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One-parameter Family of Radon-Nikodym Theorems

for States of a von Neumann Algebra

By

Huzihiro ARAKI

Abstract

It is shown that any normal state (p of a von Neumann algebra 972 with a
cyclic and separating vector W satisfying (p^.la)¥ for some />0 has a repre-
sentative vector 0a in Fp for each ae [0,1/2] and 0a = Qa¥ for a Qae9# satis-
fying ||QJ|^/1/2 when ae[0,1/4],

§1. Male Theorem

Let W be a von Neumann algebra on a Hilbert space § with a

unit cyclic and separating vector W. Let Aw be the modular operator

for 991, <F. Let i/£, denote the closure of ^9J!+1F where 9K+ denotes

the positive operators in 501 ([2], [6]).

Our main result is the following theorem:

Theorem 1. For any normal state q> of $Jl such that (p^la>T for

some />0, there exists a vector ^aeF^/ for every ae[0, 1/2] such that

Combined with Theorem 3(8) of [2], Theorem 1 implies the follow-

ing:

Theorem 2. For any normal state cp of %R such that (prgko^,

there exists a gae9Jl for a 6 [0,1/4] such that Q}Qatp=(p, ||QJ^11/2.

Operators ga, such that Qa*F e F^, are characterized in Theorem

3(7) of [2] by the property that of (ga) has an analytic continuation
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for Imze[0, 2a] and ofa(Qa)^0, where <rf denotes the mod-

ular automorphisms of Sft relative to !P.
The special case a=0 gives the non-commutative Radon-Nikodym

derivative of Sakai [7]. The case a = 1/4 gives the Radon-Nikodym

derivative satisfying the chain rule [2].

§2. An Application of Carlson's Uniqueness Theorem

Let f(z) be holomorphic for Rez^O and of exponential type: |f(z)|

i for some T>0 and M>0. Let

(2.1)

Carlson's theorem states that if h(7c/2) + h(-7u/2)<27r, then f(«)=0 for
n=0, 1, 2,... implies f(z) = 0. [5]

If fe^(jR) (the set of C°° -functions with a compact support) and

(2.2)

(2.3)

then crf(<2) has an analytic continuation to the SOl-valued entire function

(2.4)

We have also

(2.5)

If suppf c [ — L, L], then

for some M1>Q (M1=2max(||f ||l5 ||f"|li) for example). Hence

(2.6) i
for M2=M1n.
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Let fe&(R), 0^f(p)gl and f(<?) = l for \q\£\. Let

Then by the strong continuity of fff(Q) in t, we have

(2.7) lime(fA)=<2.
A-> + 0

Lemma 1. Ler S be an invertible positive self-adjoint operator

such that

(2.8) (Q(f )x, Sy) =((jfa(Q(f ))Sx, y)

/or a// fe^(.R), Qe$R ««rf x, yeD s where Ds is any core of S (namely

= S). Then

(2.9) ( Q ( f ) x , e^sy) = (vtz(Q(f))e^s
X, y)

for all complex z, fe^(R), Qe9Jl, x in f/?e domain of ezl°QS and

y in the domain of esl°QS. For real t and Qe$)l,

(2.10) eitlo^Qe-itl^s = ff^t(Q).

Proof. By a limiting procedure, (2.8) holds for all x and y in the

domain of S. Let Da be the set of all vectors which have compact

supports relative to the spectrum of logS. For any x and y in Da,

eziogsx ancj ez\ogSy are vector-valued entire functions of z and

(2.11) \\ez

(2.12) ||^

for some a>0, fc>0, MJC>0 and My>Q. From (2.11), (2.12) and (2.6),

it follows that both sides of (2.9) are entire functions of exponential

type with h(7r/2)=h(-rr/2)=0. If x, yeD a , then emlo^s x=Sm xeD a

and eml°vsy = Sm yeDa. Hence, by repeated use of (2.8), we have

(2.9) for z=0, 1,2,.... By Carlson's theorem, (2.9) holds for all z and

x, y e £>a. Since Da is a core of e*logS for any real A, and since

^iAiogs js bounded for real A, (2.9) holds as stated in the Lemma.
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By a limiting procedure like (2.7), we obtain (2.10) from (2.9).

Q.E.D.

Lemma 2. // a self-adjoint operator S^O satisfies (2.8) for all

and x,yeDs, then

(2.13) (Q(f>, S^y)=(ffia/2(Q({y)S^x9 y)

for all fE&(R), QeWl, x and y in the domain of S1/2.

Proof. Let E be the projection onto the null space of S. By set-

ting x=(l — E)xf in (2.8) for arbitrary xf, we obtain

(Q(f)(i -£)*', SjO=o.

Hence EQ(f)(l-E)=0. Replacing Q by £)*, f by f* and taking the

adjoint, we also have (l-£)g(f)£=0. Hence EQ(f) = EQ(f)E = Q(f)E.

Since the set of Q(f) is dense in 9K by (2.7), we have £e9K'.

Now the proof of Lemma 1 holds for x, y e E|>, and hence we

have (2.9) whenever f e &(K), Q e 9J£, x e £§, j; e £§, x is in the domain

of e
zl°9SE and j; in the domain of e*lo*sE. Setting z = l/2, and using

[^e(f)]=K^L(G(f))]=0, we have (2.13). Q.E.D.

§3 Basic Lemmas

For any closable linear operator A with a dense domain, let \A\ =

(A*A)l/2 and u(^4)=(j^4|~1^4*)*, where the bar denotes the closure.

The operator u(^4) is a partial isometry, whose kernel is the kernel of

\A\, and ^4=u(v4)|^4| is the polar decomposition of A.

Lemma 3 Let Al and Bl be closed linear operators affiliated with

501, A2 and B2 be closed linear operators affiliated with 9JT, and a

be a real number. Assume that either one of the following conditions

holds:

(1) ae[0, 1/2], ¥ is in the domains of Ap AJ, Bj and BJ,j =

1,2.

(2) W is in the domains of Al9 AfyAf, A%,Bl9 J5f, A2, Ay*A%9 A^aB2

and B%.
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Then A1A^/, AfyBl9 A2Ay, Ay*B2 are closable linear operators with

dense domains.

Proof. Let 2lyi and WV2 be the *-algebras of all operators

Q^E^ and Q2e9JT, respectively, such that a'KQ^-EEAfyQAy* have

analytic continuations to entire functions 5%(Qj)9 j = l,2. [2].

If Q2£
<&¥2> then Q2*F is in the domains of A^Afy, (A^A^,)*, A^/B1

and (AfyBi)*:

(3.1) (A1A^Q2W = atix(Q2)A1W,

(3.2)

(3.3)

(3.4)

where A^W and B^ are in the domain of Afy for ae[0, 1/2] due to

(3.5) A^2A¥ = JrA*V

for any A affiliated with 9W and for W in the domains of A and A*9

as can be easily proved by a polar decomposition of A and spectral

resolution of \A\. Since 51^2^ i§ dense, A^A^ and A^Bl are closable

linear operators with dense domains.

Similarly, 31^ *F is in the domains of A2Ay*, (A2Ay*)*, Ay*B2, (Ay*

B2)* and hence A2A'y- and AyB2 are closable linear operators with

dense domains. Q.E.D.

Lemma 4. Let Al and B1 be closed linear operators affiliated

with 501 and A2 and B2 be closed linear operators affiliated with 501',

such that A^Afy, AfyBl9 A2Ay, A^B2 are closable linear operators with

dense domains. Then

(3.6)

(3.7)

Here a is real.
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Proof. For T=A2^yi or Ay*B2, we have

for y in the domain of T and hence for y in the domain of T. Since

X we have

(3.8) (Q(f )x, 7>) =(4«

for all x in the domain of T* and y in the domain of T. We also

have

(Q(f)y, r*x)K2(f)*r*x, >0*=(<*i.(G(f)*)*, TV)*

for x in the domain of T* and j; in the domain of T. Hence the

positive self-adjoint operator S = T*T satisfies

(3-9) (Q(f>, Sy) =(** ,.(Q(f ))Sx, v)

for all x and 3; in the domain of 5. (See (2.5).) By Lemma 2, |T| =

51/2 satisfies

(3-10) (Q(f)x, |r|jO=(trfa(e(f))|T|x, j)

for all x and y in the domain of [T|. From (3.8) and (3.10), we have

(Q(f)x, u(T)|r|j;)=((7fa(e(f))|T||r|-1r*x, v)

=(Q(f)u(T)*x, \T\y)

for x in the domain of T* and 3; in the domain of |T|.

Since u(T)*u(T) is the projection onto the closure of the range of

|T|, we have

(3.11) 2(f)*u(T) = u(T)e(f)*u(T)*u(T) .

1 — u(T)*u(T) is the projection onto the kernel of T and hence onto

the kernel of S = T*T. By the proof of Lemma 2, (3.9) implies that

[Q(f),u(T)*u(T)]=0. Hence (3.11) implies

u(T) = u(T)u(T)*u(T)Q(f ) = u(T)Q(f ) .
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Hence u(T)eSR'.

A similar proof holds for A^A^ and AfyB^ where 501 is replaced

by W. Q.E.D.

Lemma 5. The vectors

(3.12)

for Qe2R and f e ^(K) are w V$ and dense in V$ for ae [0,1/2].

The vectors

(3.13) Q'(f )* f- 2 £.(e'(f )*) = e'(f )^ £a~ ' Q'(f )* ̂
/or Q'e9JT and fe^(/?) are in V$ and dense in Vfy for a e [0,1/2].

Proof. Since #=6(f)0^2ia(6(f)*) nas an analytic continuation

which is obviously positive for z = ia,qW is in V%, by Theorem 3 (7)

of [2].

By definition, A%,O2lF,Q£Wl+ is dense in Vfy. If Q(fi)*=Q(f*)

are uniformly bounded and 2(fA)->2 strongly, then 2(fA)2-^22 strongly.

Since d(a) = \\A%,(Q(fJ2 -Q2)¥\\2 is convex in a and d(0) = d(l/2)->0, we

have A$Q(fJ2lF->A%,Q2lF. Hence the vectors

for Q = Q*e2R, ge^(K) and g*=g are dense in F§/ where f(f)=g(f +

ia), ^-ia(6(g))==G(f)- This completes the proof of the first half.
The second half is obtained from the first half by

for Q'=JvQJ^emr (Q=JVQ'J^) and 0=(l/2)-a, due to /^F^=F^
(Theorem 3(4) of [2]). Q.E.D.

Lemma 6. Let A^ A2, Bl9 B2 be as in Lemma 3 and oce[0, 1].
Then

(3.14) 1^^5,1 !P 6 K§/2, M^J^eF?/2 ,
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(3.15) \A2Ay VeV^-rtl2, \A^

Proof. Since ^l^f is in the domain of T for T=A2Ay* and for

T=Ay*B2, it is also in the domain of |T|. For Qe^Jl and fe&(R),

we have

by (3.10). Since Q(f)<r±ia(Q(f)*)Y are dense in F|/2, we have \T\We

Fip1-*)/2 due to Theorem 3(5) of [2].

Similarly we have

for T=A^ and for Tf=A^Blf Hence |

Q.E.D.

§4. Proof of Theorem 1

A vector (P is called a representative of a state 9 if the vector state

(D0 is p.

Lemma 7. // normal state <p has a representative vector in

then it has a representative vector <j>x in V%, for each a e [1/4, 1/2].

Proof. Let $eF,J//2 and oj0 = cp. There exists a self-adjoint opera-

tor ^2^0 affiliated with 501' such that W is in the domain of A2 (=A%)

and $=A2W. [8]. By Lemma 3, A2A^/ is a closable linear operator

with a dense domain for O^jS^l/2. Let

(4.1) $. = \A2AJ\V, a=(l-/0/2e[l/4, 1/2].

By Lemma 6, $KeF§<. By Lemma 4, u = u(A2A^)eW. Furthermore,

u*u\A2A^\=\A2A^\ and
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Hence, as states of 951, we have the following equalities:

Q.E.D.

Lemma 8. // Q' eW and Q'WeV^4-, then (Q')*Y is in the domain

of A^1.

Proof. By Theorem 4(2) of [2],

Since Q'W is in the domain of A^1/2 for any Q' e2R', (Q')*Y must be

in the domain of A^1. Q.E.D.

Proof of Theorem 1: It is well-known that (p<^lcov implies the

existence of A2e(W)+ such that ^=A2
1P (eV^/2) is a representative

of (p. By Lemma 7, <p has a representative #1/4 in V^/4. (This is

also obtained in Theorem 6 of [2].) By Theorem 3(8) of [2], there

exists Qe9[R such that <Pl/4 = QW. By Theorem 4(2) of [2], ^1/4=J^^1/4

=(JWQJW)W. Set Q'-J^QJ^e^'. By Lemma 8 (Q')*Y is in the domain

of Ay1 and hence in the domain of A^f for any j8e[0, 1]. By Lemma

3, Q'A^f is a closable linear operator with a dense domain. Let

^IQ'AjPW, a=(l-/0/2e[0, 1/2].

By the same argument as the proof of Lemma 7, (Pa is a representative

vector of the state cp in FSJ,. Q.E.D.

Remark. If cp^Jco^, then there exists ^42e(SOf!')+ such that

/1 / 2 and co0=(p for ^==y42¥ /. For any a e [0,1/2], co0=co0a implies

the existence of a partial isometry t;ae9K' such that @x = v(X<P = QxW9

Qx = vaA2. Then Q.69K' and ||6

§5. Additional Remarks

The following Lemma is a variation of Lemma 6, which will be

used in [4],
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Lemma 9. Let /zesDl+. Then

(5.1) \hV"Ay(2n)\nV

Proof. By setting T=/?1/w^^ / (2" ) and replacing QeSR by Q'eW
in the proof of Lemma 4, we obtain

(G'(f)x, |Tb)=(rfi/(2n)(e/(f))ir|x, jo

for all x and y in the domain of |T|. (cf. (3.10).) By repeated use,
we have

(Q'(f)x, \T\»y)=(<7*i/2(Q'(mT\»x, >')

for all x and >' in the domain of |T|".

By replacing \T\ by |T|", geSR by Q'eW9a+ia by af_ i a and
setting a = 1/2 in the proof of Lemma 6, we obtain

Q.E.D.
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