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Infinite Tensor Products of Operators
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Yoshiomi NAKAGAMI*

§ 1. IntrodiictioE

In the previous paper [8] we established a definition of an infinite

tensor product ®*t of operators on ®J^t and studied its properties

under the assumption: Ilil^JI <+ °°- In some applications, for instance,
to Tomita's theory [3] and to quantum field theory [13, 14], we are

obliged to work with a weaker assumption.

In the present paper, we shall define an infinite tensor product

®C'CXL of operators xt on jf?\ as a closed linear mapping from an

incomplete infinite tensor product space ®cJf t to another ®c 'jf4.

We do not make any assumption on ||xj, allowing unbounded closed

operators XL. The crucial assumption on (xt) is the existence of what

we call a non-zero reference pair. This assumption turns out to be

sufficiently general to allow various applications and yet sufficiently

strong to yield significant results. Typical result is the following:

Theorem 1.1. // xt is positive self-adjoint and (£0,, r]Qt) is a non~

zero reference pair of (xt), then (£0i) and (f/0t) belony to the same

equivalence class c and ®ccxt is essentially self-adjoint on the linear

span of the product vectors ®£t such that £ 4 =£ 0 t except for a finite

number of c and £t is in the domain of xt.

Terminologies here are defined as follows:

Definition 1.1. A pair (£0l, /70t) is a non-zero reference pair of

(X) if the following conditions are fulfilled:

(a) (£0J and 0/0t) are C0-sequences;
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(b) £0l is in the domain of x, and (x^0() is a C-sequence;

(c) (x t£04) is equivalent to (rj0l)',

(d) ??0i is in the domain of x* and (xff/0 t) is a C-sequence;

All assumptions except for (d) are obviously unavoidable if we want

to define what can be denoted by ®c 'cx t. The assumption (d) is

crucial and enables all calculations go through.

The product operators ®c /% for c = c(£0t) and c' = c(xt£0t) is

defined in three steps: On the product vector ®£t with £t=£Qt except

for a finite number of t and £t in the domain of x£, a mapping O(xt,

£0t) is defined by

O(xt, fo,)®£ = ®*,£.

It is then proved to be extendable linearly to the linear span of such

product vectors (denoted as Q(D(xt)9 £0t))- It is then proved to be
closable and the closure is denoted by ®c /cx t . The assumption (d)

is necessary for this closability (Remark 2.2).

All these discussions and the proof of the formula

are given in Section 2. This formula contains Theorem 1.1 as a special

case x f=x 4 .

In Section 3, we give several conditions for the existence of a

non-zero reference pair, one of which is closely related to Kolmogorov's

three series theorem. Theorem 3.1 has a close connection with some

results of Reed [13] and Streit [14].

In Section 45 we apply our result to a modular operators A^t and

show that ®cA$t is a modular operator for ®£t where (£ t)ec.
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In Section 5, we apply our results to an infinite product \JL of a-

finite measures \JL^ Theorem in Section 3 gives us conditions for the

equivalence ,u~v when ^.it is equivalent to a given probability measure

vt and v is the product measure of vt. One of the conditions reproduces

a result of Hill [5].

The discussion in Section 5 is generalized to an infinite product

of semi-finite faithful normal weights in Section 6. The result is used

in a separate paper [6].

Notations: For standard definitions and notations for infinite tensor

products of Hilbert spaces and von Neumann algebras, see [11]. Let

/ be an infinite index set and J c c / indicates that J is a finite subset

of /. S denotes the set of all C-sequences (£,) (i.e., ZIIIU 2-1 |< + °°)
and S0 denotes the set of all C0-sequences (£t) (i.e., (^t) eS, ^ t^0).

The word "sequence" is used for (£t) even if / is uncountably infinite.

(£ t)~(J7 t) denotes the condition £|(<!;t|^t) — 1 | < + 00. It defines equivalence
relations in S and in S0. The equivalence class of (£ t) is denoted by

c(4t). The incomplete infinite tensor product ^fc=®c jf t is spanned by

®£t with a fixed c = c(£t). The projection on 3?c in the complete infinite

tensor product ®jf t is denoted by pc. Let (£t), 0?4)eS and c = c(^t),

cf = c(rjt). (£4) and c are w-equivalent (resp. p-equivalent) to (j?t) and

c', respectively, if (^t) ^(utrjt) for some unitary (resp. partial isometry)

nteM(. This is denoted by (£ t)~(f7 t), c~c' (resp. (£ t)~(f/ t), c~O- If
u u P P

I is countable, c~r ' and c~c' are equivalent, [1]. Let p(c) denote
P u

the central carrier of pc in (®M t)' . p(c) is the sum of pc, with c'^c,
p

[1]. For x teB(jf t) with nii*J< + °o> we can define an infinite tensor

product ®x4 of operators, which is bounded on ®jf t. When jfc is

invariant under ®x t, the induction of ®xt to Jfc is denoted by ®cx6

or (®j^ t )®(®/ jx i ) for Jd c/.

§2. Infinite Tensor Products of Operators

For an operator x (resp.y) with domain D(x) (resp.D(y)), let D(x)Q

D(y) denote the algebraic tensor product in D(x)®D(y) of D(x) and

D(y), and xQy the operator on D(x)QD(y) defined by
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for all £eD(x) and ijeD(y).

Lemma 2.1. // x and y are essentially self-adjoint, then xQy

and xQy are essentially self-adjoint and xQy=xQy.

For self-adjoint operators x and y, we denote xQy by x®y in the

following.

Throughout this and next sections xt is a non zero densely defined

closed operator on a Hilbert space 3ft9xt=ut\xt\ is the polar decom-

position of xt9 and D(xt) denotes the domain of xt.

For (f0,)eS0 with £0teD(xt) and (x£0i)eS, we denote by O(D(xJ,

£0t) the linear span of ®£t such that £ t=£ 0* f°r aU but a finite number
of ^el and £teD(xt) for all ̂ e / .

Lemma 2.2. Let (^0i)eS0 ^«rf £0 te/)(x f t) /or a// ^e / . // (x£Qt)e

S, there exists a non zero operator x with domain Q(D(xl), £0i) such

that x®f 4 = ®jc,f, far all ®f, in O(/>(xJ, {0J.

For <^ = Z?=i®^/c t
 m O(#OO, {(>•)» t^iere exists a J^^I

such that £=£j®(® rXJ£0 t) for ^e®^, and ^ = Z^i®j^ t. Since
(5o,)eS0, if £=0 then £,=0 and so (®Jxt)^J=0. Therefore S?=i

®x t^ t=0. Thus the mapping

fe=l fc

is well defined. We denote it by x. Since (x t£0i)eS, there exists a

®£t in OO^COj £()•) with (x4^ t)eS0. Therefore x is non zero.
Q.E.D.

Definition 2.1. Let (£0i)eS0 and ni|x.£oJI < + °°- ^n operator

0(xf, 50.)
 on OW^cJ, {0.)

 is defined by

x in Lemma 3.2 if (xt£0t)eS9

0 otherwise.
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The following lemma is immediate from Definition 1 .1 .

Lemma 2.3. The following three conditions are equivalent:

(i) (£0l, >/0l) is a non-zero reference pair of (xt);

( i i ) fo.eDfo), i/o.e^W). «0.)eS0, 0/o,)6S0, (x^0,)eS, (xfrj0l)eS

and (x t£04)~0/0i); and
(Hi) (rj0l, £0t) /s a non-zero reference pair of (xf).

Example 2.1. For 0 < e t < l , .'£/, put

:1 0
and £ t = jft =

0 1 \ 1

If 2>?< + o), then x i>0,« i)=(^)eS0, (x.O=(^,)eS0 and (x.£.)~
OO. But (xfO^S.

Lemma 2.4. // ((f0i, ^/Ot) /s a non-zero reference pair of (xt), then

(i) 0(xt, (foJOCDW, ̂ 0,)
c^' >/' c' = c-(i/04);

(ii) (O(xt, ^0i))*=>O(xf, y/oJ tfwrf O(xt, So.) is closable; and
(ill) for the closure x of O(x,, £ 0 l ) , x*x /s a self-adjoint operator

on 3fc for c~c(^0l).

Proof, (i) It is clear from Lemma 2.2.

(i i) For all ®£te Q(D(xt\ £ 0 l ) and ®qte Q(D(x?)9 t]0t) we have

Since O(D(xt), £0t) is dense in tfc for c = c(^0J and Q(D(x*)9 ^Ot) is

dense in JTC> for c' = c(^0t), it follows that O(xf, rj0i)d(Q(xt, ^0,))*-
(iii) Since x is a closed operator of ^fc to J4?c>, x* is an operator

of 3PC, to c5Tc. Therefore x*x is self-adjoint on 3? c. Q.E.D.

Lemma 2.5. Let (£Jt, rjjt) be a non-zero reference pair of (xt) for

7=0, 1. // c(£0J = c(£lt), then c(fy0J=c(/7 l t) and the closure of Q(x,<

£0t) is the closure of Q(xt, ^ l t).
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Proof. Since (£jl9 rjjt) is a non-zero reference pair of (xt), we have

(x£o>)~(loJ and (^n)^(^i,)- since ( fo,)~(fn) bJ assumption, we
have (fo^Wfi,) and hence (x t£04)~0h£). Therefore (i/0.)~(f7i,)- Let
c = c(£0i) and c'sc^o,). Since (fo,)~0!;i.) and (x^04)-(x^l4), there
exists for any s>0 a J j czcz l such that

and

F \ (\?\ ( Kx\ v ^" Ml ̂ ** Pibi J 09 v 09 ^iCoJII <£

r\J

for all Jjczjcc:/. Therefore ®£ l t is in the domain of O(^t, £ot) and

hence O(x<5 £i t)
cO(x t3 £o*)« The converse inclusion is proved similarly.

Q.E.D.

Definition 2.2. The closed operator in Lemma 2.4 is denoted by

®c'cxi. ®ccxt is also denoted by ®cx4 .

For a non-zero reference pair (£0i> *7o*) °f (x») ^ (
®f.eQ(D(3cI), {Of) and if (iy,)eS0 with ®i/, e O(D(x*), iy0i), then «„ i/,)
is a non-zero reference pair of (x,).

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Let s(xt) be the carrier projection of xt.

Since (^0JeS, (xff?0 t)eS, ||s(xt)|| =1 and (s(xt)£0i)~(xf??0i), it follows
from Lemma 1 in [1] that (s(xJ<!;0t)eS. Therefore there is a (^ t)eS0

such that ®ft e Q(D(xt), ^Ot) and ®s(x4X t^O. Since (^t, y/0t) is a non-

zero reference pair of (xt) and Q(xt9 £0t) = Q(xt, £t), we may assume

that ®s(xt)<^0t^0 by choosing such a (£J as (<J0t)-
Let x denote the operator ®c 'cx t for c = c(^0t) and c' = c(?/0t). Let

be the polar decomposition of ®/\jX4 for any Jed. Put jj = (

®y(I\J). Since y7 is positive self-adjoint on 3? 'c,
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Putting u = u(I) and uJ = (®Js(xl))®u(I\J), we have

J J\J

= (®xt)®u(I\J)y(I\J)=Ujyj .
j

The uniqueness of a polar decomposition implies that u=Uj and u

transforms 3FC to jec>. Since Uj=u^Q, we have M(/V)(®/\j<!;o,)^0

for some J. Since (s(x t)^0i)eS0, we have w®£0 i /0. Accordingly

there exists a (C t)eS and a Ce^f c > such that ||£J =1, c(ft) = c', (£|®O=0

and

for A>0. If c^c', we have an s in (0, 1) such that for any J0cci/

there exists a J jccz /Vo satisfying in^CsCO^oJOl^- Choose A0>1

such that Ao1 ̂ rijil^oJI =^o f°r all ^- Then there exists an rce]V

with c n <AAo l a n d a K c c i I such that irijc(s(^,Ko,IC,)l<fi". Since A =

O, we have

which is impossible. Thus c = c'.

For ®^t e Q(D(xt), ^Ot)» ^2 = = {^ e ^ : ^ t^^oJ and e>0, we can choose
a J3c:c:[ with J2cJ3 such that

for any J3c=Kc= c/5 where x / c=(®xx t)®(®fX K l t). Since ®£Xt is self-

adjoint and O/c£>(X) is its core by Lemma 2.1, we have rj^E

such that

K K K K

Put rj± ^^?K®(®i\K^o i)- From the above two inequalities we have
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(0 (x , ,£o , ) - l )®
f\K [\K

+ 11® f
I\K

INK

Since there exists a A t > l satisfying flj II £oJ <^i and ^I1 <n/ll*.foJ
for all Jc=J, we conclude that the deficiency indices of Q(xt, foJ are

0, 0 and hence it is essentially self-adjoint. Furthermore Q(D(xt)9 £06)

is a core of x = ®cxt.

Each £0 in O000O, £0t) is of the form £j®(®/\j£o,) for some
Jcc/ and £je®jjf t . Since ®j.xt is positive, we have

Since Q(/>(^t), £0t) is a core of x, x is positive. Q.E.D.

Remark 2.1. If xt is positive self-adjoint and if Q(xl9 C0t) is closable,

then (^0tJ £ot) is a non-zero reference pair of (xt).

We may assume that (x t^0t)eS0. If O(^tJ £o.) is closable, then

O/\j(^ t> CoJ is closable for any Jc: c/ and hence

(2.1) 0(x,,£0.) =

Let

be the polar decomposition. Jt then follows from (2.1) that v(I) =

(®jl t)®y(/\«/). Since (x t£0l)eS0, we maY aPply the similar argument
as in the proof of Theorem 1.1 to these partial isometries and obtain

that (£oi)~(xtC'ot)- Thus (^Ot, 4'0t) is a non-zero reference pair of (xt).

Example 2.2. For A>0, put

A 0 \ / (1+/12)-1/2

and ^ t~
0
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Then (£ f )eS 0 and (*,£,) 6S0- Besides, if A ^ l , then (x?f,)£S, (£,)-*

(x tc t) and O(xt, £o*) is not closable.

Lemma 2.6. Let (£0t, ;?0t) 6e a non-zero reference pair of (xt)

and let xl=ut\xl\ be the polar decomposition of xt. Then

(i) OX£0i)eS and (M t wf^ 0 t )eS ;

(ii) (£0i, rj0l) and 0?0t, £0t) are non-zero reference pairs of (w t)

and (wf), respectively;

(iii) (®c 'cw t)* = ® c c 'wf ; awd

(iv) z/ (MX£0,)eS<> a^ ("."f'/oJeSo, (M^O .» "f»7o,) ^ fl non-zero
reference pair of (xf).

Proof, (i) Since (x?f/0 t)eS, we have (|xf|//0t)eS. Since (xf/|0t)^

(^o.)> we nave (lxfko t)^(w^o t)- since l l " t l l = A and (^0 t)GS, it follows
from Lemma 1 in [1] that (u£0l)eS and hence (u*ut£0t)eS. Since

(x^0i)eS, we have (w t wff? 0 t )eS .

(ii) (w t ^ 0 t )£S and (wf^ 0 i )e5 are shown in the above. Since

(l*?too,)~0?o,) by Theorem 1.1, we have (w^oJ^^o.) and (£0t)~0f?7o t)-
Thus (ii) follows.

(iii) Since ®C'CUL is bounded and since

for all ®£,eO(D(x,),£o,) and ®i/. e O(/)(xf), i/0,), we have (iii).
(iv) Since xfM^ 0 .=I^J^o. and xlufnQl = \xf |^04, (w^0t, u f f / 0 t ) is a

non-zero reference pair of (xf). Q.E. D.

Theorem 2.1. Let (£0t, ^Ot) be a non-zero reference pair of (xt)

and let xt=ut\xt\ be the polar decomposition of xt. Then

(2.2) ®c 'cx i=(®c 'cw t)(®c!xj)

(2.3) =(®c ' |xf])(®c 'cw t)

and (2.2) is the polar decomposition of ® c ' cx< 5 where c^c(£0,)
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Proof. Since D(xt)=D(\xt\), we have

From Theorem 1.1 we have (£0t)~(l*J£oJ- Since (£0t, rj0l) is a non-zero
reference pair of (ut) by Lemma 2.6 and since ||wj|^l, we find that

(l-xJ^ot? ^oJ is a*80 a non-zero reference pair of (w t) and that ®c'cut

is the closure of O(ut, \xt\£0t). We have

for all ®£ teO(£(A' t), £0t)- Since OWX), £0i)
 is a core of ®c 'cx t

and ®c|xj, we have (2.2).
Since x t = w j x j is a polar decomposition of jc t, wf wt is a projection

onto the closure of the range of |xj. Since (^oJ^d^J^o.)* ®cu*utJ^t

is the closed linear span of

Therefore the closure of the range of ®c |xj is the initial space of a
partial isometry ®C'CUL. Thus (2.2) is the polar decomposition.

(2.3) is proved similarly. Since (x tf0 t)eS and (xf^0t)eS, we may
assume that ®x^0t7^0 and ®xf/7 0 t^0 by the same reason at the begin-
ning part of the proof of Theorem 1.1. Therefore ( u f u t ^ 0 i ) E S 0 and

(M t wff7 0 t )eS 0
 as above. From Lemma 2.6 it follows that (ut£Qt, ufrj0l)

is a non-zero reference pair of (xf) and hence from Theorem 1.1 that

(M,?O,» M,£o,) is a non- zero reference pair of (|xf|). Since |xj =u*\x*\u.9
we have iiiD(xi)=iiiD(|jcJ)=Z)(|x*|). This implies (®c'cul)Q(D(xl)^0t) =

O(D(\x*\)9 M^oJ- Hence we have

for all <8><!;.eO(00O, foJ- Since Q(D(xg), £0,) is a core of ®c 'cx,

and (®c'cwi)O(^J, Co,) is a core of ® c ' l^f | 5
 w^ have (2.3).

Q.E.D.
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Remark 2.2. If Q(xt, C0 t) is closable, then there exists a C0-sequence

(?70,)e50 such that (£0i, ^Ot) is a non-zero reference pair fo (xj. This

is proved by combining Remark 1.1 and Theorem 2.1.

Theorem 2.2. Under the same assumption as Theorem 2.1,

(2.4) (®c'cxt)* = ®cc 'xf .

Proof. Using (2.3) and (iii) of Lemma 2.5, we have

Since x f = w f | x f | and 070*» £01) is a non-zero reference pair of (xf) by

Lemma 2.3, we have ®cc 'xf =(® c c 'wf)(® c l*f I) by (2.2). This com-
pletes the proof.

Theorem 2.3. Let Mt be a von Neumann algebra on 3? L for each

eel, and let xt be an operator affiliated with Mt. If (£0 t» fo*) is a

non-zero reference pair of (xt) with c(£oJ — c(^ot) — c? then ®cx t is

affiliated with ®cM t.

Proof. If £eZ)(®cx t), there exists a sequence {C,,}£=i in

C0 t) such that £„->£ and (®cx i)cn~^(®cx t)^ in J^c. According to Lemma

6.10 in [2], we have (®cM t)' = ®cM; and hence ®CM; is generated

by ® c f t such that vt is a unitary in M\ and rt = l except for a finite

number of :. For each £n of the form ^ = X"=i®^j t
 w^h ®^J- ie

0(000, £0,), we find (®ci;i){B = Z7=i®^. in O(/>00, {<>,)• This
shows that O(^(^t), £0J is invariant under such ®ft and hence D(®cx4)

is invariant under ®CM;. It follows that {(®ci\)£n}n=i is a Cauchy

sequence in Q(D(xt), <^0t) in the sense of graph of ®cx t. Thus

=lim(®c».X®cx.){ l l=(®cu,X® '«.){,
n~*oo

which shows that ®cx, is affiliated with ®CM,. Q.E.D,
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§3. Conditions for the Existence of a Reference Pair

We shall give some conditions for the existence of a non-zero re-

ference pair of invertible, positive and self-adjoint operators (xt) in the

following theorem. With a slight modification on convergence, the

condition (iv) is known as KolmogoroVs three series theorem and the

condition (vi) is interpreted as follows: the product of characteristic

functions is also a characteristic function.

Theorem 3.1. Let xt be an invertible, positive and self-adjoint

operator on 3F L for eel and j;t = logx t. Let et be the spectral projec-

tion of xt corresponding to the interval [^o1, A0] for any fixed A 0>1.

The following six conditions are equivalent for ceC:

( i ) there exists a non-zero reference pair (£0t, £0t) of (xt) with

c=c(£o,);
(ii) (e£lt)eS, (x,e,£ l t)eS and (e£lt}~(xte£lt) hold for some

«1()ec;

(iii) (*.{.) eS, (x.s.OeS and (e&)~(x.ettt) hold for all (e,)ec;

(iv) (*.£.) eS, ZH>^J|2<+oo and ZI(^cJ^)l< + oo hold for all

(v) {2.eD(.v,), Sll3\C2J|2< + cx) and Zl(3^2,l?2,)l< + oo hoW /or

some (^2 t)
 e C5 an^

(vi) ® c jri f
? feU /s a strongly continuous one parameter unitary

group.

Proof. (i)=>(ii). We put ^lt = ̂ 0l for all c. Since (c0.» Co,) is a

non-zero reference pair of (xt), we have

-l |< + oo and SI(

which imply

Zlia-x.)«i. | |2<+oo and IKO-

Since (1 - A^Xl -«.)^ 1 1 -*.!(! -«,), we have
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and

Since IIO-x.X^.H^IKl-xJci . l l and ||(1 -x,)(l-e.)£i.H ^ HO -*.){i,ll, it
follows from

and

that (e.£,.)eS, (*A«i.)eS and («.ei,Mx.e,«i.).
(ii)=»(iii). (*.{!.) e S implies ({1,)~(e,f,.). If (^)ec, then

«!,). Therefore (e.cJeS by Lemma 1 in [1]. Since (£.)~(£i

have Zl l« , -€ i , ! l 2 < + oo. Since

we have Zl i ( l~ •VJ£>^JI2< + °°- Since

we have Zl((l -^,)e,Cj^)|< + oo. Consequently, (.x,e^,)eS and (e.^,)~

(*.*.{.).
(iii)=>(i). Since (e,^)eS, we may assume that (e,iJ,)6S0. Set £0is

e,^,. It then follows that (c;0l)ec and that (<^0l, £0l) is a non-zero re-

ference pair of (x,).

(iii)=>(iv). Since
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and

^-^--1)1^^-1)^

for some constant 11>Q, we have

\(y>e&\tt)\ ^ l((xt - ixaO + A! \\(xt - ixu

and

Since (e£t)eS, (xte£t)eS and (^)^(xtet^) from (iii), the right hand

sides of these inequalities are summable over IG!. Thus (iv) follows.

(iv)=>(iii). Since -xj^l-x^ -yt and \l-xi-(-y^\el^^2y^el

for some constant A2>0, we have

and

Thus we have (iii) from (iv).

(iv)=>(v). Putting ^2i
=e^^ we nave (v) fr°m Ov)-

(v)=>(vi). If «.)ec, then (£)~(f2l). Since log A0(l
we have

Since ||y.(l -0^2.11 ̂ 11^2.11, we have (e,{2,)sS. Since
(c.«.)6S. Since ({,)~«2.), LII5 , -«2. l l 2< + «). Since

we have S l l j ; e ^ . l l 2 < + °°- Since
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we have ZI<JA£JO< + °o-
(i)=>(iv). There is a countable subset /0 of / such that | |£0J=lj

\\x£0t\\=l and (xif0J§o.) = l for all <e/ \ /0 . Therefore |[x4£0i-£0J|2 -0

and hence xt<!;0l=<!;0l f°r a^ 'EA/o- Therefore xj^0 t=^0 t for ^e/ \ /0 .

Restricting the index set to J0, we know that (£0t, £0t) is a non-zero

reference pair of (x4; ^e/0). Then ®/^°' )xj t, teR is strongly con-

tinuous by [14] and [13]. Since Q(J^l9 £0t) is dense in MP c and since

®c;tjr is bounded, it is strongly continuous unitary group in teR.

(vi)=>(i). Choose t0 and tl in R such that t0/tl is irrational. For

any (£t)eS0 with c = c(£t)9 there exists a countable subset Jj of / such

that xi '°f ,=£4 and x | r ^ t =f 4 for all re A/!. Then xj^ t=^ for all

tetQZ + tlZ and ^ e / X / ^ Since r0Z + ^Z is dense in I? and since

xjf is strongly continuous in teR, we find that x('^ t={ t for all reJ?

and ^e /X/! . Applying [14] and [13] for this countable 7l9 we have

(iv) and hence (i) for 7t. Therefore there exists a non-zero reference

pair (£,£) of (x.) for /, and (£)~«.) for /,. Define (£0l)eS0 for

/ by {Of = ^ for ,e A/I and f0i = {; for r e / , . Then (^0<)eS0 , c = c(^0t),

(x,<S0 t)e5 and (£ot)~(x£0t). Consequently, (^Ot, fo.) is a non-zero re-
ference pair of (xt) with c=c(£Qt). Q.E.D.

Remark 3.1. Let xt be invertible, positive and self-adjoint, and

j;4=logx t. If (^Ot, £0t) is a non-zero reference pair of (xt), there exists

a strong convergence vector ®£2i of (yt) with (^oJ^fe*) in tne sense

of Reed, [13].

Theorem 3.2. // (£0t, ^Ot) is a non-zero reference pair of (x£),

f/i^re exists a non-zero reference pair (£ l t, ^ l t) o/ (xfx t) wft /2 (^ l t)^

Ko.) and

(3.1) ® cxf x, =(® c'cxt)*(® c 'cx t) .

Proof. If (£0t, ^Ot) is a non-zero reference pair of (xt), then (£0t,
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£0i) is a non-zero reference pair of (|xj). Since (Ker ®cxfxt)
1c:(Ker

®c'%)J- = ®c(Kerxt)-L, we can restrict our proof over ®c(Kerxt)
1.

By the implication (i)=>(vi) of Theorem 3.1, ® c |xj ' f is strongly con-

tinuous unitary group in teR for c=c(£0t). Since ®c(xfx t)' r = ®c |x t |
2l ' rs

by the implication (vi)=>(i) of Theorem 3.1 we have a non-zero reference

pair (£u, £ l t) of (xfxj with c = c(<!;lt). Since (xfx t£u)eS, we may assume

that (xfx^JeSo- Since D(xfxe)cD(|xJ) and since

we have (^iJ^dxJ^J. Therefore (£ l t, £n) is also a non-zero reference

pair of (|xj). Since (xfx t£ l 4)eS0 and (x^ l t)eS0, we find that (x t£ l t,

^ l t ) is a non zero-reference pair of (xf) and

Therefore O(^(^f^t), ^t) is included in the domain of (®c/cxt)*(®c'cxt).

Since (3.1) holds on Q(D(x*xt)9 ^ l t), we have

Since both sides are self-adjoint, (3.1) is obtained. Q.E.D,

Lemma 3.1. // A t^0, OR: A.*0}< + oo, (^ t)eS0 and

I< + °°? ^ew /0/* flfiJ' 0<c<2~ ! f/?^r^ ex/sfs a JcczJ .
/\J

Proof. Since A t^0, nR:^,^0}< + oo and (£,)eS0, there is a ju>l

with F[jll^JI<A* for J^^I- Choose any 0<e<2- J . Since Z|||xJ£t

— A t^||< + oo, there exists a Jcc/ such that for any Kc=c=/\J

which implies
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Q.E.D.

In the following we designate the spectrum and the point spectrum

of a closed operator x by a(x) and GP(X), respectively.

Let Z=M|Z| be the polar decomposition of z. Let e be the spectral

projection of |z| corresponding to [A0 — e , / L 0 + s] for any given e>0.

If A0ecr(|z|)\o-p(|z|), there exists a non zero vector £ such that e£,=£,

u*u £ = <!;, zc^O, which implies

whenever |A — A0 |<e.

R* denotes the set of all positive numbers. Theorem 1.1 in [7]

is then restated as follows: Let yn,neN and y be invertible, positive
and self-adjoint operators on a separable Hilbert space. Then the

following conditions are equivalent when n tends to +00:

(i) f(yn) converges strongly to /(v) for every /e C(/tf) which
vanishes at 0 and + oc;

(ii) f(yn) converges strongly to f(y) for every bounded /eC(Jtf);

and

(iii) y\f converges strongly to ylt for all teR.

Using this we have

Theorem 3.3. (i) Assume that x t^0, x i = w j x j is the polar decom-

position, and there is a A tecr(|xJ) for each eel such that OiA-

+ 00 and {c el: At ̂ crp(|xj)} is countable. If ^\ht — l|< + oo,

exists a non zero reference pair (£0^0*) °f (XJ satisfying u*ut^0t =
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(3.2) SIII*J£o,-A,£oJ<+°°-

(ii) // (£0i, rj0i) is a non-zero reference pair of (xt) with (3.2)

for some l t^0, then

•(3.3) (®<'%)£=limj>,e
Jcc/

for any £ eZ)(®c 'cx t), where w4 fs a partial isometry with the initial

space {A£ 0 i :A£C} and r/ie ./ma/ space {/U/ t£0i: AeC}; j;t = xe, reJ

and yK = kKwK, KG!\J for each Jed; J^EE ®c'cyl .

(iii) Assume that 3? \ is separable and xc is invertible, positive

and self-adjoint on 3? L. If (£0t, £0J /s a non-zero reference pair of

(xt) satisfying (%OI)EC, then ®cxi
i
t is unitary on J^c and

(3.4) (®%) if = (x)cjcir

for all teR.

Proof, (i) Let Ip = {eel: lg$ap(\xt\)} and /0 = {r e/: A4=0}. Since

Ip is countable, 7p is identified with IV. Let em, meN be the spectral

projection of |xj corresponding to {AeHS: |A — Am |^em+1} for any

fixed 0<e<2~ 1 . By the discussion preceding to this theorem there is

a unit vector £0 m such that e£ = ?, M * t i ^ = fo> ^om^O and

For tel\lp there is a unit vector £0i in D(xl) with |-xJ^0 t=A t^04 . There-

fore (£0t)eS0 and (3.2) is obtained. Putting rj0t = ut^0l for all eel,

we have (w0JeS.

If Zl^-l|< + oo, namely, if /0c:c:J and IlR:^^o}>0» then

which implies (x t^0i)eS and (x^0f)=(|jcJ<S0,)e5. Since

(Af{0,)eS, (l^0t)eS and (^iy0,)-(i7o.). Since (\x§\S0§)~(i§t0§) by (3.2),

we have (x£0t)~(X,fl0l) and hence (x^0,)~(^o,)- Therefore (^Oi, w0t)

is a non zero reference pair of (x4) with desired properties, if we replace

£04 with r e / 0 by any vector satisfying u*u£0t=£0t.
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(ii) We use the same notations I 'p9 I0 and em as above. From

(3.2), if Z|A.-l| = + oo, then mi*,U =0 for all ®f, 6 Q(D(xt), £0.) and

Vj=0. Thus (3.3) holds.

If ZM-,-l |< + oo, there is a (5 in (0, 2~!) such that 5<n^<
(5"1 for any KcI\I0. Choose an e>0 with s<6. From the definition

of en, we have (A.m-e»+i)em£\xn\em. Since 0<n»6/P\/0(^«-fim+l)<

+ 00, there exists a 0</x<l such that A^IL^m" em+1)<M -1 f°r anY
KaIp\I0. Since em£0m = £0m for me/p , if K'<=Ip\I0, then

^ (g) {(Am - em+ J )e

and if K"cJ\(Jpu /<,), then

Since dp < min {5, fj] < 1 and ®/ 0A,wfvv i=0, we have

(3.5)

on D(®c 'cx t) for every Jcc/. Since O(£>OO> ^o») i§ a core °f ®c 'c^,5

there exists a sequence {^w}^=i in O(^(^t)» ^o*) which converges to £
in the sense of the graph of ®c'cxt. It follows from (3.5) that {£„}£= i

is a Cauchy sequence in the sense of the graph of yjt Therefore, since

yj is closed, we have £eD(yj). For the above e>0 there exists an n0

and a J0c=c:/ such that for every n^n0 and for every Jed with

and

Then we have
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for £eD(®c 'cx t).

(iii) Since (£0t, £0t) is a non-zero reference pair of (xt), we have

and (x^t)^(^t) for all non zero ®£t in Q(D(xt), £0t). Since

there exists a A>1 with nil* t£J<^ for a11 K- since (**£,) ~
(£t), it follows from Lemma 3.3 in [8] that for any s in (0, 1) there

exists a J0 <= ci / such that

for all Jc/\J0. Thus

for all K with J0 c K c c /.

Assume first that / is countable. Let /=]¥ and /„ = {!,..., n}.

Denote j; = ®cx t and yn = yln (or Jw = x/n), where we take A tw t = l.

Since yn and y are self-adjoint, HG^-il)"1!!^! and IKy-il)-1!)^!.

Let C(x) = (x + il)(x-il)-1. Let D = {(y-ilX: {eQ(D(jcf)f f0.)}- Since
OW^J, {oJ is a core °f J by Theorem 1.1, D is dense in 3? c. For
any rjeD

Since rj is of the form (y — il)£ for some ^e Q(D(xt),

which converges to 0. Since D is dense in 3? c and since C(yn) and

are bounded, C(yn) converges strongly to C(y). Since J^c is separable

and since yn and j are positive and self-adjoint, f(yn) converges strongly

to f(y) for every bounded function /eC(HJ) by [7, Theorem 1.1].

Since f(l)=lif for Ael?$ and teR is a bounded continuous function

in A, it follows that

n-»oo /„
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for any £ e Q(D(x.), £0.) with f = ®£.

For a general / we choose a countable /o^/ such that x t£o.=£o.
for ceI\I0. Since /0 U •/ is countable, we have

for any £eQ(D(xt)9 £0t) of the form £=£j®(®/\j£o«) f°r some Jed
and fje®j.Jf4 . Thus we have (3.4). Q.E.D.

Remark 3.2. If (<^0t, f/0 4) is a non-zero reference pair of (xt) with

(3.2) and if X|A,-l|< + oo, we have

(3.6) (®c'%)= lim Xj$
JccJ

for any {e OPOO, {0.)>
 where ^j=(®/^)®(®/\Aw

t)
 for each JczcJ.

Remark 3.3. Assume the same assumption as the above (iii). Let

(£o*> £o*) be a non-zero reference pair of (xt) satisfying (£0t)ec. Put

y t=logx t and <(^) = > \ ® ( ® , I K ) . Then

where the sum of the right hand side is taken in the sense of Streit,

[14].

Lemma 3.2. Let z be a positive and self-adjoint operator. If s>0

and ||z£ — A£||^fi||£|| for some non zero £eD(z), then there exists a

A06(r(z) such that |A-A0 |^e and ||zf

Proof. Let e be the spectral projection of z corresponding to

[A-e,A + e]. Put fo=*J- If £0=0, then

which is impossible. Therefore £0^0. Hence [A — e, A + e] n tr(z) is
non empty and for any A0 in this intersection we have
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HZ£-AO£|| g \\zt-x\\ + ii(A
Q.E.D.

Corollary 3.1. // x.^0 for all eel and if Zllkl£i.-£i J< + oo

for some (%lt)eS0, then there is a A, E<T(|X,|) for each eel such that

0<r]l,< + 00 and {c el: A, 0ffp(|x,|)} is countable.

Proof. By Lemma 3.2, there exists a A, eff(|x,|) such that |1 — AJg

Ulx.l^.-^J and Ilkl^-A^J^UIxJ^-^JII^J. Then Z|1-AJ<

+ 00 and Xll l*J£i , — A.^J^ + 00. Except for a countable number of

re/ , we have \xt\Hlt=^ll. Q.E.D.

Example 3.1. For 0 <£,<!, eel, put

I+B. 0 \ / 2-1/2

XL= and
0 1-e, /

If ZE?< + OO and ^£, = + 00, then (£.)eS0, (*.£,) eS0, (x?OsS0 and
211^,^, — ̂ JI2< + °°- Thus we have a situation where we have a non-
zero reference pair (E,0t, £0() of (x,) and yet there is no {A, ea(xt): i el}

satisfying 0 < O^, < + °° •

For ({.) and fa.) in S, (^)~fa,) denotes the condition

+ 00, which is the weak equivalence due to von Neumann [11].

RemarklA. If (f .) e S0, fa,) e S0 and £||£-»7,ll2< + a>, then (

Indeed, since (^)eS0 and fa()eS0, we have sup||£J< + 00 and sup

Ik.lK+oo, so that 2l l l f . l l l l ' ; , l | - l |<+oo. Since Ellf.-';J2< + «>, we
have 2|Re((*,|»/,)-l|< + oo. Therefore

and there exists a J<=cl such that 2~1<Re(^J^1)<2 for ie!\J. Since
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for all i E I\J, we have

Remark 3.5. Let (£4)eS0 and (?7 t)eS0. Define (£t)^(^) for some

fixed n^l by ICH^ — rlM"< + °°- Then "^" is an equivalence relation.

If «.)rfo-)> then (O~ft.)- If «,)~fo.X then «.)7-Oy.). If (OTO/,),

then (f.)^.). In general, if «>-(>/,) for n£2, then ZII«,k)|-l|" /2<

+ 00.

§4. Modular Operator

Let 3? \ denote the completion of a left Hilbert algebra 2lt, which

is supposed to have a normalized idempotent element £0t with £ o 4 — £o t-

Definition 4.1. An infinite tensor product of left Hilbert algebras
S214 is an involutive algebra of all ®c, in ®^fb with £ t e2I t and {^e

/: C^^oJ^ ^^ whose involution and product are defined by

= ®f? and

This is denoted by O(2I., fo,)-

Lemma 4.1. O(5li? ^0.)
 is a left Hilbert algebra.

Proof. Let 21 = O(9l,, £<>.)• Since ^ O i = ^ * 4 = ^ g t , it follows that

folf*0 for ^n and C in 21 and that for each fe2I , the map-

ping: ?7e2(l-»^e2l is continuous. Since 21 f is dense in 2It and <^o i =

^Ot , 2l2 is dense in 21. Define 5, and S by 5 t^=^f for ^e2C t and

5((x)^) = ®S^t for ®<J 4e2l . Since S, is closable in Jft and ^Ot = ^* i ?

it follows that (£0l, <^0t) is a non-zero reference pair of St. Therefore

S is closable by Lemma 2.4. Q.E. D,
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Remark 4.1. In order that O($It, £oJ is a kft Hilbert algebra, we
have only to assume the existence of £0 te2I4 for each eel which satisfies

that (fo,)eS0, (fo.)eS0, (foJ~(fo,.) and that (f0.> fo.) is a non-zero
reference pair of (St). In this case we can define ®cSt and ®cSf,
which fulfill ®c5f5t=(®c5f)(®cSi) for c = c(£0t).

It is clear from the definition that O(SI,5 £o*) i§ dense in ®C3? t.
If we define a left representation TT of O(2l,» £0i) on ®c«^t by

then rc(O(2l§, £o.))'' = ®crc.(9l«)''» where rc, is a left representation of
$lt on «^4. This is proved by the similar argument as the proof of

Corollary 3.3 in [9].

Let 93, denote a Tomita algebra dense in JFt with the modular
automorphism At(z) for eel. If Al(z)^0t=^0t for all eel and zeC,

we can define a modular automorphism J(z) on O(95t, ^0*) by

for ®£t in Q(St, ^0*)- Here we denote by AL the modular operator
on Jt?t associated with the modular automorphism At(z),zeC. Since

(£0t, ^Ot) is a non-zero reference pair of (At), we can define by Theorem
1.1 a positive self-adjoint operator A = ®cAt in ®c^t for e = c(£0t)-

Here we suppose that tf t is separable for all eel. Since O(®t, £o»)
is a core of ®c/d t, we have Jl't = ®cJ( f by Theorem 3.3. It then follows

from the uniqueness of modular operator that A is the modular operator

associated with A(z),zeC.

Lemma 4.2. Suppose that J^t is separable for all CE!. If At(z)£0l

= fo, far all eel and zeC, O(93t, £0i) is a Tomita algebra and A=S*S.

Proof. Since S?t0t=S?S£0l=Att0t=At(l)t0t=£0t, we have S*3(®{,)
for ®^ in

Corollary 4.1. Let col = o}^0c and a>=®Q)t on ®cMt for c=c(£0t).

If <Hl is separable for all eel, then a? = ®CG?<.

The separability assumption of 2lt in the above corollary will be
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omitted in Lemma 6.1.

§5. Infinite Product of <j-finite Measures

We shall apply the results of § 3 to the infinite product of cr-finite

measure spaces and give a similar result as Hill's.

Throughout this section we assume the index set / to be countably

infinite.

Let (Ql9 &^ vt), fEl be a probability space. Put (Q, &r) = Yl(@l, &t),

v = nv., Jft=L2(Qt, JFi5 v.) and Zt=L-(R, jFt, v,). Then (Q, JF, v) is a

probability space. When a vector £ in jj? t belongs to Zt, we write the

operator by nt(£). For an v\ in tff t we denote by con a measure on Qt

or a positive linear form on Zt dfiened by a)n(x) =(XYI\Y() for all xeZ4 .

Let ^t be a cr-finite measure on (Qt, J\) with ut«vt and ht=dfijdvt.

For £teD(hV2) with fcJ^f^O, we define fo^ll^ll"1^ and *?o,=
ll^*172^*!!"1^.172^.- Then co^o^ is a probability measure on (2t and o> l |0(«v t.

Therefore we can define a o--finite measure \ij for J c c / on Q by

Then /^j is a semi-finite normal trace on ®c 'Z t for all c' with c'

Proposition 5.1. Pfir/i ?/i^ a^oue notations, assume that

< + oo a?tc/ ^ t«v t . // (»7o.j ^o*) ls fl non-zero reference pair of (n(£g)),
then n = supJc:ciHj is a a-finite measure on O, which is singular to

®cortl whenever ( r j ^ e S and (rjt)^(ri0t). Moreover \JL is a semi-finite

normal trace on ®C'ZL for all c' with c'~c(?70t).

Proof. If 0/0i, f/0J is a non zero reference pair of (7t(£t)), ®c'7r(^t)

is in ®c'B(^t)for c'=cfo0i). Since 0<niWOII< + «>, n/\jlWWII for
Jcc=/ converges to 1 as J tends to /. Since pt

1/2^J|2cw^0^||7r(^)||2jut,

{(rii\jlN(^Jir2)Mj: ^^ ^^l is an increasing net of er-finite measures
on O. Put
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Then for c'=c(rj0t)

Jczc:/ 1\J

Since the set of (®Jxt)(x)((g)f\J||7r(^)||"27r(^)) for any xteZL and JcczJ
is weakly total in ®C'ZLJ it follows that /x is semi-finite. Since each
Zt is countably decomposable and / is countable, ®c'Zl is countably
decomposable and hence ft is <r-finite.

If (rjt)eS0 and OO^O/oJ? then the central carriers of pc, for c' =
c(*7o*) and PC" f°r C" = C0?J in ®Zt

 are orthogonal by Theorem (2) in
[1]. Therefore ju and ®o>^ are mutually singular. Q.E.D.

Definition 5.1. Let \JLL be a d-finite measure with /J t«v t and h =

dfijdv,. For f.e/W2) with 0<nWOII< + o° and hy2^^0, let
T/^EEll/zy2^!!"1/!//2^ and (/70t, ^Ot) be a non-zero reference pair of (TT(^)).
The a-finite measure ju in Proposition 5.1 is denoted by /^£), since
it depends on (£ t)eS0.

Theorem 5.1. Let vt,v,nt,ht be as before and let / / t ~v t (resp.jU4«

vt). Assume that £teD(hl'2), 0<niWWII < + °° and (ion loJ is a

non-zero reference pair of (n(£t)). Let h0l = ||^,||2||/^1/2^jr2^t and et

be the spectral projection of h^12 corresponding to [A"1, A] for any
fixed A>1. Then the following nine conditions are equivalent for

( ii ) (<^ t )eS and (£t, <^;
t) is a non-zero reference pair of (/?o(2);

( i v ) ((J t)e50 fl«<i (<?!*» ^i.) Z5 fl non-zero reference pair of (/?o(2)
for some (<J l t )ec ;

( v ) (OeS.^.^JeS^AJf^^JeS and (^2t)^(/iJ/2^2t) hoU for
some (£2i)ec:;

( v i ) (OeS,(^.)6S,(fci(2M.)eS and (M,)~(/iJ{2f7.) hoH /or a//

(vii) «.

< + oo hold for all (rjt)ec with

(viii) tfJeS, ^.e/>(A,), ZI|log/2^2f3

/or some (^3 , )er with s ( f t / ) ry t =>/ f ;
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(ix) (£ t)eS, and (g)c/z|/t, f eJR is strongly continuous one parameter

unitary (resp. partial isometry) group.

Here s(hL) is a projection to

The proof of this theorem will be given after the following Proposi-

tion 5.2.

Proposition 5.2. Under the same assumption as in Proposition

5.1, let (rj0t, rj0t) be a non-zero reference pair of (7r(£t)). Then /^^^v

if and only if (^ t)eS0 and (^oJ^Ofo*)- ^n th*s case

-2)®c*o. for c = c(l f) and h0i = ||ij|2 | |h i
1/2fj|-2fc i.

Proof. Suppose that (£ t)eS0 and (£o t)~07o t)- (£t)eS0 implies (£ t)~

fo.) and hence (<!;.) ~(f/0.)- Since (7r(^)^0t)eS and (f t)~(/ /0 t)> ^e have
7r(^)?70i)~(lt). It then follows that

Since (^oJ^OfoJj (^o*> ^o*) ^s a non-zero reference pair of (h^2) and

h = ®chQl is obtained for c = c(lt). Let n i=L2(O t , /it) n ̂ °°(^t, jwj and

mt be the linear span of nfn t . For any ®cxi in ®CZL with xt

we have

and hence

Therefore / * < « < > « v and d^ (^ )/dv=(nil^ir2)®c ' 'o,- If A*,- vt, then A0t is
invertible and hence d^(^e)/dv is also invertible or ^^^v.

Conversely, suppose that ^c^«v. From Proposition 5.1 it follows

that O/oJ^-CU or (^o^^C"^*) f°r some unitary ut in Z' t=Z t for each

.'£/. Since (r]0i, ri0l) is a non zero reference pair of (TT(^)*) by Lemma

2.3, we have (7r(£)*j/0t)~(M.l,). Therefore (^)eS0 and 0?0t) "(",£,)•

Since (^)~(^0t)J
 w^ have (ri0t)~(u£0t). Since (^'Ot, M^O.) is a non zero

reference pair of ( h 0 l ) , it follows from Theorem 1.1 that ( f 0 f )~( M 6^o/ , ) -
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Therefore «0,)~foch). Q-E.D.

Proof of Theorem 5.1. (i)=>(ii). By Proposition 5.2 (£0t, £0t) is a

non-zero reference pair of (h^{2) and (£4)eS0. It follows that (<j;4, £4)

is a non-zero reference pair of (h^{2).

(ii)=>(i). Put ({o.^llfjr1^- Then (£0i, {Ot) is a non-zero reference
pair of (/to(2). 0) follows from Proposition 5.2.

(ii)<=>(iii)=>(iv). Clear.

(iv)=>(iii). Since (£lt, £ l t) is a non-zero reference pair of (/?o(2),

we have <74(2£ l4)eS and (^^(h^(2^. Since c(£lt)=c(£0t), we have

Therefore (^)^(^oJ-«it)-(^l2?ot)
). By Theorem 3.1.

Remark 5.1. For each Jczc/ a cr-finite measure

-2)A*«':'6/XJ) on (n/\jR, IW^) satisfies that /^>=(rUO><
}.i(I\J). Therefore /x (^£ ) is a product measure of {/^:^e/} in the sense

of Hill. In Proposition 5.2, if we choose a measurable &' t<=O t with

0<Ju4(^0< + °o and define ^=x0;, then 0<niN(OII < + °° and (^o,»
^Oi) is a non-zero reference pair of (TI^)). Therefore / j < £ < > ~ v if and

only if (^ t)6S0 and (£0t)~0?ot)- This is a result of Hill. It should
however be noted that we can not omitt the condition (£ t)eS0 as the

following example shows.

Let I=N. Let Qn=R for ne/ , vn be a normal distribution with

mean 0 and variance 1, and \in be the Lebesgue measure. Put Q'n =

[-AB,AJ, An>0 for all WE]¥ and £n = xQ'n. Then

v2\ f f^n / v2

- 4p ) rfx Un exp( - ^-
2 / ( J-An \ 2

By choosing Xn sufficiently small, we have (£0t)~0?ot)- However

and hence ( ^ o ^ C U -

§6. An Infinite Product of Semi-finite Weights

Following the similar argument as the preceding section, we shall

give a definition of an infinite tensor product of semi-finite faithful

normal weights. / is not necessarily countable.



INFINITE TENSOR PRODUCTS OF OPERATORS 139

We begin by recalling the tensor product of semi-finite faithful

normal weights i/^ on (M^ and \l/2 on (M2)+ . Let 9ly denote the
full left Hilbert algebra of (MJ? \j/j) obtained by the GNS construction

for 7=1,2. Let 91 denote the full left Hilbert algebra formed from

the algebraic tensor product of 91 1 and 912. If ^ *s the kft representa-
tion of 91, then Mi®M2 is isomorphic to 7r(9l)". Through this iso-

morphism, the tensor product \l/i®\^2 of *Ai an<3 ^2 *s defined as the
canonical weight of 7i(9I)".

As Theorem 15.3 in [15] holds for a semi-finite faithful normal

weight \l/ on M+ in place of a faithful normal positive linear form 00

on M by a slight improvement of the proof, we have that the neces-

sary and sufficient condition for ail/a*^\l/, a en^ is that \\A^l/2 11^(0) A^/2\\

gl, flen^. Here n^ denote the set of all xeM with ^(x*x)< + oo,

Tfy the GNS representation of M induced by \jj and J^ the modular

operator.

Let £4 be a unit vector in Jf^ which is cyclic and separating for

Mt, and (t>t = (D^c on Mt. Let i/rt be a semi-finite faithful normal weight

on (MJ+ such that ^ t=/i t
1 / 2(/> t^i l

1 / 2 for some invertible, positive and

self-adjoint operator ht affiliated with the centralizer (Mt)^. Put nt =

{x eM t : \l/t(x*x)< + oo}. Let et(n) denote the spectral projection of ht

corresponding to [0, ri} for neN. Let J^t and A^t be a modular

conjugation and a modular operator of (Mt, 0t), respectively. Put j^(x)

= JxJ for xeM £ . For each x e n t we have

Since {^Xn+1) — et(ri)}neN are orthogonal and since

sup ||7«IC'.1/2^WXII2 = sup \\xh}l2eL(n)^\\2 ^ MX*X)< + oo ,

it follows that {x/jt
1/2et(flK4}£=i is a Cauchy sequence. We denote the

limit j^(hl/2)x^t by xh^2^ symbolically.

For a fixed x 0 t en t with x0i^0. put

So.sllxoai-1 and »»o.= ll*
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Define a semi-finite normal weight \jjj on (®c 'M t)+ for c' with c'

Proposition 6.L FFjf/? £/ie above notations, assume that 0<n||x0J<

+ 00. // (Y\QL, r]0l) is a non-zero reference pair of (x0t) and if x 0 4 e n 4

with IM^£
1/2^c(x0t)JJ(2 | |^||xoJ|, ffcen \l/=limjccl\l/j is a semi-finite

faithful normal weight on (®c 'M t) + for all c' with c'~~c(riQt).

Proof. Since x0t e nt and P^1/2 7tyc(*o.)^i(2ll ^ H*oJ» we have

x0> t*o.^ll*oJ2^ t and hence ||x0A1/2U2o>ii0i ^ ||x0J
2^,. Therefore

{(Tli\j\\Xot\\~
2)^j: J ^ ^1} is an increasing net of semi-finite normal

weights on (®C 'MJ+. Putting

on (®c 'M t) + , we know that ^ is a normal weight on (®C 'MJ+ and that

Jczc / l\J

The semi-finiteness of \l/ is then proved by the similar way as Proposi-

tion 5.1. Let St denote the carrier of co,7 in Mt and ut be a partial

isometry in M't such that u*utri0t=ri0l and c'=c(ulrj0t). Since Stutri0l =

M t f / o * and since the carriers (®Jl i)®(® ixjSJ of ^j in ®C'ML are

majorized by the carrier of ^ for all Jcc/, i/f is faithful on ®c 'M t.

Q.E.D.

Definition 6.1. The semi-finite faithful normal weight on (®c 'M i)^_

obtained in Proposition 6.1 is denoted by ^(*0s).

\l/(xoc) is considered as an infinite tensor product of normal weights

\l/t. We will show some conditions for \l/(x°c) to live on ®cM t in

Theorem 6.1 after the following proposition.

Proposition 6.2. Let £t, 0t, ij/t, ht and x0t be as above. Let (f> =

®(bL on ®CM, for c = c(£,) and i/s = il/(xoc) on ®C 'M, for some c'-^c(w0,).p

Then
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(i) c-j-c' if and only if (x0 t£ t)eS0 and (CoJ^o,);

(ii) under (i), \j/=\l/°at for all teR.
and

Proof, (i) Suppose that (x0t£ t)eS0 and (^o^too.)- (CoJ^O/o,)

implies (^Ot)^(utii0l) for some partial isometry UL in M; with u*uLr\QL =

>?o,- Oo^JeSo implies (x0iO~(£oJ~(w^0t)- Since (^Ot, ^Ot) is a non-

zero reference pair of (x0t), we have (xg tf/0t)~07o*)- Since 0<ni|xoJ<

+ 00, by Lemma 1 in [1] we have (u.xg.^eS and (w.xg^oJ^O^oJ-

Since (x0,£,)~(iMo,)> we have (^)-(w tx§^0t)-(w tf/0t) and hence c~

cfoo,)~*'.

Conversely, suppose that c--c'. Since c'^-c(^0i), there exist partial

isometrics ut in M; so that u*utii0t=ri0l and (f t)~(tt4f/0 i) . Since (rj0l,ri0l)

is a non-zero reference pair of (x0t), we have (utx$triQl)~(uliriQt)~(£t).

Since 0<nil^oJI < + °°> Lemma 1 in [1] implies that (x0t<!;4)eS. Since

^ is separating, (x0l^)eS0 and (utri0l)~(x0£t). Thus (£(h)~(w t '7(h).

In order to prove (ii) we need to prepare the following lemma.

Before going into the proof, we recall Theorem 14.4 in [16]. This is

restated as follows: Let I/A be a semi-finite faithful normal weight on

M+ and crt,tER a one parameter group of *-automorphisms of M.

If a weakly dense *-subalgebra M0 of M is invariant under at, teR

and if a pair of \l/ and a satisfies the KMS-condition for M0, then

Lemma 6.1. Let ^> = ®<^ on (x)cMi for c =

/or ®cx t in ®CM4.

Proof. For any non zero ®cx t in ®CM4, since (trf'(jct)f J^ t) =

(xt(^J^) and (xt£t)~(<!;t), we can define a one parameter group of *-

automorphisms Gt = ®cap of ®cMt by

for teR. Let D denote the set of product vectors ®^t with {/el:
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rjt^^t}d c/. Since (crf(x)£|^) is continuous in teR for ^, r\eD and

xe®cMt. Since D is strongly total in 3Fc,at is weakly continuous in
teR.

For any x = (®Jx t)®(®fXJl t) and y = (®K)0®(®KKU in ®CM4,
we have a bounded function Ft(z) holomorphic in and continuous on
O^Imzgl such that

Ff(0 = &(*f'(*,)jO and

for fell. Therefore, by <£ = ®0i5 there is a bounded function F(z) =

IT/uKFXz) holomorphic in and continuous on Oglmz^l such that

and

Since the *-subalgebra of all finite linear combinations of (®jX t)®
(®f\Jl i) with xteMt and Jc ci/ is weakly dense in ®CM4 and is in-

variant under <rr, teR, it follows from the discussion preceding to this
lemma that fft = af for all teR. Q.E.D.

Proof of (ii) in Proposition 6.2. Since i/^=i/ft°of s for any xe® cM 4

of the form (®x^ 4 )®(®/xl t )
 we nave

= lim
K<=Jccj J

Q.E.D.

Theorem 6.1. Lef I;t9 <j)t, \l/t,ht and x0l as before. Let $=®$6 on

®CM4 /or c = c(^t) and \l/==\l/(x°<) on ®c'Mt for cf-^c(r}0l).

(1) Let A.sllxo^JIHxoA172^!!-1, AO.S^*, and eg a spectral projec-
tion of /iJl2 corresponding to [A"1, A] for any fixed A>1. It is suf-

ficient for ij/ to be a semi-finite faithful normal weight on (®CM4)+

that one of the following conditions holds:

(i) (x0t£ t)ES0 and (£0,)~0/o,);
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(ii) (£ l t , £u) is a non-zero reference pair of (h^2) for some

(iii) (e&)eS,(htfe&)eS and

(iv) (*.

(v) ®c/ij/t, feR is a strongly continuous one parameter unitary

group.

Under conditions from (ii) to (v) h = (Y[\\x0£t\\~
2)\\®ch0t

 IS affiliated

with (®cMt)^ and \l/=^>°h. In particular, if x0 teM^, f/?en of =

®cof<.

(2) // x0t commutes with ht for all eel, every condition in (1)

is necessary for \j/ to be a semi-finite faithful normal weight on

Proof. (1) By Proposition 6.2, (i) is a sufficient condition.

If one of the conditions from (ii) to (v) holds, we can define ®ch^(2

by Theorem 3.1 and ®cV=(®c^o(2)2 bY Theorem 3.2. We have for
all non zero ®cx in

From (ii) of Proposition 6.2, we know that h is affiliated with (®cMt)^

and \l/=(j)°h. Since ft is invertible, \j/ is faithful.

Suppose that x0t is in (M4)^. By virtue of Lemma 6.1 we have

af = ®caf<. Define a * -automorphism at of ®CM4 by

for xe® c M t . Since o'f'(j) = ftoto'f(y)/ioit f°r J ;^M t , we have

and orf is weakly continuous by Theorem 3.1. For any x = (®jX t)
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(®/\jl*oJ) and y = (®Kyl)®(®c
I\K\x0i\) with xt and yt in n^ we have

a bounded function Ft(z) holomorphic in and continuous on O f g l m z r g l

such that

f t(0 = ̂ (<tf'OO30 and FXf + 0 = ̂ (3^?'OO)

for teR, where i{/t is the linear extension of \//t to m^. Therefore,

since x0i e (MJ^ and c'^-c(^0i), there is a bounded function

F(z)=n^(ix0j2r iF.(z)
JuX

holomorphic in and continuous on 0 ̂  Im z ̂  1 such that

ijf(fft(x)y) and

Thus <7, = 0f and hence <rf = (x)cof< for all

(2) By means of the proof of necessity of (i) in Proposition 6.2,

we have (x0t£t)~(£0t)~(utri0t) for some unitary UL in M;. Then (£0i,

wf£ 0 t ) is a non-zero reference pair of (h^2). Hence by Theorem 3.1

we have every condition in (1). Q.E.D.
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