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Spectral Representation for Continuous State
Branching Processes

By

Yukio OGURA¥*

0. Introduction

The spectral representation for Galton-Watson processes was given
by Karlin and McGregor [4] [5] [6]. Similar results for ‘one-dimen-
sional’ continuous state branching processes were obtained in Ogura
[9]. The object of this article is to give the similar representation for
a class of ‘multi-dimensional’ continuous state branching processes. 1t
is worth to note that our class contains a process with the generator
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as a special case.

A continuous state branching process X =(x,, P,) is a stochastically
continuous Markov process on R4 U {4} (R, =[0, 0) and 4 is an extra
point) with 4 as a trap, satisfying

0.1 ELfi(x)]=fy (%),  xeR{, 120, AeRd,

for some Y ()=l (A),..., y4(A)e R4, where f,(x)=e** and f,(4)=0.
We define the infinitesimal cumulant generating fucntion hi(Z) by hi(l)=
Yi.(1), and the matrices H(1,,..., 4) and H(1), for each A,,..., 4, A€
R4, by H(ly,..., ) =[h}(A)]¢ ;=1 and H(A)=H(I,..., A), where hi(})=
o0hi())]047. We assume throughout in this paper: (A.1) For some A,...,
As€R4, all the real parts of the characteristic roots of H(Ay,..., Ay)
are negative. Then we can see that there exists a maximum element
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y in the zero points of h(1) (Lemma 3.2). Our next assumptions are:
(A.2) Each h'(X) is analytic at y. (A.3) The real parts of the char-
acteristic roots Ui,..., 4y of the matrix H(y) are negative.

Under the assumptions above we can choose an appropriate vector
yo<y satisfying (2.1)~(2.4) in Lemma 2.1 below.!> Now we let 7 be
the space of all (complex valued and real) analytic functions in A>7y,,
and define the linear operator D on it by

0.2) Du(l) = é‘,lhi(l)ui(/l), u(l)e .

Let €, be the Banach space of all continuous functions ¢(x) in xe R4
with the finite norm [ @(x)| =sup e’ *¢(x)| and satisfying lime’o *¢(x)
=0. 2 is the subset of %, consists of the functions with ?ﬂ: form of
¢(x)=e"?"*x(a polynomial in x1,...,x4). Then the semigroup 7, of our
continuous state branching process is positive and contractive on &,,.
We denote the infinitesimal generator by &, and its restriction to 2
by ®, Finally we put p,=¥ ai; for a=(a',..,a)eZi (Z, ={0, 1,
2,...}) and let {v,, v{,...} be t}llz:lset of all distinct elements of {u,; ae
Z4}. Also we set R(v)={aeZ%; p,=v} and R,=R(v)). Throughout
in the following three theorems we assume (A.1)~(A.3).

Theorem 1. The set of all eigenvalues of D is equal to {v,,
Viy...t. There are ul()es, i=1,...,d, with

0.3) ui(y)=0,  det[uj(y)]¢ ;=1 *0,

d .
such that each u*(A)=11WA)* is an eigenfunction® of D corre-
i=1
sponding to pu,. Further the eigenspace of D corresponding to v, is
the linear hull of {u*(1); «€R,}.
We define the system of functions {¢(x)}=2 by
0.4) quba(x)C“=e"""(5), { is near to O,

aeZ

where v({) is the inverse function of u(1)=(u'(4),..., u4(1)) at A=y[{=0],

1) We say that A€ R? is larger [not less] than 2’ €R? (and denote 1>2" [A=2"])
if all its corresponding com ponents are so. These notions are extended for matrices.

2) We call £ 0 an eigenfunction and v €C the corresponding eigenvalue of a linear
operator L, if (L—vI)"6=0 for some ne& Z,.
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a o
and {*=]]({H)*"
i=1

Theorem 2. The set of all eigenvalues of ®y is equal to {v,,
Vi,...}. Each ¢ x) is an eigenfunction of ©®, corresponding to u,.
Further the eigenspace of ®, corresponding to v, is the linear hull of

{@(x); xERy}.

Theorem 3 (main theorem). The semigroup T, admits the spectral
representation
(0.5) T,f,l(x)=k§0e“k‘ 5. () () + 3 bt (D)}, 1210, e K, xe RY

= &Ry Ri
B<a
for any compact set K in {d; 1>7y,}, where t,=0 is a constant depend-
ing only on K, bj(t) is a polynomial in t, and ‘<’ is the total order
defined by (1.4) below. The sum converges absolutely and uniformly
on {t=ty} x K.

The proofs of these theorems are given in section 2. It is reduced
to the normalization of the analytic contractive semigroup ,(1), which
we discuss in sections 1 and 2. In section 3 we shall show that (A.1)
implies the existence of y and the nonpositivity of the real parts of
characteristic roots of H(y). Section 4 is devoted to two examples and
some remarks.

All the principal arguments in this article are also valid for the corre-

sponding class of multitype Galton-Watson processes with continuous time.

1. Preliminary Lemmas

The normalization (or the linearization) of an analytic contractive
semigroup on R‘ has been investigated by many mathematicians (e.g.
Poincaré [10], Sternberg [12], Karlin and McGregor [6], etc.). Especial-
ly the results of [6] seems to give an implicit proof for our case with
continuous time. But we will give a different proof which is more direct.

Let «7(y) be the space of all germs of analytic functions at . For

3) Each u€./(y) is identified with a number series {u,=d!*u(y)/(d2")*"---(82%)*%; ac
Z{}satisfying 3 |u,|0*<oco for some >0 (d€R?). We rewrite u,, as u,, where ¢,
is the unit vector with 1 j-th component. Further we also identify a germ u .97 (r)
with its arbitrary element u(z)< u where no confusions occur.
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hie(y), i=1,..,d, with hi(y)=0, we define the linear operator D, by
d . .
D, =2 hi¢/oz'.
i=1

Lemma 1.1.9 Let the characteristic roots of the Jacobian matrix
H=[hi]¢ ;=, satisfy condition (A.3). Then there exist u'esf(y), i=
1, .., d, satisfying (0.3) and

(1.1) D(ﬂui:lliui.'_C Z(u )céut, i=1,...,d,
i

where Cé are constants.
Proof. 1) By a linear change of variables, we may assume

7y 0
H.= & .'. L
s i=| . . s j=1,..., m,

J

}Hl O’
o H,| 0 s u

(1.2) H=

where H, is a d;xd; matrix with d,21 (3 d;=d), {ti,..., i}, satisfy
=1

(1.3) 0>Rep;z--ZRepy,,

and &>0 is an arbitrary constant determined below. In fact, for the
original Jacobian matrix H we can find a regular matrix Q such that
Q~'HQ has the form of (1.2). Setting Ei(z)=iq;j1hf(z‘Q) and B, =
illiia/azi, where ¢;! is the (i, j)-component ojf=;he inverse matrix Q!

cl);~ Q, we have
Bii(2) = De,yu(2'0) ,

for d(z)=u(z!Q). Hence, if #'(z),..., i%z) satisfy (0.3) and (1.1) with
respect to 5”), then ul(z)=idl(ztQY),..., ué(z) =i%z!Q~ 1) also satisfy
(0.3) and (1.1).

2) Now we can define the total order ‘<’ in Z4 by

(1.4) a<p if lo|>]Bl, or |«|=|p| and aic<pic,

4) This lemma is still valid if condition (A.3) is replaced by pi,..., ¢ty laying
inside of a convex cone in the Gauss plane with the vertex O.
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where |o|=a'+---+ad and io=max{i; «'+p}. Further let T={l,..., d},
T,={ieT; 1<i——(d +od; 1)<a’ 39, T9={d,+---+d;_+1}, T}=T;—
79, TO—ZT0 and T'= ZT1 We may assume p;=p; for ieT;
without anyiloss of generahtly Here we define the semiorder ‘<’

in T by

i<rjif w#u; and y;=p, for some feZ¢ with fi=1, or i,jeT,
and i<j.

Note that if {eR(y;) and (<e;, there exist nonnegative integers (/,
j<ri such that

(1.5) {= 3 Ue;.
Ji<Ti

Since T is a finite set, we can define S, by the set of all its minimal
(w.r.t. the semiorder ‘<;’) elements, S, by the set of all minimal ele-
ments of T—S,,.... Obviously for some p=d, T=ZpSk.

3) We shall show that for each ieS,; there e;;slts u‘ e (y) such
that

(16) 3()J)ui=:l’lil’lis

1.7 w(=0, uj=dy, j=l...d.

Let u!={ul}eo/(y) be a solution of (1.6). Then comparing the
expansion coefficients in the both sides, we have

d . .
Z > fx"uih,§=u,-u:,, neZzg,
p2

a+B=n+
@,f20
so that by (1.2)
d P . .
(1'8) (."t un)un Z Z a’u;hé-‘-ﬁ 'Zl (171+ I)u;ﬁ-e,—e,_l'

Jj=1 a+B=N+e Jje
@.620,[a|<]n| nte;~e;-120

It is clear that {u}, |y|<1} defined by (1.7) satisfy (1.8). For |g|>1,
w;*+p, because of ieS;, and we can determine {ui} inductively and

uniquely by (1.8). Now we shall show that Z lui]é"< oo for some
neZ+

5) We make a convention that dyj+---4d,_;,=0 when j=1,
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0>0,0eR? By (A.3) we can choose a constant ¢>0 and a positive
integer g such that

(1.9) li—pylZclnl, — Inl>gq.
Since hie/(y),j=1,...,d, we can find constants L,, K;>0 such that
(1.10) |hi| <LK\, aezd, j=1,...,d.

Set |[lu'l,=max {|n||uil; [n|=k}. Then by (1.8)~(1.10) we have
: kol o
clufl S Ly g [k +edu,

for some constants L,, K>0. Choosing ¢>0 so small that c—ed>0
and setting L=L,/(c—ed), we see

. k-1 .
il SL S K
Hence, by the induction,
. q
Hu‘llkéL(KL+K)"""1l;iluﬂqu“", k>q,

and we obtain the conclusion for a d=(d1,...,6%) with 0<dé'<(KL+
K) %, i=1,...,d.

4) Now we shall prove (1.1) by the induction for the suffix k of
Sy. For k=1, the assertion of 3) is just the answer. Suppose that we
have obtained u’e.Z(y), for each jeS,+---+S,_,, satisfying (1.1) and
(1.7), and take an ieS,. Then we can also obtain the germs u=

TTw))¥, LeR(y), {<e, by (1.5). They satisfy
j=1

0, Iml=lll, n=+l,

1.11) Ul =
1, n={.

Now let u'={ui}e«/(y) be a solution of (1.1). Comparing the expan-
sion coefficients, we have
(1.12) (t; — pul =vi +wi, neZzs,

where v} is given by the right side of (1.8), and wj by
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d = i,
wh=— 3 cmu;.
LeR(1,)
{<e,

Define {uj; [n1<1} by (1.7), and {c}; [n|=1} by

g, I=i—1, ieT!,

Co, =

0, otherwise .

Then obviously (1.12) holds for |4|<1. For |g|>1, note that n<e
always holds, and by (1.11) and (1.12) it holds

(1.13) vi— ge%‘” ciuf—ci =0, ne Ry, .
t<en gl <In|

Hence, setting say ui=0 for neR(y), |n|>1, we obtain {ui} and {c];
n<e;} inductively and uniquely.

To show that X |ui|d"<oco for some 6>0, we note w'=3cjule
&(y), so that it holds for some L}, K'>0

(1.14) wi| <LK, peZzd,

Choosing a sufficiently small ¢>0, and setting L=L'/(c—ed), we see as
before that

=1
lluillkéLlZl fu'l KA+ LK™, k>gq.
Hence by the induction it follows

q
Il S LILK+ K07 30 Jlut]| KaF 17 4+ L' K*
=1

k—q9-2
YLLK S (LK+K)i K'*=i-1
Jj=0
and we obtain the conclusion for a d=(d1,..., %) with O0<déi<((LK+
K)VK'y L. Q.E.D.

The next lemma will be also used in section 2.

Lemma 1.2. Let ufes/(y), i=l,..,d, satisfy (0.3). Then; 1) If
E={,} e (0) and > Eu*=0 then £=0. 2) For each we(y) there
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corresponds a E={{}es(0) such that w=3Y Eu* 3) For each &=
{& e L(0), it holds D, > Eu*=3E,D,u"

Proof. 1) Let ui(z)eu?, i=1,...,d. Then each ui(z) is analytic in a
common neighborhood U of y. Taking the change of the variables

{=u(z), we have
0= ;fau“(Z) =0, {eu(V).

Hence ¢ =0 follows.

2) Let o)=Y ),..., v¥{)) be the inverse function of (u!(z),...,
u(z)) at z=y[{=0]. Then &)=w(v(()) is analytic at 0. Taking the
germ ¢e£(0) containing &(), we have w=3 &,u*

3) Since £ew(0), it holds S|£,|67< o for some §=(5, ..., 54)>0.
By (0.3) we can choose a neiggborhood U,cU,cU of y such that
lui(z)] <o for all zeU,;. Hence the series géau“(z) converges absolutely

and uniformly on U,. Further, since

0 | d . 0 .
\ 557 u“(z)' = i .glo:’u“ ¢i(z) =—u'(z)| <Ké*, zelU,,

0zJ

the series > &,0u*(z)/0z7 also converges absolutely and uniformly on U,.
Hence we have (3 &u%(z))/0z/ =Y. £,0u*(z)/0z/, and obtain the con-

clusion.

2. Proof of Theorems

In this section we shall prove Theorems 1~3 assuming the following

lemma, which we shall show in section 3.

Lemma 2.1. Let (A.1)~(A.3) be satisfied. Then there is a y,<7,
such that each h'() and Yi(A) are analytically continued to the domain
A>%o, and that

2.1) VA =h(2),  YoW)=4,  A>7,,
(2.2) T f3() =fy,(3)(%), x € R, t20, 4>y,

(2.3) V)>y0  A>pe, 120,
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2.4) lim (1) =y, A>70.
1>

d
Let u’ be the one obtained in Lemma 1.1 and u*= T (u?)*'".
i=1

Lemma 2.2. u* is an eigenfunction of 2, corresponding to p,.
There are no other eigenvalues than vy, v,,..., and the eigenspace of
D,y corresponding to v, is the linear hull of {u*;xeR,}. Further
{u*} satisfies
(2.5) Dyur=vi{u+ 3 cjuf}, aeR,, k=0,1,...,

R

b

where cﬁ are constants.

Proof. (2.5) is obvious from (1.1), (1.4) and the derivation property
of D,):

d . .
Dyyur= i;oc‘u“""ﬁ(y,u’.

From (2.5) it is shown by the induction that each u* is an eigen-function
of ®, corresponding to v, if aeR,. Now let v be an eigenvalue of
D, and w#0 be a corresponding eigenfunction. Then, by Lemma
1.2 2), there exists a £e.7(0) such that w=3 ¢,u* Hence, by Lemma
1.2 3), we have ’

0

0=(D,,—vD)w= 3 X CEamul,

k=0 a, feRy

where alj are constants given by

D, —vD)"u*= Y auf, «aeR,, k=0,1,....
(€2 B
BeRxk

Hence, by Lemma 1.2 1),

> Caiy=0, BeR,,  k=0,1,..

aeRy

Since det[agz}], per, +0 for v#v, it holds £,=0 for aeR, with v, %v,
and we obtain the conclusions.

Lemma 2.3. There exist u*(A) e, u*(A)eu* such that for each
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a € R, it holds

(2.6) u(Y, (1)) =e** {u*(1) -I-ﬂgkbi‘;(t)u”(i)}, A>yo, 120,
p<a

where bj(t) are polynomials in t. Moreover bj(t) satisfy

2.7) vb5(0) +55(0) =v,c§,
(2.8) e (i 3 B0} =110,
B<a

where f(0)=(f1(0),..., f{()) is given by

Be
B<e;

FO=ent (T + IR b5 (0)CP).

Proof. Take arbitrary u®(d)eu’, i=1,...,d. Then there is a neigh-
borhood Uc{A>7,} of y where every ui(1) is analytic. We may assume
V(U)cU by (2.4). By (2.5) it holds

(2.9) D(},)14°‘(A)=vk{u“‘(i)+ﬁ£}‘,z cgub()}, Lel, aeR,.
ﬂe<azk

On the other hand it follows from (0.2) and (2.1)

(2 10) (%”“(W:(/{)):(33(v)u°‘)(lﬁ,(/l)), t>0,

[ u*(Yo(A)=u*(4), ALeU.

Combining (2.9) and (2.10) we obtain a system of ordinary differential
equations, and solving it inductively w.r.t. the order ‘<’ we see that
(2.6) holds for AeU.

To show (2.6) for A>y, we must only see that u*(l) is analytically
continued to A>y,. For this purpose we put U,=y;(U). Then U,
is a domain including U and U U,>{A>7y,} by means of (2.4). We
use the induction again: suppos:ghat the last sum in the right side of
(2.6) is analytic in A>7y, (this is trivially valid when « is minimal w.r.t.
‘<’). Then, since the left side of (2.6) can be analytically continued to
U, for each t>0, u*(1) can also be so. Hence we obtain the conclusion
by the uniqueness property of the analytic continuation.
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(2.7) follows from equations (2.6), (2.9), (2.10) and the uniqueness
of expansion coefficients w.r.t. {u*(4)} which is verified from Lemma 1.2
1). Similarly (2.8) is clear from (2.6).

Proof of Theorem 1. Let ui(l)=uc(A\)e/ be the ones obtained
d .
in Lemma 2.3. Then obviously they satisfy (0.3) and u*(1)=T1] (u'(1))*,
i=1
ae Z4, satisfy (2.6). Differentiating (2.6) in t we obtain

Dur(D)= v {u*(A) + ¥ csub(d)}, aeR,.
%
Hence we see that u*(4) is an eigenfunction of ® corresponding to pu,.
The remaining assertions are clear from Lemma 2.2, since ue.Z(y) is

an eigenfunction of D, corresponding to v if u()es/ is an eigenfunc-
tion of D corresponding to v and u(l)eu. Q.E.D.

Let v(Q)=(@Y),..., v¥()) be the inverse function of u(i)=(ul(4),...,
u4(d)) at (=0, and V be a neighborhood of O where every v'({) is
analytic. Note that by (2.6) and (2.8) it holds

(2.11) V(D) =v(f(u(4)) for all t=0, 1>v, such that u(y,(1))eV.

Let also ¢y(x) be the ones defined by (0.4).

Lemma 24. 1) Each ¢y(x) belongs to 2. More precisely py(x)=
e’ *Pp(x) is a polynomial in x,'...,x% of degree |B|. 2) ¢y(x), feZ4,
are linearly independent, and their linear hull coincides with 2. 3)
It holds, for each feR,, k=0,1,..., that

(2.12) T, pp(x)=e""{¢,(x) +aEzR‘, . (x)b5()}, xeS,t=0.
ﬁ<uk

d
Proof. 1) Set b,(x)=3 x'vi. Then, since
i=1

x-v({)=y-x+ MZ; B0,

we see

e—x v(®) =e—y-x§ Z (_%)” Z bal(x)"'lv)a,,(x)cﬂ-

ns|g| N [ail21
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Hence we obtain the conclusion with

(2.13) p=3 E0 3 5,0

2) Let gg(x) be the highest degree part of the function py(x).
Then by (2.13)

@) 0= (GO o0, B=Bhe 89

[BI! i=1

Since xf=_i uib,(x), j=1,...,d, the linear combinations of p,(x),
B n, spanl—‘the space of all polynomials of degree not larger than n,
whose dimension coincides with #{f;|f|<n}. Hence py(x), |f|<n, are
linearly independent. Since n is arbitrary and ¢4(x)=e"7"*py(x), the
conclusions are clear.

3) Fix a t=0. Since v({), u(d) and Y, (1) are continuous we can
find, by means of (2.11), a neighborhood V,=V of 0 such that

2.15) V@) =v(f(D), eV,

and o(V))c{i>v,}. Hence, appealing to (2.2), (2.3), (0.4) and (2.8),

we s€e

k

TS0 =5 e 3 {6+ ¥ SO, LeV.
‘ 5E

Now, by the uniqueness property of the expansion coefficients of (4,
it is enough to show that

T;fu(:)(x)=%7;¢ﬁ(x)cﬂ, { is near to 0.
But this is clear if we note that
(2.16) %‘,[qsﬂ(y)m <e 7 red©-y

where 5(0)=(1(Ds..., 710, 9(O= X Ivol*|, whence with the aid of
(2.3) it follows la]Z

T,% [ p()CPI(x) < o0, ¢ is near to 0.
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Proof of Theorem 2. By (2.12) and (2.7), it holds

2.17) Gydp(x)=v, {Pp(x)+ % cfd(x)}, feR,, k=0, 1,....
Fl

Hence we see by the induction that ¢4(x) is an eigenfunction of ®,

corresponding to p,. Other assertions are easily obtained from Lemma

2.4 2) and (2.17) by the similar arguments as in the proof of Lemma
2.2.

Proof of Theorem 3. Take a compact set K< {1>y,}. Then by
(2.4) we can find a t,>0 such that u(y,(1))eV for all LeK and t=t,.
Hence (2.11) and (0.4) imply

fon(X)=e ¥ =5 ¢, (x)f{(u(4)), t2t,, reK, xeRq,

and we obtain (0.5) with any f¢,=¢t, from (2.8). Now we shall show
the absolute and uniform convergence of (0.5). Since the power series
> (x)(* converges on V, it converges absolutely and uniformly on a
naeighborhood VicV of 0. On the other hand, since u‘())es and Kc
{A>y0), it is clear |ui(1)|£M,, 2eK. Further, by means of (A.3)
we can find a ty=t, such that f(O)=(F1()..f4O))eV, for each =1,
and |{|<M,, i=1,...,d, where

i =lert [ (1L + X b)) .

Combining these facts we have the conclusion. g.e.d.

Remark 2.1. If P,(x,=0)>0, i=1,...,d, for some ¢t=0, then for
each y,>y, there exists a t,=0 such that (0.5) holds for t>t, and A=
y;. Indeed in this case Y, (c0)< oo, and we can choose a t,=0 such that
u((A) eV for all A=y, and 1=1,.

Remark 2.2. If one wants to calculate ¢y(x) directly not via u(d),
the next formula is useful:

d . . d | .
Gpg(x)=iIj!lhj'n1p2+e,-—e,(x)_i§1 a+ﬂ2=u %(_I)Ia'h;pgi-e,(x)a
’ 1Bi<lnl=1

d
where pf,’(x)=i];[1(xi)’1i and n!=(@®')...(n*") (cf. Karlin and McGregor
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[6]). But we do not discuss on this further.

3. Some Properties on a CBP

The object of this section is to prove Lemmas 3.2 and 2.1. We
begin with summarizing some properties on a CBP maintained by S.
Watanabe [13]. The infinitesimal cumulant generating function h*(2)
has a form of

d
G H)=—da'(A)*+ ¥ bjA +c'— SR,, (e™* ¥ —14yidi, <1 (dy),
Jj= +

where a‘, bi(i%j), ¢! are nonnegative and bi real constants, and ni(’)
is a nonnegative measure on R4 —{0} with the ordinary regular condi-
tion. Conversely, for the functions h'(A),..., h%(1) of the form of (3.1)
there corresponds a unique CBP with the infinitesimal cumulant generat-
ing functions h!(1),..., h%(1). Furthermore the ¥-semigroup {Y,(4)} is

differentiable in ¢ and satisfies

3.2) V(A =hy (), Yo(A) =2, 4>0,
(3-3) Y(H20, 120,  120.

The next lemma is clear from the Perron-Frobenius theorem and
the max-mini principle (cf. Gantmacher [2] Chapter XIII §2).

Lemma 3.1. 1) A real square matrix A with nonnegative non-
diagonal elements has a real characteristic root p(A) which is largest
in all the real parts of its characteristic roots. 2) Let A and A’ be
such square matrices with the same order, and A=A'. Then p(A)=
p(A").

We note that (3.1) implies

Ai(1) is analytic in A>0, continuous on RY,
hi(0)=0, i=1,...,d,

(3.4 .
hi(A) =0, i,j=1,...,d, i+], A>0,

LA (A)S0, 4, j k=1,..,d, 2A>0.
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Therefore the matrix valued function H(4) in A>0 is monotone non-
increasing and hence, by Lemma 3.1, the limit p(0)=Llim p(H()) exists
admitting the possibility of co, where 1|0 means thatlé‘(l)ery component
At of 1 tends to O from the right. Set

p(0),  if A'(0)=--=h%0)=0,
p:
o0, otherwise.

Lemma 3.2. Suppose that hi(l), i=1,...,d, satisfy (3.4) and (A.1).
Then, a) if p<0, the zero points set A={leR%; h(A)=0} consists of only
one point 0. b) If p>0, the nonzero maximum element y of A exists
and p(H(y))<0.

For the proof of Lemma 3.2 the next lemma is essential:

Lemma 3.3. (Sevastyanov [11] and Kotelyanskii [7]). Let A be
a real dxd-matrix with nonnegative nondiagonal elements and a;; be
its (i, j)-component. Then p(A)<0 [Z0] holds if and only if

(3.5) (—Drdetla;,;, Jf, 1=, >0 [resp.z0]

holds for every 1=i,<---<i,<d and 1<p=d. Moreover this is equiva-
lent to

(3.6) (=1)rdet[a;;17 =, >0 [=z0], p=1,...,d.

Proof of Lemma 3.2. For d=1, note that (A.1) and (3.4) imply
llim h'(A')=—o00. Then the assertions
Al-oo

are clear from Figure 1.

For the proof of the case d=2, we
set Ai=(A1,..., Ai,..., A9)eR4~! for each
Ae R4, and (4, x)'=(A1,..., AL, x, A, ..

Aot

*

A=) e R4 for each Ae R4 ! and xeR,. Y Y =
Then for each 1eR4! we can find an \}040
xeR, such that hi((4, x)))<0. Indeed, o

by (A.1) and (3.5) there are A,eR¢! Figure 1.

and x,e R, with hi((4y, x0))<0. Since
h¥((4, x¢)}) is nonincreasing, hi((4, xo)’)<0 for A= 1,. Hence we can
find an xeR, satisfying hi((4, x)))<0 for each A=1, because of
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hi,()<0. Further, for each e R4, there is a u=A with u=1,. Since
hi((A, )= hi((u, x)*) by (3.4) we have the conclusion. Now by the

same arguments as for d=1 we can define the function g(1) by
g'(A)=max {x20; h'((4, x)")=0},
which can be seen to satisfy
(g"(l) is analytic in A>0, continuous on R471,

] gi(0)=0, i=1,...,d,

(3.7)
gi(A) =0, i=1,.,d, j=1,.,d—1, 2>0,

lgh)=0,  i=1,..,d, j,k=1,.,d—1, i>0.

Define the matrices G(44,...,4,) for each 1,,...,4,>0(4,eR4!) and
G(4) for each 1>0 (AeR%) by

_1. gi‘—l(ii”d
G(Ayyeo., Ag)= L, G)=G(Y,..., 29).
| g5(4;) —1 Ji,j=1

Then it can also be seen that (A.1) is equivalent to
(A.1Y  p(G(4y,..., 2)<0 for some 4,,...,4,>0, eR41.

Set p,(0)=lilm p(G(A)) and
210

p1(0), if g}(0)=---=g40)=0,
P1=

0, otherwise .
Setting also I';={(/, g¥(4))’; A€ R4}, we can rewrite Lemma 3.2 as

follows:

Lemma 3.2'. Suppose that gi(d), i=1,..., d, satisfy (3.7) and (A.1).
Then, a) if p; <0 the set 1"_/\1" consists of one point 0. b) If p;>0
the nonzero maximum element y of I' exists and p(G(y))=0.

Proof. We shall use the induction. First let d=2. When p=0,
g'(0)=g?%(0)=0 and the inner normal vectors n; and n, of the curves
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he o
2N

r A 1 nj r,

n'

r, Y 2

n, n,
A N
n, n,
Figure 2. the case of p<0. Figure 3. the case of 0>0

and g‘(O):gz(O) =0.

Iy and I'y, at 0 are equal to (—1,
(g1)(0+)) and ((92)'(0+), —1). Hence A2 I
by (3.5) the base (n,, n,) has the same nj T
orientation as that of (e, e,), so that
r,nr,={0=(, 0)} by Figure 2. When
p>0,9"(0)+¢2%(0)>0 or the base (n, Y
n,) has the other orientation than that
of (e, e;). On the other hand by
(A.1) and (3.5) the base (n}, ny)=((—1,
(@Y (1), ((g?)(43), —1)) has the same orientation as that of (e,, e,),
so that by Figures 3 and 4 I'ynTI, contains a point y different from
0, for which p(G(y))=0.

Now we proceed for the case d=3. First note that, by the similar
argument as for the case d=2, for each 2eR%2 and i=1,...,d—1 the

a1

Figure 4. the case of g!(0)>0.

equation

{ x=g(4, y)* 1)
(3.8)

y=g4(4, x)),  (x, »20,

has at most two solutions and, if two, one of them is equal to 0=
(0, 0). Define the vector (giyu(1), g4i(A)) by the solution of (3.8) distinct
from O if exists, and by O otherwise. Setting also g'i(1)=gi,(1), i=
1,...,d—1, A=0 (LeR%2), we can see that
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[ g'i(A) is analytic in >0, continuous on R{™2,

J 9’020, i=1,.,d-1,
3.9
g’;(l)goy i=1,...,d—1, j=1,“"d.—2’ }'>0’

LgfN=0,  i=l,.,d=1, j,k=1,...,d=2, i>0.

We define the matrices G'(4y,..., 4,_1)(4;>0, 4,;€ R$2) and G'(1) (A>0,
AeR% 1), the values p;(0) and p; and the surfaces I, i=1,...,d—1
from g’(A)’s as we did from g’(A)’s in the above. Then by virtue of
Sylvester’s determinant identity (Gantmacher [2] Chapter II) and Lemma
3.3 it can be seen that

p1 20 implies g4(0)=0 and p; =<0,
(3.10)
p1>0 implies g4(0)>0 or p;>0,

(A.1)" p(G'(Ay,..., 24_1))<0 for some A,,...,4;,_,>0, eRi 2,

Now, by the assumption of the induction, (3.9) and (A.1)” imply
d—1
the existence of the maximum element y' of N I'j. Then y=(y', g4(y")%)

i=1
is the maximum element of .Cd\ r,., 1If p,<0, then p; <0, so that y' =0
by the assumption of the inEL:ction. Since g4(0)=0 it follows y=0 and
so .Cd\l" ;={0}. Now we consider the case of p;>0. If p;>0 then
y’=i='()_,lso that y=+0. If g40)>0 then g4y’)>0 since g4(1) is monotone
nondecreasing, and so y=0.

To prove p(G(y))<0 note that the functions Gi(A)=g'(A+7y")—y,
i=1,...,d, satisfy (3.7), (A.1)’ and §,(0)=p(G(y)), where p,(0) is defined
from gGi(A)’s as p,(0). Now suppose that p(G(y))>0. Then from what

d
we have proved above it follows the existence $+0 in the set N I;.
i=1
d
But it follows y+je N I; from the definition of gi(4), which con-
i=1

d
tradicts the fact that y is maximum in the set N I Q.E.D.

i=1

Remark 3.1. It can also be seen that if hi(4)>0, i,j=1,...,4d,
i+ j and p>0 then y>0 and p(H(y))<O.

Lemma 3.4. If (A.2) and (A.3) are satisfied as well as the assump-
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tions of Lemma 3.2, then there exists a yo<y such that hi(1) is analytic

there and h(yy)>0.

Proof. By (A.3) and Lemma 3.3 hi(y)<0. Hence there exists
a neighborhood U of y such that hi(1) and gi(4) in the proof of Lemma
3.2’ are analytically continued to it and h*(4)>0 is equivalent to Ai<
g'(A) on it (e R%). We shall show by the induction the existence of a
sequence {y,}<U such that y,—7y,

a sequence {y,} = R4 ! such that

Y.<y and 9yi<gi(yh), i=1,...,d. Ak
Since it is clear for d=1 and d=2
we assume that it holds for d—1. Ai=gi((Yr;i, A4a-1y
Then, by the same argument as in Y;li i Yr
the proof of Lemma 3.2°, there exists \ / /
- g

V=Y, va<y and ¥ i<g’i(y;), i=

I
Y/
1,...,d—1, where ) =y4eRd 1, yniZ
By the arguments for d=2 we can w xd=gd((v;ll, AN

find a y,;<g4y,)<y¢ satisfying yii< Figure 5.

g ((yi, ) 1) for every y,<x<

gd(y;l) (Cf Figure 5) Set Yp =max {ynla'-'s Yn(d—1)7 gd(’y;)—l/n} Then Y=
(74, yo)¢ satisfies the required properties.

Lemma 3.5 (Jirina [3] Theorem 2.2). For a CBP X =(x, P,) it
holds

(3.11) %i_'rng(x,=0)=1, x €S,
if and only if A={0}.

Corollary 3.1. Condition (A.1) implies
(3.12) limy(A)=y, Azy.

Proof. When p=0, (3.12) is a direct consequence of Lemma 3.2
and (0.1). When p>0, set A(A)=h(L+7). Then Ah(A) also has the
form of (3.1) and the corresponding ¥-semigroup is ¥, (A) =y, (A+7y)—7.
So (3.12) is clear from Lemma 3.2 as in case of p=0,



70 Yukio OGUrA
Finally we shall prove Lemma 2.1.

Proof of Lemma 2.1. By Lemma 3.4 and (3.1) each hi(1) is analyti-
cally continued to A>yp,. Let A(A)=h(A+7y,) and X be the correspond-
ing CBP. Then the corresponding ¥-semigroup /(1) satisfies (3.2) with
h(2) instead of h(A) and is analytic in A>0. Since the function y,(1+
Yo)—Yo(A> —7v,) also satisfies the same equation, the uniqueness property
of its solution implies

(3.13) V(D) =b(A+r0)=ry  A>max{—yo, 0}.

Since the left side of (3.13) is analytic in A>0, the right side is analyti-
cally continued to there and (3.13) holds for A>0 i.e. A+7y,>7, Hence
Y (4) is analytic in A>7y, and (2.1) holds. To see (2.2) note that (3.13),
(0.1) and the uniqueness theorem of Laplace transforms imply

P(t, x, dy)=e"70"*P(t, x, dy)e?o"”.

Since SP(!, x, dy)e"(’=vo)'y< oo for each A>7,, we have

XP(t, X, dy)e"‘l’ze‘7‘°"‘gﬁ(r, X, dy)e~(A=vo)y, A>7y0.

But since (3.13) was valid for A>0, we obtain (2.2). For (2.3) we have
only to note that (0.1) implies ()= (y,) for A>7, and V,(0)=y,(70)—
70>0 holds since },(0) is monotone nondecreasing in ¢t and 1/j0+(0)=
h(0) =h(yo)>O.

Now we shall show (2.4). Since the fixed point y of equation
(2.1) is asymptotically stable by (A.3), there exists a neighborhood U
of y such that (2.4) holds for AeU (cf. Coddington and Levinson
[1]). Combining this fact with (3.12) we have (2.4) for AeUU {i=7}.
We may assume y,e U by taking larger y,<y if necessary. Now take
a A>y,. Then there exist A, and A, in UU {A=y} such that 1, SA=<4,.
Since  Y(4,) =Y (A)=¢(4;) by (0.1) and limy(4,)=limy,(4,)=y holds,
we obtain (2.4). e e
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4. Examples of the Representation
Example 1 (direct product). Let
hi(A)y=hi(A})

= —a,(Ai)2 +bidi +c,

— Sw(e""”'~ L4+ pii <Rt (dyh), i=1,....d.
0

This case can be reduced to the results for one-dimensional CBP’s,
which we now summarize. Assume that hi(A") is non-critical and analytic
at its maximum zero point y:. Then the eigenvalues of D! (D! is the
linear operator defined by Diu(A})=hi(A)u’(A})) are ky;, k=0, 1,..., where
u;=(h?)'(y"). There exists an eigenfunction u(A}) of D! corresponding to
u; satisfying u®(y?)=0 and (u?)'(y)+0. The function ui(A})* is an eigen-
function corresponding to ku; and has the inverse Laplace transform
£i(dx') in the space of signed measures:

wi(Ai)h =S:e"“~“é;;(dx") :

Let v({!) be the inverse function of ui(A}) at A=y! [(!=0]. Then the
eigenfunction ¢i(x?) of ®f are given by

e EI= 5 i (xi)(CH)E.
k=0

Now, in our case, conditions (A.1)~(A.3) are satisfied where the
maximum zero point y is given by y=(y',...,y9. It is clear that the
set of all eigenvalues of D is equal to {,ua=iai,ui;aezi} and the
corresponding eigenfunction is given by =

d
ur(A)=1Tu*(A)*, ae Z4.
i=1
The eigenfunctions of ®, are

(4.1 Po(x)= iledﬁil(x‘), aeZl.
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All the eigenfunctions of ® or &, are those in the narrow sense,®
and the representation (0.5) holds with bg(t)=0. Moreover, in this case,
the eigenfunction u#(A) has the inverse Laplace transform

(4.2) E(dx)=EL(dx) @ @Eda(dx?), aeZi,

where the notation ® means the product of the measures. For some
classes of hi(A})’s we can calculate £i(dx?) and ¢i(x?) precisely (cf. Ogura
[9]), so that £(dx) and ¢, (x) by (4.1) and (4.2). Especially, if our
CBP is a diffusion, we can see that the transition function has a density
w.r.t. the Lebesgue measure, which admits the spectral representation
by ¢,(x) only and is symmetric w.r.t. the weight exp(—__ilbfx"/ail)dx‘...

dx®/xt... x4
Example 2. Let d=2 and

hi(2)=—a(A)? —bAl,
4.3)
h2(A)=cit —el?, a, b, c, e>0.

In this case p<0 and u,=—b, u,=—e are the characteristic roots
of the matrix H. The eigenfunction of D corresponding to uy is

1+alllb’
Here we divide it into two cases:
1) u,*+myu, for any m=1,2,.... In this case the eigenfunction of

D corresponding to u, is

w2y =12+ 2 % (—‘;-ulu)y/(nb—e).

a .=

The inverse function v({) is
1 © n
Q) =erry 2O=0-25F (50) -0,

so that the eigenfunction ¢,(x) of ®, is given by

6) We call £+0 an eigenfunction of a linear operator L in the narrow sense if
Lé=vE holds.
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W o= $(5) ) 5 (e

cp—al(xl)l"p(xz)l’,

where

Kap="3 (07 Ny T
% ,P)~r=p—a2 (xl_l'*'p_r ( ) n;+---+%;1_m2=r i=1 nib—e.

They are eigenfunctions in the narrow sense and (0.5) holds with bj(t)=0.
2) u,=my, for some m=1. In this case the basic eigenfunction of
D corresponding to u, is
bc & (a LI |
2 — ]2 = — g1 [,
=212+ 5 (ur D) s

n=1 e
n¥m

and the inverse function v({) is

bc = /a n
N O=mpiy  PO=0-2 % (40) (-0
n¥m
The eigenfunction ¢,(x) of ®, is same as (4.4) except for that K(a;
1, p) is replaced by

~ —i+
K(a‘l’p)_ pz (0(1-——l+p )(_I)r,ll_‘_...+%_a2=r i=1 nib_e
n,21,n,%¥m

P—a2 1

The function u?() satisfies
suzu):uzuzu)+c<%>"'_1u1(,1)m,
and therefore (0.5) holds with

[ (“Z)(Kt)“z"”z, for pl+mB2=al+ma?, 0ZB2<a?,

ba o B

5(0) 1
0

) othewise,
where K =c(a/b)y" 1.

Remark 4.1. For the h? in (4.3), we can calculate the eigenfunctions
concretely for somewhat wider classes of hl(A)=h!(A!); e.g. for the
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classes in the examples in Ogura [9].

Remark 4.2. The case 2) of Example 2 gives an example that the
semigroup T,f; is not always diagonalizable even if the matrix H is so.

Remark 4.3. In general the transition function of a CBP is non-
symmetrizable: For example, when a CBP is a diffusion, it is sym-
metrizable if and only if it is of a direct product case i.e. the case of
b:=0 (i%j) (cf. Nelson [8]).

Remark 4.4. In Example 1, u*(2) had the inverse Laplace transform
E(dx) in the space of signed measures. Further it is seen that the
transition function P(t, x, d)) itself has the representation

Pt, x,dy)=3 e 3 $,(x) {&(dy)+ X b3()E,(dy)}
k=0 aeRk giﬁk

(strictly speaking bj(1)=0 in Example 1). But this is not valid for
Example 2. We can prove that if P, (x,=0)>0 there is a u/(1) having
the inverse Laplace transform ¢&/(dx) with ¢/(E)=0, EcR¢—{0} and
¢i({op =0.
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