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One-parameter Family of Radon-Nikodym Theorems
for States of a von Neumann Algebra

By

Huzihiro ARAKI

Abstract

It is shown that any normal state ¢ of a von Neumann algebra ¢ with a
cyclic and separating vector ¥ satisfying ¢<lwy for some />0 has a repre-
sentative vector @, in V§ for each a=[0,1/2] and 0,=0Q,¥ for a Q,&M satis-
fying [ Q. <1'/% when a<[0, 1/4].

§1. Main Theorem

Let M be a von Neumann algebra on a Hilbert space $ with a
unit cyclic and separating vector ¥. Let 4, be the modular operator
for M, ¥. Let V% denote the closure of A%IN*Y where M* denotes
the positive operators in M ([2], [6]).

Our main result is the following theorem:

Theorem 1. For any normal state ¢ of M such that ¢=<lwy for
some 1>0, there exists a vector ®,eV% for every ae[0, 1/2] such that

U)(Dq =(P.

Combined with Theorem 3(8) of [2], Theorem 1 implies the follow-
ing:
Theorem 2. For any normal state ¢ of MM such that @=lwy,

there exists a Q,eM for ae[0, 1/4] such that wy =0, [Q,I=11/2.

Operators Q,, such that Q,We V4, are characterized in Theorem
3(7) of [2] by the property that ¢¥(Q,) has an analytic continuation
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a?(Q)eM for Imze[0, 2«] and ¢%(Q,)=0, where o¥ denotes the mod-
ular automorphisms of M relative to V.

The special case a=0 gives the non-commutative Radon-Nikodym
derivative of Sakai [7]. The case a=1/4 gives the Radon-Nikodym
derivative satisfying the chain rule [2].

§2. An Application of Carlson’s Uniqueness Theorem

Let f(z) be holomorphic for Rez=0 and of exponential type: [f(z)|
<Me"'?l for some >0 and M>0. Let

@.1) h(6) =Iim r~tlog[f(rei?)|, |6]<m/2.

Carlson’s theorem states that if h(n/2)+h(—n/2)<2n, then f(n)=0 for
n=0, 1, 2,... implies f(z)=0. [5]
If fe 2(R) (the set of C»-functions with a compact support) and

@2 10 =Cay {F@eap,

@3 o) =@ 1()ds,
then ¢¥(Q) has an analytic continuation to the Ii-valued entire function
24 af(QEN=0(F), f()=f(s—2).
We have also
25 o (a%,[0(E) D =0?, .. (Q(F)) .

If suppf < [—L, L], then

[f(t+iz)] £ M eLIRezl (1 4 (¢ —Im 2)?)~ 1

for some M,>0 (M, =2max(||f|,, |£"|],) for example). Hence
(2.6) lot.(QENI = Met IRzl Q)

for M, =M =.



ONE-PARAMETER FAMmILY OF RapoN-Nikopym THEOREMS 3
Let fe 2(R), 0<f(p)<1 and f(q)=1 for |q|<1. Let
L(p=fCp),  F(N=2"'1(/2).

Then by the strong continuity of ¢¥(Q) in t, we have

2.7 lim 0(f;))=0Q.

Lemma 1. Let S be an invertible positive self-adjoint operator
such that

2.8) (Q(f)x, Sy)=(cte(Q(F))Sx, y)

for all fe 2(R), QM and x, y e Ds where Dy is any core of S (namely
S|Dg=S). Then

(2.9) (O(£)x, e2'°95y) = (0¥, (Q(f))e*"*9"x, y)

for all complex z,fe@(R), QeM, x in the domain of e?'°9S and
y in the domain of e?'°9S. For real t and Qe9M,

(2.10) eitlegSQe-itloaS —4¥ (),

Proof. By a limiting procedure, (2.8) holds for all x and y in the
domain of S. Let D, be the set of all vectors which have compact
supports relative to the spectrum of logS. For any x and y in D,
e?1o9Sx and e?!°95y are vector-valued entire functions of z and

(2.11) |e*1osSx || < M e®IRez1 |
(2.12) lez!osSy || < M, ebIRez1,

for some a>0, b>0, M,>0 and M, >0. From (2.11), (2.12) and (2.6),
it follows that both sides of (2.9) are entire functions of exponential
type with h(n/2)=h(—=n/2)=0. If x, yeD,, then em°sS x=S" xeD,
and eml°sSy=8m yeD, Hence, by repeated use of (2.8), we have
2.9) for z=0,1,2,.... By Carlson’s theorem, (2.9) holds for all z and
x,yeD,. Since D, is a core of e*°s5 for any real A, and since
ei#logS js bounded for real A, (2.9) holds as stated in the Lemma.
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By a limiting procedure like (2.7), we obtain (2.10) from (2.9).
Q.E.D.

Lemma 2. If a self-adjoint operator S=0 satisfies (2.8) for all
fea(R), QeM and x, ye Dy, then

(2.13) (Q(F)x, S1/2y)=(a¥,,,(Q(F)S/2x, y)
for all fe 2(R), QeM, x and y in the domain of S'/2.

Proof. Let E be the projection onto the null space of S. By set-
ting x=(1—E)x" in (2.8) for arbitrary x’, we obtain

Q)1 -E)x’, Sy)=0.

Hence EQ(f)(1—E)=0. Replacing Q@ by Q% f by f* and taking the
adjoint, we also have (1—E)Q(f)E=0. Hence EQ(f)=EQ({)E=Q()E.
Since the set of Q(f) is dense in M by (2.7), we have Eec .

Now the proof of Lemma 1 holds for x, ye E$, and hence we
have (2.9) whenever fe 2(R), Qe M, xcEH, ycE®H, x is in the domain
of e?!°95E and y in the domain of e?1°9SE. Setting z=1/2, and using
[E, Q(D)]=[E, ¢?,,(0(f))]=0, we have (2.13). Q.E.D.

§3 Basic Lemmas

For any closable linear operator A with a dense domain, let |4|=
(A*A)1/2 and u(4)=(]4|"!A*)*, where the bar denotes the closure.
The operator u(4) is a partial isometry, whose kernel is the kernel of
|A], and A=u(4)|4| is the polar decomposition of A.

Lemma 3 Let A, and B, be closed linear operators affiliated with
M, A, and B, be closed linear operators affiliated with ', and «
be a real number. Assume that either one of the following conditions
holds:
(1) «el0,1/2], ¥ is in the domains of A;, A%, B; and B¥, j=
1, 2.
(2) V¥ is in the domains of A, A%A%, A%B,, B, A,, A3*A%, A°B,
and B3.
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Then A,4%, A%B,, A,A3%, As*B, are closable linear operators with
dense domains.

Proof. Let Uy, and Uy, be the =-algebras of all operators
0,eM and Q,eM’, respectively, such that &Y(Q;)=4%043" have
analytic continuations to entire functions &¥(Q)), j=1, 2. [2].

If Q,eWy,, then Q,¥ is in the domains of A4,4%, (4,4%)* 4%B,
and (4%B,)*:

3.1 (4149)0,¥ =6¥,(2,)4, ¥,
(3.2) (414%)*Q, ¥ =36¥;,(Q,)45 ATV,
(3.3) (4%B)Q,¥ =3%:,(Q2)4%B, ¥,
(34 (4%B)*Q,¥ =3%,,(Q2)BTY,

where ATY¥Y and B,¥ are in the domain of 4% for «e[0, 1/2] due to
3.5 AYI2AY =T A*Y

for any A affiliated with 9 and for ¥ in the domains of A and A%,
as can be easily proved by a polar decomposition of A and spectral
resolution of |A4|. Since Wy ,¥ is dense, A;4% and A4%B, are closable
linear operators with dense domains.

Similarly, Wy, ¥ is in the domains of A4,4%% (4,4, 4*B,, (4%*
B,)* and hence A4,4%* and A4g*B, are closable linear operators with
dense domains. Q.E.D.

Lemma 4. Let A, and B, be closed linear operators affiliated
with M and A, and B, be closed linear operators affiliated with I,
such that A4%, A4By, A,A43*, A3*B, are closable linear operators with
dense domains. Then

(3.6) u(A4,4%)e M, u(4%B,) e M,
3.7 w(A,4¢%) e W, u(4g*B,) e M.

Here o is real.
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Proof. For T=A,43* or A3°B,, we have
Q(f)*Ty =To¥,,(Q(F)*)y

for y in the domain of T and hence for y in the domain of T. Since
a¥;(Q(F))* =0l (Q(f)), we have

(3.3 (Q()x, Ty)=(t(QE)T*x, y)

for all x in the domain of T* and y in the domain of 7. We also
have

@)y, T*x)=(QE)*T*x, y)* =(a¥;,(Q(F))x, Ty)*
=(0 (AN Ty, x)

for x in the domain of T* and y in the domain of T. Hence the
positive self-adjoint operator S=T*T satisfies

(3.9) (Q(F)x, Sy)=(0%:,(Q(F)Sx, v)

for all x and y in the domain of S. (See (2.5).) By Lemma 2, |T|=
S1/2 satisfies

(3.10) (Q()x, ITIy) =0t (QENITIx, ¥)
for all x and y in the domain of |T|. From (3.8) and (3.10), we have
(Q()x, w(DIT|y) =(cl(QENITIIT| ' T*x, y)
=(Q(E)(T)*x, |Tly)

for x in the domain of T* and y in the domain of |T].
Since u(T)*u(T) is the projection onto the closure of the range of
|T|, we have

(3.11) ()" u(T) =w(T)Q(E)y* w(T)*u(T).

1—u(T)*u(T) is the projection onto the kernel of T and hence onto
the kernel of S=T*T. By the proof of Lemma 2, (3.9) implies that
[Q@), W(T)*u(T)]=0. Hence (3.11) implies

QY u(T) =w(Tu(T)*w(T)Q(F) =u(THQ(f).
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Hence u(T)e 9.
A similar proof holds for A4,4% and A4%B,, where 9 is replaced
by M. Q.E.D.

Lemma 5. The vectors
(3.12) 0(F)o?4:(QUE)*) Y =Q(F)A3-Q(D)* ¥

for QeM and fe 2(R) are in V% and dense in V% for ae[0,1/2].
The vectors

(3.13) Q'(F)F!-2:(Q ()} =0Q' ()43~ Q'()* ¥
for Q'eM’ and fe D(R) are in V% and dense in V§ for xe[0, 1/2].

Proof. Since q=0Q(f)a¥,,,(Q(f)*) has an analytic continuation
d?2(q) =04 [Q(£)1(0%42:,[Q(F) ])*

which is obviously positive for z=ia, q¥ is in V% by Theorem 3 (7)
of [2].

By definition, 4%Q2?Y¥,QeM+ is dense in V§. If Q()*=0(f)
are uniformly bounded and Q(f,)—Q strongly, then Q(f;)?—Q2? strongly.
Since d(a) =|4%(Q(f,)>—Q?)¥|? is convex in a and d(0)=d(1/2)—-0, we
have AgQ(f,)?¥—A4%0Q2?¥. Hence the vectors

$Q(8)*¥ =0(f)0¥,:,(Q(0) Y

for Q=0*eM, gc 2(R) and g*=g are dense in V& where f(t)=g(t+
i), 0%,,(Q(g)=0(f). This completes the proof of the first half.
The second half is obtained from the first half by

JeQ(F)ol5i(QE)*) P =Q'(F¥)5%:5(Q'(F*)*) ¥

for Q'=JpgQJpeM (Q=JyQ'Jy) and B=(1/2)—a, due to JuVi=V3%
(Theorem 3(4) of [2]). Q.E.D.

Lemma 6. Let Ay, A, B;, B, be as in Lemma 3 and ac[0,1].
Then

(3.14) |4 48| eVy?,  |43B,|VeVy?,
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(G15) A AF Y eVY R, 4B, P eV,

Proof. Since WUy ¥ is in the domain of T for T=A4,43* and for
T=A43*B,, it is also in the domain of |T]. For QeM and fe 2(R),

we have
QD)o (QE)NY, ITI¥) =(a!(QENIT|o%; ()Y, ¥)
=(IT|o¥,(Q()*) Y, 0¥, (Q(F)*)¥)20.

by (3.10). Since Q(f)a¥;(Q(D)*)¥ are dense in VY2, we have |T|¥Pe
V{-9/2 due to Theorem 3(5) of [2].
Similarly we have

(Q'(NFL(Q(E))Y, IT'|'P)
=(IT"|6}(Q'(F)") ¥, ¢/, (Q'(F)*)¥ =0
for T'=A4,4% and for T'=4%B,. Hence |T'|¥e(V{2/12)=Vg?2,
Q.E.D.
§4. Proof of Theorem 1

A vector @ is called a representative of a state ¢ if the vector state

We 1S @.

Lemma 7. If normal state ¢ has a representative vector in V/2,
then it has a representative vector @, in V% for each ae[l/4,1/2].

Proof. Let ®eV}y/? and wy=¢. There exists a self-adjoint opera-
tor 4,20 affiliated with 9 such that ¥ is in the domain of A, (=43%)
and ®=A4,¥. [8]. By Lemma 3, A,43% is a closable linear operator
with a dense domain for 0<f<1/2. Let

(4.1) D, =|A,43"|¥, a=(1-p)/2e[1/4, 1/2].

By Lemma 6, ®,eV%. By Lemma 4, u=u(4,43*)e M. Furthermore,
u*u|A,43%| =|A,45f| and
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Hence, as states of i, we have the following equalities:
P=We=Wg, -
Q.E.D.

Lemma 8. If Q' e and Q'¥YeVy/*4, then (Q)*Y is in the domain
of 4%'.

Proof. By Theorem 4(2) of [2],
Q¥ =1y QP =45"2Q)*Y.

Since Q'¥ is in the domain of Ag'/? for any Q' e, (Q')*¥ must be
in the domain of A4g!. Q.E.D.

Proof of Theorem 1: It is well-known that ¢=<Ilwy, implies the
existence of A,e(M)* such that ¢=A,¥ (eV/?) is a representative
of ¢. By Lemma 7, ¢ has a representative @,, in V{4 (This is
also obtained in Theorem 6 of [2].) By Theorem 3(8) of [2], there
exists Q€M such that &, ,=Q¥. By Theorem 4(2) of [2], ®y/4=JpPy/s
=(JgQJp)¥P. Set Q'=JuQJypeW'. By Lemma 8 (Q")*¥ is in the domain
of A3' and hence in the domain of A for any Be[0,1]. By Lemma
3, Q'A3f is a closable linear operator with a dense domain. Let

P,=[0'4/1¥, a=(1-p)2€[0, 1/2].

By the same argument as the proof of Lemma 7, &, is a representative
vector of the state ¢ in V. Q.E.D.

Remark. If ¢=<lwy, then there exists A,e(M')* such that |A4,|=
I'/2 and we=¢ for ®=A4,¥Y. For any acl0, 1/2], wey=w,, implies
the existence of a partial isometry v,eW’ such that &,=v,9=0,7,
0,=v,4,. Then Q,eMW’ and |Q,|ZI1/2.

§5. Additional Remarks

The following Lemma is a variation of Lemma 6, which will be
used in [4].
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Lemma 9. Let heW*. Then
(5.1) Ihl/nA‘}l/(Zn)lnlIIeV‘}l/‘!-.

Proof. By setting T=h!/"4L/(2m and replacing QeI by Q e’
in the proof of Lemma 4, we obtain

(Q'(O)x, [T|y) =(0%i;2n(Q'ONITIx, y)

for all x and y in the domain of |T|. (cf. (3.10).) By repeated use,
we have

Q'DO)x, |TI"y)=(a%i;2(QENIT|"x, y)

for all x and y in the domain of |T|.
By replacing |T| by |T|", Qe by Q e, o¥, by &',, and
setting a=1/2 in the proof of Lemma 6, we obtain

ITI"P e (Vy/4y = Vs,
Q.E.D.
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