Infinite Tensor Products of Operators

By

Yoshiomi NAKAGAMI*

§1. Introduction

In the previous paper [8] we established a definition of an infinite tensor product $\otimes x_i$ of operators on $\otimes \mathcal{H}_i$ and studied its properties under the assumption: $\prod ||x_{\mu}|| < +\infty$. In some applications, for instance, to Tomita's theory [3] and to quantum field theory [13, 14], we are obliged to work with a weaker assumption.

In the present paper, we shall define an infinite tensor product \otimes ^{*c'*} c </sup>*x*_{*l*} of operators *x_i* on *H*^{*l*}_{*l*} as a closed linear mapping from an incomplete infinite tensor product space $\otimes^c \mathcal{H}_i$ to another $\otimes^{c'} \mathcal{H}_i$. We do not make any assumption on $||x_i||$, allowing unbounded closed operators x_i . The crucial assumption on (x_i) is the existence of what we call a non-zero reference pair. This assumption turns out to be sufficiently general to allow various applications and yet sufficiently strong to yield significant results. Typical result is the following:

Theorem 1.1. If x_i is positive self-adjoint and (ξ_{0_i}, η_{0_i}) is a non*zero reference pair of* (x_i) , then (ξ_{0i}) and (η_{0i}) belong to the same *equivalence class c and ®cc xt is essentially self-adjoint on the linear span of the product vectors* ®£^t *such that* £4=£⁰ ^t *except for a finite number of* ι *and* ξ_{ι} is in the domain of x_{ι} .

Terminologies here are defined as follows:

Definition 1.1. A pair (ξ_0, η_0) is a non-zero reference pair of (x_i) if the following conditions are fulfilled:

(a) (ξ_{0i}) and (η_{0i}) are C_0 -sequences;

Communicated by H. Araki, October 19, 1973.

^{*} Department of Mathematics, Tokyo Institute of Technology, Tokyo.

112 YOSHIOMI NAKAGAMI

 $\xi_0 \neq 0$, $\sum ||\xi_0||^2 - 1| < +\infty$, $\eta_0 \neq 0$, $\sum ||\eta_0||^2 - 1| < +\infty$.

(b) ξ_{0} , is in the domain of x_i and $(x_i \xi_{0i})$ is a C-sequence;

$$
\sum ||x_i \xi_{0i}||^2 - 1| < +\infty
$$

(c) $(x_i \xi_{0i})$ is equivalent to (η_{0i}) ;

$$
\sum |(x_i \xi_{0i} | \eta_{0i}) - 1| < +\infty \, .
$$

(d) η_{0i} is in the domain of x_i^* and $(x_i^* \eta_{0i})$ is a C-sequence;

$$
\sum ||x_i^* \eta_{0i}||^2 - 1| < +\infty.
$$

All assumptions except for (d) are obviously unavoidable if we want to define what can be denoted by $\otimes^{c'c} x_i$. The assumption (d) is crucial and enables all calculations go through.

The product operators \otimes ^{*c'c*}*x*_{*t*} for $c \equiv c(\xi_0)$ and $c' \equiv c(x_i \xi_0)$ is defined in three steps: On the product vector $\otimes \xi_i$ with $\xi_i = \xi_{0i}$ except for a finite number of ℓ and ξ , in the domain of x_{ℓ} , a mapping $\mathcal{O}(x_{\ell})$, ξ_{0t}) is defined by

$$
\bigodot(x_i, \xi_{0i})\bigotimes \xi_i = \bigotimes x_i \xi_i.
$$

It is then proved to be extendable linearly to the linear span of such product vectors (denoted as \odot ($D(x_i)$, ξ_{0i})). It is then proved to be closable and the closure is denoted by $\otimes^{c^c} x_i$. The assumption (d) is necessary for this closability (Remark 2.2).

All these discussions and the proof of the formula

$$
(\otimes^{c'c}x_i)^* = \otimes^{c c'}x_i^*
$$

are given in Section 2. This formula contains Theorem 1.1 as a special case $x_i^* = x_i$.

In Section 3, we give several conditions for the existence of a non-zero reference pair, one of which is closely related to Kolmogorov's three series theorem. Theorem 3.1 has a close connection with some results of Reed [13] and Streit [14].

In Section 4, we apply our result to a modular operators A_{ξ_i} and show that $\otimes^c \Lambda_{\xi_i}$ is a modular operator for $\otimes \xi_i$ where $(\xi_i) \in c$.

In Section 5, we apply our results to an infinite product μ of σ finite measures μ . Theorem in Section 3 gives us conditions for the equivalence $\mu \sim \nu$ when μ_i is equivalent to a given probability measure v_i and v is the product measure of v_i . One of the conditions reproduces a result of Hill [5].

The discussion in Section 5 is generalized to an infinite product of semi-finite faithful normal weights in Section 6. The result is used in a separate paper [6].

Notations: For standard definitions and notations for infinite tensor products of Hilbert spaces and von Neumann algebras, see [11]. Let *I* be an infinite index set and $J \subset \subset I$ indicates that *J* is a finite subset of *I*. *S* denotes the set of all *C*-sequences (ξ_i) (i.e., $\sum ||\xi_i||^2 - 1| < +\infty$) and S_0 denotes the set of all C_0 -sequences (ξ_i) (i.e., $(\xi_i) \in S$, $\xi_i \neq 0$). The word "sequence" is used for (ξ_i) even if *I* is uncountably infinite. $(\xi_i) \sim (\eta_i)$ denotes the condition $\sum |\langle \xi_i | \eta_i \rangle - 1| < +\infty$. It defines equivalence relations in S and in S_0 . The equivalence class of (ξ_i) is denoted by $c(\xi_i)$. The incomplete infinite tensor product $\mathcal{H}_c \equiv \otimes^c \mathcal{H}_i$ is spanned by $\otimes \xi$, with a fixed $c = c(\xi)$. The projection on \mathcal{H}_c in the complete infinite tensor product $\otimes \mathcal{H}$, is denoted by p_c . Let (ξ_i) , $(\eta_i) \in S$ and $c \equiv c(\xi_i)$, $c' \equiv c(\eta_i)$. (ξ_i) and *c* are *u*-equivalent (resp. *p*-equivalent) to (η_i) and *c'*, respectively, if $(\xi_i) \sim (u_i \eta_i)$ for some unitary (resp. partial isometry) $u_t \in M'_t$. This is denoted by $(\xi_t) \sim (\eta_t)$, $c \sim c'$ (resp. $(\xi_t) \sim (\eta_t)$, $c \sim c'$). If
I is countable, $c \sim c'$ and $c \sim c'$ are equivalent, [1]. Let $p(c)$ denote the central carrier of p_c in $(\otimes M_t)'$. $p(c)$ is the sum of $p_{c'}$ with $c' \sim c$, [1]. For $x_i \in B(\mathcal{H}_i)$ with $\prod ||x_i|| < +\infty$, we can define an infinite tensor product $\otimes x_i$ of operators, which is bounded on $\otimes \mathcal{H}_i$. When \mathcal{H}_c is invariant under $\otimes x_i$, the induction of $\otimes x_i$ to \mathcal{H}_c is denoted by $\otimes^c x_i$ or $(\otimes_J x_i) \otimes (\otimes_{I \setminus J}^c x_i)$ for $J \subset \subset I$.

§2. Infinite Tensor **Products** of Operators

For an operator x (resp. y) with domain $D(x)$ (resp. $D(y)$), let $D(x) \odot$ $D(y)$ denote the algebraic tensor product in $D(x) \otimes D(y)$ of $D(x)$ and *D(y)*, and $x \odot y$ the operator on $D(x) \odot D(y)$ defined by

$$
(x\bigcirc y)\xi\otimes\eta=x\xi\otimes y\eta
$$

for all $\xi \in D(x)$ and $\eta \in D(y)$.

Lemma 2.1. If x and y are essentially self-adjoint, then $x \bigcirc y$ *and* $\bar{x} \odot \bar{y}$ are essentially self-adjoint and $\bar{x} \odot \bar{y} = \bar{x} \odot \bar{y}$.

For self-adjoint operators x and y, we denote $\overline{x \odot y}$ by $x \otimes y$ in the following.

Throughout this and next sections x_i is a non zero densely defined closed operator on a Hilbert space \mathcal{H}_i , $x_i = u_i |x_i|$ is the polar decomposition of x_i , and $D(x_i)$ denotes the domain of x_i .

For $(\xi_0) \in S_0$ with $\xi_0 \in D(x_i)$ and $(x_i \xi_0) \in S$, we denote by $\bigcirc (D(x_i))$, $\xi_{0,t}$) the linear span of $\otimes \xi_t$ such that $\xi_t = \xi_{0,t}$ for all but a finite number of $\iota \in I$ and $\xi \in D(x_i)$ for all $\iota \in I$.

Lemma 2.2. Let $(\xi_0) \in S_0$ and $\xi_0 \in D(x_i)$ for all $i \in I$. If $(x_i \xi_0) \in$ *S, there exists a non zero operator x with domain* $\mathcal{O}(D(x_i), \xi_0)$ such *that* $x \otimes \xi_i = \otimes x_i \xi_i$ *for all* $\otimes \xi_i$ *in* $\odot(D(x_i), \xi_0_i)$ *.*

For $\xi = \sum_{k=1}^n \otimes \xi_k$ in $\bigcirc (D(x_i), \xi_{0_i})$, there exists a $J \subset \subset$ such that $\xi = \xi_J \otimes (\otimes_{I \setminus J} \xi_{0t})$ for $\xi_J \in \otimes_J \mathcal{H}$, and $\xi_J = \sum_{k=1}^n \otimes_j \xi_{kt}$. . Since $(\xi_0) \in S_0$, if $\xi = 0$ then $\xi_j = 0$ and so $(\otimes_j x_i)\xi_j = 0$. Therefore $\sum_{k=1}^n$ $\otimes x_i \xi_k = 0$. Thus the mapping

$$
\sum_{k=1}^{n} \otimes \xi_{k} \longmapsto \sum_{k=1}^{n} \otimes x_{k} \xi_{k}
$$

is well defined. We denote it by x. Since $(x_i \xi_{0i}) \in S$, there exists a $\otimes \xi_i$ in $\odot (D(x_i), \xi_{0,i})$ with $(x_i \xi_i) \in S_0$. Therefore x is non zero.

Q.E.D.

Definition 2.1. Let $(\xi_0) \in S_0$ and $\prod ||x_i \xi_0|| < +\infty$. And An operator $\Theta(x_i, \xi_{0i})$ on $\Theta(D(x_i), \xi_{0i})$ is defined by

$$
\bigcirc (x_i, \xi_{0i}) \equiv \begin{cases} x & \text{in Lemma 3.2} \\ 0 & \text{otherwise.} \end{cases}
$$

The following lemma is immediate from Definition 1.1.

Lemma 2.3. *The following three conditions are equivalent:*

- (i) (ξ_0, η_0) *is a non-zero reference pair of* (x_i) ;
- (ii) $\xi_{0i} \in D(x_i)$, $\eta_{0i} \in D(x_i^*), (\xi_{0i}) \in S_0$, $(\eta_{0i}) \in S_0$, $(x_i \xi_{0i}) \in S$, $(x_i^* \eta_{0i}) \in S$ *and* $(x_i \xi_{0i}) \sim (\eta_{0i})$; *and*
- (iii) (η_0, ξ_0) is a non-zero reference pair of (x_i^*) .

Example 2.1. For $0 < \varepsilon_{i} < 1$, $\varepsilon \in I$, put

$$
x_{\iota} \equiv \left(\begin{array}{cc} \varepsilon_{\iota}^{-1} & 0 \\ 0 & 1 \end{array} \right) \text{ and } \xi_{\iota} \equiv \eta_{\iota} \equiv \left(\begin{array}{c} \varepsilon_{\iota}^{2} \\ 1 \end{array} \right).
$$

If $\sum \varepsilon_i^2 < +\infty$, then $x_i > 0$, $(\xi_i)=(\eta_i) \in S_0$, $(x_i \xi_i)=(x_i \eta_i) \in S_0$ and $(x_i \xi_i) \sim$ (η_i) . But $(x_i^2 \xi_i) \notin S$.

Lemma 2.4. *If* (ξ_0, η_0) *is a non-zero reference pair of* (x_i) *, then* (i) $\bigcirc (x_1, \xi_0) \bigcirc (D(x_1), \xi_0) \subset \mathcal{H}_{c'}$ for $c' \equiv c(\eta_0_1);$

- (ii) $(\bigcirc (x_i, \xi_{0_i}))^* \supset \bigcirc (x_i^*, \eta_{0_i})$ and $\bigcirc (x_i, \xi_{0_i})$ is closable; and
- (iii) for the closure x of $\bigcirc (x_i, \xi_{0_i})$, $x*x$ is a self-adjoint operator *on* \mathcal{H}_c for $c \equiv c(\xi_{0i})$.

Proof, (i) It is clear from Lemma 2.2.

(ii) For all $\otimes \xi_i \in \bigcirc (D(x_i), \xi_0)$ and $\otimes \eta_i \in \bigcirc (D(x_i^*), \eta_0)$ we have

$$
\begin{aligned} \left(\bigodot(x_i, \xi_{0i})\otimes \xi_i | \otimes \eta_i\right) &= \left(\bigotimes x_i \xi_i | \otimes \eta_i\right) \\ &= \prod(x_i \xi_i | \eta_i) = \prod(\xi_i | x_i^* \eta_i) \\ &= \left(\bigotimes \xi_i | \otimes x_i^* \eta_i\right) = \left(\bigotimes \xi_i | \bigodot(x_i^*, \eta_{0i}) \otimes \eta_i\right). \end{aligned}
$$

Since $\odot(D(x_i), \xi_{0_i})$ is dense in \mathcal{H}_c for $c \equiv c(\xi_{0_i})$ and $\odot(D(x_i^*), \eta_{0_i})$ is dense in $\mathcal{H}_{c'}$ for $c' \equiv c(\eta_{0i})$, it follows that $\bigcirc (x_i^*, \eta_{0i}) \subset (\bigcirc (x_i, \xi_{0i}))^*$.

(iii) Since x is a closed operator of \mathcal{H}_c to $\mathcal{H}_{c'}$, x^* is an operator of $\mathcal{H}_{c'}$ to \mathcal{H}_c . Therefore x^*x is self-adjoint on \mathcal{H}_c . Q.E.D.

Lemma 2.5. Let (ξ_j, η_j) be a non-zero reference pair of (x_i) for $j=0$, 1. If $c(\xi_{0})=c(\xi_{1})$, then $c(\eta_{0})=c(\eta_{1})$ and the closure of $\bigcirc(x_{i})$, ζ_{0} *)* is the closure of \odot (x_i, ξ_{1i}) .

Proof. Since (ξ_j, η_j) is a non-zero reference pair of (x_i) , we have $(x_i \xi_{0i}) \sim (\eta_{0i})$ and $(\xi_{1i}) \sim (x_i^* \eta_{1i})$. Since $(\xi_{0i}) \sim (\xi_{1i})$ by assumption, we have $(\xi_{0i})\sim (x_i^*\eta_{1i})$ and hence $(x_i\xi_{0i})\sim(\eta_{1i})$. Therefore $(\eta_{0i})\sim(\eta_{1i})$. Let $c \equiv c(\xi_{0i})$ and $c' \equiv c(\eta_{0i})$. Since $(\xi_{0i})\sim(\xi_{1i})$ and $(x,\xi_{0i})\sim(x,\xi_{1i})$, there exists for any $\varepsilon > 0$ a $J_1 \subset \subset I$ such that

$$
\|\otimes\xi_{1\iota}-(\underset{J}{\otimes}\xi_{1\iota})\otimes(\underset{I\smallsetminus J}{\otimes}\xi_{0\iota})\|<\varepsilon
$$

and

$$
\|\otimes x_{\iota}\xi_{1\iota} - (\underset{J}{\otimes} x_{\iota}\xi_{1\iota}) \otimes (\underset{I\setminus J}{\otimes} x_{\iota}\xi_{0\iota})\| < \varepsilon
$$

for all $J_1 \subset J \subset \subset I$. Therefore $\otimes \xi_{1i}$ is in the domain of $\overline{\odot(x_i, \xi_{0i})}$ and hence $\overline{\odot(x_i, \xi_1)} \subset \overline{\odot(x_i, \xi_0)}$. The converse inclusion is proved similarly. Q.E.D.

Definition 2.2. The closed operator in Lemma 2.4 is denoted by \otimes ^{*c*}'c_{x_i}</sub>. \otimes ^{cc}x_i_i</sub> is also denoted by \otimes ^cx_i_i.

For a non-zero reference pair (ξ_0, η_0) of (x_i) if ($\otimes \xi_i \in \bigcirc(D(x_i), \xi_{0,i})$ and if $(\eta_i) \in S_0$ with $\otimes \eta_i \in \bigcirc(D(x_i^*), \eta_{0,i})$, then (ξ_i, η_i) is a non-zero reference pair of (x_i) .

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Let $s(x_i)$ be the carrier projection of x_i . Since $(\xi_{0i}) \in S$, $(x*\eta_{0i}) \in S$, $||s(x_i)|| = 1$ and $(s(x_i)\xi_{0i}) \sim (x*\eta_{0i})$, it follows from Lemma 1 in [1] that $(s(x_i)\xi_{0_i}) \in S$. Therefore there is a $(\xi_i) \in S_0$ such that $\otimes \xi_i \in \bigcirc (D(x_i), \xi_{0,i})$ and $\otimes s(x_i)\xi_i \neq 0$. Since $(\xi_i, \eta_{0,i})$ is a nonzero reference pair of (x_i) and $\bigcirc (x_i, \xi_0) = \bigcirc (x_i, \xi_i)$, we may assume that $\otimes s(x_i)\xi_{0_i} \neq 0$ by choosing such a (ξ_i) as (ξ_{0_i}) .

Let x denote the operator $\otimes^{c'c} x_i$ for $c \equiv c(\xi_{0i})$ and $c' \equiv c(\eta_{0i})$. Let

$$
\bigotimes_{I\setminus J}^{c'c}x_{\iota}=u(I\setminus J)y(I\setminus J)
$$

be the polar decomposition of $\otimes f^c_j x_k$ for any $J \subset \subset I$. Put $y_j = (\otimes_J x_k)$ \otimes *y*(*I\J*). Since *y_j* is positive self-adjoint on *H*^{*c*}_{*c*},

$$
|x| = (x^*x)^{1/2} = (y_j^*y_j)^{1/2} = y_j.
$$

Putting $u \equiv u(I)$ and $u_J \equiv (\otimes_J s(x_J)) \otimes u(I \setminus J)$, we have

$$
u|x| = \bigotimes c'c_{X_i} = (\bigotimes_{J} x_i) \bigotimes (\bigotimes_{I \setminus J} c'c_{X_i})
$$

=
$$
(\bigotimes_{J} x_i) \bigotimes u(I \setminus J) y(I \setminus J) = u_J y_J.
$$

The uniqueness of a polar decomposition implies that $u=u_j$ and u transforms \mathcal{H}_c to $\mathcal{H}_{c'}$. Since $u_j = u \neq 0$, we have $u(I \setminus J)(\otimes_{I \setminus J} \xi_{0_i}) \neq 0$ for some J. Since $(s(x_i)\xi_{0_i})\in S_0$, we have $u\otimes \xi_{0_i}\neq 0$. Accordingly there exists a $(\zeta_t) \in S$ and a $\zeta \in \mathcal{H}_{c'}$ such that $||\zeta_t|| = 1, c(\zeta_t) = c'$, $(\zeta \otimes \zeta_t) = 0$ and

$$
u\otimes \xi_{0} = \lambda \otimes \zeta_{i} + \zeta
$$

for $\lambda > 0$. If $c \neq c'$, we have an ε in (0, 1) such that for any $J_0 \subset \subset I$ there exists a $J_1 \subset \subset I \setminus J_0$ satisfying $|\prod_{J_1}(s(x_i)\xi_{0,i}|\zeta_i)| < \varepsilon$. Choose $\lambda_0 > 1$ such that $\lambda_0^{-1} \leq \prod_J ||\xi_{0}|| \leq \lambda_0$ for all J. Then there exists an $n \in \mathbb{N}$ with $\varepsilon^{n} < \lambda \lambda_0^{-1}$ and a $K \subset \subset I$ such that $|\prod_{K}(s(x_{\lambda})\xi_{0_{\lambda}}|\zeta_{\lambda})| < \varepsilon^{n}$. Since $\lambda =$ $(u_J \otimes \xi_0 \otimes \zeta_i)$, we have

$$
|(u(I\setminus K)\underset{I\setminus K}{\otimes}\xi_{0,i}|\underset{I\setminus K}{\otimes}\zeta_{i})|=\lambda|\prod_{K}(s(x_{i})\xi_{0,i}|\zeta_{i})|^{-1}>\lambda_{0},
$$

which is impossible. Thus $c = c'$.

For $\otimes \xi_i \in \bigcirc (D(x_i), \xi_{0_i}), J_2 = \{i \in I : \xi_i \neq \xi_{0_i}\}\$ and $\varepsilon > 0$, we can choose a $J_3 \subset \subset I$ with $J_2 \subset J_3$ such that

$$
\|(\bigcirc(x_{\iota},\,\xi_{0\iota})-x_K)\otimes\xi_{0\iota}\|<\varepsilon
$$

for any $J_3 \subset K \subset \subset I$, where $x_K = (\otimes_K x_i) \otimes (\otimes_{f \setminus K} 1_i)$. Since $\otimes_K x_i$ is selfadjoint and $\bigcirc_K D(x)$ is its core by Lemma 2.1, we have $\eta_K^{\pm} \in \bigcirc_K D(x)$ such that

$$
\|(\underset{K}{\otimes}x_{\iota}\pm i1)\eta_{K}^{\pm}-\underset{K}{\otimes}\xi_{\iota}\|^{2}+\|\eta_{K}^{\pm}-(\underset{K}{\otimes}x_{\iota}\pm i1)^{-1}(\underset{K}{\otimes}\xi_{\iota})\|^{2}<\varepsilon^{2}.
$$

Put $\eta^{\pm} \equiv \eta_K^{\pm} \otimes (\otimes_{I\setminus K} \xi_{0,i})$. From the above two inequalities we have

$$
\|(\bigcirc(x_{\iota}, \xi_{0\iota}) \pm i\,1)\eta^{\pm} - \otimes \xi_{\iota}\|^{-}
$$

$$
\leq \|(\bigcirc(x_{\iota}, \xi_{0\iota}) - x_{\iota})\eta^{\pm}\| + \|(\chi_{\iota} \pm i\,1)\eta^{\pm} - \otimes \xi_{\iota}\|
$$

118 YOSHIOMI NAKAGAMI

$$
\leq ||(\mathop{\otimes}_K x_i)\eta^+_{K}|| ||(\mathop{\bigcirc}_{I\setminus K} (x_i, \xi_0,)-1) \mathop{\otimes}_{I\setminus K} \xi_0, ||
$$

+
$$
||\mathop{\otimes}_{I\setminus K} \xi_0, || ||(\mathop{\otimes}_{K} x_i \pm i1)\eta^+_{K} - \mathop{\otimes}_{K} \xi, ||
$$

$$
\leq \varepsilon \{2(||\mathop{\otimes}_{K} \xi_i|| + \varepsilon) ||\mathop{\otimes}_{K} x_i \xi_0, ||^{-1} + ||\mathop{\otimes}_{I\setminus K} \xi_0, ||\}.
$$

Since there exists a $\lambda_1 > 1$ satisfying $\prod_J ||\xi_{0}|| < \lambda_1$ and $\lambda_1^{-1} < \prod_J ||x_i \xi_{0}||$ for all $J \subset I$, we conclude that the deficiency indices of $\mathcal{O}(x_i, \xi_{0_i})$ are 0, 0 and hence it is essentially self-adjoint. Furthermore $\mathcal{O}(D(x_i), \xi_{0,i})$ is a core of $x = \otimes^c x_i$.

Each ξ_0 in $\odot(D(x_i), \xi_{0_i})$ is of the form $\xi_J \otimes (\otimes_{J\setminus J} \xi_{0_i})$ for some $J \subset \subset I$ and $\xi_j \in \otimes_j \mathcal{H}_i$. Since $\otimes_j x_i$ is positive, we have

$$
(x\xi_0|\xi_0) = ((\bigotimes_j x_i)\xi_j|\xi_j) \prod_{l \searrow j} (x_i\xi_0| \xi_0) \geq 0.
$$

Since $\mathcal{O}(D(x_i), \xi_{0t})$ is a core of x, x is positive. Q.E.D.

Remark 2.1. If x_i is positive self-adjoint and if $\mathcal{O}(x_i, \xi_{0_i})$ is closable, then (ξ_{0}, ξ_{0}) is a non-zero reference pair of (x_i) .

We may assume that $(x_i \xi_0) \in S_0$. If $\Theta(x_i, \xi_0)$ is closable, then $\bigcirc_{I \setminus J}(x_i, \xi_{0_i})$ is closable for any $J \subset \subset I$ and hence

(2.1)
$$
\overline{\mathcal{O}(x_i, \xi_{0i})} = (\mathcal{D}_J x_i) \otimes (\mathcal{D}_J (x_i, \xi_{0i}))
$$

Let

$$
\overline{\bigodot_{I\setminus J}(x_{\iota},\,\xi_{0\iota})}=v(I\setminus J)x(I\setminus J)
$$

be the polar decomposition. It then follows from (2.1) that $v(I) =$ $(\otimes_J 1_i) \otimes v(I \setminus J)$. Since $(x_i \xi_{0_i}) \in S_0$, we may apply the similar argument as in the proof of Theorem 1.1 to these partial isometries and obtain that $(\xi_{0i}) \sim (x_i \xi_{0i})$. Thus (ξ_{0i}, ξ_{0i}) is a non-zero reference pair of (x_i) .

Example 2.2. For $\lambda > 0$, put

$$
x_{\iota} \equiv \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^{-1} \end{array} \right) \text{ and } \xi_{\iota} \equiv \left(\begin{array}{cc} (1 + \lambda^2)^{-1/2} \\ \lambda (1 + \lambda^2)^{-1/2} \end{array} \right).
$$

Then $(\xi_i) \in S_0$ and $(x_i \xi_i) \in S_0$. Besides, if $\lambda \neq 1$, then $(x_i^2 \xi_i) \notin S$, $(\xi_i) \sim$ $(x_i \xi_i)$ and $\Theta(x_i, \xi_{0i})$ is not closable.

Lemma 2.6. Let (ξ_{0t}, η_{0t}) be a non-zero reference pair of (x_t) and let $x_i = u_i |x_i|$ be the polar decomposition of x_i . Then

- (i) $(u_i^*u_i \xi_0) \in S$ and $(u_i u_i^* \eta_0) \in S$;
- (ii) (ξ_0, η_0) and (η_0, ξ_0) are non-zero reference pairs of (u_i) and (wf), *respectively;*
- (iii) $(\otimes^{c'c}u_i)^* = \otimes^{cc'}u_i^*$; and
- (iv) if $(u_i^*u_i\xi_0) \in S_0$ and $(u_iu_i^*\eta_0) \in S_0$, $(u_i\xi_0, u_i^*\eta_0)$ is a non-zero *reference pair of* $(x_i[*])$.

Proof. (i) Since $(x_*^*\eta_0) \in S$, we have $(|x_*^*|\eta_0) \in S$. Since $(x_*^*\eta_0) \sim$ (ξ_{0_i}) , we have $(|x_i^*| \eta_{0_i}) \sim (u_i \xi_{0_i})$. Since $||u_i|| = 1$ and $(\xi_{0_i}) \in S$, it follows from Lemma 1 in [1] that $(u_iξ_{0i}) ∈ S$ and hence $(u_i[*] u_iξ_{0i}) ∈ S$. Since $(x_i \xi_{0i}) \in S$, we have $(u_i u_i[*] \eta_{0i}) \in S$.

(ii) $(u_i \xi₀_{i}) \in S$ and $(u_i^* \eta₀_i) \in S$ are shown in the above. Since $(|x_*^*| \eta_0|) \sim (\eta_0)$ by Theorem 1.1, we have $(u_\iota \xi_0) \sim (\eta_0)$ and $(\xi_0) \sim (u_\iota^* \eta_0)$. Thus (ii) follows.

(iii) Since $\otimes^{c'c} u_i$ is bounded and since

$$
((\otimes c'c u_i)\otimes \xi_i|\otimes \eta_i) = (\otimes u_i\xi_i|\otimes \eta_i)
$$

= $\prod(u_i\xi_i|\eta_i) = \prod(\xi_i|u_i^*\eta_i)$
= $(\otimes \xi_i|\otimes u_i^*\eta_i) = (\otimes \xi_i|(\otimes^{cc'} u_i^*)\otimes \eta_i)$

for all $\otimes \xi_i \in O(D(x_i), \xi_{0,i})$ and $\otimes \eta_i \in O(D(x_i^*), \eta_{0,i})$, we have (iii).

(iv) Since $x_i^*u_i\xi_0 = |x_i|\xi_0$, and $x_iu_i^*\eta_0 = |x_i^*|\eta_0$, $(u_i\xi_0, u_i^*\eta_0)$ is a non-zero reference pair of (x_i^*) . Q.E.D.

Theorem 2.1. Let (ξ_0, η_0) be a non-zero reference pair of (x_i) and let $x_i = u_i |x_i|$ be the polar decomposition of x_i . Then

(2.2) $\otimes^{c'c} x_i = (\otimes^{c'c} u_i)(\otimes^c |x_i|)$

$$
(2.3) \qquad \qquad = (\otimes^c |x_i^*|) (\otimes^c c u_i)
$$

and (2.2) is the polar decomposition of $\otimes^{c^{\prime}c} x_{i}$, where $c \equiv c(\xi_{0,i})$

 $c' \equiv c(\eta_0)$.

Proof. Since $D(x_i) = D(|x_i|)$, we have From Theorem 1.1 we have $(\xi_{0i}) \sim (|x_i|\xi_{0i})$. Since (ξ_{0i}, η_{0i}) is a non-zero reference pair of (u_t) by Lemma 2.6 and since $||u_t|| \leq 1$, we find that $(|x_{\iota}| \xi_0, \eta_0)$ is also a non-zero reference pair of (u_{ι}) and that $\otimes^{c'} u_{\iota}$ is the closure of $\bigcirc (u_i, |x_i|\xi_{0i})$. We have

$$
\begin{aligned} (\otimes^{c'c} x_i) \otimes \xi_i &= \otimes x_i \xi_i = \otimes u_i |x_i| \xi_i \\ &= (\otimes^{c'c} u_i) \otimes |x_i| \xi_i = (\otimes^{c'c} u_i) (\otimes^c |x_i|) \otimes \xi_i \end{aligned}
$$

for all $\otimes \xi_i \in \bigcirc (D(x_i), \xi_{0_i})$. Since $\bigcirc (D(x_i), \xi_{0_i})$ is a core of $\otimes^{c'c} x_i$ and $\otimes^c |x_i|$, we have (2.2).

Since $x_i = u_i |x_i|$ is a polar decomposition of $x_i, u_i^* u_i$ is a projection onto the closure of the range of $|x_i|$. Since $(\xi_{0i}) \sim (|x_i|\xi_{0i})$, $\otimes^c u_i^* u_i \mathcal{H}_i$ is the closed linear span of

$$
\{\otimes |x_i|\xi_i: \otimes \xi_i \in \bigcirc (x_i, \xi_0)\}.
$$

Therefore the closure of the range of $\otimes^c |x_i|$ is the initial space of a partial isometry $\otimes^{c'c} u_i$. Thus (2.2) is the polar decomposition.

(2.3) is proved similarly. Since $(x,\xi_0) \in S$ and $(x_*^* \eta_0) \in S$, we may assume that $\otimes x_{\iota}\xi_{0\iota}\neq 0$ and $\otimes x_{\iota}^*\eta_{0\iota}\neq 0$ by the same reason at the beginning part of the proof of Theorem 1.1. Therefore $(u_i^*u_i\xi_0) \in S_0$ and $(u_i u_i^* \eta_0) \in S_0$ as above. From Lemma 2.6 it follows that $(u_i \xi_0, u_i^* \eta_0)$ is a non-zero reference pair of $(x_i[*])$ and hence from Theorem 1.1 that $(u_k \xi_{0_k}, u_k \xi_{0_k})$ is a non-zero reference pair of $(|x_i^*|)$. Since $|x_i| = u_i^*|x_i^*|u_i$ we have $u_iD(x_i) = u_iD(|x_i|) = D(|x_i^*|)$. This implies $(\otimes^{c^*} u_i) \odot (D(x_i), \xi_{0_i}) =$ \odot (*D*($|x_i^*|$), $u_i \xi_0$). Hence we have

$$
\begin{aligned} (\otimes^{c'c} x_i) \otimes \xi_i &= \otimes |x_i^*| u_i \xi_i = (\otimes^{c'} |x_i^*|) \otimes u_i \xi_i \\ &= (\otimes^{c'} |x_i^*|) (\otimes^{c'c} u_i) \otimes \xi_i \end{aligned}
$$

for all $\otimes \xi_i \in \bigcirc (D(x_i), \xi_{0_i})$. Since $\bigcirc (D(x_i), \xi_{0_i})$ is a core of $\otimes^{c'c} x_i$ and $(\otimes^{c'c}u_i)\odot(D(x_i), \xi_{0_i})$ is a core of $\otimes^{c'}|x_i^*|$, we have (2.3)

Q.E.D.

Remark 2.2. If $\Theta(x_i, \xi_{0_i})$ is closable, then there exists a C_0 -sequence $(\eta_{0i}) \in S_0$ such that (ξ_{0i}, η_{0i}) is a non-zero reference pair fo (x_i) . This is proved by combining Remark 1.1 and Theorem 2.1.

Theorem 2.2. *Under the same assumption as Theorem* 2.1,

$$
(2.4) \qquad (\otimes^{c'c} x_i)^* = \otimes^{c c'} x_i^*.
$$

Proof. Using (2.3) and (iii) of Lemma 2.5, we have

$$
(\otimes^{c'c}x_i)^* = (\otimes^{c'c}u_i)^*(\otimes^{c'}|x_i^*|) = (\otimes^{c\,c'}u_i^*)(\otimes^{c'}|x_i^*|).
$$

Since $x_i^* = u_i^* |x_i^*|$ and (η_{0i}, ξ_{0i}) is a non-zero reference pair of (x_i^*) by Lemma 2.3, we have $\otimes^{cc'} x_i^* = (\otimes^{cc'} u_i^*)(\otimes^{c'} |x_i^*|)$ by (2.2). This completes the proof.

Theorem 2.3. Let M_{*t*} be a von Neumann algebra on \mathscr{H}_i for each $a \in I$, and let x_i be an operator affiliated with M_i . If (ξ_0, η_0) is a $non-zero$ reference pair of (x_i) with $c(\xi_{0_i}) = c(\eta_{0_i}) = c$, then $\otimes c x_i$ is α *ffiliated* with \otimes ^cM_i.

Proof. If $\xi \in D(\otimes^c x_i)$, there exists a sequence $\{\xi_n\}_{n=1}^{\infty}$ in ξ_{0i}) such that $\xi_n \to \xi$ and $(\otimes^c x_i)\xi_n \to (\otimes^c x_i)\xi$ in \mathcal{H}_c . According to Lemma 6.10 in [2], we have $(\mathcal{D}^c M_t)' = \mathcal{D}^c M_t'$ and hence $\mathcal{D}^c M_t'$ is generated by $\otimes^c v_i$, such that v_i is a unitary in M_i and $v_i = 1$ except for a finite number of *i*. For each ξ_n of the form $\xi_n = \sum_{j=1}^m \otimes \xi_{j\tau}$ with $\otimes \xi_{j\tau} \in$ $\bigodot(D(x_i), \xi_{0_i}),$ we find $(\otimes^c v_i)\xi_n = \sum_{j=1}^m \otimes v_i \xi_{j_i}$ in $\bigodot(D(x_i), \xi_{0_i}).$ This shows that $\odot(D(x_i), \xi_{0,i})$ is invariant under such $\otimes v_i$ and hence $D(\otimes c x_i)$ is invariant under \otimes *c*M'. It follows that $\{(\otimes$ *c*_{*v*} $)$ $\xi_n\}$ _{*n*=1} is a Cauchy sequence in $\odot (D(x_i), \xi_{0_i})$ in the sense of graph of $\otimes^c x_i$. Thus

$$
(\otimes^c x_i)(\otimes^c v_i)\xi = \lim_{n \to \infty} (\otimes^c x_i)(\otimes^c v_i)\xi_n
$$

=
$$
\lim_{n \to \infty} (\otimes^c v_i)(\otimes^c x_i)\xi_n = (\otimes^c v_i)(\otimes^c x_i)\xi,
$$

which shows that $\otimes^c x_i$ is affiliated with $\otimes^c M_i$. Q.E.D.

§3. Conditions for the Existence of a Reference Pair

We shall give some conditions for the existence of a non-zero reference pair of invertible, positive and self-adjoint operators *(xt)* in the following theorem. With a slight modification on convergence, the condition (iv) is known as Kolmogorov's three series theorem and the condition (vi) is interpreted as follows: the product of characteristic functions is also a characteristic function.

Theorem 3.1. *Let x^t be an invertible, positive and self-adjoint operator on* \mathcal{H} *, for* $\iota \in I$ *and* $y_{\iota} \equiv \log x_{\iota}$ *. Let e_{* ι *} be the spectral projec*tion of x_i corresponding to the interval $[\lambda_0^{-1}, \lambda_0]$ for any fixed $\lambda_0 > 1$. The following six conditions are equivalent for $c \in C$:

- (i) there exists a non-zero reference pair (ξ_0, ξ_0) of (x_i) with $c = c(\xi_0)$;
- (ii) $(e_{i} \xi_{1i}) \in S$, $(x_{i} e_{i} \xi_{1i}) \in S$ and $(e_{i} \xi_{1i}) \sim (x_{i} e_{i} \xi_{1i})$ hold for some $(\xi_1) \in c$;
- (iii) $(e_{\iota} \xi_{\iota}) \in S$, $(x_{\iota} e_{\iota} \xi_{\iota}) \in S$ and $(e_{\iota} \xi_{\iota}) \sim (x_{\iota} e_{\iota} \xi_{\iota})$ hold for all $(\xi_{\iota}) \in c$;
- (iv) $(e_i \xi_i) \in S$, $\sum ||y_i e_i \xi_i||^2 < +\infty$ and $\sum |(y_i e_i \xi_i|\xi_i)| < +\infty$ hold for all $(\xi) \in c$;
- (v) $\xi_{2\iota} \in D(\mathbf{y}_{\iota}), \sum ||\mathbf{y}_{\iota}\xi_{2\iota}||^2 < +\infty$ and $\sum |(\mathbf{y}_{\iota}\xi_{2\iota}|\xi_{2\iota})| < +\infty$ hold for some $(\xi_{2_i}) \in c$; and
- (vi) $\otimes^c x_i^{it}$, $t \in \mathbb{R}$ is a strongly continuous one parameter unitary *group.*

Proof. (i) \Rightarrow (ii). We put $\zeta_{1i} \equiv \zeta_{0i}$ for all *c.* Since (ζ_{0i}, ζ_{0i}) is a non-zero reference pair of (x_i) , we have

$$
\sum ||x_i \xi_{1i}||^2 - 1| < +\infty \quad \text{and} \quad \sum |(x_i \xi_{1i}|\xi_{1i}) - 1| < +\infty,
$$

which imply

$$
\sum ||(1-x_i)\xi_{1i}||^2 < +\infty \quad \text{ and } \quad \sum |((1-x_i)\xi_{1i}|\xi_{1i})| < +\infty.
$$

Since $(1 - \lambda_0^{-1})(1 - e_i) \le |1 - x_i|(1 - e_i)$, we have

$$
((1-e_i)\xi_{1i}|\xi_{1i}) \leq (1-\lambda_0^{-1})^{-2}((1-x_i)^2(1-e_i)\xi_{1i}|\xi_{1i})
$$

and

$$
|((1-x_{\iota})e_{\iota}\xi_{1\iota}|\xi_{1\iota})|
$$

\n
$$
\leq |((1-x_{\iota})\xi_{1\iota}|\xi_{1\iota})| + (1-\lambda_0^{-1})^{-1}((1-x_{\iota})^2(1-e_{\iota})\xi_{1\iota}|\xi_{1\iota}).
$$

Since $||(1-x_i)e_i\xi_{1i}|| \leq ||(1-x_i)\xi_{1i}||$ and $||(1-x_i)(1-e_i)\xi_{1i}|| \leq ||(1-x_i)\xi_{1i}||$, it follows from

$$
|\|\mathbf{e}_{\iota}\xi_{1\iota}\|^2 - 1| \leq |((1 - \mathbf{e}_{\iota})\xi_{1\iota}\|^2 + |\|\xi_{1\iota}\|^2 - 1|
$$

and

$$
|\|x_{\iota}e_{\iota}\xi_{1\iota}\|^2 - 1|
$$

\n
$$
\leq \|\|e_{\iota}\xi_{1\iota}\|^2 - 1| + 2|((1 - x_{\iota})e_{\iota}\xi_{1\iota})\xi_{1\iota}\| + \|(1 - x_{\iota})e_{\iota}\xi_{1\iota}\|^2
$$

that $(e_{i} \xi_{1i}) \in S$, $(x_{i} e_{i} \xi_{1i}) \in S$ and $(e_{i} \xi_{1i}) \sim (x_{i} e_{i} \xi_{1i}).$

(ii) \Rightarrow (iii). $(e_i \xi_1) \in S$ implies $(\xi_1) \sim (e_i \xi_1)$. If $(\xi_i) \in c$, then $(\xi_i) \sim$ (ξ_1) . Therefore $(e_i \xi_i) \in S$ by Lemma 1 in [1]. Since $(\xi_i) \sim (\xi_1)$, we have $\sum ||\xi_i - \xi_{1i}||^2 < +\infty$. Since

$$
||(1-x_i)e_i\xi_i||^2 \le 2(||(1-x_i)e_i\xi_{1i}||^2 + ||(1-x_i)e_i(\xi_i-\xi_{1i})||^2)
$$

$$
\le 2(||(1-x_i)e_i\xi_{1i}||^2 + (\lambda_0-1)||\xi_i-\xi_{1i}||^2),
$$

we have $\sum ||(1 - x_i)c_i \xi_i||^2 < +\infty$. Since

$$
\begin{aligned} |((1-x_{\iota})e_{\iota}\xi_{\iota}|\xi_{\iota})| \\ &\leq |((1-x_{\iota})e_{\iota}\xi_{1\iota}|\xi_{1\iota})| + (||(1-x_{\iota})e_{\iota}\xi_{\iota}|| + ||(1-x_{\iota})e_{\iota}\xi_{1\iota}||)||\xi_{\iota} - \xi_{1\iota}|| \\ &\leq |((1-x_{\iota})e_{\iota}\xi_{1\iota}|\xi_{1\iota})| + ||(1-x_{\iota})e_{\iota}\xi_{\iota}||^2 + ||(1-x_{\iota})e_{\iota}\xi_{1\iota}||^2 + ||\xi_{\iota} - \xi_{1\iota}||^2, \end{aligned}
$$

we have $\sum |((1-x_i)e_i\xi_i|\xi_i)| < +\infty$. Consequently, $(x_ie_i\xi_i) \in S$ and $(e_i\xi_i) \sim$ (x,e,ξ) .

(iii) \Rightarrow (i). Since $(e,\xi) \in S$, we may assume that $(e,\xi) \in S_0$. Set $\xi_{0} \equiv$ $e_i \xi_i$. It then follows that $(\xi_0) \in c$ and that (ξ_0, ξ_0) is a non-zero reference pair of (x_i) .

 $(iii) \Rightarrow (iv)$. Since

$$
-x_i^{-1}(1-x_i) = -(x_i^{-1}-1) \le y_i \le x_i - 1
$$

and

$$
|y_i - (x_i - 1)|e_i \leq \lambda_1 (x_i - 1)^2 e_i
$$

for some constant $\lambda_1 > 0$, we have

$$
|(y_{\iota}e_{\iota}\xi_{\iota}|\xi_{\iota})| \leq |((x_{\iota}-1)e_{\iota}\xi_{\iota}|\xi_{\iota})| + \lambda_1 ||(x_{\iota}-1)e_{\iota}\xi_{\iota}||^2
$$

and

$$
||y_{\iota}e_{\iota}\xi_{\iota}||^{2} \leq ||(x_{\iota}-1)e_{\iota}\xi_{\iota}||^{2} + ||x_{\iota}^{-1}(1-x_{\iota})e_{\iota}\xi_{\iota}||^{2}
$$

$$
\leq (1+\lambda_{0}^{2})||(1-x_{\iota})e_{\iota}\xi_{\iota}||^{2}.
$$

Since $(e_i \xi_i) \in S$, $(x_i e_i \xi_i) \in S$ and $(\xi_i) \sim (x_i e_i \xi_i)$ from (iii), the right hand sides of these inequalities are summable over $i \in I$. Thus (iv) follows.

(iv) \Rightarrow (iii). Since $-x_i y_i \leq 1 - x_i \leq -y_i$ and $\left|1 - x_i - (-y_i)\right| e_i \leq \lambda_2 y_i^2 e_i$ for some constant $\lambda_2>0$, we have

$$
|((1-x_i)e_i\xi_i|\xi_i)| \le |(y_ie_i\xi_i|\xi_i)| + \lambda_2 \|y_ie_i\xi_i\|^2
$$

and

$$
||(1-x_i)e_i\xi_i||^2 \leq ||y_i e_i\xi_i||^2 + ||x_i y_i e_i\xi_i||^2 \leq (1+\lambda_0^2)||y_i e_i\xi_i||^2.
$$

Thus we have (iii) from (iv).

(iv) \Rightarrow (v). Putting $\xi_{2i} = e_i \xi_i$, we have (v) from (iv)

(v) \Rightarrow (vi). If $(\xi_i) \in c$, then $(\xi_i) \sim (\xi_{2i})$. Since $\log \lambda_0 (1 - e_i) \le |y_i|(1 - e_i)$, we have

$$
((1-e_{\iota})\xi_{2\iota}|\xi_{2\iota}) \leq (\log \lambda_0)^{-2} \|y_{\iota}(1-e_{\iota})\xi_{2\iota}\|^2.
$$

Since $||y_i(1-e_i)\xi_{2,i}|| \leq ||y_i\xi_{2,i}||$, we have $(e_i\xi_{2,i})\in S$. Since $(\xi_i)\sim (e_i\xi_{2,i})$, $(e_{\iota}\xi_{\iota}) \in S$. Since $(\xi_{\iota}) \sim (\xi_{2\iota}), \sum_{\iota} ||\xi_{\iota} - \xi_{2\iota}||^2 < +\infty$. Since

$$
||y_{\iota}e_{\iota}\xi_{\iota}||^{2} \le 2(||y_{\iota}e_{\iota}\xi_{2\iota}||^{2} + ||y_{\iota}e_{\iota}(\xi_{\iota} - \xi_{2\iota})||^{2})
$$

$$
\le 2(||y_{\iota}\xi_{2\iota}||^{2} + (\log \lambda_{0})^{2}||\xi_{\iota} - \xi_{2\iota}||)^{2},
$$

we have $\sum ||y_i e_i \xi_i||^2 < + \infty$. Since

$$
|(y_{\iota}e_{\iota}\xi_{\iota}|\xi_{\iota})|
$$

\n
$$
\leq |(y_{\iota}e_{\iota}\xi_{2\iota}|\xi_{2\iota})| + (||y_{\iota}e_{\iota}\xi_{\iota}|| + ||y_{\iota}e_{\iota}\xi_{2\iota}||)||\xi_{\iota} - \xi_{2\iota}||
$$

\n
$$
\leq |(y_{\iota}e_{\iota}\xi_{2\iota}|\xi_{2\iota})| + ||y_{\iota}e_{\iota}\xi_{\iota}||^2 + ||y_{\iota}e_{\iota}\xi_{2\iota}||^2 + ||\xi_{\iota} - \xi_{2\iota}||^2,
$$

we have $\sum |(y_i e_i \xi_i | \xi_i)| < +\infty$.

(i) \Rightarrow (iv). There is a countable subset I_0 of I such that $||\xi_{0i}|| = 1$, $\|x_i \xi_{0i}\|=1$ and $(x_i \xi_{0i} | \xi_{0i})=1$ for all $\iota \in I \setminus I_0$. Therefore $\|x_i \xi_{0i}-\xi_{0i}\|^2=0$ and hence $x_i \xi_{0i} = \xi_{0i}$ for all $\iota \in I \setminus I_0$. Therefore $x_i^{it} \xi_{0i} = \xi_{0i}$ for $\iota \in I \setminus I_0$. Restricting the index set to I_0 , we know that (ξ_0, ξ_0) is a non-zero reference pair of $(x_i; \, i \in I_0)$. Then $\otimes_{I_0}^{\{\xi_0\}} x_i^{it}$, $t \in \mathbb{R}$ is strongly continuous by [14] and [13]. Since $\mathcal{O}(\mathcal{H}_l, \xi_{0l})$ is dense in \mathcal{H}_c and since $\otimes^c x_i^{it}$ is bounded, it is strongly continuous unitary group in $t \in \mathbb{R}$.

(vi) \Rightarrow (i). Choose t_0 and t_1 in **R** such that t_0/t_1 is irrational. For any $(\xi_i) \in S_0$ with $c = c(\xi_i)$, there exists a countable subset I_1 of *I* such that $x_i^{it_0} \xi_i = \xi_i$ and $x_i^{it_1} \xi_i = \xi_i$ for all $i \in I \setminus I_1$. Then $x_i^{it} \xi_i = \xi_i$ for all $t \in t_0 \mathbb{Z} + t_1 \mathbb{Z}$ and $t \in I \setminus I_1$. Since $t_0 \mathbb{Z} + t_1 \mathbb{Z}$ is dense in R and since x_i^{it} is strongly continuous in $t \in \mathbb{R}$, we find that $x_i^{it} \xi_i = \xi_i$ for all $t \in \mathbb{R}$ and $\iota \in I \setminus I_1$. Applying [14] and [13] for this countable I_1 , we have (iv) and hence (i) for I_1 . Therefore there exists a non-zero reference pair (ξ'_i, ξ'_i) of (x_i) for I_1 and $(\xi'_i) \sim (\xi_i)$ for I_1 . Define $(\xi_0) \in S_0$ for *I* by $\xi_{0i} \equiv \xi_i$ for $\iota \in I \setminus I_1$ and $\xi_{0i} \equiv \xi'_i$ for $\iota \in I_1$. Then $(\xi_{0i}) \in S_0$, $c = c(\xi_{0i})$, $(x_i \xi_{0i}) \in S$ and $(\xi_{0i}) \sim (x_i \xi_{0i})$. Consequently, (ξ_{0i}, ξ_{0i}) is a non-zero reference pair of (x_t) with $c = c(\xi_0)$. $Q.E.D.$

Remark 3.1. Let x_i be invertible, positive and self-adjoint, and $y_i \equiv \log x_i$. If (ξ_{0i}, ξ_{0i}) is a non-zero reference pair of (x_i) , there exists a strong convergence vector $\otimes \xi_{2i}$ of (y_i) with $(\xi_{0i}) \sim (\xi_{2i})$ in the sense of Reed, [13].

Theorem 3.2. If (ξ_0, η_0) is a non-zero reference pair of (x_i) , *fhere exists a non-zero reference pair* (ξ_1, ξ_1) of $(x_i^*x_i)$ with $(\xi_1) \sim$ Ko.) *and*

(3.1)
$$
\otimes^c x_i^* x_i = (\otimes^{c'c} x_i)^* (\otimes^{c'c} x_i).
$$

Proof. If (ξ_0, η_0) is a non-zero reference pair of (x_i) , then (ξ_0, η_0)

 ξ_{0i}) is a non-zero reference pair of $(|x_i|)$. Since $(\text{Ker} \otimes^c x_i^* x_i)^{\perp} \subset (\text{Ker} \otimes^c x_i^*)^{\perp}$ $\otimes^{c'c} x_i$ ^{$\perp = \otimes^c (\text{Ker } x_i)^{\perp}$, we can restrict our proof over $\otimes^c (\text{Ker } x_i)^{\perp}$.} By the implication (i) \Rightarrow (vi) of Theorem 3.1, \otimes $c |x_i|$ ^{tt} is strongly continuous unitary group in $t \in \mathbb{R}$ for $c = c(\xi_0)$. Since $\otimes c(x_i^* x_i)^{it} = \otimes c|x_i|^{2it}$, by the implication (vi) \Rightarrow (i) of Theorem 3.1 we have a non-zero reference pair (ξ_1, ξ_1) of $(x^*_i x_i)$ with $c = c(\xi_1)$. Since $(x^*_i x_i \xi_1) \in S$, we may assume that $(x_i^*x_i\xi_1)\in S_0$. Since $D(x_i^*x_i)\subset D(|x_i|)$ and since

$$
||(|x_i| - 1)\xi_{1i}||^2 \le ||(x_i^*x_i - 1)\xi_{1i}||^2
$$

= $||x_i^*x_i\xi_{1i}||^2 - 2||x_i\xi_{1i}||^2 + ||\xi_{1i}||^2$,

we have $(\xi_1) \sim (|x_i|\xi_1)$. Therefore (ξ_1, ξ_1) is also a non-zero reference pair of $(|x_i|)$. Since $(x_i^*x_i\xi_1) \in S_0$ and $(x_i\xi_1) \in S_0$, we find that $(x_i\xi_1)$, ξ_{1i}) is a non zero-reference pair of (x_i^*) and

$$
(\otimes^{c'c} x_i) \bigcirc (D(x_i^* x_i), \xi_1) \subset \bigcirc (D(x_i^*), x_i \xi_1).
$$

Therefore $\odot(D(x_i^*x_i), \xi_{1i})$ is included in the domain of $(\otimes^{c'c}x_i)^*(\otimes^{c'c}x_i)$. Since (3.1) holds on \odot ($D(x_i^*x_i)$, ξ_{i}), we have

$$
\otimes^c x_*^* x \subset (\otimes^{c'c} x_*)^* (\otimes^{c'c} x_*)
$$

Since both sides are self-adjoint, (3.1) is obtained. Q.E.D.

Lemma 3.1. If $\lambda_i \geq 0$, $\prod {\lambda_i : \lambda_i \neq 0} < +\infty$, $(\xi_i) \in S_0$ and $\sum ||x_i||\xi_i |< +\infty$, then for any $0 < \varepsilon < 2^{-1}$ there exists a $J\subset \subset I$. for any $K \subset \subset I \setminus J$

$$
\|\bigotimes_{K}|x_{\iota}|\xi_{\iota}-\bigotimes_{K}\lambda_{\iota}\xi_{\iota}\|<\varepsilon.
$$

Proof. Since $\lambda_i \geq 0$, $\prod {\lambda_i : \lambda_i \neq 0} < +\infty$ and $(\xi_i) \in S_0$, there is a $\mu > 1$ with $\prod_{J} |\lambda_i \xi_i| < \mu$ for $J \subset \subset I$. Choose any $0 < \varepsilon < 2^{-1}$. Since $\sum ||x_i|\xi_i$ $-\lambda_i \xi_i$ < $+\infty$, there exists a $J\subset I$ such that for any $K\subset I\setminus J$

$$
\sum_{K} ||x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota}|| < (2\mu)^{-1}\varepsilon,
$$

which implies

INFINITE TENSOR PRODUCTS OF OPERATORS 127

$$
\|\otimes\{x_{\iota}\}_{\iota}^{\kappa} - \otimes\lambda_{\iota}\xi_{\iota}\|
$$
\n
$$
= \|\otimes\{\lambda_{\iota}\xi_{\iota} + (|x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota})\} - \otimes\lambda_{\iota}\xi_{\iota}\|
$$
\n
$$
= \|\sum_{\iota \in K} (|x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota}) \otimes (\otimes_{\kappa \xi_{\kappa} \xi_{\kappa}}) \sum_{\kappa \neq \iota \atop k \neq \iota} (|x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota}) \otimes (|x_{\iota'}|\xi_{\iota'} - \lambda_{\iota'}\xi_{\iota'}) \otimes (\otimes_{\kappa \xi_{\kappa} \xi_{\kappa})
$$
\n
$$
+ \sum_{\iota \neq \iota \atop k \neq \iota, \iota'} (|x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota}) \otimes (|x_{\iota'}|\xi_{\iota'} - \lambda_{\iota'}\xi_{\iota'}) \otimes (\otimes_{\kappa \xi_{\kappa} \xi_{\kappa} \xi_{\kappa})
$$
\n
$$
+ \cdots + \otimes (|x_{\iota}|\xi_{\iota} - \lambda_{\iota}\xi_{\iota})| < \varepsilon.
$$
\nQ.E.D.

In the following we designate the spectrum and the point spectrum of a closed operator x by $\sigma(x)$ and $\sigma_p(x)$, respectively.

Let $z = u|z|$ be the polar decomposition of z. Let *e* be the spectral projection of |z| corresponding to $[\lambda_0 - \varepsilon, \lambda_0 + \varepsilon]$ for any given $\varepsilon > 0$. If $\lambda_0 \in \sigma(|z|) \setminus \sigma_p(|z|)$, there exists a non zero vector ξ such that $e\xi = \xi$, $u^*u\xi = \xi$, $z\xi \neq 0$, which implies

$$
|||z|\xi - \lambda \xi|| < \varepsilon ||\xi||
$$
 and $|||z^*|u\xi - \lambda u\xi|| < \varepsilon ||\xi||$,

whenever $|\lambda - \lambda_0| < \varepsilon$.

*R** denotes the set of all positive numbers. Theorem 1.1 in [7] is then restated as follows: Let y_n , $n \in \mathbb{N}$ and y be invertible, positive and self-adjoint operators on a separable Hilbert space. Then the following conditions are equivalent when *n* tends to $+\infty$:

- (i) $f(y_n)$ converges strongly to $f(y)$ for every $f \in C(\mathbb{R}^*)$ which vanishes at 0 and $+\infty$;
- (ii) $f(y_n)$ converges strongly to $f(y)$ for every bounded $f \in C(\mathbb{R}^*);$ and
- (iii) y_n^{it} converges strongly to y^{it} for all $t \in \mathbb{R}$.
- Using this we have

Theorem 3.3. (i) Assume that $x_i \neq 0$, $x_i=u_i|x_i|$ is the polar decom*position, and there is a* $\lambda_i \in \sigma(|x_i|)$ *for each* $i \in I$ *such that* $\prod_i {\lambda_i : \lambda_i \neq 0}$ < $+\infty$ and $\{c \in I : \lambda_{\iota} \notin \sigma_p(|x_{\iota}|)\}$ is countable. If $\sum |\lambda_{\iota} - 1| < +\infty$, *exists a non zero reference pair* (ξ_{0_i}, η_{0_i}) of (x_i) satisfying $u_i^*u_i\xi_{0_i} =$ $\xi_{0i}, \eta_{0i} = u_i \xi_{0i}$ and

128 YOSHIOMI NAKAGAMI

$$
\sum ||x_{\iota}|\xi_{0\iota}-\lambda_{\iota}\xi_{0\iota}||<+\infty.
$$

(ii) If (ξ_0, η_0) is a non-zero reference pair of (x_i) with (3.2) *for some* $\lambda_i \geq 0$ *, then*

$$
(3.3) \qquad (\otimes^{c'c} x_i) \xi = \lim_{J \subset \subset I} y_J \xi
$$

for any $\xi \in D(\otimes^{c^*c}x_i)$, where w_t is a partial isometry with the initial space $\{\lambda \xi_{0_i}: \lambda \in \mathbb{C}\}$ and the final space $\{\lambda u_i \xi_{0_i}: \lambda \in \mathbb{C}\}$; $y_i \equiv x_i, i \in J$ and $y_{\kappa} \equiv \lambda_{\kappa} w_{\kappa}$, $\kappa \in I \setminus J$ for each $J \subset \subset I$; $y_J \equiv \otimes^{c'c} y_{\iota}$.

(iii) Assume that \mathcal{H}_i is separable and x_i is invertible, positive *and self-adjoint on* \mathcal{H}_i *. If* (ξ_0, ξ_0) *is a non-zero reference pair of* (x_i) satisfying $(\xi_{0i}) \in c$, then $\otimes^c x_i^{it}$ is unitary on \mathscr{H}_c and

$$
(3.4) \qquad (\otimes^c x_i)^{it} = \otimes^c x_i^{it}
$$

for all $t \in \mathbb{R}$ *.*

Proof. (i) Let $I_p = \{ \iin I : \lambda_i \notin \sigma_p(|x_i|) \}$ and $I_0 = \{ \iin I : \lambda_i = 0 \}$. Since I_p is countable, I_p is identified with N. Let e_m , $m \in \mathbb{N}$ be the spectral projection of $|x_m|$ corresponding to $\{\lambda \in \mathbb{R}_+^* : |\lambda - \lambda_m| \leq \varepsilon^{m+1}\}$ for any fixed $0 < \varepsilon < 2^{-1}$. By the discussion preceding to this theorem there is a unit vector ξ_{0m} such that $e_m \xi_{0m} = \xi_{0m}$, $u_m^* u_m \xi_{0m} = \xi_{0m}$, $x_m \xi_{0m} \neq 0$ and

$$
\sum_{I_p} \|\,|x_{\iota}|\,\xi_{0\iota} - \lambda_{\iota}\xi_{0\iota}\| < +\infty
$$

For $\iota \in I \setminus I_p$ there is a unit vector ξ_{0i} in $D(x_i)$ with $|x_i|\xi_{0i} = \lambda_i \xi_{0i}$. Therefore $(\xi_{0i}) \in S_0$ and (3.2) is obtained. Putting $\eta_{0i} \equiv u_i \xi_{0i}$ for all $i \in I$, we have $(\eta_{0i}) \in S$.

If $\sum |\lambda_i-1| < +\infty$, namely, if $I_0 \subset \subset I$ and $\prod {\lambda_i : \ell \notin I_0} > 0$, then

$$
\sum ||x_i \xi_{0i}|| - 1| \leq \sum ||x_i| \xi_{0i} - \lambda_i \xi_{0i}|| + \sum ||\lambda_i \xi_{0i}|| - 1| < +\infty,
$$

which implies $(x_i\xi_0_i)\in S$ and $(x_i^*\eta_0)=(|x_i|\xi_0)\in S$. Since $\sum|\lambda_i-1|<+\infty$, $(\lambda_{\iota} \xi_{0i}) \in S$, $(\bar{\lambda}_{\iota} \eta_{0i}) \in S$ and $(\bar{\lambda}_{\iota} \eta_{0i}) \sim (\eta_{0i})$. Since $(\vert x_{\iota} \vert \xi_{0i}) \sim (\lambda_{\iota} \xi_{0i})$ by (3.2), we have $(x_i \xi_{0i}) \sim (\bar{\lambda}_i \eta_{0i})$ and hence $(x_i \xi_{0i}) \sim (\eta_{0i})$. Therefore (ξ_{0i}, η_{0i}) is a non zero reference pair of (x_i) with desired properties, if we replace ξ_{0i} with $i \in I_0$ by any vector satisfying $u_i^* u_i \xi_{0i} = \xi_{0i}$.

(ii) We use the same notations I_p , I_0 and e_m as above. From (3.2), if $\sum |\lambda_i - 1| = +\infty$, then $\prod ||x_i \xi_i|| = 0$ for all $\bigotimes \xi_i \in \bigcirc (D(x_i), \xi_0)$ and $v_1=0$. Thus (3.3) holds.

If $\sum |\lambda_i - 1| < +\infty$, there is a δ in $(0, 2^{-1})$ such that $\delta < \prod_K \lambda_i <$ δ^{-1} for any $K \subset I \setminus I_0$. Choose an $\varepsilon > 0$ with $\varepsilon < \delta$. From the definition of e_m , we have $(\lambda_m - \varepsilon^{m+1})e_m \leq |x_m|e_m$. Since $0 < \prod_{m \in I_p \setminus I_0} (\lambda_m - \varepsilon^{m+1})$ $+\infty$, there exists a $0 < \mu < 1$ such that $\mu < \prod_K (\lambda_m - \varepsilon^{m+1}) < \mu^{-1}$ for any $K \subset I_p \backslash I_0$. Since $e_m \xi_{0m} = \xi_{0m}$ for $m \in I_p$, if $K' \subset I_p \backslash I_0$, then

$$
\mu(\underset{K'}{\otimes}w_i^*w_i)\leq \mu(\underset{K'}{\otimes}e_m)\leq \underset{K'}{\otimes} \{(\lambda_m-e^{m+1})e_m\}\leq \underset{K'}{\otimes}|x_i|,
$$

and if $K'' \subset I \setminus (I_p \cup I_0)$, then

$$
\delta(\mathop{\otimes}_{{\cal K}''}{\cal W}_\iota^*{\cal W}_\iota)\!\leq\! \mathop{\otimes}_{{\cal K}''}(\lambda_\iota{\cal W}_\iota^*{\cal W}_\iota)\!\leq\! \mathop{\otimes}_{{\cal K}''}\!\!|x_\iota|\,.
$$

Since $\delta \mu < \min \{\delta, \mu\} < 1$ and $\delta \sigma_{I_0} \lambda_i w_i^* w_i = 0$, we have

$$
(3.5) \qquad (\delta \mu)^2 y_J^* y_J \leq (\otimes^{c'c} x_i)^* (\otimes^{c'c} x_i)
$$

on $D(\otimes^{c'c}x_i)$ for every $J \subset \subset I$. Since $\odot(D(x_i), \xi_{0,i})$ is a core of $\otimes^{c'c}x_i$ there exists a sequence $\{\xi_n\}_{n=1}^{\infty}$ in $\Theta(D(x_i), \xi_{0_i})$ which converges to ξ in the sense of the graph of $\otimes^{c'c} x_i$. It follows from (3.5) that $\{\xi_n\}_{n=1}^{\infty}$ is a Cauchy sequence in the sense of the graph of y_j . Therefore, since y_j is closed, we have $\xi \in D(y_j)$. For the above $\varepsilon > 0$ there exists an n_0 and a $J_0 \subset \subset I$ such that for every $n \ge n_0$ and for every $J \subset \subset I$ with $J_0 \subset J$

$$
\|(\otimes^{c'c}x_i)(\xi_n-\xi)\|<(2+2(\delta\mu)^{-1})^{-1}\varepsilon
$$

and

$$
||(y_J - \otimes^{c'c} x_i)\xi_{n_0}|| < 2^{-1}\varepsilon.
$$

Then we have

$$
\begin{aligned} ||(y_J - \otimes^{c'c} x_i)\xi|| \\ &\leq ||y_J(\xi - \xi_{n_0})|| + ||(y_J - \otimes^{c'c} x_i)\xi_{n_0}|| + ||(\otimes^{c'c} x_i)(\xi_{n_0} - \xi)|| \\ &\leq (1 + (\delta \mu)^{-1}) ||(\otimes^{c'c} x_i)(\xi_{n_0} - \xi)|| + ||(y_J - \otimes^{c'c} x_i)\xi_{n_0}|| < \varepsilon \end{aligned}
$$

for $\xi \in D(\otimes^{c'c}x_i)$.

(iii) Since (ξ_{0t}, ξ_{0t}) is a non-zero reference pair of (x_t) , we have and $(x,\xi) \sim (\xi)$ for all non zero $\otimes \xi$, in $\odot (D(x_i), \xi_0)$. Since there exists a $\lambda > 1$ with $\prod_{\nu} ||x_{\iota} \xi_{\iota}|| < \lambda$ for all *K*. Since $(x_{\iota} \xi_{\iota})$. (ξ_i) , it follows from Lemma 3.3 in [8] that for any ε in (0, 1) there exists a $J_0 \subset \subset I$ such that

$$
\|\bigotimes_j x_\iota \xi_\iota - \bigotimes_j \xi_\iota\| < \varepsilon/\lambda
$$

for all $J\subset I\backslash J_0$. Thus

$$
\|\otimes x_{\iota}\xi_{\iota} - (\underset{K}{\otimes} x_{\iota}\xi_{\iota})\otimes (\underset{K}{\otimes} \xi_{\iota})\| = \|\underset{K}{\otimes} x_{\iota}\xi_{\iota}\| \|\underset{I\smallsetminus K}{\otimes} x_{\iota}\xi_{\iota} - \underset{I\smallsetminus K}{\otimes} \xi_{\iota}\| < \varepsilon
$$

for all K with $J_0 \subset K \subset \subset I$.

Assume first that *I* is countable. Let $I = N$ and $I_n = \{1, ..., n\}$. Denote $y \equiv \otimes^c x_i$ and $y_n \equiv y_{I_n}$ (or $y_n \equiv x_{I_n}$), where we take $\lambda_i w_i = 1$. Since y_n and y are self-adjoint, $||(y_n-i1)^{-1}|| \le 1$ and $||(y-i1)^{-1}|| \le 1$. Let $C(x) \equiv (x + i1)(x - i1)^{-1}$. Let $D \equiv \{(y - i1)\xi : \xi \in \mathcal{O}(D(x_i), \xi_{0,i})\}$. Since $\mathcal{O}(D(x_i), \xi_{0,i})$ is a core of y by Theorem 1.1, D is dense in \mathcal{H}_c . For any $\eta \in D$

$$
C(y_n)\eta - C(y)\eta
$$

= $(y_n + i1)\{(y_n - i1)^{-1} - (y - i1)^{-1}\}\eta + (y_n - y)(y - i1)^{-1}\eta$
= $(y_n + i1)(y_n - i1)^{-1}(y - y_n)(y - i1)^{-1}\eta + (y_n - y)(y - i1)^{-1}\eta$.

Since η is of the form $(y - i)$ ξ for some $\xi \in \mathcal{O}(D(x_i), \xi_{0_i})$,

$$
||C(y_n)\eta - C(y)\eta|| \leq 2||(y_n - y)\xi||,
$$

which converges to 0. Since *D* is dense in \mathcal{H}_c and since $C(y_n)$ and $C(y)$ are bounded, $C(y_n)$ converges strongly to $C(y)$. Since \mathcal{H}_c is separable and since y_n and y are positive and self-adjoint, $f(y_n)$ converges strongly to $f(y)$ for every bounded function $f \in C(\mathbb{R}^*)$ by [7, Theorem 1.1]. Since $f(\lambda) = \lambda^{it}$ for $\lambda \in \mathbb{R}^*$ and $t \in \mathbb{R}$ is a bounded continuous function in λ , it follows that

$$
(\otimes^c x_i)^{it}\xi = \lim_{n \to \infty} (\bigotimes_{I_n} x_i^{it}\xi_i) \otimes (\bigotimes_{I \setminus I_n} \xi_{0_i})
$$

$$
= \otimes x_i^{i\,t} \xi_i = (\otimes^c x_i^{i\,t}) \xi
$$

for any $\xi \in \mathcal{O}(D(x_i), \xi_{0_i})$ with $\xi = \otimes \xi_i$.

For a general *I* we choose a countable $I_0 \subset I$ such that $x_i \xi_{0i} = \xi_{0i}$. for $c \in I \setminus I_0$. Since $I_0 \cup J$ is countable, we have

$$
(\otimes^c x_i)^{it}\xi = ((\underset{I_0 \cup J}{\otimes} (\xi_0_i)_x_i)^{it} \otimes (\underset{I \setminus (I_0 \cup J)}{\otimes} (\xi_0_i)_x_i)^{it})\xi
$$

= ((\underset{I_0 \cup J}{\otimes} (\xi_0_i)_x_i^t) \otimes (\underset{I \setminus (I_0 \cup J)}{\otimes} (\xi_0_i)_x_i^t))\xi = (\otimes^c x_i^t)\xi

for any $\xi \in \mathcal{O}(D(x_i), \xi_{0_i})$ of the form $\xi = \xi_J \otimes (\otimes_{I \setminus J} \xi_{0_i})$ for some $J \subset \subset I$ and $\xi_j \in \otimes_j \mathcal{H}_i$. Thus we have (3.4). $Q.E.D.$

Remark 3.2. If (ξ_0, η_0) is a non-zero reference pair of (x_i) with (3.2) and if $\sum |\lambda_i-1| < +\infty$, we have

$$
(3.6) \qquad (\otimes^{c'c} x_i) = \lim_{J \subset c} x_J \xi
$$

for any $\xi \in \bigcirc (D(x_i), \xi_{0_i})$, where $x_j = (\otimes_J x_i) \otimes (\otimes_f^c \zeta_j \lambda_i u_i)$ for each $J \subset \subset I$

Remark 3.3. Assume the same assumption as the above (iii). Let (ξ_0, ξ_0) be a non-zero reference pair of (x_t) satisfying $(\xi_0) \in c$. Put $y_i \equiv \log x_i$ and $\pi_i^c(y_i) \equiv y_i \otimes (\otimes_{f \setminus \{i\}} 1_{\kappa})$. Then

$$
\log \otimes^c x_i = \sum \pi_i^c(y_i),
$$

where the sum of the right hand side is taken in the sense of Streit, [14].

Lemma 3.2. Let z be a positive and self-adjoint operator. If $\varepsilon > 0$ *and* $||z\xi - \lambda \xi|| \le \varepsilon||\xi||$ *for some non zero* $\xi \in D(z)$ *, then there exists a* $\lambda_0 \in \sigma(z)$ such that $|\lambda - \lambda_0| \leq \varepsilon$ and $||z\xi - \lambda_0\xi|| \leq 2\varepsilon ||\xi||$.

Proof. Let *e* be the spectral projection of z corresponding to $[\lambda - \varepsilon, \lambda + \varepsilon]$. Put $\xi_0 = e\xi$. If $\xi_0 = 0$, then

$$
||z\xi - \lambda \xi|| = ||(z - \lambda 1)(1 - e)\xi|| > \varepsilon ||(1 - e)\xi|| = \varepsilon ||\xi||,
$$

which is impossible. Therefore $\xi_0 \neq 0$. Hence $[\lambda - \varepsilon, \lambda + \varepsilon] \cap \sigma(z)$ is non empty and for any λ_0 in this intersection we have

$$
||z\xi - \lambda_0 \xi|| \leq ||z\xi - \lambda \xi|| + ||(\lambda - \lambda_0)\xi|| \leq 2\varepsilon ||\xi||.
$$

Q.E.D.

Corollary 3.1. If $x_i \neq 0$ for all $e \in I$ and if $\sum ||x_i|\xi_{1i}-\xi_{1i}|| < +\infty$ *for some* $(\xi_1) \in S_0$ *, then there is a* $\lambda_i \in \sigma(|x_i|)$ *for each* $i \in I$ *such that* $0 < \prod \lambda_i < +\infty$ and $\{c \in I : \lambda_i \notin \sigma_p(|x_i|)\}$ is countable.

Proof. By Lemma 3.2, there exists a $\lambda_i \in \sigma(|x_i|)$ such that $|1 - \lambda_i| \leq$ $|||x_{i}|\xi_{1i}-\xi_{1i}||$ and $|||x_{i}|\xi_{1i}-\lambda_{i}\xi_{1i}|| \leq 2|||x_{i}|\xi_{1i}-\xi_{1i}|| ||\xi_{1i}||$. Then $\sum|1-\lambda_{i}| <$ $+\infty$ and $\sum ||x_i|\xi_{1i} - \lambda_i\xi_{1i}|| < +\infty$. Except for a countable number of $\alpha \in I$, we have $|x_{\iota}| \xi_{1\iota} = \lambda_{\iota} \xi_{1\iota}$. Q.E.D.

Example 3.1. For $0 < \varepsilon, < 1, \varepsilon \in I$, put

$$
x_{\iota} \equiv \begin{pmatrix} 1+\varepsilon_{\iota} & 0 \\ 0 & 1-\varepsilon_{\iota} \end{pmatrix} \text{ and } \zeta_{\iota} \equiv \begin{pmatrix} 2^{-1/2} \\ 2^{-1/2} \end{pmatrix}.
$$

If $\sum \varepsilon_i^2 < +\infty$ and $\sum \varepsilon_i = +\infty$, then $(\xi_i) \in S_0$, $(x_i \xi_i) \in S_0$, $(x_i^2 \xi_i) \in S_0$ and $\sum ||x_i \xi_i - \xi_i||^2 < +\infty$. Thus we have a situation where we have a nonzero reference pair (ξ_0, ξ_0) of (x_i) and yet there is no $\{\lambda_i \in \sigma(x_i): i \in I\}$ satisfying $0 < \prod \lambda_i < +\infty$.

For (ξ_i) and (η_i) in S, $(\xi_i)_{\infty}(\eta_i)$ denotes the condition $\sum ||(\xi_i|\eta_i)| - 1| <$ $+\infty$, which is the weak equivalence due to von Neumann [11].

Remark 3.4. If $(\xi_i) \in S_0$, $(\eta_i) \in S_0$ and $\sum ||\xi_i - \eta_i||^2 < +\infty$, then ($(\eta_{\iota}).$

Indeed, since $(\xi_i) \in S_0$ and $(\eta_i) \in S_0$, we have sup $||\xi_i|| < +\infty$ and sup $\|\eta_{\iota}\| < +\infty$, so that $\sum |\|\xi_{\iota}\| \|\eta_{\iota}\| - 1| < +\infty$. Since $\sum |\xi_{\iota} - \eta_{\iota}\|^2 < +\infty$, we have $\sum \left[Re(\xi_i|\eta_i)-1\right]<+\infty$. Therefore

$$
\sum {\{\text{Im}(\xi_{\iota}|\eta_{\iota})\}^2} = \sum {\{|\langle \xi_{\iota}|\eta_{\iota}\rangle|^2 - |\text{Re}(\xi_{\iota}|\eta_{\iota})|^2\}}
$$

\n
$$
\leq \sum {\{\|\xi_{\iota}\|^2 \|\eta_{\iota}\|^2 - |\text{Re}(\xi|_{\iota}\eta_{\iota})|^2\}}
$$

\n
$$
\leq 2(\sup{\|\xi_{\iota}\| \|\eta_{\iota}\|}) \sum (|\|\xi_{\iota}\| \|\eta_{\iota}\| - 1| + |\text{Re}(\xi_{\iota}|\eta_{\iota}) - 1|) < +\infty
$$

and there exists a $J \subset \subset I$ such that $2^{-1} < Re(\xi_i|\eta_i) < 2$ for $i \in I \setminus J$. Since

$$
|(\xi_{\iota}|\eta_{\iota})| = \text{Re}(\xi_{\iota}|\eta_{\iota})|1 + \{\text{Im}(\xi_{\iota}|\eta_{\iota})\}^2 \{\text{Re}(\xi_{\iota}|\eta_{\iota})\}^{-2} |^{1/2}
$$

$$
\leq \text{Re}(\xi_{\iota}|\eta_{\iota}) + \{\text{Im}(\xi_{\iota}|\eta_{\iota})\}^2
$$

for all $i \in I \setminus J$, we have

$$
\Sigma ||(\xi_{\iota}|\eta_{\iota})| - 1|
$$

\n
$$
\leq \Sigma ||(\xi_{\iota}|\eta_{\iota})| - \text{Re}(\xi_{\iota}|\eta_{\iota})| + \Sigma |\text{Re}(\xi_{\iota}|\eta_{\iota}) - 1| < +\infty.
$$

Remark 3.5. Let $(\xi_i) \in S_0$ and $(\eta_i) \in S_0$. Define $(\xi_i)_{\gamma_i}(\eta_i)$ for some fixed $n \ge 1$ by $\sum |\xi_i - \eta_i|^{n} < +\infty$. Then " \sim " is an equivalence relation. If $(\xi_i)_{\Upsilon}(\eta_i)$, then $(\xi_i) \sim (\eta_i)$. If $(\xi_i) \sim (\eta_i)$, then $(\xi_i)_{\Upsilon}(\eta_i)$. If $(\xi_i)_{\Upsilon}(\eta_i)$ then $(\xi_i)_{\infty}(\eta_i)$. In general, if $(\xi_i)_{\infty}(\eta_i)$ for $n \ge 2$, then $\sum ||(\xi_i|\eta_i)|-1|^{n/2}$ $+\infty.$

§4. Modular Operator

Let \mathcal{H}_i denote the completion of a left Hilbert algebra \mathfrak{A}_i , which is supposed to have a normalized idempotent element ξ_{0t} with $\xi_{0t}^* = \xi_{0t}$.

Definition 4.1. An infinite tensor product of left Hilbert algebras \mathfrak{A}_i is an involutive algebra of all $\otimes \xi_i$ in $\otimes \mathcal{H}_i$ with $\xi_i \in \mathfrak{A}_i$ and $\{i \in \mathcal{I}_i\}$ $I: \xi_i \neq \xi_{0i}$ $\subset \subset I$ whose involution and product are defined by

$$
(\otimes \xi_i)^* = \otimes \xi_i^* \quad \text{and} \quad (\otimes \xi_i)(\otimes \eta_i) = \otimes \xi_i \eta_i.
$$

This is denoted by $\odot(\mathfrak{A}_{\iota}, \xi_{0\iota}).$

Lemma 4.1. $\odot (\mathfrak{A}_i, \xi_{0i})$ is a left Hilbert algebra.

Proof. Let $\mathfrak{A} = \mathfrak{O}(\mathfrak{A}_i, \xi_{0_i})$. Since $\xi_{0_i} = \xi_{0_i}^* = \xi_{0_i}^2$, it follows that $(\eta | \xi^* \zeta)$ for ξ , η and ζ in \mathfrak{A} and that for each $\xi \in \mathfrak{A}$, the mapping: $\eta \in \mathfrak{A} \mapsto \xi \eta \in \mathfrak{A}$ is continuous. Since \mathfrak{A}_i^2 is dense in \mathfrak{A}_i and $\xi_{0_i}^2 =$ $\xi_{0,t}$, \mathfrak{A}^2 is dense in \mathfrak{A} . Define S_t and S by $S_t\xi_t = \xi_t^*$ for $\xi_t \in \mathfrak{A}_t$ and $S(\otimes_{i} \xi) = \otimes S_i \xi_i$ for $\otimes \xi_i \in \mathfrak{A}$. Since S_i is closable in \mathcal{H}_i and $\xi_{0i} = \xi_{0i}^*$, it follows that (ξ_0, ξ_0) is a non-zero reference pair of \bar{S}_i . Therefore *S* is closable by Lemma 2.4. Q.E.D,

Remark 4.1. In order that $\mathcal{O}(\mathfrak{A}_t, \xi_0)$ is a left Hilbert algebra, we have only to assume the existence of $\xi_{0} \in \mathfrak{A}_t$ for each $\iota \in I$ which satisfies that $(\xi_{0_i}) \in S_0$, $(\xi_{0_i}^2) \in S_0$, $(\xi_{0_i}) \sim (\xi_{0_i}^2)$ and that (ξ_{0_i}, ξ_{0_i}) is a non-zero reference pair of (\bar{S}_i) . In this case we can define $\otimes^c \bar{S}_i$ and $\otimes^c S_i^*$, which fulfill $\otimes^c S^*_i \overline{S}_i = (\otimes^c S^*_i)(\otimes^c \overline{S}_i)$ for $c \equiv c(\xi_{0i}).$

It is clear from the definition that $\odot(\mathfrak{A}_{\iota}, \xi_{0\iota})$ is dense in $\otimes^c \mathcal{H}_{\iota}$. If we define a left representation π of $\mathcal{O}(\mathfrak{A}_i, \xi_{0i})$ on $\otimes^c \mathcal{H}_i$ by

$$
\pi(\otimes \xi_i)\otimes \eta_i=\otimes \xi_i\eta_i,
$$

then $\pi(\mathcal{O}(\mathfrak{A}_i, \xi_{0_i}))'' = \mathcal{O}^c \pi_i(\mathfrak{A}_i)'$, where π_i is a left representation of \mathfrak{A}_i on \mathcal{H}_i . This is proved by the similar argument as the proof of Corollary 3.3 in [9].

Let \mathfrak{B}_{i} denote a Tomita algebra dense in \mathcal{H}_{i} with the modular automorphism $A_i(z)$ for $i \in I$. If $A_i(z)\xi_{0i} = \xi_{0i}$ for all $i \in I$ and $z \in C$, we can define a modular automorphism $\Delta(z)$ on $\Theta(\mathfrak{B}_{i}, \xi_{0i})$ by

$$
\varDelta(z)(\otimes \xi_i) = \otimes \varDelta_i(z)\xi_i
$$

for $\otimes \xi_i$ in $\odot (\mathfrak{B}_i, \xi_{0,i})$. Here we denote by Λ_i the modular operator on \mathcal{H}_t associated with the modular automorphism $\Lambda_t(z)$, $z \in \mathbb{C}$. Since (ξ_{0t}, ξ_{0t}) is a non-zero reference pair of (A_t) , we can define by Theorem 1.1 a positive self-adjoint operator $\Delta = \otimes^c \Delta$, in $\otimes^c \mathcal{H}$, for $c \equiv c(\xi_0)$. Here we suppose that \mathcal{H}_i is separable for all $i \in I$. Since $\odot (\mathfrak{B}_i, \xi_{0,i})$ is a core of $\mathcal{Q}^c \mathcal{A}_i$, we have $\mathcal{A}^{it} = \mathcal{Q}^c \mathcal{A}_i^{it}$ by Theorem 3.3. It then follows from the uniqueness of modular operator that *A* is the modular operator associated with $A(z)$, $z \in \mathbb{C}$.

Lemma 4.2. Suppose that \mathcal{H} , is separable for all $i \in I$. If $\Lambda_i(z) \xi_{0,i}$ $=\xi_0$, for all $\iota \in I$ and $z \in C$, $\odot (\mathfrak{B}_i, \xi_0)$ is a Tomita algebra and $\Delta = S^* \overline{S}$.

Proof. Since $S_i^* \xi_{0i} = S_i^* \bar{S}_i \xi_{0i} = A_i \xi_{0i} = A_i (1) \xi_{0i} = \xi_{0i}$, we have $S^* \bar{S}(\otimes \xi_i)$ $=\otimes S^*_{i} \overline{S}_{i} \xi_i = \otimes \Lambda_{i} \xi_i$ for $\otimes \xi_i$ in $\odot (\mathfrak{B}_{i}, \xi_0_i)$.

Corollary 4.1. Let $\omega_i \equiv \omega_{\xi_0}$, and $\omega \equiv \otimes \omega_i$ on $\otimes^c M$, for $c = c(\xi_0)$. *If* \mathfrak{A}_i is separable for all $i \in I$, then $\sigma_i^{\omega} = \otimes^c \sigma_i^{\omega_i}$.

The separability assumption of \mathfrak{A}_i in the above corollary will be

omitted in Lemma 6.1.

§5. Infinite Product of σ -finite Measures

We shall apply the results of § 3 to the infinite product of σ -finite measure spaces and give a similar result as Hill's.

Throughout this section we assume the index set I to be countably infinite.

Let $(\Omega_i, \mathcal{F}_i, v_i)$, $\iota \in I$ be a probability space. Put $(\Omega, \mathcal{F}) = \prod (\Omega_i, \mathcal{F}_i)$, $v = \prod v_i$, $\mathcal{H}_i = L^2(\Omega_i, \mathcal{F}_i, v_i)$ and $Z_i = L^{\infty}(\Omega_i, \mathcal{F}_i, v_i)$. Then (Ω, \mathcal{F}, v) is a probability space. When a vector ξ in \mathcal{H} , belongs to Z_i , we write the operator by $\pi_i(\xi)$. For an η in \mathcal{H}_i we denote by ω_{η} a measure on Ω_i or a positive linear form on Z_i dfiened by $\omega_{\eta}(x) = (x\eta|\eta)$ for all $x \in Z_{\iota}$.

Let μ_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$ with $\mu_i \ll v_i$ and $h_i = d\mu_i/dv_i$. For $\xi_i \in D(h_i^{1/2})$ with $h_i^{1/2} \xi_i \neq 0$, we define $\xi_{0_i} = ||\xi_i||^{-1} \xi_i$ and $\eta_{0_i} =$ $\|h_i^{1/2}\xi_i\|^{-1}h_i^{1/2}\xi_i$. Then $\omega_{\eta_{0i}}$ is a probability measure on Ω_i and $\omega_{\eta_{0i}}\ll v_i$. Therefore we can define a σ -finite measure μ_J for $J \subset \subset I$ on Ω by

$$
\mu_J = (\mathop{\otimes}\limits_{J} \|h_i^{1/2}\xi_i\|^{-2} \mu_i) \mathop{\otimes}\limits_{I \setminus J} (\mathop{\otimes}\limits_{I \setminus J} \omega_{\eta_0,I}).
$$

Then μ_J is a semi-finite normal trace on $\otimes^c Z_i$ for all c' with c' $c(\eta_0)$.

Proposition 5.1. With the above notations, assume that $0 < \prod ||\pi(\xi_i)||$ $< +\infty$ and $\mu_{\iota} \ll \nu_{\iota}$. If $(\eta_{0\iota}, \eta_{0\iota})$ is a non-zero reference pair of $(\pi(\xi_{\iota}))$, *then* $\mu \equiv \sup_{J \subset \text{I}} \mu_J$ *is a* σ *-finite measure on* Ω *, which is singular to* $\otimes \omega_{\eta}$ *, whenever* $(\eta_i) \in S$ and $(\eta_i)_{\eta_i} (\eta_0)$ *. Moreover* μ is a semi-finite *normal trace on* \otimes ^{*c'*} Z *_{<i>l*} for all c' with c' \sim $c(\eta_{0l})$.

Proof. If (η_0, η_0) is a non zero reference pair of $(\pi(\xi_i))$, \otimes ^{c'} $\pi(\xi_i)$ is in $\otimes^c B(\mathscr{H}_\ell)$ for $c' = c(\eta_0)$. Since $0 < \prod |\pi(\xi_\ell)| < +\infty$, $\prod_{\ell \searrow} |\pi(\xi_\ell)|$ for $J \subset \subset I$ converges to 1 as J tends to I. Since $||h_i^{1/2}\xi_i||^2 \omega_{\eta_0} \leq ||\pi(\xi_i)||^2 \mu_i$ ${(\prod_{\substack{\cdot\downarrow\\ \cdot\downarrow}}|\pi(\xi_i)|^{-2})\mu_J: J \subset \subset I}$ is an increasing net of σ -finite measures on O. Put

$$
\mu = \lim_{J \subset I} \{ \prod_{I \setminus J} ||\pi(\xi_{I})||^{-2} \} \mu_{J} \}.
$$

Then for $c' = c(\eta_0)$

$$
\mu(\otimes c'|\pi(\xi_{\iota})|^2) = \sup_{J \subset \subset I} \prod_{I \setminus J} (\|\pi(\xi_{\iota})\|^{-2} \|\pi(\xi_{\iota})\eta_{0\iota}\|^2) = 1.
$$

Since the set of $(\otimes_{J} x_i) \otimes (\otimes_{I} f_i) || \pi(\xi) ||^{-2} \pi(\xi)$ for any $x_i \in Z_i$ and $J \subset \subset I$ is weakly total in \otimes ^{*c'*}Z_{*i*}, it follows that μ is semi-finite. Since each Z_i is countably decomposable and *I* is countable, \otimes ^{*c'*} Z_i is countably decomposable and hence μ is σ -finite.

If $(\eta_i) \in S_0$ and $(\eta_i) \sim (\eta_{0,i})$, then the central carriers of $p_{c'}$ for $c' \equiv$ $c(\eta_{0i})$ and $p_{c''}$ for $c'' \equiv c(\eta_i)$ in $\otimes Z_i$ are orthogonal by Theorem (2) in [1]. Therefore μ and $\otimes \omega_n$ are mutually singular. Q.E.D.

Definition 5.1. Let μ_k be a σ -finite measure with $\mu_k \ll v_k$ and $h \equiv$ $d\mu_{\iota}/dv_{\iota}$. For $\xi_{\iota} \in D(h_{\iota}^{1/2})$ with $0 < \prod ||\pi(\xi_{\iota})|| < +\infty$ and $h_{\iota}^{1/2}\xi_{\iota} \neq 0$, let $\eta_{0} \equiv ||h_{\iota}^{1/2}\xi_{\iota}||^{-1}h_{\iota}^{1/2}\xi_{\iota}$ and $(\eta_{0,\iota}, \eta_{0,\iota})$ be a non-zero reference pair of $(\pi(\xi_{\iota}))$. The σ -finite measure μ in Proposition 5.1 is denoted by $\mu^{(\xi_i)}$, since it depends on $(\xi_i) \in S_0$.

Theorem 5.1. Let v_i , v_j , μ_i , h_i be as before and let $\mu_i \sim v_i$ (resp. $\mu_i \ll$ v_t). Assume that $\xi_t \in D(h_t^{1/2})$, $0 < \prod ||\pi(\xi_t)|| < +\infty$ and (η_{0t}, η_{0t}) is a *non-zero reference pair of* $(\pi(\xi_i))$. Let $h_{0_i} \equiv \|\xi_i\|^2 \|\hat{h}_i^{1/2}\xi_i\|^{-2}h_i$ and e_i be the spectral projection of $h_0^{1/2}$ corresponding to $[\lambda^{-1}, \lambda]$ for any *fixed* A>1. *Then the following nine conditions are equivalent for* $c \equiv c(\xi_{0_i})$:

- (i) $\mu^{(\xi_i)} \sim \nu$ (resp. $\mu^{(\xi_i)} \ll \nu$);
- (ii) $(\xi_i) \in S$ and (ξ_i, ξ'_i) is a non-zero reference pair of $(h_0^{\frac{1}{2}})$;
- (iii) $(\xi_i) \in S_0$ and $(\xi_i) \sim (h_0^{1/2} \xi_i)$;
- (iv) $(\xi_i) \in S_0$ and (ξ_1, ξ_1) is a non-zero reference pair of $(h_0^{1/2})$ *for some* $(\xi_1) \in c$;
- (v) $(\xi_i) \in S$, $(e_i \xi_2) \in S$, $(h_0^1 / 2e_i \xi_2) \in S$ and $(e_i \xi_2) \sim (h_0^1 / 2e_i \xi_2)$ hold for *some* $(\xi_2) \in c$;
- (vi) $(\xi_i) \in S$, $(e_i \eta_i) \in S$, $(h_0^1 \lambda^2 e_i \eta_i) \in S$ and $(e_i \eta_i) \sim (h_0^1 \lambda^2 \eta_i)$ hold for all $(\eta_i) \in c$ with $s(h_i)\eta_i = \eta_i$;
- (vii) $(\xi_i) \in S$, $(e_i \eta_i) \in S$, $\sum ||\log h_0^{1/2} e_i \eta_i||^2 < +\infty$ and $\sum |(\log h_0^{1/2} e_i \eta_i|\eta_i)|$ \lt + ∞ *hold for all* $(\eta_i) \in c$ *with* $s(h_i)\eta_i = \eta_i$;
- (viii) $(\xi_i) \in S$, $\xi_{3i} \in D(h_i)$, $\sum ||\log h_0^{1/2}\xi_3$ $|\xi_{3} \rangle$ $|$ < + ∞ hold for some $(\xi_{3} \rangle \in c$ with $s(h) \eta_i = \eta_i$; and

 (ix) $(\xi_i) \in S$, and $\otimes^c h_{0,i}^{it}$, $t \in \mathbb{R}$ is strongly continuous one parameter *unitary* (resp. *partial isometry) group. Here* $s(h_i)$ *is a projection to* $(Ker h_i)^{\perp}$ *.*

The proof of this theorem will be given after the following Proposition 5.2.

Proposition 5.2. *Under the same assumption as in Proposition* 5.1, let (η_{0t}, η_{0t}) be a non-zero reference pair of $(\pi(\xi_t))$. Then $\mu^{(\xi_t)} \sim \nu$ *if and only if* $(\xi_i) \in S_0$ *and* $(\xi_{0_i}) \sim (\eta_{0_i})$. In this case $h_0 = ||\xi_{\parallel}||^2 ||h_{\parallel}^{1/2} \xi_{\parallel}||^{-2} h_{\parallel}.$

Proof. Suppose that $(\xi_i) \in S_0$ and $(\xi_{0i}) \sim (\eta_{0i})$. $(\xi_i) \in S_0$ implies $(\xi_i) \sim$ ξ_{0_i} and hence $(\xi_i) \sim (\eta_{0_i})$. Since $(\pi(\xi_i)\eta_{0_i}) \in S$ and $(\xi_i) \sim (\eta_{0_i})$, we have $(\pi(\xi_i)\eta_{0i})\sim(1)$. It then follows that

$$
(\xi_{\iota}) \sim (\xi_{0\iota}) \sim (\eta_{0\iota}) \sim (\pi(\xi_{\iota})\eta_{0\iota}) \sim (1_{\iota}).
$$

Since $(\xi_{0_i}) \sim (\eta_{0_i}), (\xi_{0_i}, \xi_{0_i})$ is a non-zero reference pair of $(h_0^{\frac{1}{2}})$ and $h \equiv \otimes^c h_{0i}$ is obtained for $c = c(1_i)$. Let $\pi_i = L^2(\Omega_i, \mu_i) \cap L^{\infty}(\Omega_i, \mu_i)$ and m_k be the linear span of $n_k^* n_k$. For any $\otimes^c x_k$ in $\otimes^c Z_k$ with x_k we have

$$
v(h((\underset{j}{\otimes} x_i)\otimes(\underset{l\searrow j}{\otimes} c_{x_i}|\pi(\xi_i)|^2)))=(\prod_{i}\xi_i\Vert^2)\mu_j(\otimes^c x_i)
$$

and hence

$$
v(h(\otimes^c x_i)) = \lim_{t \to \infty} v(h((\otimes x_i) \otimes (\otimes^c x_i | \pi(\xi_i)|^2)))
$$

=
$$
\lim_{t \to \infty} (\prod ||\xi_i||^2) \mu_J(\otimes^c x_i) = (\prod ||\xi_i||^2) \mu^{(\xi_i)}(\otimes^c x_i)
$$

Therefore $\mu^{(\xi_i)} \ll \nu$ and $d\mu^{(\xi_i)} / d\nu = (\prod ||\xi_i||^{-2}) \otimes^c h_{0_i}$. If $\mu_i \sim \nu_i$, then h_{0_i} is invertible and hence $d\mu^{(\xi_i)}/dv$ is also invertible or $\mu^{(\xi_i)} \sim v$.

Conversely, suppose that $\mu^{(\xi_i)} \ll v$. From Proposition 5.1 it follows that $(\eta_{0i})_{\widetilde{u}}(1_i)$ or $(\eta_{0i}) \sim (u_i 1_i)$ for some unitary u_i in $Z_i' = Z_i$ for each $i \in I$. Since (η_{0i}, η_{0i}) is a non zero reference pair of $(\pi(\xi_i)^*)$ by Lemma 2.3, we have $(\pi(\xi_i)^* \eta_{0i}) \sim (u_i 1_i)$. Therefore $(\xi_i) \in S_0$ and $(\eta_{0i}) \sim (u_i \xi_i)$. Since $(\xi_i) \sim (\xi_{0i})$, we have $(\eta_{0i}) \sim (u_i \xi_{0i})$. Since $(\xi_{0i}, u_i \xi_{0i})$ is a non zero reference pair of (h_0) , it follows from Theorem 1.1 that $(\xi_0) \sim (u_0 \xi_0)$. Therefore $(\xi_{0i}) \sim (\eta_{0i}).$ Q.E.D.

 \cdot

Proof of Theorem 5.1. (i) \Rightarrow (ii). By Proposition 5.2 (ξ_0 , ξ_0) is a non-zero reference pair of $(h_0^{1/2})$ and $(\xi_i) \in S_0$. It follows that (ξ_i, ξ_i) is a non-zero reference pair of $(h_0^{1/2})$.

(ii) \Rightarrow (i). Put $({\xi_0}_i \equiv {\|\xi_i\|}^{-1} {\xi_i}$. Then $({\xi_0}_i, {\xi_0}_i)$ is a non-zero reference pair of $(h_0^1)^2$. (i) follows from Proposition 5.2.

 $(ii) \Leftrightarrow (iii) \Rightarrow (iv)$. Clear.

(iv) \Rightarrow (iii). Since (ξ_1, ξ_1) is a non-zero reference pair of $(h_0^{1/2})$, we have $(h_0^{1/2} \xi_1) \in S$ and $(\xi_1) \sim (h_0^{1/2} \xi_1)$. Since $c(\xi_1) = c(\xi_0)$, we have Therefore $(\xi_i) \sim (\xi_{0i}) \sim (\xi_{1i}) \sim (h_0^1/2 \xi_{0i})$

 $(iv) \Leftrightarrow (vi) \Leftrightarrow (vii) \Leftrightarrow (viii) \Leftrightarrow (ix)$. By Theorem 3.1.

Remark 5.1. For each $J \subset \subset I$ a σ -finite measure $\mu(I \setminus J) = (\prod_I$ $(1)^{-2}$) $\mu^{(\xi_i:\iota\in I\setminus J)}$ on $(\prod_{I\setminus J} \Omega_i, \prod_{I\setminus J} \mathscr{F}_i)$ satisfies that $\mu^{(\xi_i)}=(\prod_{J} \mu_i) \times$ $\mu(I \setminus J)$. Therefore $\mu^{(\xi_i)}$ is a product measure of $\{\mu_i : i \in I\}$ in the sense of Hill. In Proposition 5.2, if we choose a measurable $\Omega'_i \subset \Omega_i$ with $0 < \mu_{\iota}(\Omega_{\iota}') < +\infty$ and define $\xi_{\iota} = \chi_{\Omega_{\iota}'},$ then $0 < \prod ||\pi(\xi_{\iota})|| < +\infty$ and $(\eta_{0,\iota}$ η_{0i}) is a non-zero reference pair of $(\pi(\xi_i))$. Therefore $\mu^{(\xi_i)} \sim v$ if and only if $(\xi_i)\in S_0$ and $(\xi_0)\sim(\eta_{0i})$. This is a result of Hill. It should however be noted that we can not omitt the condition $(\xi_i) \in S_0$ as the following example shows.

Let $I \equiv N$. Let $\Omega_n \equiv R$ for $n \in I$, v_n be a normal distribution with mean 0 and variance 1, and μ_n be the Lebesgue measure. Put $\Omega'_n \equiv$ $[-\lambda_n, \lambda_n]$, $\lambda_n > 0$ for all $n \in \mathbb{N}$ and $\xi_n \equiv \chi_{\Omega'_n}$. Then

$$
(\xi_{0n}|\eta_{0n}) = \int_{-\lambda_n/\sqrt{2}}^{\lambda_n/\sqrt{2}} \exp\left(-\frac{x^2}{2}\right) dx \left\{\lambda_n \int_{-\lambda_n}^{\lambda_n} \exp\left(-\frac{x^2}{2}\right) dx\right\}^{-1/2}
$$

By choosing λ_n sufficiently small, we have $(\xi_0) \sim (\eta_0)$. However $(\xi_i) \notin S_0$ and hence $(\zeta_{0i}) \sim (1_i)$.

§6. **An Infinite Product of Semi-finite Weights**

Following the similar argument as the preceding section, we shall give a definition of an infinite tensor product of semi-finite faithful normal weights. I is not necessarily countable.

We begin by recalling the tensor product of semi-finite faithful normal weights ψ_1 on $(M_1)_+$ and ψ_2 on $(M_2)_+$. Let \mathfrak{A}_i denote the full left Hilbert algebra of (M_j, ψ_j) obtained by the GNS construction for $j=1,2$. Let $\mathfrak A$ denote the full left Hilbert algebra formed from the algebraic tensor product of \mathfrak{A}_1 and \mathfrak{A}_2 . If π is the left representation of \mathfrak{A} , then $M_1 \otimes M_2$ is isomorphic to $\pi(\mathfrak{A})$ ". Through this isomorphism, the tensor product $\psi_1 \otimes \psi_2$ of ψ_1 and ψ_2 is defined as the canonical weight of $\pi(\mathfrak{A})$ ".

As Theorem 15.3 in [15] holds for a semi-finite faithful normal weight ψ on M_+ in place of a faithful normal positive linear form ϕ_0 on M by a slight improvement of the proof, we have that the necessary and sufficient condition for $a\psi a^* \leq \psi$, $a \in \pi_\psi$ is that $\|\Delta^{-1/2}_\psi \pi_\psi(a) \Delta^{1/2}_\psi\|$ ≤ 1 , $a \in \mathfrak{n}_\psi$. Here \mathfrak{n}_ψ denote the set of all $x \in M$ with $\psi(x^*x) < +\infty$, π_{ψ} the GNS representation of M induced by ψ and Λ_{ψ} the modular operator.

Let ξ_i be a unit vector in \mathcal{H}_i which is cyclic and separating for M_t, and $\phi_i \equiv \omega_{\xi_i}$ on M_t. Let ψ_i be a semi-finite faithful normal weight on $(M_{\iota})_+$ such that $\psi_{\iota} = h_{\iota}^{1/2} \phi_{\iota} h_{\iota}^{1/2}$ for some invertible, positive and self-adjoint operator h_i affiliated with the centralizer $(M_i)_{\phi_i}$. Put $\pi_i \equiv$ $\{x \in M_t : \psi_t(x^*x) < +\infty\}$. Let $e_t(n)$ denote the spectral projection of h_t corresponding to [0, *n*] for $n \in \mathbb{N}$. Let J_{ξ_i} and A_{ξ_i} be a modular conjugation and a modular operator of (M_1, ϕ_1) , respectively. Put $j_{\xi_i}(x)$ $\equiv J_{\xi_i} x J_{\xi_i}$ for $x \in M_i$. For each $x \in \mathfrak{n}_i$ we have

$$
x h_{i}^{1/2} e_{i}(n) \xi_{i} = x J_{\xi_{i}} \Delta_{\xi_{i}}^{1/2} h_{i}^{1/2} e_{i}(n) \xi_{i} = x J_{\xi_{i}} h_{i}^{1/2} e_{i}(n) \xi_{i}
$$

=
$$
x j_{\xi_{i}} (h_{i}^{1/2} e_{i}(n)) \xi_{i} = j_{\xi_{i}} (h_{i}^{1/2} e_{i}(n)) x \xi_{i}.
$$

Since ${e_t(n+1) - e_t(n)}_{n \in \mathbb{N}}$ are orthogonal and since

$$
\sup_n \|j_{\xi_i}(h_i^{1/2}e_i(n))x_{\xi_i}^k\|^2 = \sup_n \|xh_i^{1/2}e_i(n)\xi_i\|^2 \leq \psi_i(x^*x) < +\infty,
$$

it follows that $\{x h_i^{1/2} e_i(n) \xi_i\}_{n=1}^{\infty}$ is a Cauchy sequence. We denote the limit $j_{\xi_i}(h_i^{1/2})x\xi_i$ by $xh_i^{1/2}\xi_i$ symbolically.

For a fixed $x_{0} \in \mathfrak{n}_t$ with $x_{0} \neq 0$. put

$$
\xi_{0i} \equiv ||x_{0i}\xi_i||^{-1}x_{0i}\xi_i \text{ and } \eta_{0i} \equiv ||x_{0i}h_i^{1/2}\xi_i||^{-1}x_{0i}h_i^{1/2}\xi_i.
$$

Define a semi-finite normal weight ψ_J on $(\otimes^{c'} M_i)_+$ for c' with c' $c(\eta_{0l})$ by

$$
\psi_J = (\mathop{\otimes}\limits_j ||x_{0i}h_i^{1/2}\xi_i||^{-2}\psi_i)\mathop{\otimes}\limits_j (\mathop{\otimes}\limits_{I\setminus J}\omega_{\eta_{0i}}).
$$

Proposition 6.1. With the above notations, assume that $0 < \prod ||x_{0_i}|| <$ $+ \infty$. If (η_{0i}, η_{0i}) is a non-zero reference pair of (x_{0i}) and if $x_{0i} \in \mathfrak{n}_i$ $\text{with} \quad \|\varDelta_{\psi}^{-1/2}\pi_{\psi_i}(x_{0_i})\varDelta_{\psi_i}^{1/2}\| \leqq \|x_{0_i}\|, \quad \text{then} \quad \psi = \lim_{J\subset\subset I} \psi_J \quad \text{is a semi-finite}$ *faithful normal weight on* $(\otimes^c M_i)_+$ *for all c'* with $c' \sim_c (n_0)$.

Proof. Since $x_{0_i} \in \mathfrak{n}_i$ and $||\Delta_{\psi_i}^{-1/2} \pi_{\psi_i}(x_{0_i}) \Delta_{\psi_i}^{1/2}|| \leq ||x_{0_i}||$, we have $x_{0\iota}\psi_{\iota} x_{0\iota}^* \le ||x_{0\iota}||^2 \psi_{\iota}$ and hence $||x_{0\iota} h_{\iota}^{1/2} \xi_{\iota}||^2 \omega_{\eta_{0\iota}} \le ||x_{0\iota}||^2$ Therefore $\{(\prod_{I\setminus J} |x_{0_I}|^{-2})\psi_J: J \subset I\}$ is an increasing net of semi-finite normal weights on $(\otimes^c M_i)_+$. Putting

$$
\psi \equiv \sup_{J \subset \subset I} \{ (\prod_{I \setminus J} ||x_{0_{i}}||^{-2}) \psi_{J} \}
$$

on $(\otimes^c M_i)_+$, we know that ψ is a normal weight on $(\otimes^c M_i)_+$ and that

$$
\psi(\otimes c^{\prime} |x_{0\iota}|^2) = \sup_{J} \prod_{c \in I} (||x_{0\iota}||^{-2} ||x_{0\iota}\eta_{0\iota}||^2) = 1.
$$

The semi-finiteness of ψ is then proved by the similar way as Proposition 5.1. Let S_{*t*} denote the carrier of $\omega_{\eta_{0}}$ in M_{*t*} and u_i be a partial isometry in M'_i such that $u_i^* u_i \eta_{0i} = \eta_{0i}$ and $c' = c(u_i \eta_{0i})$. Since $S_i u_i \eta_{0i} =$ $u_i \eta_0$, and since the carriers $(\otimes_J 1_i) \otimes (\otimes_{i \le J}^c S_i)$ of ψ_J in $\otimes^c M$, are majorized by the carrier of ψ for all $J \subset \subset I$, ψ is faithful on $\otimes^{c'} M$. **Q.E.D.**

Definition 6.1. The semi-finite faithful normal weight on $(\otimes^c M_i)_+$ obtained in Proposition 6.1 is denoted by $\psi^{(x_0)}$.

 $\psi^{(x_0)}$ is considered as an infinite tensor product of normal weights ψ_i . We will show some conditions for $\psi^{(x_{0i})}$ to live on $\otimes^c M_i$ in Theorem 6.1 after the following proposition.

Proposition 6.2. Let ξ_i , ϕ_i , ψ_i , h_i and x_{0i} be as above. Let $\phi \equiv$ $\otimes \phi$ *, on* $\otimes^c M$ *, for* $c \equiv c(\xi_i)$ and $\psi \equiv \psi^{(x_0,i)}$ on $\otimes^{c'} M$ *, for some* $c' \sim_{p} c(\eta_0)$. *Then*

(i) $c_{\widetilde{p}}c'$ if and only if $(x_0,\xi_i)\in S_0$ and $(\xi_0,\widetilde{p}(\eta_0))$; *and*

(ii) under (i), $\psi = \psi \circ \sigma_t^{\phi}$ for all $t \in \mathbb{R}$.

Proof. (i) Suppose that $(x_0, \xi_i) \in S_0$ and (ξ_0, ψ_0, η_0) , (ξ_0, ψ_0, η_0) implies $(\xi_{0i}) \sim (u_i \eta_{0i})$ for some partial isometry u_i in M; with $u_i^* u_i \eta_{0i} =$ η_{0} . $(x_{0} \xi_{\iota}) \in S_0$ implies $(x_{0} \xi_{\iota}) \sim (\xi_{0} \psi_{\iota}) \sim (u_{\iota} \eta_{0\iota})$. Since $(\eta_{0\iota}, \eta_{0\iota})$ is a nonzero reference pair of (x_{0i}) , we have $(x_0^*, \eta_{0i}) \sim (\eta_{0i})$. Since $0 < \prod ||x_0^*|| <$ $+\infty$, by Lemma 1 in [1] we have $(u_{\iota} x_0^*, \eta_{0\iota}) \in S$ and $(u_{\iota} x_0^*, \eta_{0\iota}) \sim (u_{\iota} \eta_{0\iota})$. Since $(x_{0i},\xi_i) \sim (u_i\eta_{0i})$, we have $(\xi_i) \sim (u_ix_0^*\eta_{0i})\sim(u_i\eta_{0i})$ and hence $c_{\widetilde{n}}$ $c(\eta_0)$ _r c' .

Conversely, suppose that $c_{\gamma}c'$. Since $c'_{\gamma}c(\eta_{0i})$, there exist partial isometries u_i in M'_i so that $u_i^* u_i \eta_{0i} = \eta_{0i}$ and $(\xi_i) \sim (u_i \eta_{0i})$. Since (η_{0i}, η_{0i}) is a non-zero reference pair of (x_0) , we have $(u_i x_0^* \eta_0) \sim (u_i \eta_0) \sim (\xi_i)$. Since $0 < \prod ||x_{0_i}|| < +\infty$, Lemma 1 in [1] implies that $(x_{0_i} \xi_i) \in S$. Since ξ_i is separating, $(x_{0i}\xi_i) \in S_0$ and $(u_i\eta_{0i}) \sim (x_{0i}\xi_i)$. Thus $(\xi_{0i}) \sim (u_i\eta_{0i})$.

In order to prove (ii) we need to prepare the following lemma. Before going into the proof, we recall Theorem 14.4 in [16]. This is restated as follows: Let ψ be a semi-finite faithful normal weight on M_+ and σ_t , $t \in \mathbb{R}$ a one parameter group of *-automorphisms of M. If a weakly dense $*$ -subalgebra M_0 of M is invariant under σ_t , $t \in \mathbb{R}$ and if a pair of ψ and σ satisfies the KMS-condition for M_0 , then $\sigma = \sigma^{\psi}$.

Lemma 6.1. Let $\phi \equiv \otimes \phi_i$ on $\otimes^c M_i$ for $c \equiv \phi_i$

$$
\sigma_t^{\phi}(\otimes^c x_i) = \otimes^c \sigma_t^{\phi_i}(x_i)
$$

for $\otimes^c x_i$ in $\otimes^c M_i$.

Proof. For any non zero $\otimes^c x_i$ in $\otimes^c M_i$, since $(\sigma_t^{\phi_i}(x_i)\xi_i|\xi_i) =$ (x,ξ,ξ) and $(x,\xi) \sim (\xi)$, we can define a one parameter group of *automorphisms $\sigma_t = \otimes^c \sigma_t^{\phi_t}$ of $\otimes^c M_t$ by

$$
\sigma_t(\otimes^c x_i) = \otimes^c \sigma_t^{\phi_i}(x_i)
$$

for $t \in \mathbb{R}$. Let D denote the set of product vectors $\otimes \eta_i$ with $\{t \in I:$

 $\eta_i \neq \xi_i$ } $\subset \subset I$. Since $(\sigma_t(x)\xi|\eta)$ is continuous in $t \in \mathbb{R}$ for $\xi, \eta \in D$ and $x \in \mathcal{D}^c M_t$. Since D is strongly total in \mathcal{H}_c , σ_t is weakly continuous in $t \in \mathbb{R}$.

For any $x \equiv (\otimes_J x_i) \otimes (\otimes_{i \leq J} 1_i)$ and $y \equiv (\otimes_K y_i) \otimes (\otimes_{i \leq K} 1_i)$ in $\otimes^c M_i$, we have a bounded function $F_t(z)$ holomorphic in and continuous on $0 \leq \text{Im } z \leq 1$ such that

$$
F_{\iota}(t) = \phi_{\iota}(\sigma_t^{\phi_{\iota}}(x_{\iota})y_{\iota}) \text{ and } F_{\iota}(t+i) = \phi_{\iota}(y_{\iota}\sigma_t^{\phi_{\iota}}(x_{\iota}))
$$

for $t \in \mathbb{R}$. Therefore, by $\phi = \otimes \phi$, there is a bounded function $F(z) =$ $\prod_{U\cup K}F_{i}(z)$ holomorphic in and continuous on $0 \leq \text{Im } z \leq 1$ such that

$$
F(t) = \phi(\sigma_t(x)y) \quad \text{and} \quad F(t+i) = \phi(y\sigma_t(x)).
$$

Since the *-subalgebra of all finite linear combinations of $(\otimes_j x_i) \otimes$ $(\otimes_{I\setminus J} 1_i)$ with $x_i \in M_i$ and $J \subset \subset I$ is weakly dense in $\otimes^c M_i$ and is invariant under σ_t , $t \in \mathbb{R}$, it follows from the discussion preceding to this lemma that $\sigma_t = \sigma_t^{\phi}$ for all $t \in \mathbb{R}$. $Q.E.D.$

Proof of (ii) in Proposition 6.2. Since $\psi_i = \psi_i \circ \sigma_i^{\phi_i}$, for any $x \in \mathcal{D}^cM_i$ of the form $(\otimes_k x_i) \otimes (\otimes_{i \leq k} 1_i)$ we have

$$
(\psi \circ \sigma_t^{\phi})(x) = \psi(\otimes^c \sigma_t^{\phi_i}(x_i))
$$

\n
$$
= \lim_{K \subset J \subset \subset I} \prod_{j} ||x_{0,j}h_i^{1/2}\xi_{j}||^{-2}\psi_{i}(\sigma_t^{\phi_i}(x_i))
$$

\n
$$
= \lim_{K \subset J \subset \subset I} \prod_{j} ||x_{0,j}h_i^{1/2}\xi_{j}||^{-2}\psi_{i}(x_i)
$$

\n
$$
= \psi(\otimes^c x_i) = \psi(x).
$$
 Q.E.D.

Theorem 6.1. Let ξ_i , ϕ_i , ψ_i , h_i and x_{0i} as before. Let $\phi \equiv \otimes \phi_i$ on \otimes ^{*c*}M_t for $c \equiv c(\xi_i)$ and $\psi \equiv \psi^{(x_0)}$ on \otimes ^{*c'M*_t for $c' \sim c(\eta_0)$.}

(1) Let $\lambda_i \equiv ||x_{0,i}\xi_i|| ||x_{0,i}h_i^{1/2}\xi_i||^{-1}$, $h_{0i} \equiv \lambda_i^2h_i$ and e_i a spectral projection of $h_0^{1/2}$ corresponding to $[\lambda^{-1}, \lambda]$ for any fixed $\lambda > 1$. It is suf*ficient for* ψ *to be a semi-finite faithful normal weight on* $(\otimes^c M_i)_+$ *that one of the following conditions holds:*

(i) $(x_0, \xi) \in S_0$ *and* $(\xi_0)_{\gamma}(n_0)$;

- (ii) (ξ_1, ξ_1) is a non-zero reference pair of $(h_0^{1/2})$ for some $(\xi_1) \in c$;
- (iii) $(e_{\xi}) \in S$, $(h_0^{1/2}e_{\xi}) \in S$ and $(e_{\xi}) \sim (h_0^{1/2}e_{\xi})$;
- (iv) $(e,\xi) \in S$, $\sum ||\log h_0^{1/2}e,\xi||^2 < +\infty$ and $\sum |(\log h_0^{1/2}e,\xi)|\xi| > +\infty$; and
- (v) \otimes ^c $h_{0,i}^{it}$, $t \in \mathbb{R}$ is a strongly continuous one parameter unitary *group.*

Under conditions from (ii) to (v) $h = (\prod \|x_{0,t}\zeta_t\|^{-2})\| \otimes^c h_{0t}$ is affiliated with $(\otimes^c M_i)_{\phi}$ and $\psi = \phi \circ h$. In particular, if $x_{0i} \in M_{\psi}$, then $\sigma_i^{\psi} =$ $\otimes^c \sigma_t^{\psi}$.

(2) If x_{0} commutes with h_i for all $i \in I$, every condition in (1) is *necessary for \j/ to be a semi-finite faithful normal weight on* $(\otimes^c M_i)_+.$

Proof. (1) By Proposition 6.2, (i) is a sufficient condition.

If one of the conditions from (ii) to (v) holds, we can define \otimes ^{*c*} $h_0^{1/2}$ by Theorem 3.1 and $\otimes^c h_{0i} = (\otimes^c h_0^{1/2})^2$ by Theorem 3.2. We have for all non zero $\otimes^c x_i$ in

$$
\psi(\otimes^c x_i) = \sup \{ (\prod_{i \leq j} ||x_{0_i}||^{-2}) \psi_J(\otimes^c x_i) \}
$$

= $\lim \prod_i \{ ||x_{0_i}h_i^{1/2}\xi_i||^{-2} \psi_i(x_i) \}$
= $\lim \prod_j \{ ||x_{0_i}\xi_i||^{-2} \phi_i(h_{0_i}x_i) \}$
= $\phi(h \otimes^c x_i).$

From (ii) of Proposition 6.2, we know that *h* is affiliated with $(\otimes^c M_t)_{\phi}$ and $\psi = \phi \circ h$. Since *h* is invertible, ψ is faithful.

Suppose that x_{0} , is in $(M_{\iota})_{\psi_{\iota}}$. By virtue of Lemma 6.1 we have $\sigma_t^{\phi} = \otimes^c \sigma_t^{\phi}$. Define a *-automorphism σ_t of $\otimes^c M_t$, by

$$
\sigma_t(x) = (\otimes^c h_{0}^{it}) \sigma_t^{\phi}(x) (\otimes^c h_{0}^{-it})
$$

for $x \in \mathcal{D}^c M$. Since $\sigma_t^{\psi}(y) = h_0^{it} \sigma_t^{\phi}(y) h_0^{-it}$ for $y \in M$, we have

$$
\sigma_t(\otimes^c x_i) = \otimes^c \sigma_t^{\psi_i}(x_i), \qquad t \in \mathbb{R}
$$

and σ_t is weakly continuous by Theorem 3.1. For any $x \equiv (\otimes_J x_t)$

144 YOSHIOMI NAKAGAMI

 $(\otimes f_{\setminus} |x_{0i}|)$ and $y \equiv (\otimes_K y_i) \otimes (\otimes f_{\setminus} |x_{0i}|)$ with x_i and y_i in π_{ψ_i} we have a bounded function $F_{\lambda}(z)$ holomorphic in and continuous on $0 \leq \text{Im } z \leq 1$ such that

$$
F_{\iota}(t) = \dot{\psi}_{\iota}(\sigma_t^{\psi_{\iota}}(x_{\iota})y_{\iota}) \quad \text{and} \quad F_{\iota}(t+i) = \dot{\psi}_{\iota}(y_{\iota}\sigma_t^{\psi_{\iota}}(x_{\iota}))
$$

for $t \in \mathbb{R}$, where $\dot{\psi}_t$ is the linear extension of ψ_t to \mathfrak{m}_{ψ_t} . Therefore, since $x_{0} \in (M_{\iota})_{\psi_{\iota}}$ and $c' \sim c(\eta_{0\iota})$, there is a bounded function

$$
F(z) = \prod_{J \cup K} \psi_{\iota}(|x_{0\iota}|^2)^{-1} F_{\iota}(z)
$$

holomorphic in and continuous on $0 \leq \text{Im } z \leq 1$ such that

$$
F(t) = \dot{\psi}(\sigma_t(x)y)
$$
 and $F(t+i) = \dot{\psi}(y\sigma_t(x))$.

Thus $\sigma_t = \sigma_t^{\psi}$ and hence $\sigma_t^{\psi} = \otimes^c \sigma_t^{\psi}$ for all

(2) By means of the proof of necessity of (i) in Proposition 6.2, we have $(x_{0i}, \xi_i) \sim (\xi_{0i}) \sim (u_i \eta_{0i})$ for some unitary u_i in M'_i . Then $(\xi_{0i},$ $u^*_{i} \xi_{0}$ is a non-zero reference pair of $(h^{1/2}_{0})$. Hence by Theorem 3.1 we have every condition in (1). $Q.E.D.$

Acknowledgements

The earlier version of this paper was completed while the author was staying at Reseach Institute for Mathematical Sciences, in Kyoto University, from April until September, 1970. He would like to thank Professor H. Araki for his valuable discussion, warm hospitality at RIMS, taking the pains of reading the manuscript carefully and giving him valuable comments, improvements and corrections. He would also like to thank Professor S. Kitagawa for his discussion.

References

- [1] Araki, H. and Nakagami, Y., A remark on an infinite tensor product of von Neumann algebras. *Publ. RIMS, Kyoto Univ.* 8 (1972), 363-374.
- [2] Araki, H. and Woods, E. J., A classification of factors. *Publ. RIMS, Kyoto Univ.* 4 (1968), 51-130.
- [3] Connes, A., Un nouvel invariant pour les algebres de von Neumann. *C. R. Acad. Sc.* 273 (1971), 900-903.

- [4] Hamachi, T., Equivalent measures on product spaces. *Mem, Fac. Sci. Kyushu Univ.* 27 (1973), 335-341.
- [5] Hill, D. G. B., *a-finite* invariant measures on infinite product spaces. *Trans. Anut. Math. Soc.* 153 (1971), 347-370.
- [6] Ikunishi, A. and Nakagami, Y., Automorphism groups of von Neumann algebras and semi-finiteness of an infinite tensor product of von Neumann algebras. To appear.
- [7] Kallman, R. R., Groups of inner automorphisms of von Neumann algebras. *J. Functional Analysis* 7 (1971), 43-60.
- [8] Nakagami, Y., Infinite tensor products of von Neumann algebras, I. *Kodai Math. Sem. Rep.* 22 (1970), 341-354.
- [9] Nakagami, Y., Infinite tensor products of von Neumann algebras, II. *Publ. RIMS, Kyoto Univ. 6* (1970), 257-292.
- [10] Nakagami, Y., Infinite tensor products of operators. *Surikaiseki Kenkyusho K6 kyuroku* 104 (1970), 109-117 (Japanese).
- [11] von Neumann, J., On infinite direct products. *Compositio Math.* 6 (1937), 1-77.
- [12] Pedersen, G. K. and Takesaki, M., The Radon-Nikodym theorem for von Neumann algebras. *Ada Math.* 130 (1973), 53-87.
- [13] Reed, M. C., On self-adjointness in infinite tensor product spaces. *J. Functional Analysis* 5 (1970), 94-124.
- [14] Streit, L., Test function spaces for direct product representations of the canonical commutation relations. *Commun. math. Phys.* 4 (1967), 22-31.
- [15] Takesaki, M., *Tomita's theory of modular Hilbett algebras and its applications.* Springer-Verlarg, 1970.
- [16] Takesaki, M., *The theory of operator algebras.* Univ. California, Los Angeles, 1969/70.

Note added in proof. The separability assumption of \mathcal{H} , in (iii) of Theorem 3.3 can be omitted by using Remark 3.10 in the following paper:

Araki, H. and Woods, E.J., Topologies induced by representations of the canonical commutation relations. *Reports on Math. Phys.* 4 (1973), 227-254.

Therefore Lemma 4.2 and Corollary 4.1 hold without the separability assumption and Lemma 6.1 is clear from Corollary 4.1.