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Spectral Representation for Continuous State
Branching Processes

By

Yukio OGURA*

0. Introduction

The spectral representation for Galton-Watson processes was given
by Karlin and McGregor [4] [5] [6]. Similar results for 'one-dimen-
sional' continuous state branching processes were obtained in Ogura
[9]. The object of this article is to give the similar representation for
a class of 'multi-dimensional' continuous state branching processes. It
is worth to note that our class contains a process with the generator

Z x'Md/fa'-Ejc'c ' (a1, r f ^0,
i,j=l

as a special case.
A continuous state branching process X =(xt, Px) is a stochastically

continuous Markov process on Ri U {A} (^+=[0, oo) and A is an extra
point) with A as a trap, satisfying

(0.1) EJJjxty]=fttw(x)9 XER1, te

for some \l/t(X)=(\l/}(X)9...9\l/'(X))eR$, where fi(x) = e~*'x and h(A)=Q.
We define the infinitesimal cumulant generating fucntion ft* (A) by ft''(A) =
^o+(A), and the matrices J/(Al5..., Ad) and H(A), for each A l 5 . . . ,A d , Xe

Rd
+9 by fl(A1,...,^) = [fcj(Al)]fiy=1 and H(A)=H(A,..., A), where ftJ(A) =

We assume throughout in this paper: (A.I) For some A l v . . ,
all the real parts of the characteristic roots of H(A lv..,Ad)

are negative. Then we can see that there exists a maximum element
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y in the zero points of h(X) (Lemma 3.2). Our next assumptions are:

(A.2) Each hl(X) is analytic at j. (A. 3) The real parts of the char-

acteristic roots /x l3...,/id of the matrix H(y) are negative.

Under the assumptions above we can choose an appropriate vector

7o<7 satisfying (2.1)~(2.4) in Lemma 2.1 below. 1} Now we let jtf be

the space of all (complex valued and real) analytic functions in A>y0 ,

and define the linear operator D on it by

(0.2) Dn(A) = £ fc'(A)ti,(A), n(A) 6 j*.
»=i

Let ^0 be the Banach space of all continuous functions <£(x) in x e jR+

with the finite norm ||0(x)|| = sup|ey°'*(/>(x)| and satisfying Iime7°'*0(x)
JC->00

=0. ^ is the subset of ^0 consists of the functions with the form of

(f)(x)=e~y'xx(a. polynomial in x1,...,*^). Then the semigroup Tt of our

continuous state branching process is positive and contractive on ^0.

We denote the infinitesimal generator by ©, and its restriction to &

by ©0. Finally we put ^«=Za% for a=(a1,..., ad)eZ| (Z+ = {0, 1,
i=l

2,...}) and let {v0, v l 5 . . .} be the set of all distinct elements of {jua;ae

Zd
+}. Also we set #(v) = {aeZ|; //a = v} and Rk=R(vk). Throughout

in the following three theorems we assume (A.1)~(A.3).

Theorem 1. The set of all eigenvalues of !D is equal to {v0,

vlv..}. There are w f(A)ej2/, i = l,...,d, with

(0.3) «i(y)=0, det[«J(y)]f.7=1=|=0,

SMC/I r/iat each wa(A) = fl(w'(A))ai is an eigenf unction2^ of D corre-
i=i

sponding to \JL^ Further the eigenspace of T) corresponding to vk is

the linear hull of {u«(X); aeflj.

We define the system of functions {0a(x)}c=«^ by

(0.4) £ (/>«M£* = e-x-vU\ C is near to 0,
aeZ?

where t?(f) is the inverse function of w(A)=(w1(A),..., wd(l)) at A=y[C=0],

1) We say that ^ e Rd is larger [not less] than 1' e Rd (and denote
if all its corresponding com ponents are so. These notions are extended for matrices.

2) We call £ =|= 0 an eigenfunction and v e C the corresponding eigenvalue of a linear
operator L, if (L — uI)n£=Q for some w e Z+.
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and C' =

Theorem 2. The set of all eigenvalues of (50 is equal to {v0,

v l 3 > . . } . Each 0a(x) is an eig enfunction of ©0 corresponding to jiia.

Further the eigenspace of ©0 corresponding to vk is the linear hull of

{0a(x);ae,RJ.

Theorem 3 (main theorem). The semigroup Tt admits the spectral

representation

(0.5) TJ\(x}= f e*« Z 0.(x){naU) + Z bi(i)u*W}, t&0, Ae#, xeRd
+

k = 0 cxeRk PeRk
j8-<a

for any compact set K in {A; A>y0}, where t0^.Q is a constant depend-

ing only on K, bp(t) is a polynomial in ?, and '-<' is the total order

defined by (1.4) below. The sum converges absolutely and uniformly

on {t^t0} xK.

The proofs of these theorems are given in section 2. It is reduced

to the normalization of the analytic contractive semigroup i/^(/l), which

we discuss in sections 1 and 2. In section 3 we shall show that (A.I)

implies the existence of y and the nonpositivity of the real parts of

characteristic roots of H(y). Section 4 is devoted to two examples and

some remarks.

All the principal arguments in this article are also valid for the corre-

sponding class of multitype Galton- Watson processes with continuous time.

1. Preliminary Lemmas

The normalization (or the linearization) of an analytic contractive

semigroup on Rd has been investigated by many mathematicians (e.g.

Poincare [10], Sternberg [12], Karlin and McGregor [6], etc.). Especial-

ly the results of [6] seems to give an implicit proof for our case with

continuous time. But we will give a different proof which is more direct.

Let £# (i) be the space of all germs of analytic functions at y3). For

3) Each ttej/(?-) is identified with a number series {ua = d ^ a \ u ( Y ) / ( d z 1 ) a l - - - ( d z d ) a d ; ae
Z^}satisfying ^\ua\d

a<oo for some <5>0 (8&Rd). We rewrite uej as uj} where e,
is the unit vector with 1 j'-th component. Further we also identify a germ u
with its arbitrary element u(z) GE u where no confusions occur.
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), / = !, . . , r f , with /?*(y)=0, we define the linear operator D (y) by

X

Lemma 1.1.4) Ler £/?e characteristic roots of the Jacobian matrix

H = [/2}]f,j=i satisfy condition (A. 3). TTzen fftere exz'sf w'eja^y), / =
1, . . 5d, satisfying (0.3)

(1.1)

where c£ are constants.

Proof. 1) By a linear change of variables, we may assume

(1.2) H=
0

0

0

0 e

where Hj is a djXdj matrix with c f / ^ l ( ^ dj=d), /*i,..., ̂ M satisfy
7=1

(1.3) 0>Re^"-^Re/4,

and g>0 is an arbitrary constant determined below. In fact, for the
original Jacobian matrix H we can find a regular matrix Q such that

QT1HQ has the form of (1.2). Setting hi(z)=£qT?h-i(ztQ) and £>(y) =
d „ 7=1

^hld/dzl, where g^1 is the (i, j)-component of the inverse matrix Q~l

i = l
of g, we have

for u(z) = u(ztQ). Hence, if fi^z),..., wd(z) satisfy (0.3) and (1.1) with
respect to £(y), then w l(z) = ul(ztQ~^\..,, ud(z) = ud(ztQ'1} also satisfy
(0.3) and (1.1).

2) Now we can define the total order '-<' in Z£ by

(1.4) oK£ if |a|>|)S|, or |a|=|j8| and a^<^%

4) This lemma is still valid if condition (A. 3) is replaced by
inside of a convex cone in the Gauss plane with the vertex 0.
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where |a| ^a1 + ••• +ad and /0=max{i ;<*'=!=/? '}. Further let T= {!,,.., d},

m m

ros T o = £ r o and 71 =£71. We may assume ^=//J for /el}
j=i j=i

without any loss of generality. Here we define the semiorder '-</

in Tby

KTJ if Vi^Hj and tlj==^lp for some /?eZ£ with /J '^l, or i , j E T k

and i<7\

Note that if ^GR(fit) and C<^5 there exist nonnegative integers C-7',
jXrf such that

(1-5) f= Z C^-.

Since T is a finite set, we can define S^ by the set of all its minimal
(w.r.t. the semiorder '-</) elements, S2 by the set of all minimal ele-

p
ments of T— Si,.... Obviously for some p^d, T=

k=i
3) We shall show that for each ieSl there exists ul£jtf(y) such

that

0-6) »(y)i«'=^ii',

(1.7) u i(y)=0, iij=50., j = l , . . . ,d .

Let u' s {uj,} e ja^(y) be a solution of (1.6). Then comparing the
expansion coefficients in the both sides, we have

J-i ,+

so that by (1.2)

(1.8) (^-/i,K=f

It is clear that {ul
n, |??|^1} defined by (1.7) satisfy (1.8). For |^|>1,

ju f=j=^ because of i6S l 9 and we can determine {u^} inductively and
uniquely by (1.8). Now we shall show that X \ui

tj\5
ri<co for some

5) We make a convention that rfjH f-rf j 7_ 1 = 0 when j=l.
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c5>0, delid. By (A. 3) we can choose a constant c>0 and a positive

integer q such that

(1-9) |^-jg£c|ij|, \ri\>q.

Since hj Ejtf(y),j = 1,..., d, we can find constants Ll9 K1>Q such that

(1.10) lA^Z^M"1, aeZt j=l,...,d.

Set ||w'||fc=max{M|i4|; |f/ |=fc}. Then by (1.8)~(1.10) we have

for some constants L2, K>0. Choosing e>0 so small that c — ed>0

and setting L=L2l(c — ed)9 we see

Hence, by the induction,

lu^^UKL + KY-^^lu^K^^, k>q,

and we obtain the conclusion for a 5=(51,..., 6d) with

4) Now we shall prove (1.1) by the induction for the suffix fe of

Sk. For k = l, the assertion of 3) is just the answer. Suppose that we

have obtained ujej/(y), for each jeS1-\ ----- \-Sk-t, satisfying (1.1) and

(1.7), and take an ieSk. Then we can also obtain the germs w? =

UW, Ce^fe), C<e; by (1.5). They satisfy

f o, foi^ici, f ,=t=f ,
(1.11) u\ = \

I 1, r,=C.

Now let w£ = {w^} e J3^(y) be a solution of (1.1). Comparing the expan-

sion coefficients, we have

(1.12) fo-AX=

where vl
n is given by the right side of (1.8), and wj, by
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— — ^
CeJKM.)

Define {n' , ; | f7 | = l} by (1.7), and {ci; | iy | = l} by

( 0, otherwise.

Then obviously (1.12) holds for l / f l ^ l . For | f / |> l , note that
always holds, and by (1.11) and (1.12) it holds

Hence, setting say z<4=0 for ^6jR(/^), |?/|>1, we obtain {wj?} and {c,5;
rj^Ci} inductively and uniquely.

To show that Zl*4i<5 ' '<oo for some (5>0, we note w's^cji/Se

), so that it holds for some Li, K'>0

(1.14) |

Choosing a sufficiently small s>0, and setting L = L'l(c — sd), we see as

before that

« illi^" l+^ /A:'*, k>q.1=1

Hence by the induction it follows

j=o

and we obtain the conclusion for a d=(d1,..., dd) with

Q.E.D.

The next lemma will be also used in section 2.

Lemma 1.2. Let ulej#(y), / = !,.. ,d, satfs/> (0.3). Then', I) If

and Z^aw a =0 ^^« ?=0. 2) For
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corresponds a £ = {£a}eja^(0) such that w = ££awa . 3) For each £ =

), it holds £>(y)Z^a = I£«3V<a.

Proof. 1) Let i^(z)ei^, f = l,...,d. Then each w*(z) is analytic in a

common neighborhood (7 of y. Taking the change of the variables
C = w(z), we have

Hence £=0 follows.

2) Let KC) = (y(Ov..5 t
ld(0) be the inverse function of (M^Z),...,

i/d(z)) at z=y[C=0]. Then £(Q = w(XO) is analytic at 0. Taking the

germ £ej/(0) containing £(£), we have w = ££a^
a-

3) Since £ej^(0), it holds EI£J<5a<o° for some 5 = (51, ..., (5d)>0.
a _

By (0.3) we can choose a neighborhood Ulc:Uic:U of 7 such that

\ui(z)\<5i for all zeU^. Hence the series X£awa(z) converges absolutely
a

and uniformly on V 1§ Further, since

the series ^^dux(z)ldzj also converges absolutely and uniformly on L^.
a

Hence we have d(^^giti
a(z})/dzJ = Yi^adua(z)ldzj, and obtain the con-

st a
elusion.

2B Proof of Theorems

In this section we shall prove Theorems 1~3 assuming the following

lemma, which we shall show in section 3.

Lemma 2.1. Let (A.1)~(A.3) be satisfied. Then there is a y0<y,

such that each hl(X) and ^\(X) are analytically continued to the domain

A>y 0 » and that

(2.1)

(2.2)

(2.3)
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(2.4) l\mil/t(X)=y, A > y 0 .
J->00

<!

Let ul be the one obtained in Lemma 1.1 and u*=Yl(ul)a''
i=l

Lemma 2.2. wa is an eigenfunction of D(?) corresponding to ^a.

There are no other eigenvalues than v0, v l 3 . . . , a«J £/ie eigenspace of

D(y) corresponding to vk is the linear hull of {u*i xe Rk}. Further

{wa} satisfies

(2.5) D ( y )w
a = v jw a + £ cji/'}, aeJ?,, A = 0 S 1 , . . . 9

/?6jRk
0-<a

where c^ are constants.

Proof. (2.5) is obvious from (1.1), (1.4) and the derivation property

of U(y):

rf
'Ts ,,a _ . V* /vij-a-c,11!^ ,,£
^'(yjW — 2x a ** ^(y)" •

From (2.5) it is shown by the induction that each u* is an eigen-function

of T^(v) corresponding to vk if aeRk. Now let v be an eigenvalue of

D(y) and vv + 0 be a corresponding eigenfunction. Then, by Lemma

1.2 2), there exists a £ej/(0) such that vv = ]T£aHa . Hence, by Lemma
a

1.2 3), we have

where a^ are constants given by

Hence, by Lemma 1.2 1),

Z CXi!=0, ]8e^f *=0, 1 , . . . .
aeRk

Since det[a^]a)/gej?k4:0 for v4=v f c , it holds f a =0 for aeRk with v f c±v,

and we obtain the conclusions.

Lemma 2,3. There exist Ma(A)ej/, ua(X)eua such that for each
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ocERk it holds

(2.6) u«WtW) = ev*t{u«W+ Z b}(t)u'W}9 A > y 0 , ^
fteRk$<«.

where b^(f) are polynomials in t. Moreover bp(t) satisfy

(2.7) vlk

(2.8) «Vh '{C'
,'&

where m=(f}(Q,...,fi(Q) is given by

Proof. Take arbitrary w'(A)ew1 ' , i = l,...,d. Then there is a neigh-

borhood [/c={A>y0} of 7 where every u'(A) is analytic. We may assume

U by (2.4). By (2.5) it holds

(2.9)

On the other hand it follows from (0.2) and (2.1)

(2.10)

Combining (2.9) and (2.10) we obtain a system of ordinary differential

equations, and solving it inductively w.r.t. the order '-<' we see that

(2.6) holds for A e 17.

To show (2.6) for A>y 0 we must only see that wa(A) is analytically

continued to A>y 0 . For this purpose we put Vt = \l/^l(U). Then Ut

is a domain including U and U Ut^{k>y0} by means of (2.4). We
t>0

use the induction again: suppose that the last sum in the right side of

(2.6) is analytic in A > y 0 (this is trivially valid when a is minimal w.r.t.

'-<')• Then, since the left side of (2.6) can be analytically continued to

Ut for each £>0, t^a(A) can also be so. Hence we obtain the conclusion

by the uniqueness property of the analytic continuation.
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(2.7) follows from equations (2.6), (2.9), (2.10) and the uniqueness

of expansion coefficients w.r.t. {wa(A)} which is verified from Lemma 1.2

1). Similarly (2.8) is clear from (2.6).

Proof of Theorem 1. Let w*(A)=w e i(A)e $0 be the ones obtained

in Lemma 2.3. Then obviously they satisfy (0.3) and u*(k) = Yl(
i=l

aeZ£, satisfy (2.6). Differentiating (2.6) in t we obtain

Hence we see that wa(A) is an eigenfunction of £> corresponding to ^a.

The remaining assertions are clear from Lemma 2.2, since u e $0 (y) is

an eigenfunction of T)(y) corresponding to v if U(!)EJ^ is an eigenfunc-

tion of T> corresponding to v and w(A)ew. Q.E.D.

Let u(C)=(i;1(05...9^(C)) be the inverse function of u(X)=(ul(X),...,
wd(A)) at C=0, and V be a neighborhood of 0 where every u'(C) is
analytic. Note that by (2.6) and (2.8) it holds

(2.11) MA)=i>(/f(w(A)) for all f ^O, A>y 0 such that w(

Let also 0/x) be the ones defined by (0.4).

Lemma 2.4. 1) Each ^(x) belongs to &. More precisely Pp(x) =

ey'xcl)p(x) is a polynomial in x,1...,xd of degree |/?|. 2) </>p(x), /?eZ£,

are linearly independent, and their linear hull coincides with 0> . 3)

It holds, for each ft E Rk, k=Q, 1,..., that

(2.12) Tt^(x) = e^{^(x)+ E 0.
aeRfc
j8^a

J

. 1) Set & aOO=Z*'02f Then, since

we see

,n\
Z

— +<xn=B
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Hence we obtain the conclusion with

PpM= ZF

2) Let ^(x) be the highest degree part of the function Pp(x).

Then by (2.13)

(2.14) qft(x)=

d
Since jc-7^ Z ui

jve.(x), j = \,...,d, the linear combinations of ^(x),

|gn, span the space of all polynomials of degree not larger than w,

whose dimension coincides with #{/?; |/?|gn}. Hence p^(x), |^|^n, are

linearly independent. Since n is arbitrary and <t>p(x)==e~y'xPp(x)> tne

conclusions are clear.

3) Fix a t^O. Since t;(£), w(A) and \l/t(k) are continuous we can

find, by means of (2.11), a neighborhood F,<=F of 0 such that

(2-15) MKO)=t</r(0), Ce7M

and K^KU^o}- Hence, appealing to (2.2), (2.3), (0.4) and (2.8),

we see

Now, by the uniqueness property of the expansion coefficients of (^

it is enough to show that

)^ f is near to 0.

But this is clear if we note that

(2.16) Zi^J^I^-"^0'*
P

where »(0=(«'1(0v.., 5-(0), »'(0= E l » i f * l . whence with the aid of
|=r|>l

(2.3) it follows

T, I I^/OC'IW < oo, C is near to 0 .
P
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Proof of Theorem 2. By (2.12) and (2.7), it holds

(2.17) (60<M*) = vk{V*) + 2 <-?<£.(*)}, JSefl i , fc = 0, 1,....

Hence we see by the induction that 0^(x) is an eigenfunction of (50

corresponding to /^. Other assertions are easily obtained from Lemma

2.4 2) and (2.17) by the similar arguments as in the proof of Lemma

2.2.

Proof of Theorem 3. Take a compact set Kci{A>y0}. Then by

(2.4) we can find a f^O such that w(^ r(A))eK for all AeJ£ and

Hence (2.11) and (0.4) imply

and we obtain (0.5) with any f0i^i from (2.8). Now we shall show

the absolute and uniform convergence of (0.5). Since the power series

Z0aWCa converges on F, it converges absolutely and uniformly on a
a

neighborhood Ftc:F of 0. On the other hand, since w'(A)ejaf and Kc:

{A>y0}, it is clear \ul(X)\£Ml9 leK. Further, by means of (A. 3)

we can find a r0^^ such that /,(0 = (// (0 •• •/?(£)) e V{ for each f ^ f 0

and |^|<M,, / = !,..., d, where

Combining these facts we have the conclusion. q.e.d.

Remark 2.1. If Pe.(xf=0)>0, / = !,.. ., c/, for some *^0, then for

each yi>y0 there exists a t0^0 such that (0.5) holds for t^t0 and A^

7!. Indeed in this case \l/t(ao)<co, and we can choose a *0 = 0 sucn that

Ffor all A^ and t^ f 0 -

Remark 2.2. If one wants to calculate 0^(x) directly not m"a w(A),

the next formula is useful:

I01<1nl'-i

where p^(x)=Yl(xi)1li and ?y!=(?y1!). . . (>?d!) (cf. Karlin and McGregor
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[6]). But we do not discuss on this further.

3. Some Properties on a CBP

The object of this section is to prove Lemmas 3.2 and 2.1. We

begin with summarizing some properties on a CBP maintained by S.

Watanabe [13]. The infinitesimal cumulant generating function hl(X)

has a form of

(3.1)
j — 1

where a1, fej(i =!=./)> cl are nonnegative and b\ real constants, and nl(-)

is a nonnegative measure on R^.— {0} with the ordinary regular condi-

tion. Conversely, for the functions /?1(/l),..., hd(X) of the form of (3.1)

there corresponds a unique CBP with the infinitesimal cumulant generat-

ing functions /i1^),..., hd(X). Furthermore the 'F-semigroup {*I/,(X)} is

differentiate in t and satisfies

(3.2)

(3.3)

The next lemma is clear from the Perron-Frobenius theorem and

the max-mini principle (cf. Gantmacher [2] Chapter XIII §2).

Lemma 3.L 1) A real square matrix A with nonnegative non-

diagonal elements has a real characteristic root p(A) which is largest

in all the real parts of its characteristic roots. 2) Let A and A' be

such square matrices with the same order, and A^.A'. Then

p(A'\

We note that (3.1) implies

is analytic in A>0, continuous on R+ ,

A'(0)
(3.4)

" 7=1

/, k= 1,..., d, 1>0.
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Therefore the matrix valued function H(A) in A>0 is monotone non-

increasing and hence, by Lemma 3.1, the limit p(0)=limp(H(A)) exists
A i O

admitting the possibility of oo, where A J, 0 means that every component

A' of A tends to 0 from the right. Set

f p(0), if h1(0) = '"=hd(0)=Q,

H( oo, otherwise.

Lemma 3.2. Suppose that /z'(A), i = l , . . . ,d, satisfy (3.4) and (A.I).

Then, a) if p^O, the zero points set /! = {AeJRl; ft(A)=0} consists of only

one point 0. b) // p>0, the nonzero maximum element y of A exists

and p(H(y))^Q.

For the proof of Lemma 3.2 the next lemma is essential:

Lemma 3.3. (Sevastyanov [11] and Kotelyanskii [7]). Let A be

a real dxd-matrix with nonnegative nondiagonal elements and atj be

its (/, j)-component. Then p(A)<0 [^0] holds if and only if

(3.5) (- l)pdet[a / k l- ,]f j / = 1 >0 [resp. ^

holds for every I ^/j < ••• <ip^d and l^p^d. Moreover this is equiva-

lent to

(3.6) (-IXdetE^Jf^^O [^0], p=l,...,d.

Proof of Lemma 3.2. For d = l, note that (A.I) and (3.4) imply

lim /z1(A1) = — oo. Then the assertions
Ai^oo
are clear from Figure 1. ^

For the proof of the case <i^2, we
set l^a1,...,^,..., WeR^1 for each
ieRi, and (A, x)' ^(A1,..., A'-i, x, A',...,

Then for each Ae.Rf'1 we can find an

xeR+ such that hl((^ x)0<0. Indeed,

by (A.I) and (3.5) there are kQeRi~l

and x0eR+ with ftj((A0, x0)f)<0. Since

fcj((A, xoy) is nonincreasing, /?;((!, x0)')<0 for 1 ̂  A0. Hence we can

find an xe.R+ satisfying /i'((A, x)() < 0 for each /I ̂  A0 because of
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/z}j(-)s;0. Further, for each Ae/^"1, there is a /u3;A with /i^A0. Since
/i'((A, x)')^/t'((/*, x)') by (3.4) we have the conclusion. Now by the
same arguments as for d = l we can define the function #'(A) by

which can be seen to satisfy

' #'(A) is analytic in A>0, continuous on Ri"1,

»=!,. . . ,</,
(3.7)

A>0,

A>0 .

Define the matrices G(A 1,..., Ad) for each A } , . . . , Ad > 0 (lf e J?^~x) and

G(A) for each A>0 (Ael?i) by

-1

Then it can also be seen that (A.I) is equivalent to

(A.I)' p(G(Aj, . . .9Ad)<0 for some A l 5 . . . ,^>0,

Set p1(0)=limp(G(A)) and
A 4 0

f Pl(0), if ^1(0) = -= 0d

Pl =
( oo, otherwise.

Setting also r£ = {(A, ^ j(A)) j; AeJR^"1}, we can rewrite Lemma 3.2 as

follows :

Lemma 3.2'. Suppose that g*(X)9 i = l,...? d, satisfy (3.7) and (A.I)7.
d

T/ien, a) if p i ^ O r/ie set r=r\Ft consists of one point 0. b) // p i>0
i=l

the nonzero maximum element y of F exists and p(G(y)):gO.

Proof. We shall use the induction. First let d=2. When p<;0,
gf1(0)=^f2(0)=0 and the inner normal vectors nl and n2 of the curves
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X 1

Figure 2. the case of jO^O. Figure 3. the case of 1o>0
and gi(0) = g*(Q)

Ft and F2 at 0 are equal to ( — 1 ,

(0l)'(0+)) and ((02)'(0 + ), -1). Hence ;

by (3.5) the base (n l9 «2)
 nas the same

orientation as that of (e l9 e2), so that

r, n r2 = {0 = (0, 0)} by Figure 2. When

p>Q,gl(Q) + g2(0)>Q or the base (n,,
w2) has the other orientation than that —

of (el9e2). On the other hand by i / m ^ nv x Figure 4. the case of ^1(0) >0.
(A.iy and (3.5) the base (n\, n'2) = ((-!,

(0ly(ki)), ((^2)X^2)5 "-!)) nas tne same orientation as that of (ely e2)9

so that by Figures 3 and 4 T1 n T2 contains a point y different from

0, for which p(G(y))^0.

Now we proceed for the case d^3. First note that, by the similar

argument as for the case </ = 2, for each A e fi.fr2 and / = l , . . . , r f — 1 the

equation

(3.8)

has at most two solutions and, if two, one of them is equal to 0 =

(0, 0). Define the vector (g\d(X), gh(X)) by the solution of (3.8) distinct

from 0 if exists, and by 0 otherwise. Setting also gfi(X)=g\d(X), i =

1,...,J-1, A^O (lERi~2), we can see that
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f g'l(fy is analytic in A>0, continuous on R^~2 ,

(3.9)
i = l,...,d-l, 7 = 1,..., d-2,

i = l,...,d-l, 7, fc =

We define the matrices G'(/ll5..., A^X^O, A,eJR£-2) and G'(A) (A>0,

AeR^"1), the values Pi(0) and Pi and the surfaces F<, £ = !,..., d—1
from #'*(A)'s as we did from g'(A)'s in the above. Then by virtue of

Sylvester's determinant identity (Gantmacher [2] Chapter II) and Lemma

3.3 it can be seen that

f p^O implies #d(0)=0 and pi^O,
(3.10)

[ P!>O implies #d(0)>0 or p i>0,

(A.l)" p(G'(A1,...,Ad-i))<0 for some A!,..., Vi>0, e^~2.

Now, by the assumption of the induction, (3.9) and (A.I)'' imply
d-l

the existence of the maximum element / of r\ r't. Then y=(y'9 gd(y'Y)
i=l

d
is the maximum element of A /V If p^O, then pi^O, so that /=0

i=l
by the assumption of the induction. Since gd(0)=0 it follows -y=0 and

d
so r\rt = {0}. Now we consider the case of Pi>0. If pi>0 then

1=1
•y' + O, so that y 4=0. If 0d(0)>0 then gd(y')>$ since gd(l) is monotone

nondecreasing, and so 74=0.

To prove p(G(y)):gO note that the functions ^(fy^g^h + y1) — ?1,

i = l,..., d, satisfy (3.7), (A.l); and Pi(0)=p(G(y)), where pr(0) is defined

from ^*(A)'s as p^O). Now suppose that p(G(y))>0. Then from what
d „

we have proved above it follows the existence y=|=0 in the set r\ rif
i=l

d
But it follows y + y e r\ Ft from the definition of $'(A), which con-

i = l
d

tradicts the fact that y is maximum in the set r\ rt. Q. E. D.

Remark 3.1. It can also be seen that if /i}(A)>0, i, j ==!,..., d,

i 4= 7 and p>0 then y>0 and p(H(yJ)<Q.

Lemma 3.4. // (A.2) and (A.3) are satisfied as well as the assump-
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tions of Lemma 3.2, then there exists a y0<y such that hl(X) is analytic

there and /7(y0)>0.

Proof. By (A.3) and Lemma 3.3 h\(y)<Q. Hence there exists

a neighborhood 17 of y such that hl(X) and gl(X) in the proof of Lemma

3.2' are analytically continued to it and /i'(A)>0 is equivalent to A'<

#'(/!/) on it (Ae#d). We shall show by the induction the existence of a

sequence {yn} c U such that yn-*y,

yn<y and yi
n<gi(yi

n\ i = !,. . . ,</. x,i
Since it is clear for d = i and d=2

XXVUYI1, A^-1)'n
Y:

we assume that it holds for d — 1.

Then, by the same argument as in y^1

the proof of Lemma 3.2', there exists

a sequence {y'n} c: Rd~1 such that

l , . . . ,d — 1, where y7 = yd e jRd-1.

By the arguments for d=2 we can

find a yni<gd(y'n)^yd satisfying y'n < Figure 5.

gd(y'n) (cf. Figure 5). Set j;n=max{j;Ml,..., yn(d-i)9 g d ( y f
n ) - l / n } . Then yn =

(yJu yjd satisfies the required properties.

Lemma 3.5 (Jirina [3] Theorem 2.2). For a CBP X = (xt9 Px) it

holds

(3.11) limPJC(xr=0) = l, X G S ,

if and only if A = {Q}.

Corollary 3.1. Condition (A.I) implies

(3.12) Hi

Proof. When p^O, (3.12) is a direct consequence of Lemma 3.2

and (0.1). When p>0, set h(X) = h(k + y). Then K(X) also has the

form of (3.1) and the corresponding ^-semigroup is

So (3.12) is clear from Lemma 3.2 as in case of p^O,
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Finally we shall prove Lemma 2.1.

Proof of Lemma 2.1. By Lemma 3.4 and (3.1) each /?f(A) is analyti-

cally continued to A>y 0 . Let /7(A) = /i(A + y0) and X be the correspond-

ing CBP. Then the corresponding 'F-semigroup $t(J) satisfies (3.2) with

fr(A) instead of /i(A) and is analytic in A>0. Since the function ^f(A +

7o)~7o(^> ~7o) also satisfies the same equation, the uniqueness property
of its solution implies

(3.13) to = !M^ + 7o)-yo A>max{-y0 , 0} .

Since the left side of (3.13) is analytic in A>0, the right side is analyti-

cally continued to there and (3.13) holds for A>0 i.e. A4-y 0 >yo- Hence
\l/t(X) is analytic in A>y 0 and (2.1) holds. To see (2.2) note that (3.13),

(0.1) and the uniqueness theorem of Laplace transforms imply

P(t, x, dy) = e-i°mxP(t, x,

Since \P(f, x, dy)e~(*-~?o}'y<ao for each A>y 0 , we have

But since (3.13) was valid for A>0, we obtain (2.2). For (2.3) we have

only to note that (0.1) implies W^)^W7o) f°r ^>);o and $*(0) = ^*(Vo) ~
y0>0 holds since $t(Q) is monotone nondecreasing in t and {j/0+(G) =

Now we shall show (2.4). Since the fixed point y of equation

(2.1) is asymptotically stable by (A. 3), there exists a neighborhood 17

of y such that (2.4) holds for A e U (cf. Coddington and Levinson

[1]). Combining this fact with (3.12) we have (2.4) for A e l / U { A ^ y } .

We may assume y0 E U by taking larger y0<y if necessary. Now take

a A>y 0 . Then there exist /^ and A2 in t /U{A^y} such that A^Afi^.

Since ^(A^gi/^A^^i) by (0.1) and lim^(A1)=lim^2)=7 holds,
f-+oo f-»QO

we obtain (2.4).
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4. Examples of the Representation

Example 1 (direct product). Let

This case can be reduced to the results for one-dimensional CBP's,

which we now summarize. Assume that /?'(/!/) is non-critical and analytic

at its maximum zero point y*. Then the eigenvalues of £>* (T>* is the

linear operator defined by t&iu(A.i) = hi(A.i)u'(A,i)) are J%> fc=0, 1,..., where

Hi = (hi)'(yi). There exists an eigenfunction «'(^0 °f ^' corresponding to
jU; satisfying M£(y i)=0 and (uO'CyO + O. The function w'(A£) fc is an eigen-

function corresponding to k^ and has the inverse Laplace transform

£i(dx') in the space of signed measures:

Too

w i (A £ ) ^= \
Jo

Let y f(CO be the inverse function of M*(A f ) at A '=y* K'=0]. Then the

eigenfunction ^K-^O °f ®o are given by

Now, in our case, conditions (A.1)~(A.3) are satisfied where the

maximum zero point y is given by y=(y1 , . . . , yd). It is clear that the
d

set of all eigenvalues of £> is equal to {/ja= £ (x*/^; ae Zj!} and the
i=l

corresponding eigenfunction is given by

The eigenfunctions of ©0 are

(4.1) 0.W=n
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All the eigenfunctions of D or @0 are those in the narrow sense, 6)

and the representation (0.5) holds with 6|(f) = 0. Moreover, in this case,
the eigenfunction wa(A) has the inverse Laplace transform

(4.2) t.(dx) = &(dxi)®:.®t'*(<lxd), a e Z £ ,

where the notation ® means the product of the measures. For some

classes of /z'(A')'s we can calculate ^(dx1) and 0[(x*) precisely (cf. Ogura
[9]), so that ^(dx) and 0a(x) by (4.1) and (4.2). Especially, if our

CBP is a diffusion, we can see that the transition function has a density

w.r.t. the Lebesgue measure, which admits the spectral representation
d

by <)6a(x) only and is symmetric w.r.t. the weight

Example 2. Let d=2 and

(4.3)
a, b, c,

In this case p<0 and Ju1 = — fo, fi2
 = ~e are tne characteristic roots

of the matrix H. The eigenfunction of D corresponding to /^ is

Here we divide it into two cases:

1) n23
=mV-i for any m = l, 2,.... In this case the eigenfunction of

T) corresponding to /.f2 is

The inverse function y(C) is

so that the eigenfunction </>a(x) of ©0 is given by

6) We call | =j= 0 an eigenfunction of a linear operator £, in the narrow sense if
Z^ = v£ holds.
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(4.4)

where

They are eigenf unctions in the narrow sense and (0.5) holds with b|(0 = 0.

2) \JL2
 = mVi\ f°r some m^l . In this case the basic eigenfunction of

D corresponding to jtt2 is

and the inverse function v(Q is

The eigenfunction 0a(x) of ©0 is same as (4.4) except for that

/, p) is replaced by

The function w2(A) satisfies

(\rr \m-l
y) "HA)",

and therefore (0.5) holds with

f i ^ r 2 ^ 2 , for j^+m^oc'+moc2, 0^vp y

^ 0, othewise,

where X=c(a/b)m~1 .

Remark 4.1. For the /i2 in (4.3), we can calculate the eigenfunctions

concretely for somewhat wider classes of /z1(A) = /i1(A1); e.g. for the



74 YUKIO OGURA

classes in the examples in Ogura [9].

Remark 4.2. The case 2) of Example 2 gives an example that the

semigroup Tr/A is not always diagonalizable even if the matrix H is so.

Remark 4.3. In general the transition function of a CBP is non-

symmetrizable : For example, when a CBP is a diffusion, it is sym-

metrizable if and only if it is of a direct product case i.e. the case of

(cf. Nelson [8]).

Remark 4.4. In Example 1, wa(A) had the inverse Laplace transform

Ca(dx) in the space of signed measures. Further it is seen that the

transition function P(t, x, dy) itself has the representation

P(t,x,dy) =

(strictly speaking &J(0=0 in Example 1). But this is not valid for

Example 2. We can prove that if Pet(xt=0)>0 there is a uJ(X) having

the inverse Laplace transform &(dx) with <J-/(£)^0, £cR^-{0} and
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