1 shows Hausdorff-ness of E*(W)
for W having a free R-module Hyo(W)QR.

Theorem 5. Let R be a subving of Q and E be a CW-spectrum such
that ny(E) is free and of finite type as an R-module. If W is a connective
CW-spectrum with Hy(W)QR a free R-module, then E*(W) is Hausdorff.

(Cf., [3] and [20])).
Putting Theorem 2 ii) and Theorem 5 together we have

Corollary 12. Let E be as in the above theorem. Assume that there
exists a connective CW-spectrum W such that Hy(W)QR is a free R-
module and a map f: X— W which induces a monomorphism fy: m(X)QQ—
Tx«(W)RXQ. Then E*(X) is Hausdorf.

4. CW-spectra with Finite Skeletons

4.1. From now on we shall restrict ourselves to CW-spectra with
finite skeletons, i.e., each p-skeleton is a finite CW-spectrum.
First we define a decreasing filtration {C?7”~?} of E*(X?) by

Covb=Tm {E"(X?+s-1) - E*(X?)}
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for each s, 1<s<o where we use the convention X=X".
Let Y be a CW-spectrum with finite skeletons Y?. Assume that mw.(E)

is of finite type as an R-module.

Lemma 13. There exists so=so(p, n)<oo such that CL*~?=Ct»?
if and only if there exists ro=ry(p, n)< oo such that CL"?QQ= Ct," *QQ.

Proof. The “‘only if’’ part is evident.
The “if”” part: Tensoring with @ the decreasing sequence

EnY?)=Ch"?D...DChH"»D...DCHL"?
of finitely generated R-modules, by assumption we have
C{’ )1—D®QD D C‘?’D”_I’®Q —. .= Cﬁ, u-p®Q-

This means that the group C?"~2/C2%"-? is finite because it is a finitely
generated R-module. Therefore we can find s,=s,(p, n)=r, for which
C? n—bp — Cb.n—p

2 p.n7b,

Here we introduce the natural homomorphism
@D ch(D): E"(X) —> TIHX; 7,,(E)®Q)
for each [, defined by the composition

E*(X) 4, (EQ)"(X) = ITHA(X; 74 (E)RQ)— [IHH(X; 7y o E)DQ)

We give some criteria for Hausdorff-ness of E*(Y) for Y having with

finite skeletons.

Theorem 6. Let E be a CW-spectrum such that wy(E) is of finite
type as an R-module where R is a subring of Q, and Y be a CW-spectrum
with finite skeletons. Fix a degree n and let {E,} denote the Atiyah-
Hirzebruch spectral sequence for E*(Y). Then the following conditions are
equivalent (cf., [227])):

i) E**1(Y) is Hausdorf,

iv) the inverse system {E"(Y?)} satisfies the Mittag-Leffler condition,

v) for each p there exists ro=r,(p, n)<oco such that
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Eb:n-p=Fbnp for all r, ry<r<oo,
vi) for each p there exists ro=r,(p, n)<oco such that
Ebn=p=Epn=?,

vii) The homomorphism ch(l)QQ: E”(Y)@Q—»HH”(Y Ty (E)YRQ)
induced by the Chern-Dold character ch: E”(Y)—»HHk(Y T (E)YRQ) is

an epimorphism for each 1.

Proof. The proof of the equivalence of i) and iv)-vi) is the same as
that of [II, Theorem 57].

So we shall prove that vi) is equivalent to vii), using the following
commutative diagram

it ,®Q
>

EN(Y)®Q

c

En( Yl+s)®Q

Ci+s

TTH(Y; 7, (B)BQ) 7 [TV 15 7y (E)RQ)

ik ®
if,4:,89
AR

E(Y)®Q

lcz
___’HH]Z(YI M- 1L(E)®Q)
L b1
for s=1. In the above diagram all vertical maps are the homomorphisms
ch(l)®Q induced by ch(l), and i; ;. : Y'c Y and i,,.: Y'**C Y are the
inclusions. Notice that the homomorphism

ch®Q: E"(X)@Q— LIH*(X; 7, ,(E)®Q)

is an isomorphism for any finite CW-spectrum X. So the vertical maps
€15 S=0, become epimorphisms, and in particular ¢; becomes an isomor-
phism. The bottom horizontal map i},,, s=1, is obviously an isomorphism.

vi)—vii): By [2, Lemma 7 ii)] and Lemma 13 we may assume that
Clitn=1-1@Q = CLib " 11RQ. Take any element xEHHk(Y T-(E)RQ).
Then we can choose an element y,,,€Ciiln1- 1®QCE”(Y’*1)®Q such
that ¢;.1(y;+1) =1F1(x). From hypothesis y;., € CL1"1"1QQ, so we find
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an element yeE*(Y)®Q with i} ,(c(y))=i¥.1(x). Since the injectivity
of if,, shows ¢(y)=x, ¢ is an epimorphism.

vii)—»vi): Take any element y,Cy" 'QQcCE*(Y')Q®Q, ie., y,&
Im{E*(Y"*)Q®Q—E*(Y")®Q}. Since if,; is an isomorphism, there exists
an element xEkI;IIH”(Y; T (EY®Q) with if(x)=c,(y,). By assumption
that c is surjective we get an element ye E”(Y)®Q such that ¢;(i;FQQ(y)) =
¢;(y1), and hence if®Q(y)=1y,. Consequently we obtain

CL®Q=Ch"'®Q.

Using [ 2, Lemma 7 ii)] and Lemma 13 again, this becomes equivalent to
vi).

4.2. We now introduce a condition on E*(X).

Condition R. For each acE*(X) there exists a connective CW-
spectrum W, with Hy(W,)QR a free R-module and a map f,: X—>W,
such that acIm{ f%: EX(W,)—»E*(X)}.

In order to study still more Hausdorff-ness of E*(Y) for Y with finite
skeletons, we shall require the following

Lemma 14. Let Y be a CW-spectrum with finite skeletons. If H*(Y;
Q) satisfies Condition R, then there is a connective CW-spectrum W such
that H (W)®R is a free R-module and a map f: Y—W which induces an
epimorphism f*: H*(W; Q)—H*(Y; Q).

Proof. Assume that Y is (m—1)-connected. First for each &, k=m,
we shall construct a (k—1)-connected CW-spectrum W, with Hyo(W,) QR
a free R-module and a map f,: Y—W, such that fF:H*(W,; Q)—H*(Y; Q)
is an epimorphism.

Let {y} be a system of generators of H*(Y; Q). Note that it is a
finite set. For each generator y there exists a map f,: Y—W, by hypo-
thesis. By considering the direct product of the composite map f;: Y—
W,-W,/ W', we get a map

[ Y— TV, —TIW,/ W4,
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Putting W,=T1W,/W*™, it is (k—1)-connected. The natural map
y
\}{ W'y/Wf,‘l—d;I W,/Wet=W,

is a homotopy equivalence because y runs over a finite set. Therefore

Hy(W)QR= Y H(W,/W:)®R, and it is a free R-module. Moreover
y

we can easily see that f,: Y'— W, induces an epimorphism f%: H*(W,; Q)—

H*(Y; Q), using the following commutative diagram

HW,/WE Q)— HYXW,; Q)
! ! NoFr
HYW,; Q)—-»Hk(IyI V,:Q)— H*Y; Q)

in which the top horizontal map is an epimorphism.

We put W=I1W,. By [21, Theorem 12.87] W is homotopy equivalent
to VW, becausemﬁ;k is (k—1)-connected. Hence W is (m—1)-connected
and Hu(W)®R is a free R-module. We define a map f: Y—-W by the
direct product

F=Ifo: Y—W=T1W,.

Then f*: H*(W; Q)—H*(Y; Q) is evidently an epimorphism because so is
Sf* HYW,; Q)—H*(Y; Q).

Under some hypothesis on E*(Y) we give another criterion for Hausdorff-
ness of £*(Y) for Y having finite skeletons.

Theorem 7. Let E be a CW-spectrum such that wye(E) is free and of
finite type as an R-module wherve R is a subring of Q and Y be a CW-
spectrum with finite skeletons. Assume that E*(Y) satisfies Condition R.
Then the following conditions are equivalent (cf., [207]):

i) E*(Y) is Hausdorf,

viii) H*(Y; Q) satisfies Condition R,
ix) there is a connective CW-spectrum W such that Hy(W)QXR is a
free R-module and a map f:Y—W which induces a monomorphism fy:

T(Y)®Q-7(W)®Q.

Proof. We prove the implications: i)—viii)—ix)—i). The implications
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viii)—ix) and ix)—1i) follow from Lemmas 9 and 14, and Corollary 12.

We use Condition R on E*(Y) to show that i)—viii). Assume that
7,(E)+#0, and fix a non-zero homomorphism 7,(E)®Q—Q. By Theorem 6
ch(n)®Q: E»"(Y)RQ—-TIH*(Y; 7)., (E)®Q) is an epimorphism. So
the composite map =

h(M@Q:E "(NQQ— TIHHY; 4y (E)DQ)— A(Y: Q)

is an epimorphism, too. Hence, for an arbitrary element yeH*(Y; Q)
there exists a=a(y)eE™7(Y) such that (ch(n)@Q)(a®1/N)=y with
N=+0. Under Condition R on E*(Y) we choose a map f,: Y—=W, and
BEE""(W,) such that f%(8)=«. From the naturality of ch(n)®Q it
follows that fﬁ(éﬁ(n)@@(ﬁ@l/]\f)) = y. Consequently we obtain the required
map f,: Y-W,.

4.3. Finally we study examples of cohomology theories E* which
satisfy Condition R.

Recall that every cohomology theory E* is given by E*(X)={X, E}_,.
So an arbitrary element x E7?(X) is represented by a map f,: X— S"E.

As is easily seen, we have

(4.2) E*(X) satisfies Condition R for any CW-spectrum X, if Hy(E)®R

is a free R-module.

Remark that every CW-spectrum is homotopy equivalent to a CW-
spectrum associated with a £2-spectrum [21, Theorem 14.47]. Let E be a
CW-spectrum associated with a £-spectrum {E,}. Then there exists an
isomorphism E?(X)=[ X, E,] for any based CW-complex X [21, Theorem
14.57]. This implies

(4.3) E*(X) satisfies Condition R for any based CW-complex X, if Hy(E,)®
R are free R-modules for sufficiently large p.

As is well known, Hy(MU), m(MU) and 7my(K) are free and of
finite type as Z-modules, but Hx(K) is a Q-module. However K is the
CW-spectrum associated with the Z-spectrum {BU}, and Hyu(BU) is free

as a Z-module.
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(4.2) and (4.3) combined with the above results show

(4.4) 1) (MUR)*(X) satisfies Condition R for any CW-spectrum X,
ii) (KR)*(X) satisfies Condition R for any based CW-complex X.

Applying Theorem 7 to E=MUR or KR and using Corollary 12 we
get

Theorem 8. Let R be a subring of Q and E be a CW-spectrum
such that w(E) is free and of finite type as an R-module.

i) Let Y be a CW-spectrum with finite skeletons. If (MUR)*(Y) is
Hausdorff, then so is E*(Y).

ii) Let Y be a based CW-complex with finite skeletons. I (KR)*(Y)
is Hausdorff, then so is E*(Y).

As a corollary of Theorem 8 i) and ii) we have

Corollary 15. Let Y be a based CW-complex with finite skeletons.
Then (MUR)*(Y) is Hausdorff if and only if (KR)*(Y) is so. (Cf.,
(2.12) and (2.14)).

Let G be a compact Lie group. We denote by BG a classifying space
for G, taken as a based CW-complex with finite skeletons. It was proved
by Bubhstaber-Miscenko [187] that K*(BG) is Hausdorff. From this fact
and Theorem 8 ii) we conclude

Corollary 16. Let E be a CW-spectrum such that wy(E) is free and

of finite type as an R-module. Then E*(BG) is Hausdorff for an arbitrary
compact Lie group G.

As is well known, H.(BG)®Q =0 whenever G is a finite group. By
the aid of Theorem 2 we remark

(4.5) E*(BG) is Hausdorff for any finite group G, even if wyu(E) doesn’t
satisfy the condition stated in Corollary 16.

Appendix

We shall construct the spectral sequence mentioned in (1.2).
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Let I be a partially ordered set and ¥ ={X,, f,s} be a direct system
of CW-spectra and skeletal maps indexed by I. As in [I] we associate
with I a semi-simplicial complex I,={I,},=,. Let I, denote the set of

all non-degenerate n-simplexes of I and put

B%,=V /X,
a'E[n
where X,=X,, and «, is the leading vertex of ¢ for each 0={«,,...,
a,rel,.
First we construct an increasing sequence

(A1) B%¥,cB%¥,c---cB¥,C---
such that
(A.2) B%,/B%, .= S"B%,,.

We start with B¥,=B%,=V X, and proceed inductively. Assume that we
a

have constructed an increasing sequence
B?OCB(KIC "'CB%n_l

and for each m, 1=m=<n—1, skeletal maps p,: WmAJ’”’+—>B‘€m_1 and
T,: B 4™ +*—B%,, such that
B_%mAA.m’+_p;n_)Bgm_1

n n
BEu~d™*—>B%,

is push out.

Let us denote by Fj: A”‘l—ui”cd”, 0<i<n, the standard i-th face
map and by ¢; ,: X,—Xp;,, 05i<n, the maps defined by ¢, ,=fp,., and
$; .,=id for 0<i<n. We define a skeletal map

0,: '.B_g_nAA.,l,+'_)B?n_l
by
pn(x9 F,-ll,)=7l'n_1(¢,“dx, u)

for xe X, and ue4"'. Then, according to [21, Theorem 7.217] there

exists a CW-spectrum B%, having B%,_; as a subspectrum and an extension
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T,: B, ~4"*—>B%, such that

WnAA.nr—t—p—n)Bgn_l
n n
B@u~d™" = B%,

is push out. Moreover the induced map
S"B%,=B%,~4"*/B€,~4"*— B%,/B%,_,

becomes an isomorphism because the above square is push out.

Let B% denote the direct limit formed from the increasing sequence
{B%,},=0- We now observe the spectral sequences {E’} and {E,} for
E(B%) and E*(B¥) associated with the filtration {B%,} of B%. From
definition and (A.2) we obtain

E} ,=E, (B%,/B%, )= Z,Eq(Xa')
a'Ell7

and

E}'=E?*(B%,/B%, )= T1E(X,).

U‘EIP

By the standard argument as in Atiyah-Hirzebruch spectral sequences we
compute the E2- and E,-terms

(A.3) E3 =lim,E,(X,), EL!=1m?EY(X,).

The edge maps coincide with the natural homomorphisms

(A.4) limE,(X,)— E,(B%), E"(B%)—lmE"(X,)

induced by the inclusions ¢,: X,c B€,C B%.

Assume that the underlying ordered set [ is directed. Then direct
limit functor lim is an exact functor. So lim,Ey(X,)=0 for all p=1.
From this we see that the above homology spectral sequence {E7} collapses
and there is an isomorphism

(A5) li—m‘a*: ILI'[;E,,(X“)EE”(B%) .

Let X be a CW-spectrum and ¥ ={X,}, X=UX,, be a direct system
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of subspectra (and inclusions) over a directed set. By an induction process
we can extend the canonical map B%,=V X,— X induced by the inclusions
iy: X,CcX to a map or: B¥—X. Consider the following commutative

triangle

liml,g* 71'*(3%)

o

lim7(X,,) [
limio 7, (X) .

As is well known limi,- is an isomorphism, and so is lim¢,~ because of
(A.5). Hence o: B¥—X induces an isomorphism in homotopy. Thus

(A.6) ©r: B¥—X is a homotopy equivalence.
Consequently we obtain

Theorem. Let E and X be CW-spectra and € ={X,} a direct system
of subspectra of X with X=UX, over a directed set. Then there exists a
spectral sequence {E,} associated with E*(X) by a suitable filtration such
that

Ef ! =lim?E4(X,).
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