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Let h* be an additive cohomology theory and X be a based CW-

complex which is the union of all finite subcomplexes JP-. The subgroups

FxA*(JQ=Ker{&*(Jr)-»/&*(Xx)} gives a topology in the cohomology group

h*(X). In the second paper pi] with the same title we investigated

conditions on /i* and X under which h*(X) is Hausdorff. The purpose of

the present paper is to continue the investigation.

A based CJF-complex X is regarded as a ( —l)-connected CJF-spectrum

in the stable category Q16, 17]. Then every additive cohomology theory

A* defined on the category of based C ̂ -complexes is represented by a

suitable CJF-spectrum E. In the sequel we shall work in the stable cat-

egory of CW-spectra rather than in the category of based CJF-complexes.

An (additive) cohomology theory is written J£* in place of h*. Now it

seems natural that a cohomology theory (£"£)* with coefficient G is defined

by using a Moore spectrum of type G following Adams Q6], but not by

using a co-Moore spectrum of type G as in pi].

In the previous paper we restricted ourselves to the case when /i* is

of finite type as an abelian group. We shall slightly relax the restriction.

Thus we shall discuss mainly conditions that E*(X) is Hausdorff, under

the assumption that n*(E) is of finite type as an R-module where R is

a subring of the rational numbers Q.

First we extend some results of pi] to a C ̂ -spectrum X and a

cohomology theory £"* such that n*(E) is of finite type as an JR-module.

Then we find that Hausdorff-ness of E*(X) is closely related to the exact

sequence
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corresponding to the coefficient sequence 0— »Z— »Z— >Z/Z— »0 (Theorem 1).

This is a very important criterion for Hausdorff-ness of E*(X).

This criterion gives sufficient conditions on X under which E*(X) is

Hausdorff (Theorem 2). And also we show with the aid of it that Hausdorff-

ness of E*(X) is shared by E*(XP) where Xp denotes the p-skeleton of

X (Theorem 4). Using the same criterion we discuss Hausdorff-ness of

E*(W) for W having a free jR-module H*(W)®R, under a certain restric-

tion on 7^(1?) (Theorem 5).

Next we give some criteria for Hausdorff-ness of J£*(F) for F having

finite skeletons (Theorems 6 and 7). Then we apply the above results to

£* = ME/"*, complex cobordism, or J£*, complex X-cohomology. In partic-

ular, we get that E*(BG) is Hausdorff for an arbitrary compact Lie group

G if n*(E) is free and of finite type as an jR-module.

In [[2] we constructed a spectral sequence for a based CJF-complex X

which is a version of the Milnor's short exact sequence. In Appendix we shall

extend the spectral sequence to that for CJF"-spectrum, whose existence

allows us to study Hausdorff-ness of E*(X} of a CfF-spectrum X as well

as a based CJF-complex.

Several results of pi] are repeated, since they are presented here in

greater generality.

Throughout this paper we understand by H^ H* the reduced ordinary

homology and cohomology theories.

Io Cohomology Theories of CFF-speeira

1,1 0 Suppose given a CJF-spectrum E. Then we define the homology

and cohomology groups of CJF-spectra X with coefficient in E by

En(X} = { S, E.X}n, E«(X} = {X, E}.n.

We remark that every additive homology or cohomology theory defined on

the category of based CfiF-complexes is representable with some CW-

spectrum E.

Let X be a CfF-spectrum and UX = {XX} the set of all finite subspectra

of X ordered by inclusions which is directed. We introduce subgroups



COHOMOLOGY THEORIES, III 685

of En(X} by

The inverse system {FxEn(X)} gives E"(X) the structure of a topological

group. The inclusions ix:X
xdX induces a continuous homomorphism

\ \

where ]jmEn(Xx) is topologized by the inverse limit topology.

According to Adams [9, Theorem 1.8],

(1.1) n: E*(X)-*ljmE*(Xx) is an epimorphism for any CW-spectrum X.
\

The proof in Q9] is actually given for a based CfF-complex X, but it

is easily extended to a CfF-spectrum.

By the aid of (1.1) we obtain

Proposition 1. The following conditions are equivalent:

ii) En(X} is Hausdorff,

\\\) EH(X) is complete and Hausdorff^

iv) n: EH(X)-*VmiEH(Xx) is an isomorphism.
x

The proof is just the same as that of pi, Proposition 2].

Let X be any CfF-spectrum which is the union of a direct system of

subspectra Xa over a directed set, i.e., X=\jXa, Then we can give a

version of the Milnor's short exact sequence Q6] (see also £21]) in a form

of a spectral sequence:

(1.2) There exists a spectral sequence {E$'q} associated with E*(X) such

that

And the edge homomorphism of the spectral sequence

coincides with the natural epimorphism n.
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In the case of a based CJF-complex X the spectral sequence mentioned

above was constructed in £2] (or see £16]). But we can construct it for

a CJF-spectrum as well as a based C ̂ -complex. For the sake of complete-

ness we shall give a proof in Appendix.

Using the spectral sequence (1.2) a standard argument shows

Proposition 2B If lim^E'*(.Xx) = 0 for all p^l where Xx runs over

all finite subspectra of X, then E*(X) is Hausdorff.

If 7tn(E) is a finite abelian group for each degree n , then so is

En(Xx). Since [I, Corollary 5] implies that Hm*E*(JFx)=0 for all p^l,

we have

Proposition 3- Assume that Ttn(E) is a finite abelian group for each

n. Then E*(X} is Hausdorff for any CW-spectrum X.

Let us denote by Q the field of rational numbers. Assume that

is a ^-module. Then Dold's theorem £19] (or see pi, Theorem 6]) insists

that there exists a natural isomorphism

(1.3)
k

for any CJF-spectrum X.

Making use of pi, (1.4)] we compute

(1.4)
X X

for all p^l. So we get

Proposition 4. If n^(E) is a Q-module, then E*(X} is Hausdorff

for any CW-spectrum X.

1.2. Let G be an abelian group. We can always construct a Moore

spectrum Af(G) of type G, i.e., nr(MG)=Q for r<0, H0(MG)^G and

Hr(MG) = 0 for r > 0. Given any homomorphism 0 : G— >G' of abelian groups,

we can find a corresponding map /: M(G)-»M(G') of Moore spectra with

(j>. Therefore there exists a cofibering sequence

(1.5) M(G)->M(GO->M(G//)

associated with a short exact sequence 0— >G— >G ;— »G';— >0.
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For any CJF-spectrum E we define the corresponding spectrum with

coefficient group G by

The homology and cohomology theories represented by EG are written

EG*, EG*. For them we have universal coefficient sequences as follows

Q6, Proposition 6.6]:

(1.6) i) There exists an exact sequence

0 — > En(X}®G — » (EG)H(X) — TorC^CST), G) — 0

for any CW -spectrum X, and

ii) if X is a finite CW-spectrum or G is finitely generated, there exists

an exact sequence

0 - > En(X)®G - > CEG)»(Jf) - > Tor(E"+l(X\ G) - > 0.

If there exists a co-Moore spectrum M*(G) of type G, then we may

define a cohomology theory j£*( ; G) by

The two cohomology theories £"G* and £"*( ; G) with the same coefficient

G don't necessarily coincide with each other. (For example, see (2.4)).

So we have to distinguish between them. However we can find a natural

isomorphism between EG* and E*( ; G) in virtue of 5-duality Q21, Theorem

13.2] whenever G is finitely generated.

Let us denote by Z the completion of Z with respect to all of its

subgroups, i.e., Z = Ext(Q/Z, Z). The cofibration (1.5) yields an exact

sequence

(1.7) - > En(X) -^ (EZY(X) -^> (EZ/ZY(X) -$-> En+\X) - >

corresponding to the coefficient sequence 0— >Z— »Z-^-Z/Z— >0 (cf., pi, (4.4)]).

Since both Z and Z/Z are torsion free, (1.6) implies that there are

natural isomorphisms

(1.8) E*( F)(x)f ^ (EZ}*( F), E*( Y)®Z/Z^ (EZ/Z}*( F)
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for any finite CJF-spectrum Y. Moreover, by means of Dold's theorem

(1.3) there exists a natural isomorphism

(1.9) (££/ZnZ) = n#*(*;7rft_B(£)<8)£/Z)
k

for any CJF-spectrum X, because 7t*(E; Z/Z) = n*(E)(g)Z/Z is a (^-module.

In the following commutative diagram

1"
0 - > lim jE»(Zx) - > Km (EZ )» (Zx) - > lim (EZ/Z)n(X^} - > ,

the upper row is exact by (1.7) and the lower one is exact by virtue of

(1.8). All vertical maps are epimorphisms because of (1.1) and in particular

Proposition 4 says that 7T3 is an isomorphism.

A diagram chasing argument shows

Proposition 5* E*(X) is Hausdorff if and only if (EZ)n(X} is

Hausdorff and c: En(X}— >(E%)n(X) is a monomorphism.

2» Localization Zt

2.1. Let R be a subring of the rational numbers Q with unit. Recall

that it is just the integers localized at I where I is the set of all primes

which are not invertible in R, and it is frequently denoted by Zlf Putting

R' = Z;' where lf is the set of primes such that lnl' = {$} and l\jl' =

{all primes}, an easy argument shows that

(2.1) 0 - > Z - > R®R' - > Q - > 0

is exact.

Consider the following commutative diagram

0

with exact rows. The right vertical map n3 is an isomorphism by Proposi-
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tion 4. If we assume that En(X) is Hausdorff, i.e., 7TX is an isomorphism,

then the middle one 7T2 becomes a monomorphism with an application of

"four lemma" and hence it is an isomorphism because of (1.1). Thus

E(R®R')n(X) is Hausdorff. So we obtain

Proposition 6. If En(X} is Hausdorff, then (ER)n(X} is so for any

subring R of Q.

2.2. Assume that n*(E} is an J?-module where 1? is a subring of Q,

i.e., R = Zf. (For example, we might have E=FR). Tt*(E}®Rf is a Q-

module because so is R®&'^R®Ext(R/Z, Z), where Rr = Z^ and Z n / ' =

{$}, Z u J ' = {all primes}. By Proposition 4 (ER')*(X) is always Hausdorff

for any CJF-spectrum X. On the other hand, recall that

(2.2) R^Z^n^p and Z^
pel

Then we get immediately

Lemma 7. Assume that n*(E} is an R-module. Then (EZ)n(X) is

Hausdorff if and only if (ER)n(X) is so.

A graded ^-module A is said to be of finite type as an R-module if

each An is a finitely generated J?-module.

Here we show that (£IZ)*(JT) is Hausdorff under certain finiteness

assumption on

Proposition 8. Assume that n*(E) is of finite type as an R-module.

Then (EZ)*(X) is Hausdorff for any CW-spectrum X.

Proof. By Proposition 2 and Lemma 7 it is sufficient to show that

for all 5^1 where Xx runs over all finite subspectra of X. Note that

J£*(JP) is of finite type as an jR-module. Using (1.6), (2.2) and [I,

Corollary 5] an easy calculation shows

Rpe=l X p&l R k
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Now we obtain an important criterion for £"*(X) being HausdorfL

Theorem 1. Let R be a subring of Q and E be a CW-spectrum such

that 7t^(E) is of finite type as an R-module. Fix a degree n and let X

be an arbitrary CW-spectrum. Then the following conditions are equivalent :

i) En(X} is Hausdorff,

ii) lim1£'w~1(Xx)=0 where JTX runs over all finite subspectra of X,
\

iii) c: En(X)— >(EZ)n(X) is a monomorphism.

Proof. Combining Proposition 5 with Proposition 8 we see that i) and

iii) are equivalent. On the other hand, the spectral sequence (1.2) yields

a short exact sequence

0 - > Ijm1^-1^) - > En(X} _JU ]smE*(X*) - > 0,
X X

because lim^*(Zx) = 0 for all p^2 [14, Theorem 2] (or see [11]). This

implies that i) and ii) are equivalent.

Remark. The condition ii) means that ]jmpEn(Xx)=Q for all p^l.

Let Mq9 M and St be the co-Moore spaces of type (Zq, 2), (Z, 2) and

(Z/Z9 2) given in [II]. By use of them we define cohomology theories

with coefficients Zq, Z and Z/Z which are written £*( ; Zq\ £*( ; Z)

and £*( ; Z/Z) respectively. Assume that n*(E) is of finite type as an

J?-module where R is a proper subring of Q, i.e., R = Zh l^{$}. Then a

parallel discussion to [II, Propositions 8 and 9] shows that

(2.3) p: E*(X; Z)—>m™E*(X; Zp*)
P&I k

is an isomorphism for any CfF-spectrum X, and there are natural isomor-

phisms

(2.4) E*(Y,Z}^E*(Y)®R and E*(Y; Z/Z)^E*(Y) ®R/Z

for any finite C?F-spectrum F, because E*(Mpk)=Q for each p£L More

precisely speaking, we have natural isomorphisms between (ER)* and

£*( ; Z) and between (ER/Z}* and £*( ; Z/Z}.

Further we continue a parallel discussion to [II, 4] so that we get

the following result.
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(2.5) Assume that R is a proper subring of Q and n*(E) is of finite type

as an R-module. Then En(X) is Hausdorff if and only if c: En(X)-+

En(X; %*) is a monomorphism.

2.3. Let A be an abelian group and G a non-zero ^-module. An

easy argument shows

(2.6) A®Q = Q if and only if Horn (A, G)=0.

The universal coefficient theorem yields an isomorphism

(2.7) H*(X; G) ̂  Horn (H*(X), G)

for any CJF-spectrum X. So this implies

(2.8) Hn(X)®Q = Q if and only if H"(X;G)=Q.

Let f: X-+Y be a map of CfF-spectra. In the following commutative

diagram

i \
0 - > Horn (Im/*, G) -> Horn (H*(X)9 G) - > Horn (Ker/^5 G) - > 0,

the row is exact and the vertical map is an epimorphism. By the aid of

(2.6) and (2.7) we get immediately

(2.9) /*: Hn(X)®Q-*Hn(Y)(S)Q is a monomorphism if and only if /*:

Hn(Y\G)-*Hn(X\G) is an epimorphism.

Lemma 9. Assume that n*(E} is a non-zero Q-module.

i) ;r#(Jf)(g)Q = 0 if and only if E*(X)=Q.

ii) Let /: X-+Y be a map. f*:K*(X}®Q-*n*(Y}®Q is a monomor-

phism if and only if f*:E*(Y)-+E*(X) is an epimorphism.

This is immediate, using (2.8), (2.9) and Dold's theorem (1.3).

Taking EZ/Z as E in the above lemma and using Theorem 1 we

obtain

Theorem 2. Let R be a subring of Q and E be a CW-spectrum such

that ft*(E) is of finite type as an R-module.
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i) Let X be a CW-spectrum. If 7T*(JT)(8)<) = 0, then E*(X} is

Hausdorff.

ii) Let f:X-* Y be a map of CW-spectra which induces a monomorphism

f*:ic*(X)®Q-*n#(Y)®Q. If En(Y) is Hausdorff for some degree n,

then En(X) is so, too.

2.4. Let 0: F-*E be a map of CJF-spectra for which <f>*: 7T*(F)(g)(?-»

is an epimorphism. Then it induces an epimorphism

for any CJF-spectrum X, by virtue of Dold's theorem (1.9). From Theorem"

1 (and Proposition 5) we obtain

Theorem 3. Let (j>: F-*E be a map of CW-spectra which induces an

epimorphism </>*:n*(F)(g)Q—*7r*(E)®Q9 and assume that n*(E) is of finite

type as an R-module where R is a subring of Q. If Fn(X) is Hausdorff,

then En(X) is so for the same CW-spectrum X and degree n.

Let us denote by K, KO the BU- and 50-spectrum and by MU9

MSO and MO the Thorn spectrum for U, SO and O. The corresponding

cohomology theories K*, KO* are "complex" and "real" K-cohomologies,

and MU*, MSO* and MO* "complex", "oriented" and "unoriented"

cobordisms. The inclusions £/(?&) c S0(2ri)c.0(2n) yield realifications

r:K - >KO, s:MU - > MSO.

It is known that r*:n*(K)(g)Q->7i:*(KO)®Q and s*: n*(MU)®Q-*7t*(MSO}

are epimorphisms, so we have

(2.10) i) (KOR)n(X) is Hausdorff if (KR)"(X) is so, and

ii) (MSOR)n(X) is Hausdorff if (MUK)n(X) is so.

On the other hand, nn(MO) is a finite abelian group for each degree

n. By Proposition 3 we note

(2.11) (MOR)*(X) is always Hausdorff for any CW-spectrum X.

Let k be the connective 5£/"-spectrum and denote by k* the connective

.K-cohomology. The Thorn map j u c : MU->K is lifted to a morphism £:
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MU-^k, i.e., it coincides with the composite morphism

of ring-spectra. Further the usual morphism ju: MU-* H admits a factoriza-

tion

in which H is the Eilenberg-MacLane spectrum, and both C and y induce

epimorphisms in homotopy.

(2.12) // (MUK)n(X} is Hausdorff, then this is also true for (HR)n(X}>
(kRY(X).

Let X be a connective C?F-spectrum, i.e., (m — l)-connected for some

77i. Recall that the homomorphism of coefficients

is an isomorphism for each non-negative integer i. Making use of Dold's

theorem (1.9) we see easily that the map ^: k-*K induces an isomorphism

for each degree n, n:

Remark that complex Jf-cohomology K* possesses the Bott periodicity,

i.e., the Bott homomorphism

is an isomorphism for each degree n. Therefore, for any connective CW-

spectrum X we get

(2.14) (KR)*(X) is Hausdorff whenever (kR)*(X) is so.

3. Atiyah-Hirzebruch Spectral Sequences

3.1. Let X be a connective CJF-spectrum, and Xp denote its p-skel-

eton. Observe the Atiyah-Hirzebruch spectral sequences {Er} and {Er}

associated to the skeleton filtration of Xp for the cohomology theories
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and (EZ/Z}*. We have the following commutative diagram

Hp(Xp; n_q(E)®Z) = Ep>p - >E*2-'= HP(XP; n_q

I _l
E^q - >Et*q

n n

The top horizontal map and two vertical ones are obviously epimorphisms.

In particular the right one becomes an isomorphism because the spectral

sequence {Er} collapses in virtue of Dold's theorem (1.9). So the middle

horizontal map is an epimorphism, and this implies that the composite map

(3.1)

is an epimorphism.

Lemma 10, Let X be a connective CW-spectrum. If it:

(EZ/Z)n(X) is an epimorphism, then this is true for each p-skeleton Xp.

Proof. Consider the following commutative square

1"

where i: XpdX is the inclusion. Take any element xt=(EZ/Z)n(Xp)9

i.e., x = {xk}<=HIfk(Xp; 7tk_n(E)®Z/Z). Because of (3.1) we may choose
k-^P ^

an element y^(EZ)n(Xp) with Kp(y) = xp. On the other hand, there exists

an element z^(EZ/Z)n(X} with i*(z) = x — xp. Therefore it follows from

the surjectivity of K that tcp: (EZ}n(Xp}-*(EZ/Z)n(Xp} is surjective.

Now we show that Hausdorff-ness of E*(X} is shared by E*(XP).

Theorem 4. Let E be a CW-spectrum such that n*(E) is of finite

type as an R-module where R is a subring of Q, and X be a connective

CW-spectrum. Fix a degree n. Then En(X) is Hausdorjf if and only if

En(Xp) are Hausdorjf for all p and in addition
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Proof. First consider the following commutative diagram

0 - > ]jmlEn-l(X*) - > En(X) _^-» ljmEn(X^ - »0
I j t | l im*pI I r~~

o — >iimlCE2)l'-1Cx*) — >(Ezy(X)j^iun(Ez^(x^ — >o

involving Milnor's short exact sequences (two rows). Recall (2.2) that

Z = R@Rf. By the aid of (2.3) and p, Proposition 6] we compute

lunl(ER^(Xp)~ljmlE^(Xpl Z)^lunlljmE*(X*>; Zq)^ljmlE* (X* \ Zq)=Q.
P P P Q P,q

On the other hand, since n*(E)§<)R' is a ^-module we have

by use of [IT, (1.4)]. Thus Iim1(£^)*(^)=0. So n2 becomes an isomor-

phism.

The "only if" part: Since c: En(X)— >(EZ)n(X) is a monomorphism,

\jmlEn~l(X^=Q and by Lemma 10 t*: En(X*)-+(E2)"(X*) is a monomor-

phism, i.e., En(Xp) is Hausdorff.

The "if" part: The injectivity of cp for each p yields that limcp:

ljmE»(X^^ljm(EZ}n(X^ is injective. And n^. En(X)-*]jmE»(X*) is an

isomorphism because }jmlEn-l(X^ = Q. Hence c: En(X}-*(EZ)n(X) is a

monomorphism, i.e., En(X) is Hausdorff.

3.2o Let R be a subring of Q and IF be a connective CJF-spectrum

such that H*(W}®R is a free J?-module. Assume that n*(E) is a flat

J?-module. Note that an ^-module is flat if and only if it is torsion free

as an abelian group. We observe the Atiyah-Hirzebruch spectral sequence

{Er} for E*(W).

First recall that the inclusion ZaQ induces a natural homomorphism

(3.2) ch: £*(JT) — » (EQ)*(X^TlHk(X; nk.n(E)®Q)
k

for any CJF-spectrum X, called the Chern-Dold character.

Let {'Er} denote the Atiyah-Hirzebruch spectral sequence for (EQ)*

The Chern-Dold character ch: E*( W} -+(EQ) *(JF) yields a morphism
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of spectral sequences. Consider the following commutative square

•>
Since Ext(fl*(JF), n*(E)}^E*tl

R(H*(W}®R, ?:*(£)) = 0 and

##(•£) ®(?)=09 the duality homomorphisms (two horizontal maps) become
isomorphisms by applying the universal coefficient theorem. The right

vertical map is a monomorphism because n*(E} is torsion free. This means

that E2-*
rE2 is a monomorphism.

On the other hand, the spectral sequence { f E r } collapses in virtue of

Dold's theorem (1.3). Therefore we find

(3.3) the Atiyah-Hirzebruch spectral sequence {Er} for E*(W} collapses.

Lemma 11. Assume that n*(E) is a flat R-module. If W is a connec-

tive CW-spectrum such that H*(W}®Ris a free R-module, then c: E*(W}— >

is a monomorphism.

Proof. Let {Er} and {Er} be the Atiyah-Hirzebruch spectral sequences

for £*(JT) and (EZ}*(W} respectively. Since both n*(E) and n*(EZ}^

n*(E}®% are torsion free, the spectral sequences {Er} and {Er} collapse

by (3.3). Then we note that they are strongly convergent [J2, Proposition 9J.

Moreover we see that H*(W\n*(Ey)-*H*(W\n*(E)®2) is a monomor-

phism, replacing Q by Z in the previous diagram #). This means that

c: E*(W)— >(.E^)*(JF) induces a monomorphism C2: E2—*E2 and hence so
is c*,: £„-*£„.

Consider the following commutative diagram
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with exact rows in which {F*E*(W}} and {FP(EZ}*(W}} are the usual

decreasing nitrations of E*(W) and (EZ}*(W} defined by skeletons.

The left vertical map is a monomorphism because £«,: E '£•*—>££•* is so.

Hence an induction on p shows that

is a monomorphism for each p. Remark that

P P

since the spectral sequences {Er} and {Er} are strongly convergent. Then

we pass to inverse limit and get that

is a monomorphism.

Lemma 11 combined with Theorem 1 shows Hausdorff-ness of E*(W}

for W having a free ^-module

Theorem 5. Let R be a subring of Q and E be a CW-spectrum such

that n*(E) is free and of finite type as an R-module. If W is a connective

CW -spectrum with H*(W)®R a free R-module, then E*(W) is Hausdorjf.

(Cf., [3] and [20]).

Putting Theorem 2 ii) and Theorem 5 together we have

Corollary 12, Let E be as in the above theorem. Assume that there

exists a connective CW-spectrum W such that H*(W}®R is a free R-

module and a map f: X-^W which induces a monomorphism f*: n*

Then £*(Jf) is Hausdorjf.

4. CFF-speetra with Finite Skeletons

4.1. From now on we shall restrict ourselves to CJF-spectra with
finite skeletons, i.e., each p-skeleton is a finite CJF-spectrum.

First we define a decreasing filtration {Cp
s>

n~p} of En(Xp) by

€P, n-P = Im E*X*+*-l-+
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for each 5, l^s^oo where we use the convention X=X°°.

Let Fbe a C JF-spectrum with finite skeletons Yp. Assume that n

is of finite type as an R-module,

Lemma 13. There exists sQ=sQ(p, n)<oo such that C^n~p = Cp
s>Q

n

if and only if there exists r0 = r0(p, ra)<oo such that Ct'n~p®Q=C$'Q
n~p(S)

Proof. The "only if" part is evident.

The "if" part: Tensoring with Q the decreasing sequence

of finitely generated J?-modules, by assumption we have

Cp > n~p®Q D • • • => C»f-p®Q = • • • = C& tt-p®Q.

This means that the group €*•"-*/€&"-* is finite because it is a finitely

generated J?-module. Therefore we can find sQ=s0(p, n<) = ro f°r which

Here we introduce the natural homomorphism

(4.1) ch(l): E*(X) - > UHk(X- nk_Hk^i

for each /, defined by the composition

We give some criteria for Hausdorff-ness of U*(F) for Y having with

finite skeletons.

Theorem 6, Let E be a CW-spectrum such that n*(E} is of finite

type as an R-module where R is a subring of Q, and Y be a CW-spectrum

with finite skeletons. Fix a degree n and let {Er} denote the Atiyah-

Hirzebruch spectral sequence for JE'*(F). Then the following conditions are

equivalent (cf., C22]):

i) jE»+1(y) is Hausdorjf,

iv) the inverse system {En(Yp}} satisfies the Mittag-Leffler condition^

v) for each p there exists r0=r0(p, n)<co such that
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EP>Q
n-fi=E%>n-p for all r, r 0^r<oo,

vi) for each p there exists r0=r0(jD, n,)<oo such that

J?P,n-p — fTp,n-P-L'oo — J^rQ 5

vii) The homomorphism ch(l}®O: En(
^

induced by the Chern-Dold character ch: En(Y)-*HHk(Y\ nk_n(E}®Q) is
k

an epimorphism for each I.

Proof. The proof of the equivalence of i) and iv)-vi) is the same as

that of [II, Theorem 5].

So we shall prove that vi) is equivalent to vii), using the following

commutative diagram

for 5^1. In the above diagram all vertical maps are the homomorphisms

ch(l}®Q induced by cA(Z), and iltl+8: Y
ldYl+s and il+s: F

/ + scFare the

inclusions. Notice that the homomorphism

ch®Q: E»(X)®Q >nH»(X; nk.n(E)®Q)
k

is an isomorphism for any finite CJF-spectrum X. So the vertical maps

cl+s, 5^0, become epimorphisms, and in particular cl becomes an isomor-

phism. The bottom horizontal map i*+s9 s^l, is obviously an isomorphism.

vi)—»vii): By [2, Lemma 7 ii)] and Lemma 13 we may assume that

Cir+i,n-i-i(g)Q = Cio+i,n-i-i^)Qf Take any eiement x^UHk(Y; nk_n(E}®Q).
k^i

Then we can choose an element yl+l&Cl
r
+

Q
l'n~l~1(S)Q<^En(Yl^1)(S)Q such

that c/+i(y/+i) = z*+i(#)- From hypothesis j/+1e CL+1>W"/~1(8)^5 so we find
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an element y^En(Y}®Q with j/*rl(c(j)) = jf+i(^)- Since the injectivity

of if+1 shows c(y) = x, c is an epimorphism.

vii)->vi): Take any element yleC!£*-l®QciEn(Yl)®Q9 i.e., jr,e

Im{En(Yl+l)(x)Q->En(Yl)(S)Q}. Since if+1 is an isomorphism, there exists

an element x^T\.Hk(Y\Kk.n{E}®Q} with if(^) = cj(y/)- By assumption
*£/

that c is surjective we get an element y^En(Y}®Q such that Ci(if®Q{ y)) =
ci(j/)j and hence if®Q(y) = yi. Consequently we obtain

Using Q2, Lemma 7 ii)] and Lemma 13 again, this becomes equivalent to

vi).

4.29 We now introduce a condition on

Condition R. For each a^E*(X) there exists a connective CW-

spectrum Wa with H^W^^R a free R-module and a map fa: X->Wa

such that

In order to study still more Hausdorff-ness of £*(F) for F with finite

skeletons, we shall require the following

Lemma 14. Let Y be a CW-spectrum with finite skeletons. If H*(Y;

Q) satisfies Condition R, then there is a connective CW-spectrum W such

that H*(W}®R is a free R-module and a map f: Y-+W which induces an

epimorphism /*: H*(W\ Q)-*H*(Y; Q).

Proof. Assume that F is (m — l)-connected. First for each k, k^m,

we shall construct a (k — l)-connected CfF-spectrum Wk with H*(W^)®R

a free /^-module and a mapfk: Y->Wk such that fl\H\Wk\ Q)->Hk(Y; Q)

is an epimorphism.

Let {y} be a system of generators of Hk(Y;Q). Note that it is a

finite set. For each generator y there exists a map fy : Y-* Wy by hypo-

thesis. By considering the direct product of the composite map f'y: F-*

, we get a map
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Putting Wk = HW 'y/WT1, it is (k - l)-connected. The natural map

is a homotopy equivalence because y runs over a finite set. Therefore

and it is a free ^-module. Moreover
y

we can easily see that fk: Y-*Wk induces an epimorphism /*: Hk(Wk; Q)

Hk(Y; Q), using the following commutative diagram

-Q)—> H"(Wy-Q}
i I \/

Hk(Wk; 0)

in which the top horizontal map is an epimorphism.

We put W=HWk. By [21, Theorem 12.8] W is homotopy equivalent
m^k

to V Wk because Wk is (k — l)-connected. Hence W is (m — l)-connected

and H*(W)®R is a free J?-module. We define a map /: Y-*W by the

direct product

Then /*: Jff*(/F; Q)-*H*(Y; Q} is evidently an epimorphism because so is

/*:#*( IT, ;<?)-*#*( r;0).

Under some hypothesis on £*( F) we give another criterion for Hausdorff-

ness of £*(F) for F having finite skeletons.

Theorem 7. L0£ E be a CW-spectrum such that n*(E) is free and of

finite type as an R-module where R is a subring of Q and Y be a CW-

spectrum with finite skeletons. Assume that £'*(F) satisfies Condition R.

Then the following conditions are equivalent (cf., [20]):

i) E*(T) is Hausdorff,

viii) ^^(F;^) satisfies Condition R9

ix) there is a connective CW-spectrum W such that H*(W}®R is a

free R-module and a map f:Y-+W which induces a monomorphism f%:

Proof. We prove the implications: i)— >viii)— >ix)— »i). The implications
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viii)->ix) and ix)-»i) follow from Lemmas 9 and 14, and Corollary 12.

We use Condition R on J£*(F) to show that i)-»viii). Assume that

, and fix a non-zero homomorphism 7rr(E)§<)Q—*Q. By Theorem 6
n-r(Y}®Q-^HHk(Yink^n+r(E)®Q) is an epimorphism. So

k^n
the composite map

~ch(n)®Q:E*-'(Y)®Q - »IW*(F; itk^r(E}®Q) - >H*(Y; 0)
k^n

is an epimorphism, too. Hence, for an arbitrary element y^Hn(Y; Q)

there exists a = a(y)t=En~r(Y) such that (c&(ra)(x)0(a(x)l/JV~)= y with

Under Condition R on 1£*(F) we choose a map fa: Y-*Wa and
r(Wa} such that /*(#)= a. From the naturality of ch(n)®Q it

follows that /*(cA(^)(x)()(/?(x) I/TV)) = j. Consequently we obtain the required

map/a: F-»ra.

483a Finally we study examples of cohomology theories IT* which

satisfy Condition J?.

Recall that every cohomology theory E* is given by En(X) = {X9 E}-n.

So an arbitrary element x^En(X) is represented by a map fx: X^SHE.

As is easily seen, we have

(4.2) £*(X) satisfies Condition R for any CW-spectrum X, if

is a free R-module.

Remark that every C IF-spectrum is homotopy equivalent to a CW-

spectrum associated with a J2-spectrum |J21, Theorem 14.4J. Let E be a

C JF-spectrum associated with a J2-spectrum {Ep}. Then there exists an

isomorphism EP(X) = \^X, E^\ for any based C ̂ -complex X Q21, Theorem

14.5]. This implies

(4.3) E*(X) satisfies Condition Rfor any based CW-complex X, if H*(Ep)®

R are free R-modules for sufficiently large p.

As is well known, H*(MU)9 n*(MU) and n*(K) are free and of

finite type as Z-modules, but H*(K) is a (2"mO(iule- However K is the

CIF-spectrum associated with the J2-spectrum {BU}9 and H^(BU) is free

as a Z-module.
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(4.2) and (4.3) combined with the above results show

(4.4) i) (MUR)*(X) satisfies Condition R for any CW-spectrum X,

ii) (KR)*(X) satisfies Condition R for any based CW-complex X.

Applying Theorem 7 to E = MUR or KR and using Corollary 12 we

get

Theorem 8. Let R be a subring of Q and E be a CW-spectrum

such that n*(E) is free and of finite type as an R-module.

i) Let Y be a CW-spectrum with finite skeletons. If (MUK)*(Y) is

Hausdorff, then so is E*(Y).

ii) Let Y be a based CW-complex with finite skeletons. If (JLR)*(F)

is Hausdorff, then so is £"*(F).

As a corollary of Theorem 8 i) and ii) we have

Corollary 15. Let Y be a based CW-complex with finite skeletons.

Then (M£7J?)*(F) is Hausdorff if and only if (KK)*(Y) is so. (Cf.,

(2.12) and (2.14)).

Let G be a compact Lie group. We denote by BG a classifying space

for G, taken as a based C^F-complex with finite skeletons. It was proved

by Buhstaber-Miscenko [18] that K*(BG) is Hausdorff. From this fact

and Theorem 8 ii) we conclude

Corollary 16. Let E be a CW-spectrum such that n*(E} is free and

of finite type as an R-module. Then E*(BG) is Hausdorff for an arbitrary

compact Lie group G.

As is well known, H*(BG)®Q = Q whenever G is a finite group. By

the aid of Theorem 2 we remark

(4.5) E*(BG) is Hausdorff for any finite group G, even if n*(E) doesn't

satisfy the condition stated in Corollary 16.

Appendix

We shall construct the spectral sequence mentioned in (1.2).
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Let / be a partially ordered set and & = {Xa9fa/3} be a direct system

of CJF-spectra and skeletal maps indexed by /. As in [TQ we associate

with / a semi-simplicial complex I^ = {fn}n^Q- Let I'n denote the set of

all non-degenerate ft-simplexes of / and put

where Xa. = Xao and aQ is the leading vertex of ff for each

First we construct an increasing sequence

(A.I) B&Q c B(gl c • • • c By>n c •

such that

(A.2)

We start with B&Q = BC£Q = VXa and proceed inductively. Assume that we
a

have constructed an increasing sequence

and for each m, l^m^n — l, skeletal maps pm: B^m^Am'+-^B^m^l and

~ such that

n n
D<V? Am> + > R&n^m^u ^^-B^m

is push out.

Let us denote by F{\ Jw~1->JMcAn , Q<^i^n, the standard i-th face

map and by $itf: x<r-*XFiir, Q^i^n, the maps defined by <fiottr=faoai an(^

(f>it<F = id for Q<i^n. We define a skeletal map

by

pn(x, Fiu)=KH,^ittrx9 u}

for x&Xg. and u^An~l. Then, according to [J21, Theorem 7.21J there

exists a CJF-spectrum jB^K having Be^n^1 as a subspectrum and an extension
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Ttn\ B%n*An>+-*B(gn such that

n

is push out. Moreover the induced map

becomes an isomorphism because the above square is push out.

Let B^ denote the direct limit formed from the increasing sequence

Q. We now observe the spectral sequences {Er} and {Er} for

and E*(Btf) associated with the filtration {B<£n} of B%. From

definition and (A. 2) we obtain

and

By the standard argument as in Atiyah-Hirzebruch spectral sequences we

compute the E2- and .E^-terms

(A.3) Elq = \mpEq(Xa), E»'«=lunPE«(Xa).
a a

The edge maps coincide with the natural homomorphisms

(A.4)

induced by the inclusions ca:

Assume that the underlying ordered set / is directed. Then direct

limit functor Imj is an exact functor. So ]jmpE*(Xa)=Q for all p^l.

From this we see that the above homology spectral sequence {Er} collapses

and there is an isomorphism

(A.5)
a

Let X be a CZF-spectrum and & = {Xa}, X= \jXa, be a direct system
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of subspectra (and inclusions) over a directed set. By an induction process

we can extend the canonical map Be£Q = V Xa— »X induced by the inclusions

ia: Xaa.X to a map w: B^-^X. Consider the following commutative

triangle

As is well known Hmz^* is an isomorphism, and so is Hm£a~ because of

(A. 5). Hence w. Btf-^X induces an isomorphism in homotopy. Thus

(A. 6) w. Btf-^X is a homotopy equivalence.

Consequently we obtain

Theorem., Let E and X be CW-spectra and (£ = {Xa} a direct system

of subspectra of X with X=(jXa over a directed set. Then there exists a

spectral sequence {Er} associated with E*(X) by a suitable filtration such

that
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