One-parameter Family of Radon-Nikodym Theorems for States of a von Neumann Algebra

By

Huzihiro Araki

Abstract

It is shown that any normal state φ of a von Neumann algebra \mathfrak{M} with a cyclic and separating vector Ψ satisfying $\varphi \leq l\omega_{\mathbb{F}}$ for some l>0 has a representative vector Φ_{α} in $V_{\mathbb{F}}^{\alpha}$ for each $\alpha \in [0, 1/2]$ and $\Phi_{\alpha} = Q_{\alpha}\Psi$ for a $Q_{\alpha} \in \mathfrak{M}$ satisfying $\|Q_{\alpha}\| \leq l^{1/2}$ when $\alpha \in [0, 1/4]$.

§1. Main Theorem

Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathfrak{H} with a unit cyclic and separating vector Ψ . Let Δ_{Ψ} be the modular operator for \mathfrak{M}, Ψ . Let $V_{\Psi}^{\mathfrak{T}}$ denote the closure of $\Delta_{\Psi}^{\mathfrak{T}}\mathfrak{M}^{+}\Psi$ where \mathfrak{M}^{+} denotes the positive operators in \mathfrak{M} ([2], [6]).

Our main result is the following theorem:

Theorem 1. For any normal state φ of \mathfrak{M} such that $\varphi \leq |\omega_{\Psi}|$ for some l>0, there exists a vector $\Phi_{\alpha} \in V_{\Psi}^{\alpha}$ for every $\alpha \in [0, 1/2]$ such that $\omega_{\Phi_{\alpha}} = \varphi$.

Combined with Theorem 3(8) of [2], Theorem 1 implies the following:

Theorem 2. For any normal state φ of \mathfrak{M} such that $\varphi \leq |\omega_{\Psi}$, there exists a $Q_{\alpha} \in \mathfrak{M}$ for $\alpha \in [0, 1/4]$ such that $\omega_{Q_{\alpha}\Psi} = \varphi$, $||Q_{\alpha}|| \leq l^{1/2}$.

Operators Q_{α} , such that $Q_{\alpha}\Psi \in V_{\alpha}^{\varphi}$, are characterized in Theorem 3(7) of [2] by the property that $\sigma_{t}^{\psi}(Q_{\alpha})$ has an analytic continuation

Received July 13, 1973.

 $\sigma_z^{\psi}(Q_{\alpha}) \in \mathfrak{M}$ for $\operatorname{Im} z \in [0, 2\alpha]$ and $\sigma_{i\alpha}^{\psi}(Q_{\alpha}) \geq 0$, where σ_i^{ψ} denotes the modular automorphisms of \mathfrak{M} relative to Ψ .

The special case $\alpha = 0$ gives the non-commutative Radon-Nikodym derivative of Sakai [7]. The case $\alpha = 1/4$ gives the Radon-Nikodym derivative satisfying the chain rule [2].

§2. An Application of Carlson's Uniqueness Theorem

Let f(z) be holomorphic for $\operatorname{Re} z \ge 0$ and of exponential type: $|f(z)| \le M e^{\tau |z|}$ for some $\tau > 0$ and M > 0. Let

(2.1)
$$h(\theta) = \overline{\lim}_{r \to \infty} r^{-1} \log |\tilde{f}(re^{i\theta})|, \qquad |\theta| \le \pi/2.$$

Carlson's theorem states that if $h(\pi/2) + h(-\pi/2) < 2\pi$, then f(n)=0 for n=0, 1, 2,... implies $f(z)\equiv 0$. [5]

If $\tilde{f} \in \mathscr{D}(R)$ (the set of C^{∞} -functions with a compact support) and

(2.2)
$$f(t) = (2\pi)^{-1} \int \tilde{f}(p) e^{-ipt} dp,$$

(2.3)
$$Q(f) = \int \sigma_s^{\psi}(Q) f(s) ds,$$

then $\sigma_t^{\psi}(Q)$ has an analytic continuation to the \mathfrak{M} -valued entire function

(2.4)
$$\sigma_z^{\psi}(Q(\mathbf{f})) = Q(\mathbf{f}_z), \qquad \mathbf{f}_z(s) = \mathbf{f}(s-z).$$

We have also

(2.5)
$$\sigma_{z_1}^{\psi}(\sigma_{z_2}^{\psi}[Q(f)]) = \sigma_{z_1+z_2}^{\psi}(Q(f)).$$

If supp $\tilde{f} \subset [-L, L]$, then

$$|f(t+iz)| \leq M_1 e^{L|\operatorname{Rez}|} (1 + (t - \operatorname{Im} z)^2)^{-1}$$

for some $M_1 > 0$ $(M_1 = 2 \max(\|\tilde{f}\|_1, \|\tilde{f}''\|_1)$ for example). Hence

$$(2.6) \qquad \qquad \|\sigma_{iz}^{\psi}(Q(\mathbf{f}))\| \leq M_2 e^{L|\operatorname{Re}z|} \|Q\|$$

for $M_2 = M_1 \pi$.

Let $\tilde{f} \in \mathscr{D}(R)$, $0 \leq \tilde{f}(p) \leq 1$ and $\tilde{f}(q) = 1$ for $|q| \leq 1$. Let

$$\tilde{\mathbf{f}}_{\lambda}(p) = \tilde{\mathbf{f}}(\lambda p), \qquad \mathbf{f}_{\lambda}(t) = \lambda^{-1} \mathbf{f}(t/\lambda).$$

Then by the strong continuity of $\sigma_t^{\psi}(Q)$ in t, we have

(2.7)
$$\lim_{\lambda \to +0} Q(\mathbf{f}_{\lambda}) = Q \, .$$

Lemma 1. Let S be an invertible positive self-adjoint operator such that

(2.8)
$$(Q(f)x, Sy) = (\sigma_{i\alpha}^{\psi}(Q(f))Sx, y)$$

for all $\tilde{f} \in \mathcal{D}(R)$, $Q \in \mathfrak{M}$ and $x, y \in D_S$ where D_S is any core of S (namely $\overline{S|D_S}=S$). Then

(2.9)
$$(Q(f)x, e^{\overline{z}\log S}y) = (\sigma_{i\alpha z}^{\psi}(Q(f))e^{z\log S}x, y)$$

for all complex $z, \tilde{f} \in \mathcal{D}(R), Q \in \mathfrak{M}, x$ in the domain of $e^{z \log S}$ and y in the domain of $e^{\overline{z} \log S}$. For real t and $Q \in \mathfrak{M}$,

(2.10)
$$e^{it\log S}Qe^{-it\log S} = \sigma^{\psi}_{-\alpha t}(Q).$$

Proof. By a limiting procedure, (2.8) holds for all x and y in the domain of S. Let D_a be the set of all vectors which have compact supports relative to the spectrum of log S. For any x and y in D_a , $e^{z \log S}x$ and $e^{z \log S}y$ are vector-valued entire functions of z and

$$(2.11) \|e^{z\log S}x\| \leq M_r e^{a|\operatorname{Re}z|},$$

$$(2.12) \|e^{\bar{z}\log S}y\| \leq M_{y}e^{b|\operatorname{Re}z|},$$

for some a>0, b>0, $M_x>0$ and $M_y>0$. From (2.11), (2.12) and (2.6), it follows that both sides of (2.9) are entire functions of exponential type with $h(\pi/2)=h(-\pi/2)=0$. If $x, y \in D_a$, then $e^{m\log S} x=S^m x \in D_a$ and $e^{m\log S}y=S^m y \in D_a$. Hence, by repeated use of (2.8), we have (2.9) for $z=0, 1, 2, \ldots$. By Carlson's theorem, (2.9) holds for all z and $x, y \in D_a$. Since D_a is a core of $e^{\lambda \log S}$ for any real λ , and since $e^{i\lambda \log S}$ is bounded for real λ , (2.9) holds as stated in the Lemma. By a limiting procedure like (2.7), we obtain (2.10) from (2.9). Q. E. D.

Lemma 2. If a self-adjoint operator $S \ge 0$ satisfies (2.8) for all $\tilde{f} \in \mathcal{D}(R), Q \in \mathfrak{M}$ and $x, y \in D_S$, then

(2.13)
$$(Q(f)x, S^{1/2}y) = (\sigma_{i\alpha/2}^{\psi}(Q(f))S^{1/2}x, y)$$

for all $\tilde{f} \in \mathscr{D}(R)$, $Q \in \mathfrak{M}$, x and y in the domain of $S^{1/2}$.

Proof. Let E be the projection onto the null space of S. By setting x = (1-E)x' in (2.8) for arbitrary x', we obtain

$$(Q(f)(1-E)x', Sy) = 0.$$

Hence EQ(f)(1-E)=0. Replacing Q by Q^{*}, f by f^{*} and taking the adjoint, we also have (1-E)Q(f)E=0. Hence EQ(f)=EQ(f)E=Q(f)E. Since the set of Q(f) is dense in \mathfrak{M} by (2.7), we have $E \in \mathfrak{M}'$.

Now the proof of Lemma 1 holds for $x, y \in E\mathfrak{H}$, and hence we have (2.9) whenever $\tilde{f} \in \mathcal{D}(R), Q \in \mathfrak{M}, x \in E\mathfrak{H}, y \in E\mathfrak{H}, x$ is in the domain of $e^{z \log S} E$ and y in the domain of $e^{\bar{z} \log S} E$. Setting z = 1/2, and using $[E, Q(f)] = [E, \sigma_{i\alpha z}^{\psi}(Q(f))] = 0$, we have (2.13). Q.E.D.

§3 Basic Lemmas

For any closable linear operator A with a dense domain, let $|A| = (A^*\overline{A})^{1/2}$ and $u(A) = (|A|^{-1}A^*)^*$, where the bar denotes the closure. The operator u(A) is a partial isometry, whose kernel is the kernel of |A|, and $\overline{A} = u(A)|A|$ is the polar decomposition of A.

Lemma 3 Let A_1 and B_1 be closed linear operators affiliated with \mathfrak{M} , A_2 and B_2 be closed linear operators affiliated with \mathfrak{M}' , and α be a real number. Assume that either one of the following conditions holds:

- (1) $\alpha \in [0, 1/2], \Psi$ is in the domains of A_j, A_j^*, B_j and $B_j^*, j = 1, 2$.
- (2) Ψ is in the domains of A_1 , $\Delta_{\Psi}^{\alpha}A_1^*$, $\Delta_{\Psi}^{\alpha}B_1$, B_1^* , A_2 , $\Delta_{\Psi}^{-\alpha}A_2^*$, $\Delta_{\Psi}^{-\alpha}B_2$ and B_2^* .

Then $A_1 \Delta_{\Psi}^{\alpha}$, $\Delta_{\Psi}^{\alpha} B_1$, $A_2 \Delta_{\Psi}^{-\alpha}$, $\Delta_{\Psi}^{-\alpha} B_2$ are closable linear operators with dense domains.

Proof. Let \mathfrak{A}_{Ψ_1} and \mathfrak{A}_{Ψ_2} be the *-algebras of all operators $Q_1 \in \mathfrak{M}$ and $Q_2 \in \mathfrak{M}'$, respectively, such that $\bar{\sigma}_t^{\psi}(Q_j) \equiv \Delta_{\Psi}^{it} Q \Delta_{\Psi}^{-it}$ have analytic continuations to entire functions $\bar{\sigma}_z^{\psi}(Q_j)$, j=1, 2. [2].

If $Q_2 \in \mathfrak{A}_{\Psi 2}$, then $Q_2 \Psi$ is in the domains of $A_1 \Delta_{\Psi}^{\mathfrak{a}}$, $(A_1 \Delta_{\Psi}^{\mathfrak{a}})^*$, $\Delta_{\Psi}^{\mathfrak{a}} B_1$ and $(\Delta_{\Psi}^{\mathfrak{a}} B_1)^*$:

(3.1)
$$(A_1 \varDelta_{\Psi}^{\alpha}) Q_2 \Psi = \bar{\sigma}_{-i\alpha}^{\psi} (Q_2) A_1 \Psi,$$

(3.2)
$$(A_1 \Delta_{\Psi}^{\alpha})^* Q_2 \Psi = \bar{\sigma}_{-i\alpha}^{\psi} (Q_2) \Delta_{\Psi}^{\alpha} A_1^* \Psi,$$

(3.3) $(\Delta_{\Psi}^{\alpha}B_1)Q_2\Psi = \bar{\sigma}_{-i\alpha}^{\psi}(Q_2)\Delta_{\Psi}^{\alpha}B_1\Psi,$

(3.4)
$$(\Delta_{\Psi}^{\alpha}B_1)^*Q_2\Psi = \bar{\sigma}_{-i\alpha}^{\psi}(Q_2)B_1^*\Psi,$$

where $A_1^*\Psi$ and $B_1\Psi$ are in the domain of Δ_{Ψ}^{α} for $\alpha \in [0, 1/2]$ due to

$$(3.5) \qquad \qquad \Delta_{\Psi}^{1/2} A \Psi = J_{\Psi} A^* \Psi$$

for any A affiliated with \mathfrak{M} and for Ψ in the domains of A and A^* , as can be easily proved by a polar decomposition of A and spectral resolution of |A|. Since $\mathfrak{A}_{\Psi 2}\Psi$ is dense, $A_1 \Delta_{\Psi}^{\mathfrak{a}}$ and $\Delta_{\Psi}^{\mathfrak{a}}B_1$ are closable linear operators with dense domains.

Similarly, $\mathfrak{A}_{\Psi^1}\Psi$ is in the domains of $A_2 \Delta_{\Psi^{\alpha}}^{-\alpha}$, $(A_2 \Delta_{\Psi^{\alpha}}^{-\alpha})^*$, $\Delta_{\Psi^{\alpha}}^{-\alpha}B_2$, $(\Delta_{\Psi^{\alpha}}^{-\alpha}B_2)^*$ and hence $A_2 \Delta_{\Psi^{\alpha}}^{-\alpha}$ and $\Delta_{\Psi^{\alpha}}^{-\alpha}B_2$ are closable linear operators with dense domains. Q.E.D.

Lemma 4. Let A_1 and B_1 be closed linear operators affiliated with \mathfrak{M} and A_2 and B_2 be closed linear operators affiliated with \mathfrak{M}' , such that $A_1 \Delta_{\Psi}^{\alpha}, \Delta_{\Psi}^{\alpha} B_1, A_2 \Delta_{\Psi}^{-\alpha}, \Delta_{\Psi}^{-\alpha} B_2$ are closable linear operators with dense domains. Then

(3.6)
$$u(A_1 \Delta_{\Psi}^{\alpha}) \in \mathfrak{M}, \quad u(\Delta_{\Psi}^{\alpha} B_1) \in \mathfrak{M},$$

(3.7)
$$u(A_2 \Delta_{\Psi}^{-\alpha}) \in \mathfrak{M}', \quad u(\Delta_{\Psi}^{-\alpha} B_2) \in \mathfrak{M}'.$$

Here α is real.

Proof. For $T = A_2 \Delta_{\Psi}^{-\alpha}$ or $\Delta_{\Psi}^{-\alpha} B_2$, we have

$$Q(f)^* \overline{T} y = \overline{T} \sigma_{-i\alpha}^{\psi} (Q(f)^*) y$$

for y in the domain of T and hence for y in the domain of \overline{T} . Since $\sigma_{-i\alpha}^{\psi}(Q(f)^*)^* = \sigma_{i\alpha}^{\psi}(Q(f))$, we have

(3.8)
$$(Q(f)x, \overline{T}y) = (\sigma_{i\alpha}^{\psi}(Q(f))T^*x, y)$$

for all x in the domain of T^* and y in the domain of \overline{T} . We also have

$$(Q(f)y, T^*x) = (Q(f)^*T^*x, y)^* = (\sigma_{i\alpha}^{\psi}(Q(f)^*)x, \overline{T}y)^*$$
$$= (\sigma_{i\alpha}^{\psi}(Q(f))\overline{T}y, x)$$

for x in the domain of T^* and y in the domain of \overline{T} . Hence the positive self-adjoint operator $S = T^*\overline{T}$ satisfies

(3.9)
$$(Q(f)x, Sy) = (\sigma_{2ia}^{\psi}(Q(f))Sx, y)$$

for all x and y in the domain of S. (See (2.5).) By Lemma 2, $|T| = S^{1/2}$ satisfies

(3.10)
$$(Q(f)x, |T|y) = (\sigma_{i\alpha}^{\psi}(Q(f))|T|x, y)$$

for all x and y in the domain of |T|. From (3.8) and (3.10), we have

$$(Q(f)x, u(T)|T|y) = (\sigma_{i\alpha}^{\psi}(Q(f))|T||T|^{-1}T^*x, y)$$

= (Q(f)u(T)*x, |T|y)

for x in the domain of T^* and y in the domain of |T|.

Since $u(T)^*u(T)$ is the projection onto the closure of the range of |T|, we have

(3.11)
$$Q(f)^* u(T) = u(T)Q(f)^* u(T)^* u(T).$$

 $1-u(T)^*u(T)$ is the projection onto the kernel of T and hence onto the kernel of $S=T^*T$. By the proof of Lemma 2, (3.9) implies that $[Q(f), u(T)^*u(T)]=0$. Hence (3.11) implies

$$Q(f)^* u(T) = u(T)u(T)^* u(T)Q(f) = u(T)Q(f).$$

Hence $u(T) \in \mathfrak{M}'$.

A similar proof holds for $A_1 \Delta_{\Psi}^{\alpha}$ and $\Delta_{\Psi}^{\alpha} B_1$, where \mathfrak{M} is replaced by \mathfrak{M}' . Q.E.D.

Lemma 5. The vectors

(3.12)
$$Q(f)\sigma_{2i\alpha}^{\psi}(Q(f)^*)\Psi = Q(f)\Delta_{\Psi}^{2\alpha}Q(f)^*\Psi$$

for $Q \in \mathfrak{M}$ and $\tilde{f} \in \mathscr{D}(R)$ are in V_{Ψ}^{α} and dense in V_{Ψ}^{α} for $\alpha \in [0, 1/2]$. The vectors

(3.13)
$$Q'(f)\bar{\sigma}_{i-2i\alpha}^{\psi}(Q'(f)^*) = Q'(f)\Delta_{\Psi}^{2\alpha-1}Q'(f)^*\Psi$$

for $Q' \in \mathfrak{M}'$ and $\tilde{f} \in \mathfrak{D}(R)$ are in V_{Ψ}^{α} and dense in V_{Ψ}^{α} for $\alpha \in [0, 1/2]$.

Proof. Since $q = Q(f)\sigma_{-2i\alpha}^{\psi}(Q(f)^*)$ has an analytic continuation

 $\sigma_z^{\psi}(q) = \sigma_z^{\psi}[Q(\mathbf{f})](\sigma_{\bar{z}+2i\alpha}^{\psi}[Q(\mathbf{f})])^*$

which is obviously positive for $z = i\alpha$, $q\Psi$ is in V_{Ψ}^{α} by Theorem 3(7) of [2].

By definition, $\Delta_{\Psi}^{\alpha}Q^{2}\Psi, Q \in \mathfrak{M}^{+}$ is dense in V_{Ψ}^{α} . If $Q(f_{\lambda})^{*} = Q(f_{\lambda})$ are uniformly bounded and $Q(f_{\lambda}) \rightarrow Q$ strongly, then $Q(f_{\lambda})^{2} \rightarrow Q^{2}$ strongly. Since $d(\alpha) = \|\Delta_{\Psi}^{\alpha}(Q(f_{\lambda})^{2} - Q^{2})\Psi\|^{2}$ is convex in α and $d(0) = d(1/2) \rightarrow 0$, we have $\Delta_{\Psi}^{\alpha}Q(f_{\lambda})^{2}\Psi \rightarrow \Delta_{\Psi}^{\alpha}Q^{2}\Psi$. Hence the vectors

$$\Delta_{\Psi}^{\alpha}Q(g)^{2}\Psi = Q(f)\sigma_{-2i\alpha}^{\psi}(Q(f)^{*})\Psi$$

for $Q = Q^* \in \mathfrak{M}$, $\tilde{g} \in \mathscr{D}(R)$ and $g^* = g$ are dense in V^{α}_{Ψ} where $f(t) = g(t + i\alpha)$, $\sigma^{\psi}_{-i\alpha}(Q(g)) = Q(f)$. This completes the proof of the first half.

The second half is obtained from the first half by

$$J_{\Psi}Q(\mathbf{f})\sigma^{\psi}_{-2i\beta}(Q(\mathbf{f})^{*})\Psi = Q'(\mathbf{f}^{*})\bar{\sigma}^{\psi}_{2i\beta}(Q'(\mathbf{f}^{*})^{*})\Psi$$

for $Q' = J_{\Psi}QJ_{\Psi} \in \mathfrak{M}' (Q = J_{\Psi}Q'J_{\Psi})$ and $\beta = (1/2) - \alpha$, due to $J_{\Psi}V_{\Psi}^{\beta} = V_{\Psi}^{\alpha}$ (Theorem 3(4) of [2]). Q.E.D.

Lemma 6. Let A_1 , A_2 , B_1 , B_2 be as in Lemma 3 and $\alpha \in [0, 1]$. Then

(3.14) $|A_1 \Delta_{\Psi}^{\alpha}| \Psi \in V_{\Psi}^{\alpha/2}, \qquad |\Delta_{\Psi}^{\alpha} B_1| \Psi \in V_{\Psi}^{\alpha/2},$

```
Huzihiro Araki
```

(3.15)
$$|A_2 \Delta_{\Psi}^{-\alpha}| \Psi \in V_{\Psi}^{(1-\alpha)/2}, \quad |\Delta_{\Psi}^{-\alpha} B_2| \Psi \in V_{\Psi}^{(1-\alpha)/2}.$$

Proof. Since $\mathfrak{A}_{\Psi^1}\Psi$ is in the domain of T for $T=A_2 \Delta_{\Psi}^{-\alpha}$ and for $T=\Delta_{\Psi}^{-\alpha}B_2$, it is also in the domain of |T|. For $Q \in \mathfrak{M}$ and $\tilde{f} \in \mathscr{D}(R)$, we have

$$(Q(f)\sigma_{i\alpha}^{\Psi}(Q(f)^{*})\Psi, |T|\Psi) = (\sigma_{i\alpha}^{\Psi}(Q(f))|T|\sigma_{-i\alpha}^{\Psi}(Q(f)^{*})\Psi, \Psi)$$
$$= (|T|\sigma_{i\alpha}^{\Psi}(Q(f)^{*})\Psi, \sigma_{-i\alpha}^{\Psi}(Q(f)^{*})\Psi) \ge 0.$$

by (3.10). Since $Q(f)\sigma_{i\alpha}^{\psi}(Q(f)^*)\Psi$ are dense in $V_{\Psi}^{\alpha/2}$, we have $|T|\Psi \in V_{\Psi}^{(1-\alpha)/2}$ due to Theorem 3(5) of [2].

Similarly we have

$$(Q'(f)\bar{\sigma}_{i\alpha}^{\psi}(Q'(f)^*)\Psi, |T'|\Psi)$$

=(|T'| $\bar{\sigma}_{i\alpha}^{\psi}(Q'(f)^*)\Psi, \bar{\sigma}_{i\alpha}^{\psi}(Q'(f)^*)\Psi \ge 0$

for $T' = A_1 \Delta_{\Psi}^{\alpha}$ and for $T' = \Delta_{\Psi}^{\alpha} B_1$. Hence $|T'| \Psi \in (V_{\Psi}^{(1-\alpha)/2})' = V_{\Psi}^{\alpha/2}$. Q.E.D.

§4. Proof of Theorem 1

A vector Φ is called a representative of a state φ if the vector state ω_{Φ} is φ .

Lemma 7. If normal state φ has a representative vector in $V_{\Psi}^{1/2}$, then it has a representative vector Φ_{α} in V_{Ψ}^{α} for each $\alpha \in [1/4, 1/2]$.

Proof. Let $\Phi \in V_{\Psi}^{1/2}$ and $\omega_{\Phi} = \varphi$. There exists a self-adjoint operator $A_2 \ge 0$ affiliated with \mathfrak{M}' such that Ψ is in the domain of A_2 $(=A_2^*)$ and $\Phi = A_2 \Psi$. [8]. By Lemma 3, $A_2 A_{\Psi}^{\beta}$ is a closable linear operator with a dense domain for $0 \le \beta \le 1/2$. Let

(4.1)
$$\Phi_{\alpha} = |A_2 \Delta_{\Psi}^{-\beta}| \Psi, \qquad \alpha = (1 - \beta)/2 \in [1/4, 1/2].$$

By Lemma 6, $\Phi_{\alpha} \in V^{\alpha}_{\Psi}$. By Lemma 4, $u \equiv u(A_2 \Delta_{\Psi}^{-\beta}) \in \mathfrak{M}'$. Furthermore, $u^* u | A_2 \Delta_{\Psi}^{-\beta}| = |A_2 \Delta_{\Psi}^{-\beta}|$ and

$$u\Phi_{\alpha} = u|A_2\Delta_{\Psi}^{-\beta}|\Psi = A_2\Delta_{\Psi}^{-\beta}\Psi = A_2\Psi = \Phi.$$

Hence, as states of M, we have the following equalities:

$$\varphi = \omega_{\varphi} = \omega_{\varphi_{\alpha}}.$$

Q.E.D.

Lemma 8. If $Q' \in \mathfrak{M}'$ and $Q' \Psi \in V_{\Psi}^{1/4}$, then $(Q')^* \Psi$ is in the domain of $\Delta_{\overline{\Psi}}^{-1}$.

Proof. By Theorem 4(2) of [2],

$$Q'\Psi = J_{\Psi}Q'\Psi = \Delta_{\Psi}^{-1/2}(Q')^*\Psi.$$

Since $Q'\Psi$ is in the domain of $\Delta_{\Psi}^{-1/2}$ for any $Q' \in \mathfrak{M}'$, $(Q')^*\Psi$ must be in the domain of Δ_{Ψ}^{-1} . Q.E.D.

Proof of Theorem 1: It is well-known that $\varphi \leq l\omega_{\Psi}$ implies the existence of $A_2 \in (\mathfrak{M}')^+$ such that $\Phi = A_2 \Psi$ ($\in V_{\Psi}^{1/2}$) is a representative of φ . By Lemma 7, φ has a representative $\Phi_{1/4}$ in $V_{\Psi}^{1/4}$. (This is also obtained in Theorem 6 of [2].) By Theorem 3(8) of [2], there exists $Q \in \mathfrak{M}$ such that $\Phi_{1/4} = Q\Psi$. By Theorem 4(2) of [2], $\Phi_{1/4} = J_{\Psi} \Phi_{1/4} = (J_{\Psi} Q J_{\Psi}) \Psi$. Set $Q' = J_{\Psi} Q J_{\Psi} \in \mathfrak{M}'$. By Lemma 8 (Q')* Ψ is in the domain of Δ_{Ψ}^{-1} and hence in the domain of $\Delta_{\Psi}^{-\beta}$ for any $\beta \in [0, 1]$. By Lemma 3, $Q' \Delta_{\Psi}^{-\beta}$ is a closable linear operator with a dense domain. Let

$$\Phi_{\alpha} = |Q' \Delta_{\Psi}^{-\beta}| \Psi, \qquad \alpha = (1 - \beta)/2 \in [0, 1/2].$$

By the same argument as the proof of Lemma 7, Φ_{α} is a representative vector of the state φ in V_{Ψ}^{α} . Q.E.D.

Remark. If $\varphi \leq l\omega_{\Psi}$, then there exists $A_2 \in (\mathfrak{M}')^+$ such that $||A_2|| \leq l^{1/2}$ and $\omega_{\Phi} = \varphi$ for $\Phi = A_2 \Psi$. For any $\alpha \in [0, 1/2]$, $\omega_{\Phi} = \omega_{\Phi_{\alpha}}$ implies the existence of a partial isometry $v_{\alpha} \in \mathfrak{M}'$ such that $\Phi_{\alpha} = v_{\alpha} \Phi = Q_{\alpha} \Psi$, $Q_{\alpha} = v_{\alpha} A_2$. Then $Q_{\alpha} \in \mathfrak{M}'$ and $||Q_{\alpha}|| \leq l^{1/2}$.

§5. Additional Remarks

The following Lemma is a variation of Lemma 6, which will be used in [4].

Lemma 9. Let $h \in \mathfrak{M}^+$. Then

(5.1)
$$|h^{1/n} \Delta \Psi^{1/(2n)}|^n \Psi \in V_{\Psi}^{1/4}$$

Proof. By setting $T = h^{1/n} \Delta_{\Psi}^{1/(2n)}$ and replacing $Q \in \mathfrak{M}$ by $Q' \in \mathfrak{M}'$ in the proof of Lemma 4, we obtain

$$(Q'(f)x, |T|y) = (\sigma_{-i/(2n)}^{\psi}(Q'(f))|T|x, y)$$

for all x and y in the domain of |T|. (cf. (3.10).) By repeated use, we have

$$(Q'(f)x, |T|^n y) = (\sigma_{-i/2}^{\psi}(Q'(f))|T|^n x, y)$$

for all x and y in the domain of $|T|^n$.

By replacing |T| by $|T|^n$, $Q \in \mathfrak{M}$ by $Q' \in \mathfrak{M}'$, $\sigma_{-i\alpha}^{\psi}$ by $\bar{\sigma}_{i-i\alpha}^{\psi}$ and setting $\alpha = 1/2$ in the proof of Lemma 6, we obtain

$$|T|^{n}\Psi \in (V_{\Psi}^{1/4})' = V_{\Psi}^{1/4}.$$

Q.E.D.

References

- Araki, H., Bures distance function and a generalization of Sakai's non-commutative Radon-Nikodym theorem, *Publ. RIMS Kyoto Univ.* 8, 335-362 (1972).
- [2] Araki, H., Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, *Pacific J. Math.* 50, 309-354 (1974).
- [3] Araki, H., Relative Hamiltonian for faithful normal states of a von Neumann algebra, Publ. RIMS Kyoto Univ. 9, 165–209 (1973).
- [4] Araki, H., Golden-Thompson and Peierls-Bogolubov inequalities for a general von Neumann algebra, Comm. Math. Phys. 34, 167-178 (1973).
- [5] Boas, R. P., Entire functions, (Academic Press, New York, 1954).
- [6] Connes, A., Groupe modulaire d'une algèbre de von Neumann, C. R. Acad. Sci. Paris Série A, 274, 1923–1926 (1972).
- [7] Sakai, S., A Radon-Nikodym theorem in W*-algebras, Bull. Amer. Math. Soc. 71, 149-151 (1965).
- [8] Takesaki, M., Tomita's theory of modular Hilbert algebras and its applications, (Springer Verlag, Berlin-Heidelberg-New York, 1970).