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Characterization of Inner *-Automorphisms
of ?F*-Algebras

By

Hans J. BOUCHERS*

1. Introduction

For some problems in physics I would like to have a characteriza-

tion of *-automorphisms of a C*-algebra which can be realized by unitary

operators in the enveloping von Neumann algebra. Looking at this

problem I realized that one should first treat the same problem, as an

"exercise", for PF*-algebras. The simplification is due to the fact that

an inner automorphism lies also on a one-parametric group, while, for

a permanently ewakly inner automorphism this property is not known.

The technique emplyoed here is a further development of a method

I have used in a recent paper [5] in order to give a new and construc-

tive proof of the theorem of Kadison [6] and Sakai [9] on derivations

and my own result [3] on groups with semibounded spectrum. The

same technique as used in [5] has been developed independently by

Arveson [1] and also by Pedersens [8]. The advantage of this method

is due to the fact that it gives a rather explicit construction of the

spectral resolution of the unitary operator we are looking for.

The technique is derived from the concept of creation- and annihila-

tion-operators which is used in physics. These operators define a shift

operation on the spectrum of the unitary operator we are looking for.

The aim is, of course to cnostruct a spectral resolution. This means

one has to associate to every projection in the center of the invariant

elements a subset of the torus. The difficulty is due to the fact that

an inner automorphism defines the unitary operator only up to a unitary

in the center. This means the mapping from the projections to the
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subset of the torus is not unique. But assume there exists such a map

then we can form for two projections the difference set which is unique.

That this can be done is the content of section 2. These difference sets

contain also enough information in order to give a classification of

automorphisms, section 3. Having associated to every pair a difference

set one only needs to fix one point of the spectrum in order to localize

the projections on the torus. That this can be done and gives rise to

a unitary operator with the correct properties will be shown in section

4. In section 5, we exploit these techniques in order to give several

necessary and sufficient conditions for an automorphism to be inner,

including a generalization of the result of Kadison and Ringrose [6].

Some further applications are also discussed. In the last section we

give a brief outline of the extension of our method to general locally

compact abelian groups.
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2. Notations and Preliminarie

By the couple (R, a) we denote a von Neumann algebra R and

a *-automorphism a of R which is automatically a normal automorphism

of R. The group {a", n e Z} is a representation of the additive group

Z. Its dual-group we denote by T. Since T is isomorphic to the unit

circle we identify it also with [0, 2n) so that 0 means the identity

of T. A closed interval we write often as [0, b~] with the prescription

that one shall start at eia on T and shall proceed in the positive direc-

tion until we get to the point eib. This means e.g. that [0, b~] and

(b, a) are complementary sets. Then for e>0 the sets [ — s, e] are sym-

metrical, intervals around the identity of T.
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2.1. Definitions: We introduce the following notations:

a) R0 = {xeR; ax=x} which is the set of invariant elements.

b) Z denotes the center of R.

Z0 denotes the center of R0.

c) P0 denotes the set of projections in Z0 (we introduce for this a

separate symbol since we work exclusively with this set).

d) Let xeR and fel1 then we denote

e) Let / be a closed interval of T then we denote by J j={/eP;

support ^~1fal}9 where ^ denotes the Fourier-operator.

f) Let £ be a projection in R0 then we denote by <j)jE the union

of the ranges of {x(/)£; xe#, /e/ j} i.e. 4>jE is the smallest projec-

tion G in R such that Gx(f)E=x(f)E holds for all x e R and

/G/}.

The operator 07 assigns to every projection EeR0 a unique different

one. This operation is not linear, and for some pairs I and E, c^jE

might be zero. Before investigating its properties in detail we show:

2.2. Lemma: Let G be a projector in R0 and E its central support

in R0, then we have for all IaT

Proof: In order to prove the first relation, we remark that R0

contains the identity. Hence we get R-R0=R. Furthermore the elements

in R0 are invariant. This implies for x e R, y e jR0 the relation (xy)(f) =
x ( f ) ' y - Thus we get:

{(x • yXf)G] = {*(/) -y • G}x e R yeR0.

Since we have R0G^=E^f (where 3? denotes the Hilbert-space on which

R is acting) we get

In order to prove the second relation, notice that GeR 0 and is

therefore invariant. So we get:
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Since a is an automorphism of R follows 0/G is invariant. Let now

H<=R0 then we get:

This means 0/G^f is invariant under R0. But since it belongs to R0,

the projector <j)tG belongs to the center of R0.

This lemma shows that, with respect to the operations $I9 we

can restrict ourselves to Z0. Since we only work with projections a

separate notation for them is justified.

2.3. Theorem: Consider $l as a mapping from P0 into P0 then it

has the following properties:

a. a) E^E2 implies (^jE^^jE^

£) Put ElVE2=El+E2-El-E2 then we get

y) Let F be an ordered index set, let Ey be increasing i.e. E^Ey

for B<y and let E=strlimZL then we have
yer

b. a) The relation Ii<^I2 implies

f$) Let 1° denote the inner points of I. Assume IlnI2i
LQ and

(/! u/2)°=/i U/2 then we get

y) Let 7j and I2 be two arbitrary intervals, then we get

(Here we have written the group action of T with a + sign.)

c. a) Assume 7°30 then we get:



INNER ^-AUTOMORPHISMS OF TF*-ALOEBRAS 15

Let I = T then we get:

Furthermore $TE is the carrier of E in P0 fl Z.

d. a) Let F e P 0 f l Z then we get:

Let E! be such that £1-0 /£=0 then follows:

Proof: a. a) Is trivial.

P) From a) we get tyiE^ V ̂ IE2^^i(El V E2). Assume HeP0 and

H'(j)IEl=H'(t)IE2=0 then we get for xeJR and fel\: Hx(f)

{£le^ + £2jf}=0. But this implies Hx(f)(El V E2)je =Q. Con-

sequently we have ^E^ V £2)^(0i^i) V(<£r£2)-
y) Since E^E we get from a) the relation (j)rEy^^jE. Assume

HeP0 is such that H(j>IEy=Q for all yeF then follows Hx(f)Ey=0

for all y,xeR,fe1} and consequently Hx(f)E=0. This implies

H'(I)IE=0 and thus 0j£ <; str lim 07£ . But by the first line
Ver

str lim ^>/-Ev ̂  0/£.
?er

b. a) This follows directly from the relation

l}^l} 2 for / l C /2 .

jS) First we have from b. a) the relations 0 / l U / 2 l i^0j E, j = l, 2 and

thus 0 / lU /2£^0 / 1£V0/2E. If /e / ) l U / 2 then we find functions

f j £ l $ . , j = l,2 with /=/i+/2 since the two intervals are over
lapping. So we get for xe.R the equation

and from this (^j^^^E^^^Ey (j)l2E

y) Assume f G l } l 9 g e l $ 2 and x, yeR then we find
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= Z E f(n)g(n + m)a"(xamj') .
m n

Since fe /}1 and g e //2 follows that for every fixed m the func-

tion f(n)g(n + m)E /)1+/2. This implies

This implies

c. a) Since zero is an inner point of / exists a function /e /} such
that Z/(^) = l- From this we get !(/) = !. And consequently

n

07£^ !(/)£=£

j8) If I = T then we get from c. a) $TE^E. On the other hand
the function /= fl for ^=0

lo otherwise
is an element of lj = ll and consequently we get {*(/); xeR,

feli}=R. This implies (t)TEje=REjf and hence 0r£ is the
F0 n Z carrier of E.

d. a) Let F e P 0 n Z then we get for xeR, fel\ and

x(f)F-E-je=Fx(f)Ejf and consequently

Let £ l 5£eP0 and assume £1(^/£=0J then we have for

Taking the adjoint of this equation we get E(x(f)*)E1 =0. Now
(x(/)}*=x*(/) which implies £x*(/)£1=0. Since /->/ maps /]
onto /|-i we get E(/)I-iEl=0.
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This ends the proof of the theorem.

We should emphasize again that 07 is not a one-to-one map. One

gets a good idea of $/ by choosing a unitary operator u e R and defin-

ing a by the relation ax=uxu*. If Ej is a spectral projection of u

belonging to the interval 1<=.T then 07l£j is majorized by the spectral

projection belonging to the interval 7-h/i- Therefore in the case where

the spectrum of u has a gap there exist pairs (E, /) such that 0j£=0.

Moreover it can happen that 0r is the null-operator, for instance if

a generates the group Z2 and / does not contain the points 0 and n

then </>/=().

It is our aim to assign to every projector in P0
 a se* of T. If

this could be done, then the operator (j)r gives us information about

the relative positions of these sets belonging to two projections. Since

we know the operators $7 we start with these relative positions.

2.4. Definition: Denote by IE the interval \ --|, -|-1 e>0. Let El9

E2 e PQ then we define

n(El9E2) = {beT; 3e>0 with E2(/)b+lEEl=Q}

2.5. Proposition: The sets n(El9 E2) have the following properties:

a) n(Ely E2) is open.

b) n(E29E^n^(El9E2).

c) E\^El and E'2<^E2 implies

d) For F e P0 n Z we get

n(FEl9 E2) = n(Ely FE2) = n(FEl9 FE2).

e) n(El V E29 E3 V E4) = n(El9 £3) n n(El9 E4) n n(E2, £3) n n(£2, £4)

f) Let Ex be an increasing family of projections and define E

str. lim £a, then we get

g) Let K be a connected component of n(Ely E2\ and let I be the
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closure of K. Assume I^T then we get

h) Let Fl and F2 be the P0 n Z carriers of El9 E2 then n(Ely E2) = T

if and only if F1-F2=Q

Proof: a) Let ben(El9E2) then exists e>0 with E2(/)b+jeE1=Q.

If b'E(b + QQ then exists e'>0 with b' + IE'Cb + IE. Hence we

get from 2.3. b. a)

This means bren(El9E2).

b) Let ben(El9E2), then exists s>0 with E2cl)b+IeEl=Q. Thus we

get from 2.3. d. £)

Since (fo + JJ""1 =^?~1+/E we get b~lEn(E2,El) and consequently

n"1^!, E2)c:n(E2, £x) and n~1(E2, El)an(El, E2) which implies

n-K^, £2)="(£2,£i)
c) This follows directly from 2.3. a. a)

d) From 2.3. d. a) follows:

E2^IFEV=E2F^)IE1=FE2(I)IFE^ which implies d)

e) Because of b) it is sufficient to prove the relation

n(El9 Es\/E4) = n(El, £3) n n(El9 E4).

c) implies that the left hand side is contained in the intersection on

the right. So it remains to prove the converse. Let ben(El9E3)n

n(El9 E4) then exists e>0 with E3(l)b+lEE1=E4(l)b+l£El=Q and

consequently E3 V E4cf)b+IEl =0. This means n(El9 E3) n n(E1 , E4) a

f) Since E^Ea follows from c) n(El9 E)an(E1, £a), and hence n(El9

£)c{nn(£1? £a)}°. Assume b is contained in the right hand side,
a

exists e>0 such that b + IE is also contained in it. Thus we get

Eoc(l)b+lEEi=Q for all a and consequently £0&+Jfi£1=0. This means
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g) Let K be a connected component of n(El, E2). Let /j be a con-

nected closed subset of K, then Jj is compact. Hence exists a

finite number of points ^e/i and st such that U ^ + /°f covers

/! and E2(j)b. + lEEl=§. This implies by 2.3. b. /?) that E2(j)^b.+l£Ei =

0. From this we get E2x(f)El=Q for all xe£ and all fe 1} such

that supp J^"1/^0- Since these functions are dense in /) and /->
x(/) is continuous in / in the I1 topology follows E2x(f)E1=Q

for fel\. This implies E2(j)Ixl=Q.

h) From 2.3. c. £) follows cj)TEl==F}. If n(Ei,E2) = T then we get

from g) (j)TE1E2=FlE2=Q.

This ends the proof of the proposition.

3. Classification of ^-Automorphisms

In this section we give a complete classification of automorphisms.

A. The class K^

Our investigation is based on the sets n(El9 E2). The first obstruc-

tion which might happen is that these sets are empty. This leads us

to the first

3.1. Definition: We say (R, a) belongs to the class K^ if for all pairs

EI, E2EP0 we have n(El9 E2)=0 or =T.
Equivalently (R, a) belongs to K^ if for all pairs E1,E2eP0 the

set n(-El5 JE2) i
§ invariant under the whole rotation-group of the torus.

The second definition we have put in, since it is in analogy to the

defining relations of the other classes. Next we consider an arbitrary

automorphisms (R, a).

3.2. Proposition: Let (R, a) be arbitrary, then exists a unique pro-

jection F^ePQ^Z such that (F^R^oC) belongs to K^ and for every

FeP 0 nZ with Fao-F=0 follows (FR, a) does not belong to K^. This

means ((1— F^R, a) contains no invariant part which belongs to K^.
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Proof: Let & = {F e P0 n Z ; (FR, a) e J^}.

Assume first FE^ and F^eP^nZ with F^F then follows for

E1,E2^Fl that also El9 E2^F. Hence n(E, £2) must be 0 or T.

This means F1e^r. Let now Fl9F2e^ and Fl9 F2^F1VF2 then

follows from 2.5. e)

n(JEl3 JB2) = Fi(£1, F^,) n n(Fl5 F2F2)

This implies n(£l9 £2) is 0 or T since it holds for the right hand

side. Consequently F1\/F2e^r. Let F^E^" be an increasing family

of projections and define F = strlimFa. Assume El9 E2^F then we

get by 2.5. f) n(El9 F2) = {nn(F1, FaF2)}°. Since now n(El9 FJ£2) =

n(FJEl9 Fa£2) is 0 or T follows n(El9 F2) is 0 or T. Hence F belongs

to &. Using now Zorn's lemma we see that & contains a unique

maximal element F^ such that F-F00=F for all FeJ5". From the

construction follows furthermore that (1—F^R contains no invariant

part belonging to K^.

Next we want to give a better characterization of the part which

does not belong to K^.

3.3. Lemma: For any pair (R, a) the following statements are equiva-

lent.

1. F00=0.
2. For every F e P 0 n Z exists a pair of projection El9 E2^F such that

and n(El9

3. For every EePQ exists a projection F^F, E1EP0 and a projection

E2EP0 such that

and

4. For every EeP0 exists a projection F^F, E^eP^, Fi^O such that

Remark that n(El9 EJ is also not T. Since F^O n(El9 Et) must

not contain 0 by 2.5. g)
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Proof: l.=>2. Assume 1 holds but not 2. Then not 2 implies

there exists an element FeP0nZ that for any pair El9 E2^F we must

have n(E^ E2) = T or 0. But this means (FR, a) belongs to K^, con-

tradicting the assumption that F00=0

2.=>3. Assume 2 holds and let £eP0 be given. Denote by F(E) the

support of E in P0 n Z, then from 2 follows that there exist G and

£2eP0 and G, E2<^F(E) with n(G, E2)^T and n(G, E2)=£0. Multiply-

ing all projection by F(E2) then we can assume F(E)=F(E2). Since
n(G,E2}^T follows F(G)^0. This implies n(G, £)/T. This implies

for b$n(G,E) and e>0 that Ei=Ecj)b+IeG^Q. Choose now a and

e in such a way that b + a + I2ec^n(G, E2) then we get:

£2-$«+/££i=£20«+/£(£<£&H^^

by 2.5. c), 2.3. b. 7), and 2.5. g). This implies n(El9 E2)^0. Since

Fi/0 and F(E1)^F(E2) by construction follows from 2.5. h) that n(£ls

E2)*T

3.=>4. Assume 3, and let E be given, then exists a pair Gf^E and

E2 such that n(G, E2)J=T and ^0. By 2.5. b) this also holds for

n(E2, G). Let b£n(E2,~G), then E1=G(j)b+lEE2^Q. Choose a and e

such that a + b + I2Ecin(E2, G) then we get again by 2.5. c), 2.3. b. 7),

2.5. g) and 2.5. h)

Ia£2)

This implies n(£l5 EJ&Q. Since £^0 we have also n(El9

4.=>1. Is trivial.

B. The classes J£n, neJV.

Before defining these classes we need some preparation and motiva-

tion. We start with the technical part

3.4. Lemma: Denote by nE(El9 E2) those points of n(El9 E2) which

have distance greater than e from the boundary of n(Ely E2). Assume

b$n(El,E2) then E' =E2(l)b+iGEl^Q. From this we get n(Ef, E')^T and
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n(E', £')=n(£2, £2)U n2.(£,, £,) U {«.(£„ £2)-fc} U {ne(E2, EJ + b}

Proof: (i) Assume a e n(£2, £2) and e' such that

E2) then we get:

(ii) Assume a + /e/ cn2e(JE l5 Ej), then we find:

E'-0fl+/£,E'=£2(0&+/JE^

In order to show that this vanishes we make use of 2.3. d. /f).

^ EI) implies:

EE1 and hence

(iii) Let a + /£- c{nE(£l3 £2)~^}» tnen follows
From this we get:

(iv) The last term follows from (iii) by the relation n(El9 E1)~n~1(El,

£,).
It is our aim to classify the sets n(E, E). In order to see what

kind of situations might occur we look first at extremal cases.

3.5. Lemma: Assume £^0 and n(E, £)^0. Suppose furthermore

that for every E1 with n(El9 E)=£T we get for all b$n(El9E) and all

e>0 the relation {ne(El9 E) — fr}c=n(£, E), then we have:

(i) There exists neN such that

>r\ f^ r\ \f\ 2n m~ n—lT\n(E, E) - |0, —/i,- ^-27r9... — ; n —
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(ii) For every E± we get n(Eiy E) is invariant under rotations by the

angles -^-2n, m=0, 1,... n — 1.

Proof: (i) For proving the first statement we put E± =E. Since

T is compact there exists a connected ccomponent I=(a, b) of

n(E, E) with maximal length. Since a does not belong to n(£, E)

we get from the assumption: {(a + e, b — e) — a)cn(E, E). Since

n(E, E) is symmetric follows also ((b — a — e)"1, — e)c:n(E, E).

Since e was arbitrary follows 0 is an isolated point of T\ n(E, E).

This implies (0, c)cn(£, E) with c = b — a. Since c and hence c"1

does not belong to n(E, E) follows that also (0, c) + c=(c, 2c) c=

n(£, £). By repeating the argument we get

(me, (m + l)c) c: W(E, £) ni = 1 . 2. . .

Since T is copact, exists a smallest /t such that n-c=2n. This

implies T\n(E, E) contains at most the points < — -2n\ m==0, 1,... n — 1>.

None of these points can belong to n(E, E), since by construc-

tion there exists no component of n(E, E) with length greater than

c. Since E=£0 follows from 2.3. c. a) that 0^w(£, E) which implies

that w most be at least one.

(iii) Now let E± be arbitrary. If n(E^ E) = T then the statement is

correct. Assume now b^n(El9E) then follows from the assump-

tion ne(El9 E) — bczn(E, E) or equivalently ne(Ei9 E) — b(H I — 2n>

or we(£ l9 £ ) 2 > 6 + — ITT!. Since e was arbitrary follows b i n(El9 E)

implies also b + — 2n$n(E1,E), consequently T\n(El9 E) is invariant

and thus also n(£l5 E) is invariant under the rotations by -^-2n.
n

From this lemma we extract the following

3.6. Definition: A pair (R, a) belongs to the class Kn,nEN, if

the following two conditions are fulfilled:

(i) For every pair E1,E2ePQ the set n(El9 E2} is invariant under the
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rotations by the angles —2n, ra=0, 1,... n — 1.

(ii) For every F e P0 n Z and every 0 < a < — exists an EeP0 with

^F and n(E, E)c(a,—-a\
\ n J

3.7. Proposition: Let (R, a) foe arbitrary, then exists a unique projec-

tion F n e P 0 n Z such that (FnR, a) belongs to the class Kn, but for no

projection F e P 0 f l Z with F-Fn=0, (FjR, a) belongs to Kn.

Proof: Define & = {FeP0 n Z; (F£, a) belongs to the class Kn}.

Now we show:

(i) FE& and F^F with F^PoHZ then F^J^. This is clear from

the definition of Kn.

(ii) F19F2E& implies FiVF2e^:. Let £15 F2^F1VF2 then follows

n(£1? £2) = K^i£i5 £2) n n((E2-FlF2)Ei, E2). Since both sets on the
right hand side have the invariance property it follows also for

n(El9E2). Now let F<F1VF2 , then F-F^ or FF2 is not zero,

say FF1. If F e P 0 n Z then also F-F^ Hence exists for a given

0<a<— a projection £ with n(E, E)^( a, — — — a }. Consequently
n \ n J

(in) Let now FaeJ*" be an increasing family and let F=strlimFa.
a

We want to show that F belongs to & '. Take Fl5 F2^F then

we have by 2.5. f) n(El9 E2) = {r\n(E^ Fa£2)}°. Since all n(El9
a

Fa£2) have the invariance property, it also follows for n(El9 E2).

Next let FleP0nZ such that O^F^F. Then exists a such that

FjF^O, and hence we find F with 0^£^F1Fa^F1 such that

n(E9E)=>(a9-%--a] with 0<a<— . This implies FE&.
\ 2 / «

Now by Zorn's lemma tF contains a unique maximal element Fn

such that FFn=F for al FeJ^". For any F e P 0 f l Z with FFn=0 the

pair (FR, a) does not belong to Kn by construction of the family & '.

Before we discuss the meaning of the different classes we show

that the classification is complete.

3.8. Theorem: Let R be a von Neumann algebra and a a *-auto-



INNER *-AUTOMORPHISMS OF J'K*- ALGEBRAS 25

morphism of R. Then exist projections Fn,neN and F^ belonging

to P0 n Z which are mutually orthogonal such that

F » + Z /=•» = !.
lie 2V

and such that (FnR, a) belongs to Kn for n = l ,2 , . . . and oo.

Proof: First we will define a decomposition, and afterwards we

will show in two separate lemmas that this decomposition coincides

with the decomposition into the classes Kn and K^.

We define families & n by the following conditions : F e P0 n Z

belongs to & 'n if there exists an element 0/FeP0 such that

(i) The P0 fl Z support of E is F.

(ii) In n(E, E) exists a connected component / with length /(/)> - ^.

From the construction follows ^n~=^^:
n_l. Next we define projection

H n e P 0 n Z by the relation Hn= V F. Since Pn+^&n follows
Fe&n

Hn+ i^Hn. Therefore exists H^ =str lim Hn.
n

Now define G00 = l — H^ and Gn=Hn — Hn_l. From the construction

follows G00 + Y,Gn = \. It remains to prove that G^ and Gn coincides
n

with Fx and Fn defined in 3.2. and 3.7. We start with G^. Let 0^

E^G^ then we have «(£, £) = 0. Because, if n(E, E)=£0 then its

P0 n Z support F(E) would belong to some family J%. Now lemma 3.3

implies that for El9 E2^Gao follows n(El9 E2) = T or 0. But this shows

G^rgF^. Conversely if F e P 0 n Z with G^F^O then exists a number

n such that F-HnT^Q and by definition of Hn exists a projector FlG^r
n

with F-Fj^O. But by definition of F1 exists E with F(E)=F1 and

n(E, £)^0 hence also n(E, FE)^0 and consequently F-F^^O. This

implies F^^G^ and thus F^G^.

For proving the identity between Gn and Fn we need some pre-

parations which we put into the form of two lemmas.

3.9. Lemma: (i) Let F belong to & 'n and let ->a>—, then there

exists a projection 0^£eP0 with its P0 n Z support ^F and

n(E, E) contains a connected component I with l(I)^a

(ii) Hn belongs to &w and there exists E with support E = Hn and



26 HANS J. BORCHERS

n(E, E) contains a connected component I with l(I)^

Proof: (i) This part is based on lemma 3.4 and 3.5. Let FeJ%.

For every 0/FeP0 with FrgF define I(E) to be the maximum of

the length of the connected components of n(E, E). Define /(F) =
~>n

sup /(F). Since F belongs to J5".. follows /(£)>-r— r- By de-
O^E^F n-t L
finition of I(F) exists for any e>0 a projector O^FfgF with /(F)g

](F) + e. Assume this component / is ( c+-^-, c + /(F) — -^-j with

O^e'^e, then follows from the fact that there exists no F^O with

/(F)>/(F) that also (e', 1 (F) - e') cr n (F, F). If b$n(E,E) would

belong to this interval we would find sl>0 with s'<b — e{ and

)-&' and hence (c + -9 c + /(F)~--" + /£ + 5 is the in-

terval c + b + + s^ c + l(F) + d~- - -e But we have

)— ̂ - and c + I(F) + 5— ̂ --ei>c-h/(F) + -^-. This

would imply E' =E-$b+lEiE^Q and /(F')>7(F).

Repeating this argument we find

Since such relation holds for all e>0 exists a number m with m/(F)

-27T or 7(F)=— . Since 7(F)>-^1
T follows m ^ w .

m ^+ 1

(ii) For any given a with — ̂ -<a<— — define a family of pairs
77+1 n

J% = (F, F); F e P 0 n Z and F^Hn,EeP0 and its P0 n Z carrier

F(F) is equal to F, and n(E, F) c - -, + -

From the construction given in the proof of (i) follows that & ' a is not

empty and, moreover, every F^Hn contains F^O such that (Fl9 F)e

& ' a for a suitable F.

In &a we introduce a semi-ordering by the relations (Fl5 E1)<

(F2, F2) if F^F2 and E1=F1E2. Let now {(Fa, Fa)} be a stirctly

ordered increasing set and define F=strlimFa and F = strlimFa.
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Since F^Fa follows F(F)^Fa and hence F(F)^F. But since F^F

follows F(F)=F. Furthermore we get Fa=Fa-F and from this n(Ex,

Fa) = n(E9 FaF) = n(E9 Fa). Using 2.5. f) we get:

This means every strictly ordered family has an upper bound, and

consequently by Zorn's lemma exist maximal elements in J*r
fl. Let now

(F, F) such a maximal element and assume F^Hn then Hn — F/0 and

there exists F j^O such that (F1,F1)EJ r
f l for an appropriate F. Since

F1-F=0 follows (F + Fl5 E + Et) is strictly greater than (F, F). This

contradicts the maximality and therefore we get Hn=F for every maximal

element (F, F). This proves the lemma. In addition we remark that

for any given pair (F1? FJ there exists a maximal element (//„, F) such

that F1=F1F.

Next we turn to the projection Gn=Hn — Hn_l. We know that it

fulfills the second part of the definition 3.6. In order to show that

Gn and Fn coincide it remains to check the periodicity condition. This

we will do in a separate lemma.

3.10. Lemma: Let F belong to P0 n Z and assume for every —— >

a> exists EeP0 with F(F)=F and n(E, F) has a connected com-
n+l

ponent I with length l(I)^a. Assume furthermore for every O^F^F

no connected component I of n(F1? FJ can have length /(/)> . Then

n(Ei9 F2) is invariant under rotations by the angles —2n, m=Q, 1,... n —

1, provided F1? F2^F.

Proof: The proof is based on a repeated use of lemma 3.4. This

lemma does not say anything if n = l, therefore we wall assume n>L

(a) Assume the conditions of the lemma are fulfilled and give e>0,

then exists a projection FeP0, F(F)=F such that n(E, E)^(—2n + e,

m+l 2*-A m=0, l...»-l.



28 HANS J. BOUCHERS

Proof: Let -y- be the smallest entire number greater or equal

to ^-, and let s1<s/ 4-]- By the remark at the end of the proof of

the last lemma exists a projection EeP0 with F(E)=F and n(E, JE)=D

(e l 9 — -sl). Assume feef —+ 2e l5 —-271-26! ) then exists (5 >0 such
\ « V \ ft n V
that fr + 7,5 is contained in the same interval. Since n(E, E) is symmetric

we have n(E, E)ID( ——^- + £1, — et ). Now ( —-^H-fii, — et ) +^? is the
V ' \ 71 1J V \ /I 1 V.5

/ 271 \ 97Tinterval ( h £ i ~ f < 5 + &, — e< — (5 + 6). By choice of b we have — ——h
\ n l J n

271 ^71 \~ / 271 \Si +6 + b< — Si and — Si —o + b<——h£i. Hence we get / [ sf, — — e, ) U1 « J x ft x L\ n J

— _?L-|-e _g ) _}-ft >_JL. Using 3.4 and the assumptions of this
ft /<5 J ft

lemma we get £0_b + / < 5£=0 hence n(£, £) =3^-^- + 2s 15 — -27C- 2e A If

we repeat this argument we loose at every step e^ Hence we get

Since n(E, E) is symmetric we get the desired result by the choice of e^

(/?) Assume next there exists El9 E2 eP0, El9 E2^F such that n(Ely E2)

is not invariant under rotations by the angles — 2n then exists

F0,£'^F and e>0 and w^i-5-1 such that n(E', E')=>—2n + IB.

Proof: Since n(Ely E2) not is periodic exists b£n(El9 E2) and m

such that b + — '2nEn(El9 E2). Since n(E<, E2) is open exists s>0#

such that fo + — ̂ Ti + IgCinCE!, £2). Take e^y and defien E'-E2 =

0&+/£1^i which is unequal to zero. Lemma 3.4 implies n(E',E')=>

{nEl(Ei9 E^ — b}^ — -2n + IEl by choice of e^ Since n(E'9 E') is sym-

metrical follows n(Ef, E') n~m
l

(y) Assume the conclusion of the lemma is false, then by (/?) exists

£VO E'gF, 8>Q and m with n(£', F)=> — -27T+ Je. Choose e^-f-
72 J

then by (a) exists E^Q with F(E)=F and n(£, E)^(— 2n + el9
 m+l 2n-
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= l,2,..., n-1. Since EVO, E'^F=F(E) follows by 2.5. h)

that n(E',E)^T. Hence exists b£n(E',E) and consequently E-(j)b+lElE' =

Ei^O. But lemma 3.4. implies

n(El9 EJ^n(E, E) U/i

by construction of e^ The length of this interval is — -271 — 26! which is

greater than - if sl is sufficiently small. But this contradicts the

assumptions of the lemma which therefore holds.

Proof of the Theorem (continuation). From lemma 3.9 and 3.10 fol-

lows that (GnR, a) e Kn. Since Gn is the largest element in P0 f] Z fulfilling

3.9 and 3.10 follows Gn = Fn and hence the Theorem 3.8 is proved.

4. Construction of Spectral Resolutions and Interpretation

of the Classes

In this section we want to give an interpretation of the different

classes in terms of inner and outer automorphisms. The main tool

for this is the construction of spectral resolutions. We first will state

the result and afterwards prepare the proof in several lemmas.

4.1. Theorem: Let R be a von Neumann algebra and a be a *-

automorphism of R then (R, a) belongs to Kn,neN if and only if for

any F e P 0 n Z the automorphisms a* restricted to FR are inner for

i = 0modn and outer for i^Omodn. (R, a) belongs to K^ if and only

if for every F e P 0 n Z a* restricted to FR is outer for all i^Q.

In order to simplify the discussion assume for the moment that

R is a factor and (R, a) belongs to K±. In this case we want to con-

struct a unitary operator UeR which implements a. Our aim is to con-

struct the spectral resolution of U which is located on T since U is

unique only up to a phase-factor we have to fix an arbitrary point of

T. Defining a spectral resolution located on T means that we have to

assign to every EeP0 a subset of T. If this can be done then a filter
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of projection can also be used for fixing a point of T. Therefore our

aim is to construct such a filter.

4.2. Lemma: Let (R, a) belong to class Kn and let 0<e<— , then

exists a decreasing family of projections EEeP0 such that

(a) EEl^EE2 for ^<B2

(/?) The P 0 f i Z support of E which we denote by F(E) is equal to 1

(y) n(£.,JBB)z>^27E + e,-^Ji-27c-e), m=0, 1,... n-1

A family of projections with these properties will be called a point-

fixing family f.

Proof: Since by Definition 3.6 all n(El9 £2) are periodic it is suf-

ficient to look at the interval 0, -^- | . Since it is not required that
n j

all EE are different for different e, it is sufficient to construct EE for some

sequence tending to zero, e.g. on a geometric progression. Given e0

then we know from lemm 3.9. the existence of a projector ££0 with the

properties (/?) and (7). Assume we have constructed EE for e=£02~%

f = l, 2,... n then we have to construct it for / = « + !. We write £0-2~n=d

for abbreviation. Let b = sup {a ; 0 ̂  a < 6, a $ n(Ed, Ed)} and define

From lemma 3.4., we get:

n(El9 EJ^n&t, E6) U {nb/2(E6, Ed)-b} U {nb/2(E6,

This means

Now let F(El) be the -Po^^ support of £j and F2 = l— FI then we have:

This implies

Putting £i/2 = £1+F2£(5, we have n(Es/2, £ , / 2 ) = > , . _ _ and
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F(Es/2) = 1 - This proves the lemma

4.3. Definition: Let / be a point-fixing family and £eP0, then we

define the support of E, symbol Sf(E), by the relation

5/•(£)= complement of { U n(Ee, E)}
B>0

Since we choose the family / once and for all, we write simply

S(E).

4.4. Proposition: Let (R, a) belong to Kn then the support S(E) has

the following properties:

a. S(E) is periodic with periodicity
n

b. S(EE)c: period [ — e, e], where period [a, fe] is defined as

0<^n-iLn • ' n

c. S((£b+j£1EJcrpenod [ + £-£-£!,

d. Let E=E1VE2 then S(E)=S(E1) U S(E2)

e. S(E) = ^> // and only if E=0

f. The relation S(E1) n S(E2)=0 implies E!-E2=0

g. Le^ Ea be increasing and E=str. limEa then we get S(E)=closure

h. Lef GcT b^ a closed set, then exists a unique maximal projection

EG such that S(EG)c:G and such that for any projection E1

with (1— JEG)£1=^0 follows S(El) is not a subset of G.

Proof: a. This follows directly from Definition 3.6 and the defini-

tion of S(E)

b. For s1<s we have EEl^EE. This implies (see 2.5. c)) n(EEl, Ee)c

n(£E, EE) and consequently S(EE)c= period [ — e, e]

c. Assume a £period[ + b — e — e1? +b + s + el~] then exists c>>0 such

that a + Is does not interect with the same set. This also implies

a — b + Id + IEl n period [ — e, s]=0. For e2<e we get:

since — a + b + Id + Ei ^n(EE, E£). This implies (see 2.3. d. /?)) a
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n(EE2, (t)b+lElEE) for all £2<e. This proves the statement by the

definition of S(E).

d. From 2.5. e) we have n(EE, E) = n(E£, Et) n n(EE, E2), and hence

by the monotony in s we find:

Wn(££, £) = W{n(££, £1) n n(Ea, E2)} ={Wn(£a, EJ} n [\Jn(EB9 E2)} .
E B E E

Consequently we have {\Jn(EE, E)} = {\jn(EE, EJ} n {Un(E£? E2)} which
E e E

is equivalent to statement d.

e. If £=0 then n(EE, E) = T for all e and hence S(E) = 0. If S(£) = 0

then follows \Jn(Ee, E) = T. Since T is compact and n(EE9 E) is open

exists g0 such that n(EEQ, E) = T. Since F(EE) = l we get £=0 by

2.5. b)

f. We get from d the relation S(Ei9 E2)dS(Ei) i = l , 2 . Hence S(E1)r\

S(E2)=0 implies S(El E2}=0 and consequently E1-E2=Q follows

from e.

g. From E^E follows S(Elx)c:S(E) and hence cl{WS(£a)}c=S(£). As-
a

sume now b^cl{^jS(Ex)} then exists (5>0 such that b + I d ( ] c l { \ j

S(E(X)}=0 which implies b + Id(\S(E^=0 for all a. From C. fol-

lows S((f)b+Ja/2Ed/2) n S(£a) = 0 and consequently from /. E^b+Id/2Ed,2
=0 for all a. But this implies E(/>b+l6/2Ed[2=Q and therefore
b e n ( E d f 2 , E ) which implies b$S(E). This gives the relation 5(£)c=

c/{5(£)c=c/{wS(£:a)} which proves g.
a

h. Define FG{£; S(E)aG}. Then d., g., and Zorn's lemma implies

that FG contains a unique maximal element. The definition of FG

implies that also the second stetement is fulfilled.

Statement h. of the last proposition permits us to define a spectral

resolution.

4.5. Definition: Let (R, ot)eKn then we define for /Le[0, 2n) the spectral

projector £A to be the unique maximal element belonging to the set
r /inperiod 0, — which is described in 4.4. h.
L n J

4.6. Lemma: E% has the following properties:

a. EI^EH for X<\JL



INNER *-AUTOMORPHISMS OF W^-ALGEBRAS 33

b. str lim Ex = \

c. £•, =strlim£,,

d. Assume /t and /2c:/1 are two connected intervals, define E(I)

as usual then we have for all xeR: support ^rYl{E(I1)ocnlxE(I2)}c:

closure/!—/2. The index I indicates that we have to take the

Fourier transform with respect to L

Proof: a. A<^u implies period 0, — I c period I 0, -^- and hence

by definition of the spectral family E^E^

b. Let £' = 1-str lim £A, and let b + /ec/0, — \ and ££/2 e/, the point-

fixing family. Then we have by 4.4. c. S(4>b+lE/2EE/2)ciperiod {b-f/J,

and hence 0b+/£ /2££/2^£A for some 1.

This implies E'(j)b+lE/2EE/2=Q and consequently S(E')= period {0}.

From the maximality condition imposed on £A follows £'=0

c. We have S(str lim £A)c n period |0,—l = period|0,-^-1. But this

implies str lim £A^£ . Since the other inclusion is trivial, follows

C.

d. As in b. it is easy to check that S(E(IJ) is contained in cl< period — >/.

This implies (4.4. c. and f.) E(Il)(j)b+lEE(I2)=Q if clj period —J^l n

~ / 2 =0, and hence n(£(I2), £(/1))c complement [period

Let us denote by C the closure of the complement of II — 12, and take

/e/£. Define f»(I)=if(-^\ for 1 = 0 modn. From the relation

(0 elsewhere.

(jr-i/«)(a)=(^-i/)(n.a) follows /n(/)elic. Since — Ccn(£(/2), £(/!»
n n

we get by use of 2.5. g) and the definition of $ the equation

E(Il}x(fn)E(I2)=Q9 xeR and /e /^ .

This implies statement d.

We are now prepared to prove the main part of theorem 4.1.
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4.7. Proposition: Let (R, a) belong to Kn and let £A, O^

be the spectral family defined in 4.5. Define the unitary operator
C2n

ueR by the equation u = \ el*dE^ then we get for every xeR
Jo

(XnX=UXU* .

More precisely weZ 0 .

C2n
Proof: Define h = \ Ad£A and approximate it by the operators

Jo

then we have \\h — hN\\^-£-. Define uN=eihN then ul-ul
N is bounded

on the real axis by two and hence we get from Schwarz lemma and

the Phragmen-Lindelof theorem the estimate (see [11], 5.2. and 5.6.)

Next consider the expression u^1 y."1 xul
N, xeR, as function of /. Re-

placing MJV by its definition we get:

j,k=l

Using lemma 4.6. d. we find

support ^^-^(Ej -Ej-. }*nlx(Ek - Ek-*
( n2n -TT2n N2n -JT

yil%2n

Since this holds for every term of the sum its also true for the whole

sum. The Fourier integral defines an interpolation

which is an intire function of exponential type -^-. Since it is bounded
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by ||x|| on all entire values of z, there exists a constant K depending

only on N such that the interpolation is bounded by K\\x\\ (Cartwright's

theorem, see Boas [2] theorem 10. 3.2.) This constant is majorized by

4 + 2elog(l/,_!) and hence we can replace K by 5 if we choose N ^ H .

From this we get FN(z)=x — (u%aNxuN)(z) is an entire function of

exponential type ——- with ||FN(z)|| ̂ 6||x|| for real z and N^\4 which

vanishes at the origin. Hence from Schwarz lemma and the Phragmen-

Lindlof theorem we get the estimate

||FN(z)||^|z | \\x\\6e271

N

provided JV^14 and |z|^-=—. This shows FN(z) converges to zero

uniformly on every compact. Since IIN approaches u we get the desired

result.

Let us now prove the converse statement.

4.8. Lemma: Let (R, a) be given and assume for every F e P 0 n z

a" restricted to F-R is an inner automorpliism but for any 0<m<n

am restricted to F-R is not inner, then (R, a) belongs to the class Kn.

Proof: Let / e / 1 then we define the functions fk, k =0,... n— 1

by the equation,

»~o/i In '}- n {_ei2n-^

f /(/) for 7 = Jt mod T*

0 elsewhere.

n-l
This implies /(/) = X fk(l). Now we compute

k=0

n m=o
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n m=o

Let now /el) then f(k + nl) belongs for fixed k and n to /*/. This

implies for x e R

k=0 I

and hence we find for EeP0 the relation

where the upper index indicates the automorphism with which the map

0f is constructed. By assumption a" is an inner automrophism, and
C2n

hence exists a unitary operator u = \ eud£A implementing a". Let
Jo

now /! and I2 be two intervals then we get

support &~ 1 (E(Il)u
lxu~lE(I2)) c closure /! - J2

and hence n*n(EE, EE) z> (e, 2n-s). From this follows wa(££5 F£) c

( — __ZL — — ). This means for every e>0 exists an E^=Q with P^nZ
\n n n J

support = 1 and n(E, E) contains a connected interval of length ^ --

2s. On the other hand there can not exist an £^0 such that n(E9 E)

contains an interval of length greater then — — otherwise a restricted
n

to F(E)jR has the property that am is inner for some m<n. Because

theorem 3.8 permits us to decompose F(£) is IFk(E) when k divides

n and proposition 4.7. allows us to construct unitary operators in Fk(E)R

implementing afe. But this contradicts the assumptions of this lemma.

Finally lemma 3.10 shows that all conditions for defining Kn are fulfilled.

Proof of the theorem'. Let n be a number and d(n) all its divisors

including 1 but not n. Let (R, a) be arbitrary then exists a unique

maximal projection Hn in P0 n Z such that a" restricted to HnR is inner.

Define G=Hn— V Hk. From the definition follows that all the
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Gn are mutual orthogonal. Define G^^l — £Gn. Compare this decom-
n

position with that given by theorem 3.8. Proposition 4.7. and lemma
4.8. shows that Gn and Fn coincide. Hence G^ and F^ coincide by

construction. But G^ can also be defined to be the maximal element

of P0 n Z such that for every F^G^ no power of a restricted to F-R

is inner. But this proves the theorem.

5. Characterization of Inner ^-Automorphisms

In this section we want to give characterizations of inner automor-

phisms of a von Neumann algebra. Moreover we want to apply our

technique to various problems related to automorphisms and derivations.

To this end we introduce the following

5.1. Notations: Let /? be a linear operator acting on a Banach-Space

B then we denote

a. ||j8|| the usual operator norm

||/i||=sup{||/fr||; xeB \\x\\Zl}

b. sp(/?) the spectrum of /? which is the complement of the points

zeC such that (/? — z) has a bounded inverse. If oc is a ^automor-

phism of a W* or C* algebra then sp(a) is located on the unit

circle.

c. p(/?) denote the spectral norm of /?

p(/0=sup{|z|; zesp(£)}

It is well known that p(j8)^||j8|| and that p(j3)=lim ||x»||!/».
n-*ao

d. Let B1 be a closed linear subspace of B invariant under /?, then

we denote by ()\Bl the restriction of /? to B^

e. Let a be a * -automorphism of a C*- or W*-algebra then its spectrum

is located on the unit circle T we denote by 0(a) = T\sp(a) and call

it the gap of the spectrum. Since sp(a) is closed follows g(a) is open.

Giving characterizations of inner automorphisms we will include

in the list also the result of Kadison and Ringrose [7]. The main

results of this section are as follows
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5.2. Theorem: Let a be a ^-automorphism of a W* algebra JR, then

the following statements are equivalent:

a. a is an inner automorphism.

b. a lies in the connected component of the ^-automorphism group

of R furnished with the norm-topology.

c. There exists an invariant projection EsR with central support

1 such that

d. There exists an invariant projection E'e R with central support

1 such that

Both numbers <^/3 in c and <2 in d cannot be improved.

5.3. f Theorem: For ^-automorphisms we have the following relation

between p(a—1) and | |a—1||.

a. // p(oc —1)< % /3 ffref i we ge£

b. // >/ 3 g p(a— 1) ̂  2 f/7^« ||a — J|| /5 a double-valued function of

fa/ce.s f/ie values

( either p(a — I )
||a-l|| =

(or 2

Both values are taken by special examples.

5o40 Theorem: A. Let a be a ^-automorphism of a W*-algebra R

then we have

(i) sp(a) is invariant under the substitution

(ii) // (R, a) belongs to the class Kn then it is also invariant under

the substitution
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z > e£27t '«Z 771=0, 1,... 77 — 1

(iii) // the spectrum of a has a gap, then, in the standard decomposi-

tion (theorem 3.8) 077/3; those Fn can be different from zero for

which

expj/27t—1 Gsp(a) for all m = 0, !,...,«-

(iv) Assume ||a — 2||<2, then exists a unique unitary operator in R

with the properties: For every central projection F

such that otx=uxu* for every x e R.

B. Let d be a real derivation of R thne we have

(i) spd is invariant under the substitution

(ii) There exists a unique positive operator AeR such that for every

central projection F we have

\FRF >

This last result generalizes a result of Pedersen [8].

For the proofs of these three theorems, we need some preparations.

We start with

5.5. Lemma: Let a be a ^-automorphism of a W*-algebra R and

let cj)j be the map defined in 2.2., then </>/=0 if /c=#(a) and only if

(a) (J° the interior points of /).

Proof'. Assume first /c=0(a). Since / is closed and g(a) is open

exists a constant M such that ||(a —z)"1!] ^M for all z in some compact

set including /.

Now let / e / j and /=^r~1/ then we have supp/c=/ and |/(fl)|^||/||

and furthermore f ( n ) = \e~inaf(a)da. This gives
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£/O)a" = ̂ \einaf(a)daan= £ \einaf(a)daain+ £ \e i n a f (a)daa"
n n J -ooJ 0 J

Since fe l± follows \ e~ina~rnf(d)da =ff(n) converges to /+(rc) for

n = 0 and r-»+0 in I1 and W~fMfl+r"/(fl)da=/7(n) converges to f~(ri)

for n<0 and r-»+0 in li(f+(n)=f(n) for n^O and 0 for n<0, f~(n) =

f(n)—f+(nj). Hence exists for any s>0 a number r0(e)>0 such that

||/r
+(n)-/+(n)||^8||/ + (n)|| and ||/r-(n)-/-(n)||^e||/-(n)|| for 0^r^r0 .

Inserting now /+ for /+ and /~ for /" then we can interchange the
summation with the integration. So we get

\\If(n)an\\-s H/ l l ^|| 2
n=—oo

(daf(a) {e+ia-r(a - e+ia~r)- 1 - e+ia+r(oc - e+ia+r

daf(a)e+ia(e-r-er)(x(oc-eia-r)-1(oc-eia+T1

where L(J) denotes the length of the interval /. This implies

Since s and r are arbitrarily small follows Zf(n)an=Q.

Let now conversely 07=0 then follows 0/1=0 and hence by defini-

tion of 0j follows Zf(n)(x,nx=Q for all fel\ and all xeR, and hence
Zf(ri)an=Q for all /e/j. Hence we get with the same calculation

<s f

for r<r0(s). This implies by the edge of the wedge theorem that

eia-r(<*-eia-r)-1 is analytic in 1°. Hence /Oc^(a).
From this we immediately get
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5.6. Corollary: Let & be a ^-automorphism then we have

(i) sp(oc) is invariant under the substitution z-*z~l

(ii) // (R, a)c=Xn then sp(oc) is invariant under the substitution

z > ei2n~^z m = 0, 1,..., n — 1

and exp Ii2n—> esp(a) for m=0, 1,.. , w —

(iii) // p(a— 1)<N/J f/?en a is inner and there exists an example with

p(a— l )= N /3 and a /s outer.

Proof: Let zeg(a) then exists an closed intreval 7c=0(a) such that

re 7°. Since we have 0/=0 follows for every £eP0 that E4>fl =0

and hence by Theorem 2.3 we have 0/-1£=0. Since this holds for

all £eP0 follows 07-i=0. Since ze7° follows z-1e(7-1)° and hence

by lemma 5.5 we get z~1egf(a) .

Now let (R,a)eKn then we have from lemma 3.10, for all El9

E2eP0 that n(El9 E2) is invariant under the rotations by the angles

27T— , m=0, 1,..., H — 1. Now let zeg(a) then for some e>0 we have

z + 7£cg(a) hence 0Z^-/££=0 which means n(El9 E2)^g(oC) for all £1? E2.

This implies 0 z . e » 2^+7^=0 for all E and hence z-ei2n^ E g(oc).

Theorem 2.3 implies (frjE^E if Ic7° hence l e s p a and since (a,

R)eKn follows from the previous result e i27t^esp(a).

Let now p(a— 1)<%/3 then sp(a) is contained in the interval

[>-", e+il~\ with

p2(a_i)=2-2cos/

which means l<—^-. Let now -J- the smallest entire number >-J-
3 L2 J ~ 2

then we have for n^2, — -y- /w^-^- and I -5- / n ^ — which implies

This means in the standard decomposition (Theorem 3.8) can appear

only the term Ft this means a is inner,
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Let now M be a factor of type II or III and a be the mapping

x®y®z-*z®x®y. By a recent result of Sakai [10] this defines an

outer automorphism of M®M®M. Since a3 = l follows the spectrum

of a are exactly the three third roots of 1. This implies p(a — 1) = ^/3.

As next we show

5.7. Lemma: Let a be a ^-automorphism of a W*-algebra R and

E be an invariant projection with central support equal to one. Sup-

pose a\ERE is an inner automorphism then follows a is inner.

Proof: Let identify R with some normal faithful representation of

R on some Hilbert space H* By the assumption exists an operator

VEERE with w*=v*v=E and vxu*=ax for every xeERE. Define

an operator u on H by the equation

Xi E R, yt E R1 and ft E E-H

We get the estimate (since /f = £/)):

if il^

ij

This means u is an isometric operator. Since E has central support

1 follows that the domain and the range is dense in H which means

the closure of u is a unitary operator.

From the defining equation of u one sees that M e .R and furthermore

the relation (xx)u = ux. Since u is unitary follows that u implements

the automorphism.

As last step for the demonstration of Theorem 5.2 we prove the

following

5.8. Lemma: Let a be an inner ^-automorphism of a W*-algebra

and e>0 arbitrary, then exists an invariant projection E with central
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support one such that \\(a—l)\ERE\\=c-

Proof: We start from the construction of section 4. Since we
have a point fixing family follows that for every d>Q that £([ — 6,

+ (5]) has central support 1. Choose now b=-j— and E=E([_ — S9 + <5])

then uE=E-eiAE with ||AE||^<5. Now u-E implements the automorphism

U\ERE- Let now &tx = eitAExe~itAE for xeERE. a, is an entire analytic

function with ||af|| <^e
2d\lmt\. Now a r — 1 is zero for t=Q and fulfills

the estimate ||ar —1| | ̂ 2e2d\lmt\. Using now Schwarz lemma for the

circle \2St\^l we get ||ar-1|| ^ 4e-d\t\, \25t\ ̂  I for r = l we have

a t_1=(a-l) |£ j R £ and hence \\(x-\)\ERE\\^4ed=c..

Proof of theorem 5.2. If a is fulfilled, then lemma 5,8 shows that

d is fullfilled and also c since p{(oc — I) |EJ?E} = II (a~- OIEJIE- ^ c holds,
then corollary 5.6 shows that %\ERE is inner and consequently a is

inner by lemma 5.7. If d holds then &\ERE is inner by the result of

Kadison and Ringrose ([7] theorem 7) and hence a is inner by lemma 5.7.

If a is an automorphism fulfilling b, then a is inner by either c or d.

If a holds then xx=eiAxe~iA with some AeR and ||,4||<T. Hence

Qttx=eitAxe~itA is a norm continuous one-parametric group of inner

automorphisms. This means b is fulfilled. Since there exist an outer

automorphism with p(a—0 = ^/3 (See the example given at the end of

the proof of corollary 5.6. We must also have | |a—1| |=2 which means

that the region of validity of 5.2 can not be improved.

Our next aim is the proof of theorem 5.4, but we first need some
preparation.

5.9. Lemma: Let p(a — l ) < v / 3 (this implies a is inner by Theorem

5.2) and define for -~<ji.i<~ the interval

and Efl = maximal projection EeP0 such that <^£^=0. Theorem

2.3 implies that this maximal projection exists and is unique. E^ has

the following properties'.

a. ^u<0 implies E^=Q



44 HANS J. BORCHERS

b. jU!>/u2 implies Ef

c. For every central projection F define 1F > 0 by 2(1 — cos/F) =

p2{(a-l)|FRF}, then F-E^F for ^>1F

d. For n>Q we have central support of Ell = \

e. /x>0 then we have T\n(E^ £^)c=[ — fj.,

The properties b, d and e show that {E^} is a point-fixing family.

Let S(E) be the support of E defined by {E^} (see Definition 4.3) then

we have

f. For every E e P0 and every central projection F we have

S(E-F)csp{QtlFRF} n

Proof: a. For ^<0 follows lc=/° and hence by Theorem 2.3. c. d)

we have fi^E^iE for all EeP0 which implies £^=0

b. ^1>n2 implies /^c/^ and hence by 2.3.

0/1*^/12 ̂ ^2
£M2=0 which implies E^E^

c. Let /x>/F then follows I^^g^iFRp) and hence by Lemma 5.5
0/MF£=0 for all £ which implies E^F.

d. Let ^>0 and F^ the central carrier of £M. Assume F^^l then

follows (f)IflE^Q for all O^^^(l-F). This implies 0/|t-i(l-^) =

(1— FM) (otherwise if there exists an £^(1— F^) with E(j)Ifi-i(l—Fl^) =

0 would imply 0=(1— FM)0?ME= $/M£, contradicitng the assump-

tion). Since 0 1(l-^) = </) 2,-,(l-F,) V <£ r2 i r_ 4, _, (1-f;) by
L^'-g-J L 3 E' 3 ^J

2.3, and the second expression vanishes for sufficiently small e

by Lemma 5.5, we get 0p 27r- i ( l— ̂ )=(1— ̂ )- Assume now

/ X < / I - F M and 2/1_FM-;u + 4p<^- then we have f/x, 4p~| +

(/!_F/i — ̂ ) + e4-/g/2
c=^(a) and hence by 5.5 and theorem 2.3.

°=^{r,-^i., , lO-^^^.-^-^/^r.^-i0"^^L^' 3 -l + ll-Fn~H + E+IE/2 L^' 3 J

^i-P-M-e+i^C1-^)- Tms imPlies by Lemma 5.5 /i-^
)- This contradicts the definition of / ! _ F .

e. Let >b>ti and 6-s>Ai then 0_ f c+ ra£M^0 /M£M=0. If

471 then b E g(oC) and hence 0&+/£=0. Since n^E^E^ is in-

variant under b^ — b follows (/i, 27i —
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f. Let b<0 and s<-^ then 0&+/££iM^^/|b |£iM=0 and nence b$S(E)
2 2 ~2~ 2

for any E. Let now b + IEag(^FRF) then ^>b+/£F=0 and hence

b$S(EF). This means S(FE)csp(alFRF) n

theorem 5.4. Part A (i), (ii) and (iii) are proved in corol-

lary 5.6. Assume now ||oc— 1||<2, then exists according to Kadison and

Ringrose [7] (Theorem 7) a unique real derivation with ||<5||<-y- such

that u = ed. If we consider oct = etd then for t^^- we have p(oct— 1)<

^/3 . Now according to Lemma 5.9 exists unitary operators ut with spw tc

spa f n{Imz^O} which implement the automorphisms. By construction

of ut follows that ut is a one-parametric group and hence the result

extends also to t = \. This proves the first part of A (iv). Let 6 be a

derivation then we can pass to the one-parametric group et5=ut for

|f|<J^L||g||-i We have p(af-l)</3~ and thus part B (i) and the first

part of (ii) are consequences of A (i) and the first part of A (iv). In

order to prove the uniqueness it is sufficient to do this for the derivation.

Let 5 be a real derivation then exists a positive operator d with sp

idFdsp{6\FRF} and d=adid since d is positive follows | |<5|/?uFll^

\\d-F\\£p(dlFRF)£\\SlFRP\\. This shows that \\S^FRE\\=\\dF\\=p(dlFRF).

Assume there exists a second positive operator d' with d=adid' and

spid'Fc:sp{<5|FRF} then we have d — d'eZ. Assume the spectrum of

d — d' contains a point x^O then exists a spectral projection F with

^,|-jcT Assume first x>0 follows from Fd=Fd' +

F(d-d') that | |Fd ' | |+<l |W|l or ||5,FRF||

— -y-. This is absurd and hence d — d' is not positive. Assume next

I x Ix is negative then we have Fd — F(d — d')=Fd' and hence spFrf + -~^ci

I x IspFdf asp{d\FRF}. This means \\Fd\\ =p(8\FRF)—^- which is also absurd

and hence d — d'.

Proof of theorem 5.3. Let d be a real derivation with ||5||<7r.

The function t-+etd — e~td is an entire function of t and we get \\etd —

||^||2"+1=2sinh \\t8\\. Since e<* is a *-automorphism
M=o

.
L)\
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finds <£}/?£ =#£?£ and hence for £ l 5 £ 2 ePg n*(Ely E2) = nv(pEl, pE2).

for real t we have \\etd-e~td\\^2 for * real. Using that etdx-e~tdx

is selfadjoint for x selfadjoint we get (see Boas [2] 6.2.6) \\etd — e~td\\ g

2 cosh | |<5| |Imf. Since this function vanishes at the origin we can define

smt\\S\\

in the strip |Ref|< ...... . Since |sinx + />'| =>s/cosh2
-y —cos2x follows

||F(OH is bounded in the strip |Rer|^~^ and ||F(OH^2 f o r | R e f | =

. This implies (see e.g. Titchmarch [11] 5.6.5.) ||jF(f)||^2 in

'— WM' ^rom ^^s we Set:

_d_ |j _/ |

7i

From theorem 5.4 we know ||<5|| =p((5). Since we have p2(e5 — l)=2 — 2

cosp((5)=4sin2£^ we find ||^ — 11| ̂ p(ed — 1) which implies that both

expressions are equal. If now p(a—1)<^/3 then a lies on a one paramet-
2

ric group etd with p(<5)<7i—. Hence we have ||a — 11| =p(a — 1). If

^T^p(a-l)^2 then ||a-l|| might be 2. If ||a-1||<2 then by the

result of Kadison and Ringrose we have a = ed with ||<5||<7i and hence

||a~l|| =p(a— 1). Let now M be a factor of type II or III and «0

the outer automorphism of M®M0M at the end of corollary 5.6.

Let - < ^ / < ^ T T and d be a positive invariant (under a0) operator with

= [0, /] then we have \\adid\\=l. Let al=eadid then we have

- 1) =p(a0a1 - 1) =2 sin — but

since a0 is an outer automorphism.

p(a1-l)=p(a0a1-l)=2siny but [ja!-!!! =2sin-~ and

6. Some Final Remarks

A. If a and ft are two *-automorphisms of the same PF*-algebra R

and one defines y=jffajS~1 and denotes the quantities used in this paper

with an upper index denoting the automorphism which we are consider-

ing, then one finds easily from the definitions Rl=f$R%, for JEePg one



INNER *-AUTOMORPHISMS OF H7*-ALGRBRAS 47

This means for a fixed PF*-algebra R the classes AulM = {a, (/?, a)eXn}

are invariant sets.

B. With a little care most of our technique can also be used for arbitra-

ry locally compact abelian groups which we will denote by G. We

want to give a brief discussion of this case.

a. Since we are looking for continuous group-representations it is

according to an earlier paper [4] neceassry that G acts strongly contin-

uous on the pre-dual R* of jR, i.e. for every e>0 and every cpeR*

exists a neighbourhood U of the groupidentity with ||(a — l)cp\\ <e, ae U.

If this is the case integration with respect to the invariant Haar-measure

of expressions \ f ( g ) u g x d g are well defined as weak integral.

b. Let G be the dual group of G then we can define c/)sE for elements

in #0 for sets 5 with the properties (i) S = S° and (ii) for every geS°

exists a function /e /£ with support ^'lfciS and (^~lf)g^Q. With

this provision and a little care about the union of two such sets all

results of section 2 are true in this general situation.

c. For the definition of the classes it is easier to start from the group

G itself. Let H be a closed subgroup of G then we give the following

Definition: A group a(G) of ^-automorphisms belong to the class

KH if and only if for every Projection F e P0 n Z the subgroup of auto-

morphisms ah such that uh\FRF is inner, and we can find a continuous

group-representation u(h)eR of H, implementing H, is exactly H.

d. Since in general a group G has continuously many different sub-

groups, a standard decomposition of R is in general not possible or

at least not so easy. Therefore we will stick to the case where R is a

factor then a(G) lies always in one of the classes.

e. For E1? E2eP0 we can investigate the expressions n(El9 E2) on G.

Let now H(E19 E2) be the subgroup of G such that §en(El9E2)

implies 60en(El9E2) for all /zeH(E ] 5E2) and HQ= r\ fi(El9 E2).
£ l '£ 2

If R is a factor then H0 is well defined and is a closed subgroup of
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G. This then gives a second definition of classes Ka and one

would like to show that these classifications are isomorphic.

f. If a(G) belongs to Kffo then the definition of a point-fixing family

is possible on G/H0 and hence we get also a spectral measure on G/H0.

g. Let H be the subgroup of G such that (/?, h) = l for all heH0

then G/HQ is isomorphic to H. From this the following statement

is immediate. If a(G) belongs to KH, then it need not belong to Kff

in general. The converse statement seems to be true, but, I don't

know how to prove in general. Having a spectral measure on G/H0

it is of cause easy to construct a grouprepresentation u(h) of H. But

to show that u(h) implements a/, I know to do only in special cases.

This is based on the fact that our proof uses entire analytic functions.

So we can give the proof for the cases G/H0 =R, T, Z, Zn and finite

direct products of these special cases.

h. These special cases just mentioned cover most of the interesting

problems. This leads e.g. to the conclusion that derivations are inner

and the case with semibounded spectrum treated in [5] leads to inner

automorphisms.

i. Passing from one single automorphism to an abelian group of auto-

morphisms, then the following possibility does occur and complicates

the situation: Every single automorphism is inner, but we have only

a continuous group-representation up to a multiplier. Take for example

a representation of the C. C. R. of one degree of freedom, then the

Weyl operators induce an automorphism-group which is isomorphic to

R2. (I learned this example from A. Connes.)
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