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On the Periods of Certain Pseudorandom
Sequences

By

Masahiko SATO*

In [1], Rader et al. gave a fast method for generating pseudorandom
sequences. Concerning these sequences, Moriyama et al. [2] made a research
including the computational results by computers.

In this paper we shall study the periods of these sequences, and give an
affirmative answer to the following conjecture presented in [2]:

"Let k(n) be the maximum period of n-bit pseudorandom sequences gen-
erated by the Rader's method. Then k(2n} = 2k(n) for all ?z."

We shall also prove a number of algebraic properties of the periods,
and give an efficient algorithm for computing k(ri).

We remark here that in this paper we are interested only in the algebraic
properties of these sequences and not in the randomness of these sequences.

§1. Introduction

To make the present note self-contained, we begin with the definition

of the pseudorandom sequences given by Rader et al.

An n-bit pseudorandom sequence E=(£z-)i=o,i,--- *s defined inductively
by:

(1)

(Ei+2=D(Ei+i®Ei)

where e0 and e± are given n-bit patterns, 0 denotes £exclusive-or' of

two n-bit patterns, and D is the operator rotating the argument cyclically

1 bit to the right. For instance, if n=3 and e0=011, e1=001, we have:

£0=011, ^=001, E2=001, £3=000, £4 = 100, ...,E14=001, £15=011,
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£16=001,.... We denote the y'-th component of E-t by £,•(; — 1). Thus

£f = E£(0)... Et(n — 1). In the original paper by Rader et al., D is replaced

by Tp which performs the p-bit cyclic rotation. Let us call this sequence

(«; p)-sequence. For the study of the period of the sequence, however,

we have only to consider the case p = 1 . For, if GCD(p, ri) = m ̂  1 , the

sequence (£/) can be reduced to m (n/m; l)-sequences (£/) (j = l , . . . ,m),

where £/(/)=£/(./ + (/— l)w/w). The period fc of the sequence (Et) is

therefore obtained by fc = LCM(fc lv.., /cm), where fc,- is the period of (£/).

If GCD(p, n) = l, (IQ is isomorphic to the (n\ 1) sequence (E-), where

Now, let us consider the following sequence (F^=0jl)... of elements

in R, where K is a commutative ring with 1 and /0, /19 x are fixed

elements in K.

(2) F, =/, ,

Define the generating function Fefl[[F]] of (Ft) as follows:

(3) F=|/'-n

From (2) and (3), by a simple computation, we obtain

(4) F

d=0

Hence,

To see the relation between (1) and (2) more clearly, the following

fact should be mentioned. The operator D in (1) has the property that

D" is the identity operation. So if we put
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and x=c(X), where c: F2[X]->F2[X]/(Xfi-l) is the canonical mapping,
then we can identify (2) and (1) under the following correspondence:

an element of R ~j Tan rc-bit pattern

i = 0

multiplication by X <—> operation of D

+ — e

So in the following we shall consider (2) instead of (1).

To decompose Rn into a direct sum, let

be a factorization of Xn — 1, where P^s are distinct irreducible factors

of Xtt-L

Since the derivative of X11—! is nXn~l, Xs —1=0 has no repeated

roots, i.e. e~l for all /, when n=s is odd. (In the following s always

denotes an arbitrary odd number.) Hence we have the following iso-

morphism.

(7) ^sFjm/cpoe-eFiOT/w-
Now suppose n is even and n=2us. Then since Xn—\—Xs2u + l =

(Xs +1)2", we have

Y"— 1 — P2" P2"A —i—rl ...i/, .

Thus, we have

§2. Discussions in a Field

Now let P be any irreducible polynomial in F2[X~] with degree

d. Let us consider the relation (2) in the field K=F2\_X~\l(P) =
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taking xeK as the image of XeF2[X'] by the natural mapping from

F r v~\ 4-* j^2\_X] to K.

Then we can naturally define a linear map S: K2-^K2 by:

/ 0 1 \
(9) S =

\ x x /

( P \ / F \i~l } to f * j. Hence,

/ /o
(10) S*[

\/i

Since detS=x^O, 5 is in GL(2, K). So the group G =

GL(2, K) acts on K2 from left in a natural way. For any feK2,

we put kK(f) = k(f) = \Gf\, namely the cardinality of the G-orbit con-

taining /. Clearly, k(f) is the period of the sequence (2) for the initial

value f=(

As is well-known, |G/| =\G\l\Gf\, where G/ is the stabilizer of/ .

We have therefore

(11) fc(/)l|G| (for allfeK2).

If we put k = k(f), we have

£*(/)=/ and

Sfc(5/) = S/.

So, if { f , S f } is a basis of K2, we have ^=(0 i )• This, combined

with (11), means fc(/) = |G|.
^0\

1 r»it7£»ci -fVidi -r*-i o-vi*vm*vi *>c»r>t /^»/-1 oit-n-»<a

1 JC
Thus, the initial value f , J gives the maximum period3 since

Remark. The above argument remains valid even if we take as

P any non-constant polynomial in F2[X] whose constant term is not

0, merely by replacing '^0' by 'is invertible' in two places above.

Now, / and Sf are linearly dependent iff / is an eigenvector of 5.

Since the eigenpolynomial of S is
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(12) E(t) = t2+xt + x,

we have the following

Theorem 1. // £(0=0 has no roots in K, then every orbit other

than ](Q)[ has the same period fc = |G|.

Corollary 2. |G| |2 2 d - l .

Let a, j$ be the roots of £(0=0 in the algebraic closure K of K.

Let K'=K(aL,P). Since a + /?=x^0, a and ft are distinct. Since a£ =
, a and ft are not 0. Thus for some UeGL(2,Kr), we have

If K'^K then X' is an extension field of degree 2 over X. Hence
K' = GF(22d). Since a and ft are conjugate over X, we see |a|=|j8|,
where |a|, |/?| are the orders of a, j8 as elements of the multiplicative
group of K'. And, since a is not in K, |a| can not divide \K*\, where
X* is the multiplicative group of K. From (13) and the above argu-
ments, the following theorem can be obtained.

Theorem 3. (i) If E(f)=0 is unsolvable in K, then

|G|Ha|=|j8||22d-l, and

(ii) // £(0=0 is solvable in X, then

|G| =LCM(|a|, \f}\)\2d — 1, and

the period o//^0 is

[ |a| (if S/=a/)

\P\ W Sf=Pf)

\G\ (otherwise).

Now, let us compute the general term of the sequence (Ft). As
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the transformation matrix U in (13), we may take

*-(i J)-

Hence,

(15)

a'0 + ajS1

Hence, by (10) and (15),

(16) ^

§3. Proof of the Conjecture

Let us now return to the original problem and consider the case

n=s. The relation (7) may be written as

Consider the sequence (2) in the ring Rs, and fix an initial value

R*. The above isomorphism is induced from the natural ring homo-

morphisms <pt: Rs->Ki. Hence the following relation clearly holds.

/ /o \ /
(17) kR.( =LCM (k ,-,kKh

\ f j \

Now, take any non-constant polynomial P in F2[^] whose con-

stant term is not 0, and consider the sequences (2) in two rings

and Q2=F2[X]/(P2).

We examine the relation between the periods of two sequences in Ql
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and Q2 for the initial values eg? and ( eQl, respectively. To

this end, we consider the sequence (2) in F2[X] putting /0=0 and /i=l.

Let k = kQ( j \ Then for some A{, A2, A3, ,44eF2[X], we have

/ AJ + l A2P \

\ A3P A4P+l /

Hence,

/ 1 0 \
(18) S2k=( (modP2).

\0 1 /

Hence, by (11)

/ °\kn,[ 2k.

On the other hand, if ' = fce2(^)<k then, since S'=(Q ^) (modP2),

we have Sl = ( Q , j (modP). This is a contradiction. Thus,

0
(19) k = kQl or

Now, let /c(w) be the maximum period of the n-bit random sequence

(1). Then since the initial pattern ( , J gives the maximum period, we have

(20)

By (19), (20), and the fact that (X» + l)2=X2" + i, we have

(21) k(2n)=k(n) or k(2n)=2k(n).

We now prove that the case fc(2n) = fc(n) never occurs.

Theorem 4. k(2n)=2k(n).
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Proof. If n=s then by (17),

0 \ / 0
(22) k(s)=LCM(kKl

\

Then by Theorem 3 we see that k~kKi is odd for all

Hence k(s) is odd. If n=2ms (m^O), then by (19) and (22),

(23) A(/i)

Hence, if we can prove that

(24) m=max{m1,..., mj

r/ien we have

(25) k(2ms) = 2mk(s) (m ̂  0) .

This yields immediately Theorem 4.
Now, since X+l is an irreducible factor of Xs + \, we may assume

Kl=F2[X~\l(X + l). So, to prove (24), we have only to show that

m1=m. Comparing (24), with (23), we see that m1=m iff kR2m( ,

2m/:Rlf , J. Hence we have only to prove

(26)

= 2m3.

Thus (25) is reduced to its special case (26).
Now, to show (26), let us consider the sequence (2) in the field

F2(X), where F2(X) is the algebraic closure of the field F2(X) which
is the quotient field of F2[_X~\. If we set /0=0 and fi=l, then by

(16),

(27) Fl=(a' + /f')/(« + /Q,

where a and ft are the two roots of E(i) = t2+Xt + X=Q in F2(X).

Since a + fi=X, we have
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(28) F2m = (a2m + pni(* + $) = (* + P)2'nl(x + P) = X2n1-1-

Now, (26) trivially holds for w=0. For m^l , we prove k(2m) =

2m3 assuming /c(2w-1)=2m~13. Let us suppose that /c(2m)^2m3. Then,

by (21),

k(2m) = k(2m~1)=2m-l3.

Hence by (28),

= F2m-i (modJT2 m+l)

= ^2—1-1 (modr 2 m +l ) .

On the other hand,

X2m+1-l=X2mX2m-1

= X2m~l (modX2m+l).

This is a contradiction. Theorem 4 is now proved.

§4. Other Properties of fc(re)

Besides that k(2n)=2k(n)9 k(n) has many properties. In this § we

prove some of them. Theorem 4 established in the last § plays an

important role. Using these properties we give an algorithm for calcu-

lating k(n) which is more efficient than the straightforward algorithm.

Theorem 5. If m\n then k(m)\k(n).

Proof. First suppose m and n are both odd. Then if P is an

irreducible polynomial dividing Xm + l, P divides Xn + l. Hence by (22),

we see fc(m)|fc(n). Now consider the general case. Suppose m=2 u i s j

and n=2"2s2, where sl5 s2 are odd. Then, k(m)=2Uik(s1) and k(ri) =

2U2k(sz) by Theorem 4. If m|n, then u^u2 and s1|s2. Hence fc(m)|
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k(n), since /c(s1)|/c(s2).

Corollary 6. 3\k(n).

Proof. l\n and fe(l) = 3.

Theorem 7. n\k(ri).

Proof. First suppose n=s. Let £ be a primitive 5-th root of 1.

Then LS=F2(Q is the splitting field of Zs + l=0. Let d(s) = [Lf: F2].
Let PeF2[X] be the minimal polynomial of £. Then P=(^-Q(X-

£ 2 ) - - -CY-C 2 d ( ' ) ~ 1 ) . Hence d(s) is the least positive integer such that

s|2^>-l. Since C, C2,-, C2 - ( '}~1 are the roots of *s + l =0, P\Xs+l.
Thus P is an irreducible factor of Xs +1. Consider the sequence (2)
in the field Ls, where we set x=£. From (22), we have

(29) kLs k(s).
\ i )

Let k = kL(®\ From (13) we see that

where a, ft are the roots of £2 + ££ + ( = 0. Hence (k=(a/?)fe = l. Hence

(30) s\k.

By (29) and (30), we have s|/c(s). The case when n is even can be prov-

ed by using Theorem 4.

Theorem 8. k(s)\22d™- 1

Proof. Since Ls is the splitting field of Xs + 1=0, we may consider
that each Ki=F2\_X~\l(Pl) is a subfield of Ls. Hence by (11) and Theo-

rem 3, we have &*/?) 22d(s)-l. Hence, by (22), we have fc(s)|22d(s)

-1.

Theorem 3 and the above proof show that if ££(f) = f2 +
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is solvable in Ls for all l^i^s, then k(s)\2d^- 1. But the following
theorem tells that this case does not occur. Before proving the theorem,

we give an example.

Let s=7. Then d(s) = 3. The factorization of X1 + \ is (X + \)(X* +

). Let £ be a root of X*+X2 + \=Q. Then since

+ C2 + l)=0, £,(0=0 is solvable in L5 for i = l ,2 ,4 .

But, for other fs, £f(0=0 is unsolvable in L&.

Theorem 9. If d<2d(s) then A-

Proof. Consider the sequence (2) in the field F2(X)9 setting /0 =0,

/!=!. Then by (27), since a + ̂  = J^,

(31) F2i=(a2 ' + /J20/(a + )8)=^Ff.

Let

(32) Gm=F2-.1.

Then by (31), F2m+i.2=XG*. By (28), F 2 m + i=X 2 m + l - 1 . Since Z2^1-1

), we have

(33) Gm+1=X2 '""-

Using (33) we can prove by induction that

m-\
(34) Gm= X^2"1-2'-1.

If k(s)\2d-l then we have Gd = 0 (mod Xs +1). Hence, if we write Gd

in the form of (34), there must be some Q<j<d such that

Hence

2<*-2;-i=2d-2 (modj) .

Or

2J=] (mods).
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Since d(s) is the least positive integer such that s|2d(s) — 1, we have j^
d(s). Hence Gd contains the term x2d~2d{s)~^~l. j^s term must ^e

canceled by some term of the form X2d~2J~l, where d(s) — l<j<d.

Hence

2d-2*M-i-}=2d-2J-l (mods).

Or

2*(->- 1= 2-/ (mods).

Or

i=2J+{ (mods).

Since j + l>d(s), we must have j+\^.2d(s). This contradicts with

the fact that 2d(s)>d>j.

Putting Theorems 8 and 9 together, we have the following

Corollary 10. d(k(s))=2d(s).

Let us now consider the sequence (2) in F2(X), setting /0=0, /i=l.

By (2) and (27), we have

F2i=XFf
(35)

Clearly these equations also hold in Rn (for the initial values /0=0,

/!=!). Then, for any given m, by the iterative use of (35), we can

easily calculate the value of Fm (in Rn). Now, since the candidates m

for the period k(n) can be confined to a reasonable number by using

Theorems 5-9, we can compute k(n) pretty easily. Indeed, sometimes

we can determine the period without any computations:

Theorem 11. If / is a Fermat prime then k(/-2)=(/-2)/.

Proof. Let f=2e + l. Then d(f-2)=d(2e-l) = e. By Theorem 7,
/-2|fc(/-2). By Theorem 8, fc(/-2)|(/-2)/. By Theorem 9,
/— 2. Therefore, since / is a prime, k(f—2)=(f—2)f,
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