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§1. Introduction

This note is a continuation of the previous paper [6] of the author.

Here we shall prove the following theorem:

Theorem 1. Let X be a complex manifold of dimension n, weakly

1-complete with respect to a plurisubharmonic function W. If B is a

positive line bundle on X, then we have

H«(X, QP(B)) =0 for p + q > n .

We shall also give a differential geometric proof of the following

Theorem 2. // X is strongly [-complete, then for any holomorphic

vector bundle E on X, we have

H«(X,V(E))=Q for q^l.

Since strongly 1-complete manifolds are nothing but Stein mani-

folds, this is a special case of the famous theorem A for Stein manifolds.

Also it is a special case of a theorem of Kazama [3]. We present our

proof because it is purely differential geometric.

§2. Proof of Theorem 1

The idea of the proof is completely similar to that given in [6].
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We shall make use of notations in [6], §2, unless we make explicit

changes.

What we have to do is the following:

Given a B-valued (p, q)-form <p on X, find a complete Hermitean

metric on X and metrics along fibres of B, such that B is Wp>q-eUiptic

and (<p, r/?)<oo.

As before, we start with a system of metrics {0^} along the fibres

in the sense of [6] such that, for a local coordinate system (z^) in UJ9

and define ds2 by

(2) ds2 = Zgi*idz*jdz'j.

(Here we change a(f\ g(^ and ds0
2 in [6] into aj9 gjap and ds2 respec-

tively. Accordingly we change notations as in the following formulas.)

Then we choose a suitable function A(f) and set

(3)

d2 log A i
-

and we assert that the conditions are satisfied by {Aj} and da2.

As for the completeness of do2 and PF*'*-ellipticity for p + q>n, it

is all right as in [6]. Let us examine the condition (<p, <p)<oo.

Set

(4)

where (g$f} denote the inverse of the matrix Gj=(gjxp). u(x) does not

depend on the local coordinate system (z°j) and is a non-negative C°°

function of x e X. Next we take a matrix function T on UJ9 such that

Gj =
 tT-T, and consider T'1 (d2 W/dz^dz^T-1 . The eigen values vl9...,vn

of this matrix do not depend on local coordinates. We denote by v(x)
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the maximum of these eigen values at xeX:

(5) v(x)=max(vl9,..,va).

u(x) is a non-negative continuous function on X.

For a given (p = {(pj} eCp'q(X, B), we express (pj as

(6) <pj = Z<?;a,..a^-,..^^ A - A dz'f A dz*f A - A dz'j* .

We omit the suffix j indicating coordinate system in some places, and

write down the integrand of (<p, <p) for two sets of metrics:

(7) —<pJA*9J = K-—det(ga]i){'Z9*l*l..'gl*p"p9'ldl.-.g*qd9
aj aj

x Vj*l...*pjil...Pq9jYl...yp*t...*g}dz1 A •'• A dz" A

dz l A - - - Arfz",

(8) 9;Ai!r^ = ^ - - d e t ( r a ? ) { £ ^ ^

dz l A - - - /\dz" f \ d z l /\-- f\dzn.

Here * and ^ indicate the formation of adjoint forms with respect to

ds2 and da2 respectively and (F«p) is the inverse of (Fap). K is a

constant common in two formulas. *}

We have r=(rap) = G+W where WP^O. From this we see that

r~1^G~1 as in [6], formula (2.13) and what follows, and hence the

sum in { } in the formula (8) is not greater than that in the formula

(7). Hence we have only to show that, by a choice of ^, we can

achieve

(9)

where dv is the volume element in the metric ds2 and the non-negative

function a0[<p](x) for xeX is defined by

*) In [6], this constant and another to be multiplied to the expression for AT] were
missing. It does not affect the main line of the proof.



104 SHIGEO NAKANO

(10) —q> - A * < p , = <
a.

We can assume that mfF(x)=0. Then we set
xeX

(11)
' 0,

Then v(0 is a non-decreasing function of teR. We take a strictly in-

creasing continuous function v^t) such that Vj(0^v(0. We also choose

a non-decreasing continuous function p(i) (^0) such that

(12)

Now we have the following lemma:

Lemma. Given a real valued, continuous and strictly increasing

function u(t) in 0:gr<oo with X0)=0, fj,(f)^co for r-^oo, we can find

a C°° function l(t) in —ao<t<cc such that

^ all f,

(02 and /l"(0^

with some constants c, c' and K>Q.

Suppose this lemma has been proved. We apply it to

2p(t) and take A(£) as in the lemma. Let us estimate detF/detG in the

expression (9). We have

Hence, if we choose T such that G = 'T-T and <T-l(d2<FI8z"dzl>)

is diagonal, then we have

/ P, 0 \
•-. +^?}r,

\ o «,, /
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- rwhere the column vector (ya) denotes A"(^)2 T~1(dW/dzx). Hence we

have

. + j f i j > i yyn 3'iJ,,

detr
detG

a=l

We see that detF/detG grows, as y->oo, at most with the order

of a polynomial in A(*F). 00M does not grow more quickly than
A(*F), and the growth of the volume of Xt (as f-»oo) has been taken care

of by p(t). Hence we see that the condition (9) is achieved by our

choice of A.

§3. Proof of the Lemma

Step I. Suppose x =ju1(0 is a real valued continuous function of

fe[0, oo), such that /x1(0)=0, ^JLI is strictly increasing and -»oo for t-*oo.

Then we assert there is a continuous, strictly increasing function /x2(0

in [0, oo) such that, for t>Q ^2 is of class C1 and Hi(t)<n2(t)>
 an<i

H'2(i)^K'iJi2(t)
2 for ?>c2, where c2 and K are suitable constants.

To see this, we consider the inverse function t=f(x) of ^ii. f is

continuous and strictly increasing in [0, oo), and /(x)->oo for x->oo.

We set

, 0 for x=Q,

( (l/.x)\ f(z)dz for x>0,
Jo

then g(x) has the same properties as listed for /. Moreover for x>0

we have
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g(x)<f(x),

x f ( X ) - ( X f ( z ) d z
< 7 i s C ' and g ' ( x ) = & >0.

X

Consider the inverse function x=n2(i) of t=g(x). Then ju2 is again con-

tinuous, strictly increasing in [0, GO), ^2(0>^i(0 f°r '>0 and \i2 is
C1 for *>0. We have

where x=f.i2(t). We set

fc(x)=x/(x)-\ /(z)rfz,
Jo

then for x>y>Q

h(x) - h(y)=xf(x) - y/00 - f(z)dz
Jy

Hence we can find ci>Q and X>0 such that

/?(jc)^l/K for

and we see

for r>c2 (=

We note that //2 is of class C°° in (0, oo) if /^ is so.

//. We set

where K is as above and L is to be chosen suitably. Then we have

Q for
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and

JK 3 ' ( 0>JM 2 ' ( 0 for t>c2.

Hence we can achieve, by a suitable choice of L, that

/i2(f)^3(0 for f £ 0 .

Then we see

/)3 for

Step III. As ^j(0 in Step I, we take a function which is C°° in

(0, oo ) and ^//. In order to obtain the desired function /l(f), we take

a non-decreasing C°° function /*4(f) on the whole line — oo<f<oo such

that

0 for f < l ,

1 for r > 2 ,

and set

— oo \ ./ - oo

It is easy to see that this A(>) fills the need of the lemma.

§4. Strongly 1-Complete Manifold

X is strongly 1 -complete if there exists a strictly plurisubharmonic

function f7 which exhausts X, It is well known that such X is a

Stein manifold.

Proposition 1. On a strongly \-complete manifold X, every holo-

morphic vector bundle is positive in the strong sense.

Proof. V will denote the exhaustion function. For a holomorphic

vector bundle E, we take Hermitean metrics {/?,] along fibres of E.
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We form the curvature form of {/?7-} and form H=(H^ilia) given by

the formula (2.15) of [6]. Since (v^)=(d2Wldz*dz^ is positive definite

at every point of X, we can find a C00 increasing convex function

of teR such that

at every point of X.

When we replace \\j by e~A(¥/>/?;, then H is replaced by
/ fi\p £j\p \

(hviiv*p)+k"(*P)[ ^vfi-^-^r "TrF/5 anc^ we see ^at ^ *s P°sitive-
\ (J Z (JZ /

Now we quote standard arguments in the discussion of vector

bundle valued cohomologies : If £ is a holomorphic bundle of vector

spaces Cr over a complex manifold M, we denote the associated Pr~1-

bundle by P(E), i.e. P(£) = {£-(0-section)}/C*. L(E) denotes the com-

plex line bundle over P(£), associated to the principal bundle £ — (())->

P(E). It is well known that

(A) H«(M, 0(W®SkE*))^H«(P(E), 0(n*W® L(E)~k)) ,

where SkE* denotes the /c-ple symmetric product of the dual bundle

E* of £, W denotes any complex line bundle over M, and n means the

projection P(E)-*M.

(B) Canonical bundles KM and KP(E) of M and P(£) are in the

relation

(C) We understand positivity and semi-positivity of a holomorphic

vector bundle in terms of the curvature, say in the sense of Griffiths

[2]. Then,

L^E*)"1 is positive if £-»M is positive.

([4] Theorem 2.1 and Proposition 2.2, or [2], (1.9), (2.36) and (2.38).

Compactness of M is not necessary in these arguments.)

On the other hand, as was first pointed out to the author by

Hironaka,
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(D) If n: Y-*X is a proper holomorphic map and if X is weakly

1-complete with respect to W, then so is Y with respect to

Combining these facts with our Theorem 1, we obtain the counter-

part of [4], Theorem 2.3 for weakly 1-complete manifolds. In particular,

Corollary 2.4 becomes

Proposition 2. Let X be a weakly l-complete manifold, E a holo-

morphic vector bundle over X and F a complex line bundle over X.

If either £>0 and jK^-detE-f-^O or E ^ 0 and Kx'^tE'F~l <0,

then we have H*(X, &(SkE®F))=Q for q^l.

If X is strongly 1-complete, E and (K^detE)"1 are positive by

Proposition 1 for every E. Hence we conclude:

Theorem 2. // X is strongly l-complete, then for any holomorphic

vector bundle E on X, we have

H«(X,0(E))=Q for q^l.

It is true that the argument leading to [5], Theorem 1 (with correc-

tion in [1]) and a result of H. Kazama give our Theorem 2, directly

from Proposition 1. Kazama makes use of an approximation theorem

which is typical in the theory of functions of several complex variables.

The present proof intends to avoid the direct use of this method. The

author does not know if the definition of positivity due to Kobayashi

and Ochiai has a nice function theoretic characterization in case of non-

compact weakly 1-complete manifold. This is the reason why he adopted

the definition of positivity in terms of curvatures.

A. Fujiki has pointed out that the argument of J. Le Potier (Com-

ptes Rendus Acad. Sc. Paris, 276 (1973) Ser. A pp. 535-537) and ours,

combined together, will give the counterpart of Potier 's Theorem 1 for

weakly 1-complete base manifold. My thanks are due to him for point-

ing out this and for calling my attention to that our v(r) may not be

continuous.
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