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Infinite Tensor Products of Operators

By

Yoshiomi NAKAGAMI*

§1. Introduction

In the previous paper [8] we established a definition of an infinite
tensor product ®x, of operators on ®s, and studied its properties
under the assumption: JT||x,||<+ 0. In some applications, for instance,
to Tomita’s theory [3] and to quantum field theory [13, 14], we are
obliged to work with a weaker assumption.

In the present paper, we shall define an infinite tensor product
®<'cx, of operators x, on J#, as a closed linear mapping from an
incomplete infinite tensor product space ®°#, to another ®<.7,.
We do not make any assumption on |x,|, allowing unbounded closed
operators x,. The crucial assumption on (x,) is the existence of what
we call a non-zero reference pair. This assumption turns out to be
sufficiently general to allow various applications and yet sufficiently
strong to yield significant results. Typical result is the following:

Theorem 1.1. If x, is positive self-audjoint and (&y,, no,) is a non-
zero reference pair of (x,), then (&) and (ny,) belong to the same
equivalence class ¢ and ®°x, is essentially self-adjoint on the linear
span of the product vectors ®&, such that & ,=&,, except for a finite
number of ¢ and &, is in the domain of x,.

Terminologies here are defined as follows:

Definition 1.1. A pair (&, 70,) 1S a non-zero reference pair of
(x,) if the following conditions are fulfilled:
(@) (&) and (ny,) are Cy-sequences;

Communicated by H. Araki, October 19, 1973.
* Department of Mathematics, Tokyo Institute of Technology, Tokyo.



112 YosHioMr NAKAGAMI
0. #0, 2o 17 =1 < + 00, 79, #0, XlInolI? =1/ < +00.
(b) &, is in the domain of x, and (x,£,,) is a C-sequence;
2llx o> =11 <+ 0.
(©) (x,&,,) is equivalent to (no,):

2lx.Lolno0)— 1<+ 0.

(d) no, is in the domain of x* and (x¥7y,,) is a C-sequence;
Zllxfno )12 —1l<+o0.

All assumptions except for (d) are obviously unavoidable if we want
to define what can be denoted by ®¢°x,. The assumption (d) is
crucial and enables all calculations go through.

The product operators ®<<x, for c=c(&,,) and ¢ =c(x,&,,) is
defined in three steps: On the product vector ®¢&, with ¢, =&,, except
for a finite number of ¢ and &, in the domain of x, a mapping O(x,,
£o,) is defined by

O(x,, £0)®E, =®x ¢, .

It is then proved to be extendable linearly to the linear span of such
product vectors (denoted as O(D(x,), &,,)). It is then proved to be
closable and the closure is denoted by ®¢°x,. The assumption (d)
is necessary for this closability (Remark 2.2).

All these discussions and the proof of the formula

(® c’ ch)* — ®cc'x:l=

are given in Section 2. This formula contains Theorem 1.1 as a special
case x¥=x,.

In Section 3, we give several conditions for the existence of a
non-zero reference pair, one of which is closely related to Kolmogorov’s
three series theorem. Theorem 3.1 has a close connection with some
results of Reed [13] and Streit [14].

In Section 4, we apply our result to a modular operators 4, and
show that ®<4,, is a modular operator for ®¢, where (£,)ec.
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In Section 5, we apply our results to an infinite product p of o-
finite measures y,. Theorem in Section 3 gives us conditions for the
equivalence u~v when p, is equivalent to a given probability measure
v, and v is the product measure of v,. One of the conditions reproduces
a result of Hill [5].

The discussion in Section 5 is generalized to an infinite product
of semi-finite faithful normal weights in Section 6. The result is used
in a separate paper [6].

Notations: For standard definitions and notations for infinite tensor
products of Hilbert spaces and von Neumann algebras, see [11]. Let
I be an infinite index set and J< < indicates that J is a finite subset
of I. S denotes the set of all C-sequences (£,) (i.e., 2|[I&,[2—1|<+ )
and S, denotes the set of all Cy-sequences (&,) (i.e., (€,) €S, & #0).
The word ‘‘sequence” is used for (£,) even if I is uncountably infinite.
(¢,)~(n,) denotes the condition > |(&,|n,)—1|< +oco. It defines equivalence
relations in S and in S,. The equivalence class of (&,) is denoted by
c(¢). The incomplete infinite tensor product #.=®c°s#°, is spanned by
®¢&, with a fixed c=c(£,). The projection on s, in the complete infinite
tensor product ®4°, is denoted by p. Let (&), (n,)eS and c=c(&)),
c¢'=c(n,). (£,) and ¢ are wu-equivalent (resp.p-equivalent) to (,) and
¢', respectively, if (&)~(u,n,) for some unitary (resp. partial isometry)
u,e M!. This is denoted by (éL)T(r[L), c~c' (resp.(E)~(@), c~c). If

4 u 14

p
I is countable, c¢~¢" and c~c’ ure equivalent, [1]. Let p(c) denote

u

the central carrier pof p. in (®M,). p(c) is the sum of p. with ¢ ~c,
[1]. For x,eB(s#,) with T]|x,| <+ co, we can define an infinite tenpsor
product ®x, of operators, which is bounded on ®s,. When #, is
invariant under ®x,, the induction of ®x, to s, is denoted by ®°<x,
or (®;x,)®(®¢§\yx,) for Jecl.

§2. Infinite Tensor Products of Operators

For an operator x (resp.y) with domain D(x) (resp.D(y)), let D(x)®
D(y) denote the algebraic tensor product in D(x)®D(y) of D(x) and
D(y), and x®y the operator on D(x)OD(y) defined by
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(xOY)XE®n=x{@yn
for all £eD(x) and i€ D(y).

Lemma 2.1. If x and y are essentially self-adjoint, then xQy
and XQOy are essentially self-adjoint and xQy=x0Oj.

For self-adjoint operators x and y, we denote xOy by x®y in the
following.

Throughout this and next sections x, is a non zero densely defined
closed operator on a Hilbert space +#,, x,=u,|x,| is the polar decom-
position of x,, and D(x,) denotes the domain of x,.

For (&,)€S, with &, €D(x,) and (x,£,,) €S, we denote by O(D(x,),
&o.) the linear span of ®¢&, such that & =¢&,, for all but a finite number
of cel and &, eD(x,) for all (el.

Lemma 2.2. Let ({,)eS, and &y, €D(x,) for all cel. If (x,&.)e€
S, there exists a non zero operator x with domain Q(D(x,), &;,) such

that x®&,=®x/, for all ®¢E, in O(D(x,), &)

Proof. For ¢(=3p_,®¢&, in ©O(D(x,), &,), there exists a Jocl

SuCh that €=€J®(®I\J€0L) fOI' é.’E@J”L and §J=zl'<l=l®.l£kn' SinCe
(Eo)E Sy, if €=0 then ;=0 and so (®;x,);=0. Therefore > 7.,

®x,£,=0. Thus the mapping
> ®ub— X ®x.k,
k=1 k=1

is well defined. We denote it by x. Since (x,£,,)€S, there exists a
®&, in OD(x,), &,) with (x,£,)eS,. Therefore x is non zero.
Q.E.D.

Definition 2.1. Let (£,,)eS, and T[T]||x,&,]l<+00. An operator
O(x.; &o) on O(D(x), &,) is defined by

x in Lemma 3.2 if (x,6,)€S,

O(xt’ éOL) =
0 otherwise.
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The following lemma is immediate from Definition 1.1.

Lemma 2.3. The following three conditions are equivalent:

(i) (&, o) is a non-zero reference pair of (x,);

(ii) &o,€D(x,), 1o, € D(x¥), (£0.) € o (1y,) € S0, (x,80) €S, (xFno)€ES
and (x,8o,)~(1o,); and

(i) (no., £o,) is a non-zero reference pair of (x*).

Example 2.1. For O<e, <1, cel, put

et 0 g2
X, = > and 5;5'1,E< .
0 1 1

If Yel<+oo, then x,>0,(¢)=(n)€S,, (x.£)=(xn)€S, and (x.)~
(). But (xZ&)¢S.

Lemma 2.4. If (&,,, no,) is a non-zero reference pair of (x,), then

() O, E)OMDX), L) = for ¢ =cln,);

(1) (Ox,, EN* > OxE, no,) and O(x,, &) is closable; and

(ili) for the closure x of O(x,, &), x*x is a self-adjoint operator
on #, for c=c(&y).

Proof. (i) It is clear from Lemma 2.2.
(ii) For all ®¢&, e O(D(x,), &,,) and ®n, € O(D(x¥*), n,,) we have

(O(x,, £6)®C.|®N)=(®x.C.|®n,)
=[1x.C.n) =TI(&Ix¥n,)
=(QCI®x7n,)=(RLIO(XF, no,)®1,).

Since O(D(x,), &,) is dense in ., for c=c(&éy,) and OD(x¥), ny,) is

dense in o, for ¢'=c(n,,), it follows that O(x¥, ny,)<=(O(x,, &.)*.
(ili) Since x is a closed operator of #, to 4., x* is an operator

of #, to . Therefore x*x is self-adjoint on o#,. Q.E.D.

Lemma 2.5. Let (¢;,,n;) be a non-zero reference pair of (x,) for
Jj=0, 1. If c(&y)=c(&,), then c(ny,)=c(n,,) and the closure of O(x,,
&o.) is the closure of O(x,, &,)).
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Proof. Since (&;,, n;,) is a non-zero reference pair of (x,), we have
(x.80.)~(no,) and (&;,)~(xFny,). Since (£o,)~(&;,) by assumption, we
have (&;)~(x¥n,,) and hence (x,&,)~(n,,). Therefore (ny,)~(n;,). Let
c=c(&,) and c'=c(y,,). Since (&p,)~(&y,) and (x.&p,)~(x,&;,), there
exists for any ¢>0 a J, < <[ such that

[®&;,—(®&;,) ®(® &)l <e
J INJ

and

1®x,8:,—(®x.£:,) ®(® x.8o)] <&
7 INJ

for all J,cJ= cI. Therefore ®&,, is in the domain of O(x,, ;) and

hence O(x,, &;,)=O(x,, &,). The converse inclusion is proved similarly.
Q.E.D.

Definition 2.2. The closed operator in Lemma 2.4 is denoted by
®c°x,. ®c°°x, is also denoted by ®c<x,.

For a non-zero reference pair (&, no,) of (x,) if (£)eS, with
®& e OWMD(x,), &,) and if (n)eS, with ®#, € O(D(x¥), no,), then (¢, n,)
is a non-zero reference pair of (x,).

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Let s(x,) be the carrier projection of x,.
Since (&y,) €S, (x¥*10,) €S, |s(x)|=1 and (s(x,)&,)~(x*n,,), it follows
from Lemma 1 in [1] that (s(x,)&,,)eS. Therefore there is a (£,)e S,
such that ®¢,e O(D(x)), &,) and ®s(x,)¢,#0. Since (&, 1,) iS a non-
zero reference pair of (x,) and O(x,, &,)=0(x,, ), we may assume
that ®s(x,)é,,#0 by choosing such a (&,) as (&,,).

Let x denote the operator ®< cx, for c=c(&;,) and ¢'=c(y,,). Let

@< x, =u(I\J)y(I\J)
NJ

be the polar decomposition of ®{&x, for any Jocl. Put y,=(®,;x,)
®y(I\J). Since y, is positive self-adjoint on 7,

[x| =(x*x)12=(yFy )2 =y;.
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Putting u=u(l) and u,=(®,s(x,))®u(I\J), we have
ulx| =@ x,=(®x,) ®(®°x,)
J NJ
=(@x)@u\))y(I\))=uyy, .

The uniqueness of a polar decomposition implies that u=u; and u
transforms s, to .. Since u;=u#0, we have u(I\J)® ;&.)#0
for some J. Since (s(x,)&,,)€S,, we have u®£&,,#0. Accordingly
there exists a ({,)e S and a {e . such that ||{,||=1, ¢({,)=¢, (|®,)=0
and

“®fo;=i®cL+C

for A>0. If c#c’, we have an ¢ in (0, 1) such that for any Jyc <l
there exists a J;c <cI\J, satisfying |[1,,(5(x,)¢0.1¢,)]<e. Choose Ay>1
such that Ag' <TI0 1S4, for all J. Then there exists an nelN
with e"<Alg! and a K<<l such that |[Tg(s(x,)&0.l(,)<e" Since A=
(u;®&,,|®L,), we have

(WNK) ® Eol @ L)I=AHTL((e)E0 L) > Ao

which is impossible. Thus c=c’.

For ®¢&,eO(D(x,), &), J,={cel: & #¢&,} and ¢>0, we can choose
a Jyccl with J,=J; such that

IO, o) —x0)®&o.ll <&

for any J;cKc cl, where xg=(®gX,)®(®§ xl,). Since ®gx, is self-
adjoint and OgD(x,) is its core by Lemma 2.1, we have nie QgD(x,)
such that

I(@x,£ilng — @E.I* + llng — (®x, £ i) 1 (RE,)2 <&
K K K K
Put n*=nf®(® k&) From the above two inequalities we have

(Ox,. &) £iln* =L, |~

SO, Co)—xn* [+ (xg£iDn* — ®L,|



118 Yosuiom: NAKAGAMI

= ||((>I?XJ”HJE‘|| II(I@K(XL, 50,)—1)I@Kﬁfmll
+1 ® Lo l(®@x, £il)ng — ®C. |
INK K K
=e2(I®L.] +8)1|(>I?Xtﬁotll"’ + III@KCOLII}-

Since there exists a A,;>1 satisfying [1,&.1<A; and A7!<T1;lIx.&o.ll
for all J<I, we conclude that the deficiency indices of ©(x,, &,,) are
0,0 and hence it is essentially self-adjoint. Furthermore O(D(x,), &o,)
is a core of x=®¢*x,.

Each &, in O(D(x,), &) is of the form &;®(®;y&o,) for some

Jocl and &,e®,s#,. Since ®,x, is positive, we have

(x€0l€0) =((®x,)¢,1¢€) IT (x.£0.1¢0,) 20
7 INT

Since O(D(x,), &;,) is a core of x, x is positive. Q.E.D.

Remark 2.1. 1If x, is positive self-adjoint and if O(x,, &,,) is closable,
then (&,, &,) is a non-zero reference pair of (x,).

We may assume that (x,&,,)eS,. If O(x,, &,) is closable, then
Orulx,, &) is closable for any J= <l and hence

2.1 O(x,, &) =(®x,)® (0 (x,, &,)).
; N\J
Let

(x,> &o.) =v(IN\)X(I\J)
INJ

be the polar decomposition. It then follows from (2.1) that v(I)=
(®,;1)®uv(I\J). Since (x,,)eS, we may apply the similar argument
as in the proof of Theorem 1.1 to these partial isometries and obtain
that (p)~(x,&g.)- Thus (So,, &o,) is a non-zero reference pair of (x,).

Example 2.2. For A>0, put

A0 (14A2)-1/2
; LE( ) and ¢, = )
0 it ML+A%)~1/2
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Then (&,)eS, and (x,£)eS, Besides, if A#1, then (x2£)¢5, (&)~
(x,&) and O(x,, &) is not closable.

Lemma 2.6. Let (&,,,1,,) be a non-zero reference pair of (x,)
and let x,=u|x,| be the polar decomposition of x,. Then

(i) (ufulo)eS and (uufno)eS;

(i) (&, o) and (no,, &) are non-zero reference pairs of (u,)
and (u¥), respectively;

(iil) (®cu)y*=®cu¥; and

@iv) if (wFu,ky)eSe and (uu¥*ng)e Sy, (&, u¥n,,) is a non-zero
reference pair of (x¥*).

Proof. (i) Since (x¥n,,)e S, we have (|x*|no,)eS. Since (x¥n,,)~
(&), we have (|x¥|no,)~(u,&y,). Since |lu,|=1 and (&,)eS, it follows
from Lemma 1 in [1] that (u,¢,)eS and hence (u¥u,,)eS. Since
(x,£p)€S, we have (u,u*ny,)eSs.

(ii) (u,é,,)eS and (u¥ny,,)eS are shown in the above. Since

(Ix¥*n0,)~(mo,) by Theorem 1.1, we have (uo,)~(no,) and (o)~ (ukn,,).
Thus (ii) follows.

(iii) Since ®¢cu, is bounded and since
(@ u)®,|®n)=(®u.c.|®n,)
=11, &) =TI, lu¥n.)
=(®@LIQuin)=(®L (@ ul)®n,)

for all ®¢&, e O(D(x,), &,) and ®n, € O(D(x¥), no,), we have (iii).
(iv) Since xfuo,=|x,18o, and x.ufny, =|x¥lne, .o, uino) is a
non-zero reference pair of (x*). Q.E.D.

Theorem 2.1. Let (&;,, n9,) be a non-zero reference pair of (x,)

and let x,=u |x,| be the polar decomposition of x,. Then
(2.2) @ x, =(®@ u) ®°Ix,])
(2.3) =(®°Ix¥(® “u,)

and (2.2) is the polar decomposition of ®¢<°x,, where c=c(,,) and
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C’ E c(not)'

Proof. Since D(x,)=D(|x,]), we have O(D(x), &,)=0(D(x.]), &.)-
From Theorem 1.1 we have (&,,)~(|x,|&o,)- Since (&,,, Ho,) is a non-zero
reference pair of (u,) by Lemma 2.6 and since |u,|<1, we find that
(Ix.1€0., Mo,) is also a non-zero reference pair of (u,) and that ®¢‘u,
is the closure of O(u,, |x,|&,,). We have

(@ x)®¢, =@x,L,=®u,lx,[¢,
=(®@“u)®|x,I1¢, =(®@ u)@Ix,)®C,

for all ®¢& e@(D(x,), &,). Since O(D(x,), &,) is a core of ®¢*x,
and ®°¢|x,|, we have (2.2).

Since x,=u,|x,] is a polar decomposition of x, u*u, is a projection
onto the closure of the range of |x,|. Since (&;,)~(|x,|&0,), ®°ufu,,
is the closed linear span of

{®x,1¢,: ®E, eO(x,, &)} -

Therefore the closure of the range of ®¢|x,| is the initial space of a
partial isometry ®¢<cu,. Thus (2.2) is the polar decomposition.

(2.3) is proved similarly. Since (x,£,,)€S and (x¥n,)eS, we may
assume that ®x,£,,#0 and ®x¥i,,#0 by the same reason at the begin-
ning part of the proof of Theorem 1.1. Therefore (u¥*u é,)eS, and
(u,u*ny,)€S, as above. From Lemma 2.6 it follows that (u,&,,, u¥n,,)
is a non-zero reference pair of (x¥*) and hence from Theorem 1.1 that
&, u,Ep,) is a non- zero reference pair of (|x*|). Since |x,|=u¥|x¥u,,
we have u,D(x)=u,D(|x |)=D(|x*|). This implies (®°¢ <u,)O(D(x,), &.)=
OD(|x*)), u,éy,)- Hence we have

(®x)®E, =®|xul, =(Q@|xN®u,E,
=(@¢ X N® u,)RE,

for all ®¢& e O(D(x,), &,). Since O(D(x,), &) is a core of &®¢c°x,
and (®< cu,)O(D(x,), &,) is a core of ®¢'|x¥|, we have (2.3).
Q.E.D.
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Remark 2.2. 1f O(x,, &,,) is closable, then there exists a Cy-sequence
(no,)€ Sy such that (&;,, no,) is a non-zero reference pair fo (x,). This
is proved by combining Remark 1.1 and Theorem 2.1.

Theorem 2.2. Under the same assumption as Theorem 2.1,
(2.4) (® ex )% =@ x* .
Proof. Using (2.3) and (iii) of Lemma 2.5, we have
(@ x)* =(®° u (@ Ix¥]) =(® u)(®* |x*).

Since x* =u¥*|x* and (no,, &o,) is a non-zero rcference pair of (x¥*) by
Lemma 2.3, we have ®°'x¥*=(®@°u*)(®°|x*) by (2.2). This com-
pletes the proof.

Theorem 2.3. Let M, be a von Neumann algebra on 3¢, for each
cel, and let x, be an operator affiliated with M,. If (&4, no,) is a
non-zero reference pair of (x,) with c¢(&y,)=c(ny,,)=c, then ®°x, |is
affiliated with ®<M,.

Proof. If £eD(®cx,), there exists a sequence {&,}%; in O(D(x,),
&y,) such that &,—¢ and (®<x,)¢,—(®°x,)¢ in #,.. According to Lemma
6.10 in [2], we have (®°M,)=®°M'’' and hence ®°<M’ is generated
by ®¢©v, such that v, is a unitary in M’ and vr,=1 except for a finite
number of « For each &, of the form &,=Y",®¢;, with ®¢; €
OD(x), &), we find (®)E, =31, ®v&, in OD(x,), &,). This
shows that O(D(x,), &y,) is invariant under such ®v, and hence D(®°x,)
is invariant under ®<M/. It follows that {(®¢v),},-; is a Cauchy
sequence in OQ(D(x,), &,) in the sense of graph of ®c¢x,. Thus

(®<x N(®°v,)¢ ='{ijg (®°x N®°v,)¢,
=}1Lr§°(®°v,)(®“xl)€n =(®v)(®°x,)¢E,

which shows that ®c<x, is affiliated with ®<M,. Q.E.D.
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§3. Conditions for the Existence of a Reference Pair

We shall give some conditions for the existence of a non-zero re-
ference pair of invertible, positive and self-adjoint operators (x,) in the
following theorem. With a slight modification on convergence, the
condition (iv) is known as Kolmogorov's three series theorem and the
condition (vi) is interpreted as follows: the product of characteristic

functions is also a characteristic function.

Theorem 3.1. Let x, be an invertible, positive and self-adjoint
operator on #, for ¢el and y,=logx,. Let e, be the spectral projec-
tion of x, corresponding to the interval [Ag', Aol fer any fixed 7y>1.
The following six conditions are equivalent for ceC:
(i) there exists a non-zero reference pair (&,,, &,) of (x,) with
c=c(&o.);
(i) (e,&,)eS, (x,e,)eS and (el;)~(x,e&,,) hold for some
(SRITH
(ii1) (e, €ES, (xel)eS and (e&,)~(x,eE,) hold for all (&)ec;
i) (eé)eS, Yly.ell*<+w and Y|(y,ell€)<+o0 hold for all
(E)ec;
(v) &.eD(rv), Zlyizl?<+o and Z|(y.&y,lé )< +00 hold for
some (&,,)ec; and
(vi) ®c¢xit, teR is a strongly continuous one parameter unitary

group.

Proof. ()=>(ii). We put &, =&, for all ¢« Since (g, Eo,) IS a
non-zero reference pair of (x,), we have

Zlx& =1l <40 and F|(x.¢,1¢,)—1<+o0,
which imply

2IM=x)8y P <+00 and T|((1—x,)¢,1¢ )< +00.
Since (1—Ag')(l—e)<|l—x|(1—e,), we have

(=€)l IE ) S =2 2(1—x,)2(1—e,)¢,1¢4)
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and
I((1=x,)e,&y,1¢4,)l
SIA=x )8 I+ =25 =x )2 (1 —e,)¢1.180.)

Since  [[(1—=x)e, [ =N(1—x,)¢, | and [[(T—x)(1—e)¢q = (1—x)Eq, 10, it
follows from

ey 2= 1SN =e )&y 12+ ¢ 112 =1
and
Hix.edy l2 =1
Slledy 2 = 1H+21(1=x)e, &y 18 )+ I(T=x)e.dy 12

that (e,£,,)e S, (x,e,&;)eS and (eé;,)~(x,e¢,).

(i)=(iii). (e,&,,)eS implies (&, )~(e&,,). If (&)ec, then (&)~
(&,,). Therefore (e,£)eS by Lemmal in [1]. Since (£)~(&,,), we
have Y ||&,—¢&, I2<+o0. Since

I =x)e &2 2011 =x)e gy 17+ (1 =x)e (&, —&)]?)
S2AIA—x)e i )+ (A= DIE— &)%),
we have X ||[(1-x)cé [|2<+o0. Since
(1 - x,)e,&.1E)I
SN =x)egr )+ =x)e Ll + (T —x)e. L DIE, — Sl
SO =x)e S I+ I —x)el 2+ —x)e gy 12 +18,— &0 02,

we have X |((1—x)el |E,)] <+ 0. Consequently, (x,eé,)eS and (e&)~
(x,2,8).

(iii)=>(i). Sirce (e,£,)e S, we may assume that (e,l)eS,. Set &, =
e, It then follows that (¢,,)ec and that (&,,, &;,) is a non-zero re-
ference pair of (x,).

(ii)=>(iv). Since

=x M(l=x)=—(7"-Dgy Ex,-1
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and
ly,—(x,—Dle,sA(x,—1)%e,
for some constant A,>0, we have
[(v.e.LIE =S 1((x, — De L IE) +All(x, — e ]I
and
Iy.ell?<l(x,—Del > +IIx7 (L —x,)e&,[?
SA+HADIA—x)e ]2

Since (e,&)e S, (x,e,£)eS and (&)~(x,et,) from (iii), the right hand
sides of these inequalities are summable over c¢el. Thus (iv) follows.
(iv)=(iii). Since —x,y,S1-x,<-y, and [l-x,—(—p)le,S4,yle,

for some constant A4,>0, we have

[((1=x,)eLIE) =y, lE)+ 420y .e.8.017
and
IA=x)el. 2= ly.ell?+xyell?<(U+2P)ly.el.l>.

Thus we have (iii)) from (iv).

(iv)=(v). Putting &, ,=e,,, we have (v) from (iv).

W=(i). If ({)ec, then (£)~(Sz,). Since logig(l—e)=|y l(1—e),
we have

(1—e)¢5.1¢5,)=(log d) 2y, (1 —e)s. 12

Since  [y(1—e)&. [ =1y.&s.ll, we have (ed;)eS. Since (£)~(el,),
(e,l)eS. Since (€)~(&,,), XIIE, —¢,5.12<+00. Since

Iyl =2(ly.e.l.l*+ 1y.el.—E2)1%)

22(/1y.&2.11% +(log 9)%11¢, — 2,107,

we have ) |lyeé, 2<+o00. Since
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I(v.e.£.18)]
SIS+ (lye .l +1y.e.o DI —Ea.
SIvelo &)+ ly.e 2 +1y.elal?+11E - 202,

we have Y |(y.e|E)<+ .

(i)=>(iv). There is a countable subset I, of I such that |&, | =1,
[x,é0.1=1 and (x,&p,1¢0)=1 for all celI\I,. Therefore |x,&,, —&g,[2=0
and hence x,§, =&, for all cel\I,. Therefore xi'¢y, =&, for cel\l,.
Restricting the index set to I,, we know that (&,,, &,) is a non-zero
reference pair of (x,; cely). Then ®{°xi*, reR is strongly con-
tinuous by [14] and [13]. Since O(#,, &,,) is dense in s, and since
®c°xi* is bounded, it is strongly continuous unitary group in teR.

(vi)=>(i). Choose t, and t; in R such that t,/t; is irrational. For
any (£)eS, with c¢=c(¢,), there exists a countable subset I, of I such
that xitof, =¢, and xit1& =&, for all ceI\I,. Then xi¢ =& for all
tetyZ +t,Z and (eiI\l,. Since t,Z +t,Z is dense in R and since
x!* is strongly continuous in teR, we find that xi*¢,=¢, for all teR
and ¢eI\I,. Applying [14] and [13] for this countable I,, we have
(iv) and hence (i) for I,. Therefore there exists a non-zero reference
pair (&7, &) of (x,) for I, and (&)~(&) for I,. Define (&,,)eS, for
I by &, =&, for ce\I; and &y, =& for cel,. Then (&,)€S,, c=c(&y,),
(x,60)eS and (&,)~(x,,,). Consequently, (&,,, &,) is a non-zero re-
ference pair of (x,) with c=c(&,)). Q.E.D.

Remark 3.1. Let x, be invertible, positive and self-adjoint, and
y.=logx,. If (&, &) is a non-zero reference pair of (x,), there exists
a strong convergence vector ®¢&,, of (y,) with (&,,)~(&,,) in the sense

of Reed, [13].

Theorem 3.2. If (&;,,%0,) is a non-zero reference pair of (x),

there exists a non-zero reference pair (&,,, &) of (x*x) with (&)~
(6o.) and

(3‘1) ®Cx':('x‘=(®c'cxt)*(®c'cxt)_

Proof. If (&, 1,) is a non-zero reference pair of (x,), then (&,
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£0,) is a non-zero reference pair of (|x,). Since (Ker ® x*x )< (Ker
®¢ex )t =®°Kerx,)t, we can restrict our proof over ®¢(Kerx,)'.
By the implication (i)=>(vi) of Theorem 3.1, ®¢|x,|"* is strongly con-
tinuous unitary group in teR for c=c(&,,). Since ®<(x*x)'=®°|x,|2¥,
by the implication (vi)=-(i) of Theorem 3.1 we have a non-zero reference
pair (&;,, &;) of (x¥x,) with c=c(£;,). Since (x¥x,£,,)eS, we may assume
that (x*x,£,,)€S,. Since D(x*x,)=D(|x,|) and since

[0, ] =D&, 112 S N(x¥Fx, — D&y )12
=[xFx 8102 =20x. 802+ 1€,

we have (&,)~(|x,&;)- Therefore (&,,, &;,) is also a non-zero reference
pair of (Jx,]). Since (x¥*x,¢&,)eS, and (x,&,,)eS,, we find that (x/&,,,
£,,) is a non zero-reference pair of (x¥) and

(®°x)O(D(x}x,), &)= O(D(xF), x,8,,).

Therefore O(D(x*x,), £;,) is included in the domain of (®¢ °x,)*(®¢ °x).
Since (3.1) holds on O(D(x¥x)), &;,), we have

®cx¥x,c(®x,)"(®°x,).

Since both sides are self-adjoint, (3.1) is obtained. Q.E.D.

Lemma 3.1. If 2,20, [1{4,:4,#0}<+4+ 00, ((,)€S, and X ||x,|¢, —
ALl <+o0, then for any 0<e<2™! there exists a Jocl such that
for any KccI\J

I®Ix,16,— ®4.8.l<e.
K K

Proof. Since 4,20, TT{1,: 4,#0} <+ 00 and (£,)eS,, there is a u>1
with TT,I4,¢,ll<u for Je<=lI. Choose any O<e<21'. Since Y [|x,|¢&,
— A& | <+ o0, there exists a J= < such that for any Kc cI\J

2l =481 <@w e,

which implies
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[®x,18,— @LL.|
K K

Il

[®{A4,&, +(Ix.16,— 4,80} —®LL,]
K K

=[2 (x5, —2.8) ®(® 4.L,)
ek kek

K#.

+ B (%6~ 2E)®(x 16— A ENB( @ &)
L'#:LL’E 5

KFe,o'

et @(I&Iir%f&l! <e.
Q.E.D.

In the following we designate the spectrum and the point spectrum
of a closed operator x by o(x) and o,(x), respectively.

Let z=ulz| be the polar decomposition of z. Let e be the spectral
projection of |z| corresponding to [Ay—e¢, Ao+&] for any given &>0.
If Ayea(lz)\o,(lz]), there exists a non zero vector ¢ such that ef=¢,
u*ué=¢, zE+#0, which implies

Izl¢ = A8 <ellll and [l{z*|u—ul] <el&],

whenever |[1—1;]<e.

R* denotes the set of all positive numbers. Theorem 1.1 in [7]
is then restated as follows: Let y,, neN and y be invertible, positive
and self-adjoint operators on a separable Hilbert space. Then the
following conditions are equivalent when n tends to +oo:

(i) f(y, converges strongly to f(v) for every feC(R*) which

vanishes at 0 and + o0;

(i1) f(y,) converges strongly to f(y) for every bounded fe C(R¥);

and

(iii) yi* converges strongly to yi* for all teR.

Using this we have

Theorem 3.3. (i) Assume that x,#0, x,=u,|x,| is the polar decom-
position, and there is a A,€a(|x,]) for each c€l such that T[{A,: 1,#0} <
+oo and {cel: A ¢a,(x,)} is countable. If Y |A,—1|<+o0, then
there exists a non zero reference pair (&q,,10,) of (x)) satisfying u*u,,, =

60” fo, ="‘L§0L and
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(3.2) Zllx.[&o, =4 Lol <+ 0.

(i) If (&;,,1n0,) is a non-zero reference pair of (x,) with (3.2)
for some 1,=0, then

(33 (®x)e=lim y,

for any £e D(®¢'°x,), where w, is a partial isometry with the initial
space {A&,,: 2eC} and the final space {Iu,y:AeC}; y=x, cel
and y.=Aw,, kel\J for each Jocl; y,=®°°y,.

(iii) Assume that #°, is separable and x, is invertible, positive
and self-adjoint on s, If (&, &,,) is a non-zero reference pair of

(x,) satisfying (&,,)€ec, then ®c<xit is unitary on #. and
(3.4) (®°x,)'=@cx!!
for all teR.

Proof. (i) Let I,={cel:2 ¢o,(x,)} and I,={cel: 2, =0}. Since
I, is countable, I, is identified with N. Let e,, meN be the spectral
projection of |x,| corresponding to {ieR¥:|1—1,/<e"*'} for any
fixed 0<g<2~'. By the discussion preceding to this theorem there is

a unit vector éOm such that em€0m=£0m’ ufxum§0m=60m’ xm£0m¢0 and
2Ix.1Co. =40, < + 0.
P

For .eI\I, there is a unit vector &,, in D(x,) with |x,|¢o, =4,&,,. There-
fore (&;,)eS, and (3.2) is obtained. Putting #no,=u,t, for all cel,
we have (y,,)eS.

If >JA,—1]<+ o0, namely, if Iyc <l and JI{4,: ¢¢1,} >0, then

Zlx.Co.ll =11= 2,180, = A0, + 2l 4.L0 I =1 < + 00,

which implies (x,&,,) €S and (x¥*5,,)=(x,|&,)€eS. Since X |1, —1]<+ 00,
(460)€ES, (Amo)eS and (An0)~(no,). Since (x,1&0,)~(4,&,) by (3.2),
we have (x,&,)~(A,no,) and hence (x,p,)~(10,). Therefore (&, 110,
is a non zero reference pair of (x,) with desired properties, if we replace
&y, with ¢el, by any vector satisfying u*u,&,, =¢&,,.
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(i) We use the same notations [,, I, and e, as above. From
(3.2), if Y|, —1|=+o00, then []jx. =0 for all ®E, e O(D(x,), &,) and
v;=0. Thus (3.3) holds.

If Y|4, —1l|<+o0, there is a § in (0,27!) such that d<[Jgl <
6-! for any K<I\I,. Choose an £>0 with ¢<dé. From the definition
of e, we have (1,—&e""e,=|x,le, Since O0<]lnes,s,(An—e™")<
+ 00, there exists a O<u<1 such that pu<[]x(A,—e™)<u~! for any
KcI\l,. Since e,lon=Com for mel, if K'=I\Iy, then

ﬂ(®WTW;)§N(®em)§ ®{(Am_8m+ 1)em} é ®|x:,l H
K’ K’ K’ K’
and if K"<I\(I,Ul,), then

H(@Wiw,)= ®(AWiw,)=®lx,|.
K" K" K"

Since du<min{d, u} <1 and ®, A,wfw,=0, we have
(3.5 (6w)? YTy, S(®x,)*(® “x,)

on D(®¢cx,) for every J=<I. Since O(D(x,), &) is a core of ® “x,,
there exists a sequence {&,}%, in O(D(x,), &,) which converges to ¢
in the sense of the graph of ®<<x,. It follows from (3.5) that {&,}%

n=1

is a Cauchy sequence in the sense of the graph of y,. Therefore, since
y; is closed, we have £eD(y;). For the above £¢>0 there exists an n,
and a Joc <l such that for every n=n, and for every J= <l with
Joc=J

(@< x )&= <2+2(0w)~ ") e
and
I(vs— @ x,)E,,ll <27 .
Then we have
(s — @< x )¢l
Sy s €= Ll + 1= @ x,)Ep | + 1(® X, )(Eno — O

S+ M@ x ) Eno— DN+ 1(ys — @ x,)E,ll <&
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for £e D(®¢ ¢x,).

(iii) Since (&g,, &) is a non-zero reference pair of (x,), we have
(x,€)eS and (x,&)~(&,) for all non zero ®¢&, in O(D(x,), &,). Since
(x,E) €S, there exists a A>1 with []|x¢,||<A for all K. Since (x,¢&,)~
(&), it follows from Lemma 3.3 inK [8] that for any e in (0, 1) there
exists a Jo= < such that

[®x.¢,—®E&.l<e/A
J J
for all J=I\J,. Thus

1.8, ~(@x£)®(® &I =I®xLl 1 @ xt~ @ &l <e

K INK

for all K with JocKcc<l.

Assume first that I is countable. Let I=N and I,={1,..., n}.
Denote y=®c°x, and y,=y; (or y,=x;), where we take Aw, =1.
Since y, and y are self-adjoint, |(y,—il) |1 and |(y—il)"|<Z1.
Let C(x)=(x+il)(x—il)"t. Let D={(y—il)¢: £e O(D(x,), &,)}. Since
OWD(x,), &,) is a core of y by Theorem 1.1, D is dense in s#,. For
any neD

C(yun—Cyn
= +ID{Gn— i) = =i I+ (=@ —il) "'y
=+ iD= i) Y= y)@ =i+ =@ —il)" 7.
Since # is of the form (y—il)¢ for some &e O(D(x), &),
1Cn— Cnll 221(ya—y)EN 5

which converges to 0. Since D is dense in s, and since C(y,) and C(y)
are bounded, C(y,) converges strongly to C(y). Since s, is separable
and since y, and y are positive and self-adjoint, f(y,) converges strongly
to f(y) for every bounded function fe C(R¥) by [7, Theorem 1.1].
Since f(A)=4* for AeR* and teR is a bounded continuous function
in 4, it follows that

(®cx,)*=lim (@ xI*)®( ® &o.)
n—w I, INIn
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= @xE, = (®°xi)¢

for any {e O(D(x,), &.) with {=®¢..
For a general I we choose a countable I,=I such that x,&, =&,
for ceI\I,. Since I,UJ is countable, we have

(®@x)E=(( @Lex)t@( ®Uodx))L

INUToulJ)

=(( @“IxIN@( @CoIxiN)E=(R°xi")¢
TouJ INUoul)

for any ¢e O(D(x,), &y,) of the form ¢=¢,@(®ny&o,) for some Jo I
and £,e ®,;5,. Thus we have (3.4). Q.E.D.

Remark 3.2. If (&,, no,) is a non-zero reference pair of (x,) with
(3.2) and if Y |1,—1|<+ o0, we have

(3.6) (®ex,)= Jim x,¢
for any ¢e ©O(D(x,), &y,), where x;=(®;x,)®(®§4,u,) for each Jo <1I.

Remark 3.3. Assume the same assumption as the above (iii). Let
(&o.» €o,) be a non-zero reference pair of (x,) satisfying (&y,)ec. Put
y.=logx, and n{(y)=y,®(®f\(y1x). Then

log®°<x,=%n(y,),

where the sum of the right hand side is taken in the sense of Streit,

[14].

Lemma 3.2. Let z be a positive and self-adjoint operator. If £¢>0
and ||zE—AE|| Ze|&|| for some non zero EeD(z), then there exists a
Ao€0(2) such that |A—2Ag|Se and |zE—2,¢] £2¢) €.

Proof. Let e be the spectral projection of z corresponding to
[A—e,A+e]. Put &y=el. If £,=0, then

28— 281 =l(z— AL —e)l || >l (1 - e)¢]| =&l &[],

which is impossible. Therefore &¢;#0. Hence [A—eg, A+elna(z) is
non empty and for any A, in this intersection we have
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28— Aol S (12— 2|+ (A —A0)E [ = 2¢||&]] -
Q.E.D.

Corollary 3.1. If x,#0 for all cel and if Y |[x|&, =& <+
for some (£,,)€S,, then there is a A ,ed(|x,|) for each €l such that
0<JIA, <+ and {cel: A ¢o,(lx|)} is countable.

Proof. By Lemma 3.2, there exists a A, e€o(|x,]) such that |1—-1,|=<

lx,1E, = ¢4l and |lIx,]&;, — A&, S2[1x,181, — &1 MIEq. Il Then X [1-4,]<
+o00 and X ||x,|€,—2.& | <+oo. Except for a countable number of
cel, we have |x,|&;,=4¢,. Q.E.D.

Example 3.1. For O<g <1, ¢€l, put

1+e, 0 2-1/2
X, = and ¢ = .
0 1—e¢, 27172
If Ye2<+o00 and Y e =+ o0, then (£,)eS,, (x,£)eS,, (x2£)eS, and
>x,é,—&?<+00. Thus we have a situation where we have a non-

zero reference pair (&o,, &o,) of (x,) and yet there is no {4, ea(x,): cel}
satisfying 0<JA, < + .

For (¢,) and (n,) in S, (£,)>(n,) denotes the condition X [|(&,|n,)I—1|<
+ o0, which is the weak equivalence due to von Neumann [11].

Remark 3.4. If (£)eS,, (n)eS, and Y ||&,—n,)?< + 0, then (ét)f;/

()
Indeed, since (£,)eS, and (n,)eS,, we have sup ||£,||<+ o0 and sup

In.ll<+o0, so that 3|I&In.ll—1]<+oo. Since 3[¢,—nl*><+o0, we
have Y |Re(¢,|n,)—1]<+ 0. Therefore

2{Im(&.[n)}* =2{I(&.In)I* —[Re (&,In)]*}
=2{IEN2 .02 —Re (€] m)1%}

=2(sup [ M DZANE Ml =1 +IRe (€, n) - 1)< + 0

and there exists a J< <] such that 27!'<Re(¢,|p,)<2 for (eI\J. Since
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I(€.In)l =Re(&,In)I1+{Im (& n,)}*{Re(&.In)} 2 /2

sRe(¢,|n,)+{Im(&,In,)}?

for all :eI\J, we have

ZI(E ) —1]

= 2HE I -Re(En)l+ X [Re(&,[n)— 1< + 0.

Remark 3.5. Let (£,)€S, and (1,)€S,. Define ({,)~(7,) for some
fixed nz1 by X[¢,—n,/"<+o. Then “~” is an equivalence relation.
If (), then (E)~(n). If (€)~(n), then (£)5(n). If (£)>(n),
then (£,)>(1,)- In general, if ({)~(n,) for n=2, then SHE I =12 <
+ 0.

§4. Modular Operator

Let s, denote the completion of a left Hilbert algebra 2, which
is supposed to have a normalized idempotent element &, with &§, =¢&,,.

Definition 4.1. An infinite tensor product of left Hilbert algebras
A, is an involutive algebra of all ®&, in ®s#, with & e, and {ce
[: &, #¢&,,} = <] whose involution and product are defined by

(®E) =®¢&; and (®E)N®n,)=@.m,.

This is denoted by O, &,,)-
Lemma 4.1. ©O(Y,, &,) is a left Hilbert algebra.

Proof. Let U=0(YU, &,). Since &, =& =E3,, it follows that
End =¥ for &, 1 and ¢ in A and that for each £e?A, the map-
ping: neU>EneW is continuous. Since A? is dense in A, and &3, =
£o.» U2 is dense in A. Define S, and S by S =& for £ €9, and
S(®.5H=®SE, for ®E eN. Since S, is closable in s, and &, =¢&f,,
it follows that (&,,, &) is a non-zero reference pair of S,. Therefore
S is closable by Lemma 2.4. Q.E.D.
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Remark 4.1. In order that O™, &,,) is a left Hilbert algebra, we
have only to assume the existence of &,, €U, for each el which satisfies
that (&) € So, (£3.)€ S0, (&0, )~(E3,) and that (&g, &) is a non-zero
reference pair of (S,). In this case we can define ®<S, and ®¢<S*,
which fulfill ®°S*S,=(®S*)(®°S,) for c=c(&,,)-

It is clear from the definition that O(U,, &,,) is dense in ®°#,.
If we define a left representation © of (YU, &;,) on ®°#, by

W(®L,)®n,=®¢mn,,

then n(O,, &))" =®°n,(A,)", where m, is a left representation of
A, on s, This is proved by the similar argument as the proof of
Corollary 3.3 in [9].

Let B, denote a Tomita algebra dense in s, with the modular
automorphism 4,(z) for cel. If 4,(2), =&, for all cel and zeC,
we can define a modular automorphism A(z) on Q(B,, &,,) by

4(2)(®&,)=®4,(2)¢,

for ®¢&, in O(B,, &,). Here we denote by 4, the modular operator
on s, associated with the modular automorphism 4,(z), zeC. Since
(&o.» £o,) is a non-zero reference pair of (4,), we can define by Theorem
1.1 a positive self-adjoint operator 4=®c<4, in ®°<#, for c=c(&,).
Here we suppose that £, is separable for all :el. Since O(B,, &)
is a core of ®<4,, we have 4i*=@®cA! by Theorem 3.3. It then follows
from the uniqueness of modular operator that A is the modular operator
associated with 4(z), zeC.

Lemma 4.2. Suppose that 5, is separable for all (el. If A(z)¢&,,
=&, for all cel and zeC, O(B,, &) is a Tomita algebra and A=S*S.

Proo.f' Since S:“éo&=SE*§L€OL=AL605=AL(1)§OL=601’ we have S*g(®65)
=®S*S.L =04 for ® in OB, &)

Corollary 4.1. Let w,=w,, and o=Qw, on ®°M, for c=c({,,).
If U, is separable for all cel, then ¢?=Q®°c?:.

The separability assumption of A, in the above corollary will be
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omitted in Lemma 6.1.

§5. Infinite Product of o-finite Measures

We shall apply the results of §3 to the infinite product of o-finite
measure spaces and give a similar result as Hill’s.

Throughout this section we assume the index set I to be countably
infinite.

Let (2,, #,,v),cel be a probability space. Put (Q, #)=T1(Q,, #,),
v=[]v,, #,=L%Q, #,v,) and Z,=L*(Q,, #,,v,). Then (Q, #,v) is a
probability space. When a vector ¢ in &, belongs to Z,, we write the
operator by =,(£). For an #n in s, we denote by w, a measure on Q,
or a positive linear form on Z, dfiened by w,(x)=(xnly) for all xeZ,.

Let u, be a o-finite measure on (Q,, #,) with p,«v, and h,=dy,/dv,.
For &,eD(h}!/?) with hl/2£ #0, we define &, =|¢,| '€, and no, =
Ih!/2E = h}/?E,. Then w,  is a probability measure on @, and o,

Mo
Therefore we can define a o-finite measure u; for Je<=I on Q by

<V

L

Hy=(@[hI72EN721) @ (@ wy,,).
7 NJ

Then p, is a semi-finite normal trace on ®<Z, for all ¢’ with ¢'~
C(’?o;)-

Proposition 5.1. With the above notations, assume that 0<TT|n(&)|
<+o00 and p,<v,. If (9o, no,) is a non-zero reference pair of (n(&)),
then p=sup;c- /i, is a o-finite measure on R, which is singular to
®w,, whenever (n,)eS and (n)+(Mo.). Moreover p is a semi-finite

normal trace on ®°Z, for all ¢’ with c'~c(no,).

Proof. 1If (yo,, o,) is a non zero reference pair of (n(¢,)), ®< n(¢,)
is in ®“B(s#,) for ¢'=c(n,,). Since 0<TT[n(¢)ll <+ o0, [Tn,lIn(€)I for
Jo I converges to 1 as J tends to I. Since [[h!/%¢ ]2, <|n(&)]*w,

{TIpslmE)"2uy: Je <1} is an increasing net of o-finite measures
on Q. Put

p= Lm {(TT In(E)I~*)u,} -
Jeacl INJ



136 Yosuiomt NAKAGAMI
Then for ¢ =c(n,,)
(@< n(€)I1?)= sup TT (=)~ 2Im(€)no.l12)=1.
Jecrl INJ

Since the set of (®;x,)R(®@ K In(E )|~ 2n(&,)) for any x,€Z, and Jeo I
is weakly total in ®<'Z, it follows that u is semi-finite. Since each
Z, is countably decomposable and [ is countable, ®¢Z, is countably
decomposable and hence u is o-finite.

If (n)eSo and (7,)+(no,), then the central carriers of p. for ¢'=
¢(no,) and p. for ¢’=c(y,) in ®Z, are orthogonal by Theorem (2) in
[1]. Therefore 4 and ®@w,, are mutually singular. Q.E.D.

Definition 5.1. Let u, be a o-finite measure with y,«v, and h=
du,/dv,. For & eD(h!/2) with O0<T[I|n(é)<+oo and hl/2E #0, let
Mo, =1h1/12E, ||~ th1/2¢, and (n,,, no,) be a non-zero reference pair of (m(¢,)).
The o-finite measure p in Proposition 5.1 is denoted by u(¢9), since
it depends on (&)eS,.

Theorem 5.1. Let v, v, u,, h, be as before and let u,~v, (resp.u, <
v,). Assume that &, eD(hl/?), O<TII|n(¢)|<+o0 and (no,, no,) is a
non-zero reference pair of (n(&)). Let hy, =& |?|h1/2E |~2h, and e,
be the spectral projection of h}!/? corresponding to [A~1, 1] for any
fixed A>1. Then the following nine conditions are equivalent for
c=c(&o,):
(i) pld~y (resp. u's) «v);
(ii) (¢)eS and (¢, &) is a non-zero reference pair of (h{!?);
(i) (€)eSo and (&)~ (h§i?¢);
(iv) (£)eS, and (&,,,¢,,) is a non-zero reference pair of (h{!?)
for some (&;,)ec;
(v) (€)eS, (elr)eS, (hhl2el,)eS and (el,)~(hb%el,,) hold for
some (&,,)€ec;
(vi) (£)eS, (en)eS, (hi'2en)eS and (e;n)~(hi!?n,) hold for all
(n)ec with sth)n,=n,;
(vii) (€)€eS, (en)eS, Xlloghyi2en,|><+co and Y |(loghyi?en,In,)
<+ o0 hold for all (n)ec with s(h)n,=n,;
(viii) (£)€S, &, €D(h,), Tlloghd/2Es,|2<+o0 and 3 |(loghb!?Es,|
&)< +o00 hold for some (&53)ec with s(h)n, =n,; and
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(ix) (&,)€eS, and ®c<hy,teR is strongly continuous one parameter
unitary (resp. partial isometry) group.
Here s(h)) is a projection to (Kerh,)*.

The proof of this theorem will be given after the following Proposi-
tion 5.2.

Proposition 5.2. Under the same assumption as in Proposition
5.1, let (o,, no,) be a non-zero reference pair of (n(£)). Then ud~vy
(resp.u¢«v) if and only if (£)eSe and (&y,)~(no,). In this case
dp€oldv=(TI¢,172)®¢ho, for c=c(1,) and ho, = ?[h}72E [~ 2h,.

Proof. Suppose that (£,)e S, and (&) ~(10,). (£,) €S, implies (£,)~
(¢o,) and hence (&,)~(no,). Since (n(¢)no,)eS and (£,)~(no,), we have
(n(&no,)~(1,). Tt then follows that

(€~ (Co)~ (o)~ (r(E o) ~(1,).

Since (&o,)~(10.)> (€o.s €0,) is a non-zero reference pair of (h}/?) and
h=®¢<h,, is obtained for c=c(l,). Let n,=L2(Q,, u)NnL>(RQ,, u,) and
m, be the linear span of n*n,. For any ®¢x, in ®°¢Z, with x, em’
we have

(@ )®( @, Im(€)12) =TI, ®°x)
and hence

Wh(@<x,) =lim Wh(®x) ® (@x.I(E)1)

=lim ([TIE,[*)u (@ x) =TTIE 1P (®x,).

Therefore p'*«v and dud/dv=(TT|¢,I"2)®¢°hy,. If u,~v,, then h,, is
invertible and hence du‘¢’/dv is also invertible or u(¢~v,

Conversely, suppose that u®9«v. From Proposition 5.1 it follows
that (1o,)(1,) or (no)~(u,1,) for some unitary u, in Z;=Z, for each
¢cel. Since (5o,, 1o,) IS @ non zero reference pair of (n(£,)*) by Lemma
2.3, we have (n(£)*no,)~(u,1,). Therefore (£,)eS, and (ny,)~(u,c%).
Since (£,)~(&p,), we have (ny,)~(u.,,). Since (&q,, u,&o,) is a non zero
reference pair of (hy,), it follows from Theorem [.1 that (&;,)~ (u,&o,)-
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Therefore (&q,)~(10,)- Q.E.D.

Proof of Theorem 5.1. (i)=>(ii). By Proposition 5.2 (&,,, &;,) is a
non-zero reference pair of (h}/2) and (£)eS,. It follows that (£, ¢,)
is a non-zero reference pair of (h3/2).

(i)=@). Put (&, =|&,|71¢,. Then (&,, &) is a non-zero reference
pair of (h4/?). (i) follows from Proposition 5.2.

(ii)<>(iii)=>(iv). Clear.

(iv)=>(iii). Since (&,,, &,,) is a non-zero reference pair of (h}/2),
we have (h}/2¢,)eS and (& )~(h3/2¢E;). Since c(&;,)=c(&y,), we have
(€1)~(h§l2&o)). Therefore (&,)~(£o,)~(&1.)~(h§12Eo)~(hEI2E).

(iv)<>(v)<>(vi)e>(vii)<>(viii)<>(ix). By Theorem 3.1.

Remark 5.1. For each JcclI a o-finite measure pu(I\J)=({1,
[hE2E, |72 pee™D on (TTn s, [Tny#.) satisfies that o =(IT,u,)x
u(I\J). Therefore u'¢) is a product measure of {u,:cel} in the sense
of Hill. In Proposition 5.2, if we choose a measurable Q/'cQ, with
O<p,(Q)<+oo and define & =y,,, then O<[]||n(¢)l|<+c0 and (4o,
No,) is a non-zero reference pair of (n(¢,)). Therefore pé)~v if and
only if (£)eS, and (&,,)~(no,). This is a result of Hill. It should
however be noted that we can not omitt the condition (£,)eS, as the
following example shows.

Let I=N. Let Q,=R for nel, v, be a normal distribution with
mean 0 and variance 1, and u, be the Lebesgue measure. Put Q=
[—4» 4], 4,>0 for all neN and &,=y,.. Then

Anlv2 2 An 2 -1/2
(éOnann)=S _exp(—-i—>dx {Ang exp(—-x—)dx}
—An/V2 2 —An 2 *

By choosing 4, sufficiently small, we have (&;,)~(n,,). However (£,)€ S,
and hence (&,,)~(1,).

§6. An Infinite Product of Semi-finite Weights

Following the similar argument as the preceding section, we shall
give a definition of an infinite tensor product of semi-finite faithful
normal weights, I is not necessarily countable.



InFINITE TENsOR ProbpucTts oF OPERATORS 139

We begin by recalling the tensor product of semi-finite faithful
normal weights ; on (M), and ¥, on (M,),. Let U; denote the
full left Hilbert algebra of (M, ;) obtained by the GNS construction
for j=1,2. Let A denote the full left Hilbert algebra formed from
the algebraic tensor product of U; and A,. If n is the left representa-
tion of %A, then M,®M, is isomorphic to =n(A)”’. Through this iso-
morphism, the tensor product Y, ®v¥, of ¥, and y, is defined as the
canonical weight of n()".

As Theorem 15.3 in [15] holds for a semi-finite faithful normal
weight ¥ on M, in place of a faithful normal positive linear form ¢,
on M by a slight improvement of the proof, we have that the neces-
sary and sufficient condition for aya*=<y, aen, is that ||4;'/?n,(a)4}/?|
<1, aen,. Here n, denote the set of all xeM with yY(x*x)<+ o0,
m, the GNS representation of M induced by ¥ and 4, the modular
operator.

Let £, be a unit vector in #, which is cyclic and separating for
M,, and ¢,=w,, on M, Let y, be a semi-finite faithful normal weight
on (M), such that ,=hl/2¢ ,hl/?2 for some invertible, positive and
self-adjoint operator h, affiliated with the centralizer (M)),,. Put n,=
{xeM,: Y (x*x)<+o0}. Let e(n) denote the spectral projection of h,
corresponding to [0,n] for neN. Let J, and 4, be a modular
conjugation and a modular operator of (M,, ¢,), respectively. Put j, (x)
=JgxJ,, for xeM, For each xen, we have

xhl’2e (n)é,=xJ, AL/*hl/2e (n)¢, =xJ: hl/2e (n),
=xje (h!/?e ()¢, =je (h}?e,(n)xE, .
Since {e,(n+1)—e,(n)},.y are orthogonal and since

sup [ jg,(h!/2e,(n)x¢,]|> =sup [xh}/2e, ()¢, |2 S ¥ (x*x)< + o0,

it follows that {xh!/2e,(n)¢,}=., is a Cauchy sequence. We denote the
limit j, (h!/?)x¢, by xh!/2¢, symbolically.
For a fixed x,,en, with x,,#0. put

‘:0» = ”x0065”_1x0¢€t a’nd o, = HXOLhn] /Zéau_lx()thbl/zél N
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Define a semi-finite normal weight ¢, on (®°¢M,), for ¢ with '~

(o)) by

Yy =(®lxo,n! 2L, 1Y )R( R w,,,).
J I~

Proposition 6.1. With the above notations, assume that 0<]T]|x,,| <
+00. If (Mo,, Mo,) is a non-zero reference pair of (x,,) and if xq,€n,
with 43121, (xo )43/ 2| S llxo,ll, then Y=lim;ccpf;, is a semi-finite
faithful normal weight on (®<M,), for all ¢’ with c’f;,c(;m).

Proof. Since xo,en, and 45127, (x0)4}/2] £ |Xo.ll, we have
Xo W x§, < Ixo.12¥, and hence |lxo,h!/2¢ 2wy, , < lIxo,|?¢,.  Therefore

{dIrul*0 "2 W, Jo= <1} is an increasing net of semi-finite normal
weights on (®°<M,),. Putting

Y= sup {(IT lxo. 72}
Jecl  INJ
on (®<'M,),, we know that y is a normal weight on (®< M,), and that

(@< |xo,12) = sup TT ([x0,172X0.M0.12)=1.
Jeer INJ

The semi-finiteness of ¥ is then proved by the similar way as Proposi-
tion 5.1. Let S, denote the carrier of w, in M, and u, be a partial
isometry in M’ such that w*u o, =ne, and ¢ =c(u,ny,). Since S.u,ny, =
u,no, and since the carriers (®;1,)®(®5,S,) of ¥, in ®<M, are
majorized by the carrier of Y for all Jo <, ¢ is faithful on ®°<M,.

Q.E.D.

Definition 6.1. The semi-finite faithful normal weight on (®<M,).,
obtained in Proposition 6.1 is denoted by y(xo0).

Yxo0) is considered as an infinite tensor product of normal weights
Y,. We will show some conditions for Y& to live on ®°M, in
Theorem 6.1 after the following proposition.

Propesition 6.2. Let ¢, ¢, ¥, h, and x,, be as above. Let ¢p=
®¢, on ®<M, for c=c(é,) and Yy=y>o) on ®M, for some c’f;«c(no,).
Then
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(i) esec’ if and only if (xo,8)€So and (£o.)5(M0.);:
and
(i) under (i), Y =yoc? for all teR.

Proof. (i) Suppose that (x0,£,)eS, and (ém)’;*('lot)- (50)’;*(770,)
implies (&y,)~(u,no,) for some partial isometry u, in M’ with u*u,n,, =
Mo, (x0.6,)€S, implies (xo,8,)~(&o,)~(u,n0,). Since (1o, Mo,) is a non-
zero reference pair of (x,,), we have (x§.1,,)~("o,). Since O0<JT|x§.Il<
+o00, by Lemma 1 in [1] we have (u,x§.n,)€S and (u,x§.n0,)~w,n0,)
Since (x¢,&,)~(u,no,), we have (&)~(u,x§no)~Wu,n,) and hence e~
(10,) "

Conversely, suppose that c?fc’. Since c’f;/c(nm), there exist partial
isometries u, in M’ so that u*u,ny, =n,, and (£,)~(u,ne,). Since (19,, 1o,)
is a non-zero reference pair of (x,,), we have (u,x§.no.)~ W no,)~().
Since 0<[Tlxo,ll<+00, Lemma 1 in [1] implies that (xy,&)eS. Since
&, is separating, (x0,£,)€So and (u,ny,)~(x0,&,). Thus (&p,)~(u,no,).

In order to prove (ii) we need to prepare the following lemma.
Before going into the proof, we recall Theorem 14.4 in [16]. This is
restated as follows: Let i be a semi-finite faithful normal weight on
M, and o,te R a one parameter group of =x-automorphisms of M.
If a weakly dense #-subalgebra M, of M is invariant under o, te R

and if a pair of Yy and o satisfies the KMS-condition for M,, then
oc=0cv.

Lemma 6.1. Let ¢=®¢p, on ®°M, for c=c(&).
O’;ﬁ(®c'xl)=®06?‘('xb)
for ®°<x, in ®°M,.

Proof. For any non zero ®°x, in ®°<M,, since (af«(x)E,|E,)=
(x,€,1€) and (x,&)~(&), we can define a one parameter group of -
automorphisms ¢,=®°s?« of ®°M, by

6!(®cxt) = ®06?£(x1,)

for teR. Let D denote the set of product vectors ®pn, with {cel:
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n,#¢}ccl. Since (ox)&lp) is continuous in teR for & neD and
xe ®°M,. Since D is strongly total in 4#, g, is weakly continuous in
teR.

For any x=(®,x)®(®f\,1,) and y=(®xy)®(®f\kl.) in @M,
we have a bounded function F,(z) holomorphic in and continuous on
0<Imz<1 such that

F()=@.(0?(x)y,) and F(t+)=¢,(y,0¢(x))

for te R. Therefore, by ¢ =®¢,, there is a bounded function F(z)=
I1;uxF.(z) holomorphic in and continuous on 0<Imz<1 such that

F()=¢(o/(x)y) and F(t+i)=¢(yo(x)).

Since the =#-subalgebra of all finite linear combinations of (®;x,)®
(®5w1,) with x,eM, and J= I is weakly dense in ®°M, and is in-
variant under o, te R, it follows from the discussion preceding to this
lemma that o,=¢? for all teR. Q.E.D.

Proof of (ii) in Proposition 6.2. Since ¥, =y, 0?¢, for any xe ®°M,
of the form (®kx,)®(®f\x1,) we have

(oo ?)(x) =Y(®°a?(x,))

=, dim l;[llxc,hf’ZE,II‘ZW,(G?'(XJ)

KcJcc

= llm H[IxOLh3/2€L!|—2¢L(xL)
KcJecr J

=y(®°x,)=y(x).
Q.E.D.

Theorem 6.1. Let &, ¢, ¥, h, and x,, as before. Let ¢=Q®@¢, on
®<M, for c=c(€,)) and Y=y on @M, for c’f;w(nol).

(1) Let A, =|xq,&llxo,hL/2E,|7Y, hg,=A%h, and e, a spectral projec-
tion of h}'? corresponding to [A~1, 1] for any fixed A>1. It is suf-
ficient for W to be a semi-finite faithful normal weight on (®°<M,),
that one of the following conditions holds:

(1) (x0.8)€S, and (fot)’;('lot);
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(ii) (&,,, &) is a non-zero reference pair of (hi!?) for some
(&1)ec;

(iii) (el)€eS, (hy/2et)eS and (e&)~(h}l%el);

(iv) (el)eS, Xlloghy2el |2 <+ and Y|(loghp!?et |E) <+ o0;

and

(v) ®chl,teR is a strongly continuous one parameter unitary

group.

Under conditions from (ii) to (v) h=([Tlx0.E.I"2)|®¢h,, is affiliated
with (®°M,)y and Y=¢oh. In particular, if xo,€M,, then o¥=
®°co?:.

2) If x,, commutes with h, for all c(€l, every condition in (1)
is necessary for Y to be a semi-finite faithful normal weight on

(®M),.

Proof. (1) By Proposition 6.2, (i) is a sufficient condition.
If one of the conditions from (ii) to (v) holds, we can define ®¢h}/?

by Theorem 3.1 and ®¢hy, =(®¢°h}/?)? by Theorem 3.2. We have for
all non zero ®°x, in (my),,

Y(®°x,)=sup {(1131 %0, 172, (®°x,)}
=lim 1;[{|[x(,‘h3/2§!|'2¢,(x‘)}
=lim I;[{||xo,'ft||_2d)t(ho;x,)}

=¢p(h®°x,).

From (ii) of Proposition 6.2, we know that h is affiliated with (®°M)),
and Yy =¢oh. Since h is invertible, } is faithful.

Suppose that x,, is in (M,),,. By virtue of Lemma 6.1 we have
6?=®¢°c?. Define a *-automorphism g, of ®°<M, by

0/(x) =(®°hi},)o? (x)(®°h5'")
for xe ®°M,. Since a?«(y)=hi,c?(y)hyi* for ye M,, we have
o(®°x,)=®°a!«(x,), teR

and o, is weakly continuous by Theorem 3.1. For any x=(®;x,)®
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(®fxlxo.)) and y=(®xy,)®(®f\klxo,]) With x, and y, in n, we have
a bounded function F (z) holomorphic in and continuous on 0<Imz<1
such that

F (0= of(x)y) and F(t+)=y(y.0¢x)

for teR, where i, is the linear extension of Y, to my,. Therefore,
since xo,€(M,),, and c’?c(no,), there is a bounded function

F2)= [T ¥.(1x0,|) " F.(2)
holomorphic in and continuous on 0<Imz<1 such that
F)=y(o(x)y) and F(t+i)=y(yo(x)).

Thus o,=¢? and hence ¢¥=®¢<c’« for all teR.

(2) By means of the proof of necessity of (i) in Proposition 6.2,
we have (x,,&)~(&y,)~(un,,) for some unitary u, in M!. Then (&,
u*¢y) is a non-zero reference pair of (h}/?). Hence by Theorem 3.1

we have every condition in (1). Q.E.D.
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