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Difference Approximation of Nonlinear
Evolution Equations and Semigroups
of Nonlinear Operators
By

Nobuyuki KeNmocHI* and Sinnosuke OHARU**

Introduction

In this paper we introduce a notion of weak solution of a nonlinear
differential equation

(DE) (d/dtyu(r) e Au(t), O<t<t

in a Banach space X and discuss the construction of weak solutions of
the Cauchy problem for (DE) from the viewpoint of the difference ap-
proximation. The results obtained are applied to the generation problem
of nonlinear semigroups.

We shall treat (DE) with the initial condition
(IO lim u(t) =u,

t—>+0
and shall use the following approximating difference scheme:
(DS) h;‘(up,k—up,k_l)—u,,,k=sl,,k, U, 0=l
Uy € Atlp g, k=1,2,..., h,\O0.

The h, stands for the mesh size of the difference and ¢,, is the error
which may occur at k-th step with mesh size h, If (DS) admits an
approximate difference solution {u,,; p, k=1, 2,...} and if
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(V) u(=limu,,, 0<t<t
khp—t
p—o

holds, then the limit u(f) gives a ‘‘solution” of the Cauchy problem for
(DE).
Recently, Crandall and Liggett [6; Theorem I] proved that if A

3

is a dissipative operator in X satisfying the ‘‘range condition”

(R) R(I—hA)>D(4A) for O<h<h,,

where D(4A) and R(I—hA) denote the domain of A and the range of
I—hA respectively, then T(f)u=Ilimy,.,, ,o(I—hA)"*u exists for ueD(A)
and t=0. The limit operators T(z), t=0, admit continuous extensions
T(t) onto D(A) and {T(t); t=0} forms a semigroup of nonlinear con-
tractions on D(A). Crandall and Liggett’s result states that up=U-
h,A)y*u,y, k=0, 1,2,..., gives a unique solution of (DS) with ¢,,=0
such that (CV) holds. That is, condition (R) can be regarded as a
sufficient condition for (DS) to have an exact solution and their result
gives an answer to our problem. Our first purpose is to weaken con-
dition (R) to a condition which guarantees the existence of approximate
difference solution with errors {e,,} satisfying a certain stability condition
and then to derive sufficient conditions for (CV).

On the other hand, Miyadera [18] improved another result of
Crandall-Liggett [6; Theorem II], and showed that if u(f)=T(f)u, obtain-
ed as above is strongly differentiable almost everywhere on [0, c0), then
its derivative satisfies (d/dt)u(f)e Au(f) for almost all ¢>0. This fact
suggests that T(f)u, should be called a ‘‘solution” of the Cauchy problem
for (DE). It is unfortune, however, that u(f)=T(t)u, is not necessarily
differentiable. Therefore, it is necessary to introduce an approximate
notion of generalized solution of (DE). For instance, Kato [10], Webb
[25] and others show that if A is a particular type of dissipative operator
of semilinear form, then the limit u(f)=T(f)u, is a solution of an integral
equation which is deduced from (DE) for the A. This kind of solution
is called a mild solution. Crandall [7] and Oharu-Takahashi [22]
treat accretive and dissipative operators which are associated with certain
first order quasilinear equations and show that the semigroups determined



DIFFERENCE APPROXIMATION 149

by those operators give generalized solutions of Kruzkov’s type of the
Cauchy problems for the equations. Moreover, Bénilan [2] introduced
a notion of ‘‘integral solution™ together with ‘‘pseudo-generator’”. Our
second purpose is to introduce a notion of ‘‘weak solution” and then
to investigate the relationship between the limit obtained by (CV) and
the solution of the Cauchy problem for (DE). Bénilan proves that an
integral solution is unique under a certain condition which is an extended
form of the range condition (R). Our weak solution is an integral solu-
tion and is unique, under the assumption that 4—w be dissipative for
some w=0. Moreover, we shall consider the relationship between the
generalized domain D(4) of A and the Lipschitz continuity of weak
solutions of (DE).

The arguments mentioned above can be considered from the view-
point of the theory of nonlinear semigroups. Our third purpose is to
discuss the generation of a nonlinear semigroup associated with the given
operator A.

This paper consists of five sections. Section 1 contains some special
notations used in this paper, some basic notions and the fundamental
facts concerning those notions. In Section 2, a notion of weak solution
is introduced and a Cauchy problem in a weak sense for (DE) is for-
mulated. Moreover, in that section, an approximating difference scheme
for the Cauchy problem is introduced and our main results are given.
Section 3 deals with the convergence of the difference approximation.
In Section 4, the unicity of a weak solution is proved and some basic
properties of weak solutions are studied. Finally, Section 5 treats the

generation problem of semigroups of local type.

§1. Preliminaries

In this section we list some notations, basic notions and some of
their fundamental properties.

Let X be a real Banach space with norm |-|. By an operator A
in X we mean a (possibly multi-valued) operator with domain D(A)
and range R(A) in X, that is, 4 assigns to each ueX a subset Au of
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X. D(A) is the set {ueX; Au#¢} and R(4A)=\U Au; Au is the empty
set if u¢D(A). A single-valued operator is refe:;é{d to as a special case
of a multi-valued operator in which Au, ue D(A), denotes the value of
A at u or the singleton set consisting of this element.

By G(A) we denote the graph of the operator A4, i.e.,

G(A)={(u, v)eX x X; ve Au, u e D(A)}.

We can identify the operator A with its graph G(4). For each ue D(A),
we write [[Au|| for inf{|v|; ve Au}.
Let S=X. We write A[S] for \U Au. By the restriction of A
ueS

to S, denoted by A|S, we mean an operator such that D(A|S)=D(4)nS
and (A|Su=Au for ueD(A)nS. S denotes the closure of S in X.
Let A and B be operators in X. B is called the closure of A if G(B)=
CW in XxX; we write B=A4. We say that B is an extension of A,
and A4 is a restriction of B (denoted by A<B), if G(A)c=G(B). For the
notations of addition, scalar multiplication and composition of operators
in X, we use the same notations as in Oharu [21]. We sometimes
write y for the operator yI, where I denotes the identity operator on X
and yeR. For an operator A, A~! stands for the inverse of A which
is defined by

G(A~Y)={(, u); (u, v) € G(A)}.

Moreover, given ze X, A+z denotes the operator defined by the cor-
respondence ul—>Au+z, u e D(A).

Let A be a single-valued operator in X such that R(A)c=D(A). Then
for positive integers i, we can define the iterations A* on D(4) by Alu=
A(A*~1u); we write A°=I.

We denote by <u,u*> the natural pairing between ueX and
u*e X*. By the duality map F of X we mean the (multi-valued) map-
ping from X into its dual space X* defined by

Fu={u*e X*; <u, u*> =|u|?=|u*|?}, ueX.

We define functionals < , >;;: XxX-R! and < , >; XxX-R!
by
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<u, v>;=inf{<u, v*>; v* e F(v)}
and
<u, v> =sup {<u, v¥*>; v* e F(v)}

respectively. These functionals have the following properties (Crandall-
Liggett [6; Lemma 2.16]):

Proposition 1.1. Let u, v, we X. Then we have:

(a <u,v>=—<-—u,v>;.

(b) <Av+u,v>;=Alv]>+ <u,v>; for LeR! and j=i or s.

(€) <u, po>;=u<u, v>; for Auz=0 and j=i or s.

d) <w4u,v>;Slwlllvll+ <u, v>; for j=i or s.

() <wHu, v> .S <w, 0>+ <u, v>;, and <wW—u, v>,2 <w, 1>,
—<u,v>;.

f) < , >, XxX->R'! is upper semicontinuous with respect
to the strong topology of XxX.

(g) For any one j of s and i, there exists a v*eFv such that
<u, v>;=<u, v*¥*>.

The canonical injection from X into its bidual X** is isometrically
isomorphic, hence the duality mapping F** of X** is an extension of
F. We denote by the same notations < , > and < , >, j=s,1i,
the natural pairing between X** and X*** and the functionals on X** x
X** mentioned as above.

Let CcX and let T be a single-valued operator in X. T is called
a contraction on C if || Tu;—Tu,||<|u,—u,| for u,, u,eC. An operator
A in X is said to be dissipative if

1.1) <V —Vy, Uy —U>;=0 for (uy, vy), (U, v2) € G(A).

It is well-known (Kato [11; Lemma 1.1]) that A4 is dissipative if and
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only if
(1.2) lluy —uyll = [I(uy — 2vy) = (up — Av,)|
for >0 and (u;, v;) € G(4).

Note that (1.2) implies that for every A>0, (I—14)~! exists as a contrac-
tion on R(I—14). If A is a dissipative operator such that R(I—1,4)=X
for some 1,>0, then we say that A is m-dissipative. It is well-known
that if A4 is m-dissipative then R(I—AA4)=X for 1>0. If A is dissipative
in X, then so is A.

Let ScX and A4 be a dissipative operator in X. Then A is said
to be maximal dissipative on S i{ any dissipative extension of A4 coin-
cides on S with A.

Let CcX. A one-parameter family {T(¢); t=0} of operators from
C into itself is called a semigroup of local type on C if it has the
following properties:

(1.3) there is a constant w=0 such that e “'T(t) is a contraction
on C for t=0,

(1.4 TO)=IIC, T(t+s5)=T(H)T(s)  fort, s=0,
(1.5) for each ueC, T(t)u is strongly continuous in t=0.

If T is a Lipschitz continuous operator from C into itself, then T is a
Lipschitz continuous operator from C into itself. Hence, if {T(f); t=0}
is a semigroup of local type on C, then {T(f); t=0} forms a semigroup
of local type on C. On the generation of semigroups of local type,
the following theorem due to Crandall-Liggett [6; Theorem I] is funda-
mental:

Theorem 1.2. Let A—w be a dissipative operator in X for some
w=0. Let A satisfy condition (R): RU—hA)>D(A) for O<h<l/w.
Then there exists a semigroup {T(t); t=0} of local type on D(A) such
that

T(Hu=1lim (I—hA) *u for t=0 and ue D(A).
kh—t
h—0
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This theorem was proved in an ingenious way and the proof of our
main theorem (which will be given in Section 3) is essentially due to it.

Finally, we prepare some estimates which play a central role in our
arguement.

Proposition 1.3. Let A—w be dissipative in X. Then we have:
(a) for (uy, vy), (Uy, v;,)€G(A) and for A with 0<i<l/w,
(1= Ao)uy —u, | S [I(uy — 2vy) — (= Avy) || 5
(b) for (uy, vy), (uy, v5)€G(A) and for A, p with O<pu=si<l/w,
(I —p)uy —u, | (/DU — 1) — (U — vy
AT = pf Dy —poy) s
Proof. (a) Let (uy, vy), (uy, v,)€G(A) and let O0<i<1/w. Then
Qs —Av) = (uz— Av) | luy —ul 2 <(uy—2vy) —(uy —4vy), f>
2 (1 —2w)lluy —u,|?
for some fe F(u;—u,). From this (a) follows.
(b) Let (uy, vy), (uy, v,)€G(A) and let O<u=si<l/w. Since u,—puv,
=(u/A)(uy—Avy)+ (1 —p/iu,, (a) yields that
(L= pe)lluy —us | S (uy — poy) — (uy — pv,) |
SNy — o) =y = Avy) [+ (= p/A) | (uy — poy) — sl

Q.E.D.

§2. Difference Approximaticn of (DE)

In this section we introduce a notion of weak solution of (DE)
and formulate a Cauchy problem in a weak sense, WCP, for (DE). We
then discuss the difference approximation to the WCP and state our

main results along with some comments, Moreover, we shall list some
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examples of WCP’s in which the relationship between the limit of
difference approximation and the solution of WCP is studied.

Henceforth we let A be an operator in X such that A—w is dissipa-
tive for some w=0. Let J be a bounded interval whose end points are
a and b, a<b, and let us consider a differential equation in X

(DE) (d/dt)u(t) e Au(z) for teJ.

For this (DE) Brezis and Pazy [4] have introduced the following type
of solution:

Definition 2.1. An X-valued function u(t) on J is called a strong
solution of (DE) on J if it satisfies

(i) wu(t) is Lipschitz continuous on J,

(i) u(?) satisfies (DE) almost everywhere on J.

Condition (i) implies that wu(a)= lim u(f) and u(b)= lignou(t) are
defined. Hence, u(f) can be regarded t;s”: Lipschitz continltl_(;us function
on J and its derivative is essentially bounded on J. As was mentioned
in the Introduction, the above notion of solution is too strong in the
case of non-reflexive Banach spaces. We wish then to introduce other
notions of solution. Let u(¢f) be an X-valued function on a closed in-
terval J=[a, b]. Then we say that u(f) satisfies condition (I) on J,
if the following condition holds:

(1) u(t) is strongly continuous on J and there exists a null sequence
{h,} of positive numbers and sequences {u,(t)} and {v,(f)} of X-valued,
strongly measurable functions on J such that

(i)s u()eD(A) and v,(t) € Au,(t) almost everywhere on J,

(ii), for every &>0, h'(u,()—uy(t—h,)—v,()—0 in L(J ; X) as
p— o, where J,=[a+¢e, b],

(ii); u,()—u(t) in L*(J; X) as p—>co.

A strong solution of (DE) on J=[a, b] satisfies condition (I) men-
tioned above. In fact, let h,l0, u,(f)=u(t) and let v, ()=u'(t), p=
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1,2,3,... Then, hy'Yu()~uy(t—h)|=M for teJ with t>a+h,
where M is the smallest Lipschitz constant of u(f). Hence [v()|=M
almost everywhere on J and the dominated convergence theorem yields
that for every e>0, h,'(u,(t)—u,(t—h,)—v,()=0 in L!(J,; X) as p— oo,
where J,=[a+¢, b]. Also, in a certain case, the function u(¢) satisfying
condition (I) is closely related to the notion of generalized solution (in
the sense of Oleinik) which is treated in the theory of first-order quasi-
linear equations. See Oharu-Takahashi [22; Section 6].

Condition (I) can be modified as follows: We say that an X-valued
function u(f) on a closed interval J=[a, b] satisfies condition (I)’ on
J, if it satisfies

(I u(t) is strongly continuous on J and there exists a family
{Jy; k=1,2,..., N} of a finite number of closed subintervals of J such
that

(1), Je=[aw ays+q] for k=1,2,...,N—1, where a,=a and ay=b,
(i), for each k, u(‘)|J, satisfies condition (I) on the interval J,.

Let J be a (not necessarily closed) bounded interval with end points
a and b, and let u(f) be an X-valued function on J. Then we say
that u(t) satisfies condition (II) on J, if the following condition is ful-
filled :

(I) u(t) is strongly continuous on J and there exist a family
{Ji; k=1,2,...,N, p=1,2,3,...} of closed subintervals of J and a se-
quence {u,} of X-valued, strongly measurable functions on J such that

(i) Ji=[a}, bf], bi<ak,, for k=1,2,..., N, and p=1,2,...,

(ii) for every p and k, u,(")|J§ satisfies condition (I) on the interval
J?,

N

Ll

(ii)

™M

Np—1
(af+1—bP)—0 and il lup(aks ) —uy(bP)[| -0 as p—co, where
k=

x
It

0

b

o

=a and af_,,=b,

(iv) sup [luy(t)—u(t)|—0 as p— oo, where JP=\ Jj.
teJP k
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Remark. Let wu,(t) and u,(f) be X-valued functions satisfying
condition (II) on intervals [a, b) and [b, c), respectively. If wu,(b)=
lim u, (), then the function u(f) defined by
tth

u, (1) for tela, b)
u(t)=

u,(1) for tel[b, c)
satisfies condition (II) on [a, c), that is, a continuation of X-valued
functions satisfying condition (IT) satisfies condition (II) on its domain.
Moreover, we shall see in Section 4 that an X-valued function u()
satisfying condition (II) on J gives an integral solution which has recently
been proposed by Bénilan [1]:

Definition 2.2. Let u(tf) be a continuous function on J. u(t) is
said to be an integral solution of (DE) on J, if for every pair (s, t)e
JxJ with s<t,

e~ 201 (1) — x |2 — =205 | u(s) — x| 2 §2Ste‘2“”<_v, u(t) = x> dx

holds for all (x, y)e G(A).
We can obtain the following result (Theorem 4.4 in Section 4):

Theorem 2.3. For each uyeD(A), there exists at most one X-

valued function satisfying condition (1) on J and lim u(t)=u,.
t—+a+0

In view of this we introduce two types of solution of (DE):

Definition 2.4. An X-valued function u(t) on a bounded closed
interval J=[a, b] is called a simple weak solution of (DE) on J
if it satisfies condition (1)’ on J.

Definition 2.5. An X-valued function u(t) on J is called a weak
solution of (DE) on J if it satisfies condition (II) on J.

By a Cauchy problem in a weak sense, WCP, formulated on J for
an operator A we mean the following:
WCP. Given u,, find a weak solution u(f) of (DE) on J satisfying
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the initial condition limu(t)=u,.

The u, is calledtltahe initial-value and a weak solution u(t) of (DE)
on J satisfying limu(f)=u, is called the solution of WCP associated
with the initial- Vaiue ug. The initial-value u, of a solution of WCP
must belong to D(A) and Theorem 2.3 states that a solution of WCP
associated with the initial-value u, e D(A) is unique.

By a Cauchy problem, CP, formulated on J for 4 we mean the
following:

CP. Given u,, find a strong solution u(f) of (DE) on J satisfying
Lim u(t) =u,.

e A strong solution u(tf) of (DE) on J satisfying ltiglu(t)=uo is called
a solution of CP associated with the initial-value u,.

We want to find solutions of WCP by employing the finite-difference
method. Here we consider the following type of difference approxima-
tion:

(DS) hy (U= Up k= 1) = Up e =Ep > Up,0 =Uo

v,k €Auyy, k=1,2,..., N,=[(b—a)/h,],

where {h,} is a certain null sequence of positive numbers depending on
uy. The g,, is the error which may occur at the k-th step of the
approximation with mesh size h, 1In this sense (DS) can be regarded
as an approximating difference scheme for WCP which permits errors.
For this type of difference scheme we introduce two notions of ‘‘approxi-
mate difference solution”.

Definition 2.6. Let v>0. We call the family {(u} i, vy )} <=G(A4)
({uy, 3 =D(A) if A is single-valued) an approximate difference solution
of (DS) with error bound v if there exists a po=py(ug, J, v) such that
(ay) for every p=p, and every k with 1=k<N,=[(b—a)/h,],

Byt (uy y—up 1) — V) =Ep ks Uy 0 =1Uo,
Np
(oez) h, 2 eyl =v.
k=1

Definition 2.7. A family {(u, v,0}=G(A4) {u,) =D(A) if A is
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single-valued) is called an asymptotically approximate difference solution

of (DS), if
(ﬁl) h;l(up,k—up,k—1)_vp,k=8p,ks up,0=u0

for 1£ksN,=[(b—a)/h,] and p=1,2,...,
(B;) max |e,,[|-0 as p—co.
15k=N,

If €,,=0 for all k and p, we say that {(u,y, v,,)} is an exact differ-
ence solution of (DS).

An asymptotically approximate difference solution is an approximate
difference solution with error bound v for every v>0. In fact, let
{(upp v,0} =G(A) be an asymptotically approximate difference solution
of (DS). Let v>0 and choose a p, such that

max e, Sv/(b—a)  for p=p,.
k

N
Then, hpkg‘:l lepill v for p=py; this means that {(u,,, v,,)} is an ap-

proximate difference solution with error bound v.

As will be seen in Examples 2.13, 2.14 and 2.15, the range condi-
tions (R) and (R,.) are special cases of the condition that (DS) has an
approximate difference solution. On the convergence of the difference
approximation, we have the following results:

Theorem 2.8. Let u,e D(A).

I. Assume that for every v>0, (DS) has an approximate difference
solution {(u}y, v},)} with error bound v. Suppose that there is a
constant C>0, independent of v, p and k, such that

) lup,c—up -1 | SCA+lley,ilDhy, for 1Sk<N, and p2p,,

where p, is the integer given in condition (o;). Then: (a) there exists
a unique simple weak solution u(t) of (DE) on J=[a, b] such that
for every sequence v; |0, there exists a subsequence {p;} and

u@®= lim u)!,, telJ,
atkhp, >t

i=o
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(b) lu@®—u(s)| SC-jt—s| for t, sed. () u(a)=u,.

II. Assume that (DS) has an asymptotically approximate differ-
ence solution {(u,,, v,,)} satisfying

Sy ltpe—tpu 1| SC-hpy  k=1,2,., N, p=1,2,...

p?

Then we have:(a)' there exists a unique simple weak solution u(t) of.
(DE) on J such that

u()= lim wu,,, tel,
a+mhp—t
p=o

together with (b) and (c).
The proof of this theorem will be given in the next two sections.

Remark 2.9. Suppose that (DS) admits an asymptotically approxi-
mate difference solution {(u,4, v,,)} satisfying
(B,) there exists a constant M =M(u,, J)>0 such that

lepill EMh, for k=1, 2,..., N, and p=1,2,....

If there exists a constant N>0 such that |ju,;—~u,|<Nh, for p=1, then
(S) is satisfied. In fact, [u,x—u,,_i—hyv,|SMhZ for 1Sk<N, and
p=1; hence

p:k

g —ttp = s | SVl Up—p0p0) = (U p— 1y = 0y - 1)
=Ypll{ttp = h vy —tp -1} F {1 —Upp— 1 +tpp_2}
H{upp—1—Upr—2}l
SVplltup i1 —Upp—2ll +2My hl Syplluy, —upoll +2Mys(k—1h;
<N +2M(b— )}y, 7,=(1— o).

Theorem 2.8 states that if (DS) formulated for u,eD(A) admits
an approximate difference solution satisfying condition (S), then it con-
verges to a Lipschitz continuous function u(f) on J. Conditions (S)
and (S)’ are closely related to the generalized domain of A. The
notion of generalized domain was first introduced by Crandall [8];
Bénilan [2] gives a modified version:
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Definition 2.10. Let X** be the bidual of X. Since D(A)cXc
X** A can be regarded as an operator in X**. We define an exten-

sion A of A whose graph is given by
G(A)={(x, y) e D(A) x X**; <y—v, x—u>;Solu—x|>
for all  (u, v)e G(A)}.

Here, note that < , >, is the functional on X**x X**. We also

consider the set
D(A)={x e D(A); ¥{(x,» y)} =G(A): x, —> x in X

and {y,} is bounded in X**}.

Clearly, AcA and D(A)cD(A)cD(A)cD(A). A dissipative opera-
tor A in X, considered in X** is still dissipative. Let A—w be dissipa-
tive in X. Let (x, y)eG(A) and define an operator A, in X** by
G(A)=G(A) U {(x, y)}. Then A,—w is dissipative in X**. Moreover,
we have the following (see Theorem 4.9):

Theorem 2.11. Let u(t) be a weak solution of (DE) on an interval
J=[a, b). Then u(a)e D(A) if and only if u(t) is Lipschitz continuous
on J.

The function u(t) obtained by Theorem 2.8 was a solution of WCP
for A. In order for it to be a solution of CP, some additional assump-
tions are needed:

Theorem 2.12. Let A—w be maximal dissipative on D(A). Let
u,€D(A). Then CP for A and u, has a solution if and only if for
every v>0, there exists an approximate difference solution of (DS)
with error bound v satisfying condition (S) and the limit u(t) obtained
by Theorem 2.8 is strongly differentiable almost everywhere on J.

Remark. If in the above theorem, condition (R) holds for A, then
we obtain the convergence Lt(t)=h1imo(1 —hA)t/hly;  in this case the
maximal dissipativity of A—w is ;ot needed and it is sufficient to
assume the closedness of A. See Brezis-Pazy [4] and Crandall-Liggett
[6; Theorem II].
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Now, in the remainder of this section we mention some examples
of approximate difference solutions.

Example 2.13. Let J=[0,t] and let us assume that A satisfies
condition (R). If u,eD(A), then {(u,, v,,)} defined by

(2.]) up,k =(I“ hPA)_kuo, Up,k =h;1(up’k‘—up’k_ X)’
k=1,2,..., N(=[t/h,]); h, 10,

is an exact difference solution of (DS). Moreover, in this case, condi-
tion (S) with C=exp(Qwr)||Auy|| holds. In fact,

lupp—upx—1ll =v5~  lAuollh, = h,exp Q) || Auo |l

for sufficiently large p, where y,=(1—wh,)~'.

As mentioned in the above example, condition (R) yields that
(DS) has an exact difference solution (2.1) for each uye D(4). Converse-
ly, in order to check condition (R) we must at least find the exact
difference solution of (DS), whereas in our argument, it is sufficient to
find just an approximate difference solution of (DS). It should be noted
that we do not need to consider the ‘‘unicity” of the difference solution
of (DS); this fact is important for extending the results obtained so far
to more general cases. From this point of view, we can say that con-
dition (R) is a special case of the assumption that (DS) has an asymp-
totically approximate difference solution satisfying condition (S)'.

Example 2.14. Let A—w be dissipative. Let C be a subset of X
such that D(A)cCcIm and let us assume the following condition
which is an extended form of (R):

(Ryoc; 4, C) For every xeC, there exist a sequence {h,} of positive
numbers, a sequence {z,} in X and a neighbourhood U of x such that
h,—0, z,—0 and

NRI-h,(Ad+z,))>CnU.
p

Then for each u,eD(A)nC, there exists an asymptotically approxi-
mate difference solution of (DS) satisfying (S). In fact, let {h,}, {z,}
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and U=B(uy; p) be respectively the sequences and neighbourhood such
that RI—h(A+z,))o2UNC for all p. We choose a positive number
T so that

0<7<p/(2t+exp 2awrt)(||vo| +sup Iz,1D),

where vy € Auy, and then construct {(u,,, v,,); k=0, 1, 2,..., N,=[t/h,],
p=1,2,3,...} as follows:
First, take an (u, 4, v, ) € G(4) so that

“up,l - hpvp,l - hpzp—uou §'Y;(N"+l)hf,', 7p=(1 -whp)‘l

and define an operator A; by G(4,)=G(A4A)U {(uy, vy)}. Since A;—w
is dissipative in X**, we see employing Proposition 1.3 that

”up,l -—uOH _S_yp”up,l —hpvp,l —u0+hp00”
Sy, Mot DRZ 9,k (ool + iz, 1)

and so, u,;€D(A)nU.
Now, assume that (u,; v,;)€G(4), j=1, 2,..,k<N, are defined such

that u,;€D(A)NU and |u,;—h,v,;—h,z,—u, ;4[| Sy~ "+ Dh2.  We

define (4,441, Uprs+1) € G(A) as follows: By condition (R,; 4, C) there
exists an (U, x+1, Vp+1) € G(A) such that

et 1 = hp¥pses1—pzp—tpll SVENoR2 .
Hence,
Np e 1= Upal Vol Up i+ 1 = hplpies 1) = (Up = hp0p )l
=Yl {1 = PP 1 = hpzp =ty + {0t hyzy =t i+t i1}

+{upp—tpi—1}ll

S2pEt NenZ Ly Nl —tp gyl
S2k+ Dkt =Neh2 + 9k hy(llz, )l + lvo )
Sh, {2+ (llvo +Slplp [z,l) exp w1)},

and furthermore,
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k+1
ltppsr—toll = Z] Ity =ty 1| ST{21+exp Qor)(|voll +sup [|z,[)} <p.
Jj= p

Thus, by induction, {(upy, v,4); k=0, 1,2,..., N, p=1,2,3,..} is defined
and simultaneously satisfies condition (S) with C=2t+(||vell+suplz,l)
exp(2wt). Moreover, since e, /| SyENeh,+ |z, Sh, + Iz, forp k=1,
2,...,N, we see that lénka_'S_XNpHGP,k”—_)O as p—oo. Therefore, this system
gives an asymptotically approximate difference solution of (DS). Con-
sequently, it follows from Theorem 2.8-II that for each uy,eD(A)nC
there is a unique (local) simple weak solution of (DE) on [0, 7] with
the initial-value u,.

Example 2.15. Let C be a subset of X such that D(A)c=CcD(A)
and u,eCnD(A). Assume condition (R,.; 4, C). Then for every v>0,
there exists an approximate difference solution of (DS) with error
bound v for which (S) holds. In fact, let {h,}, {z,} and U=B(uo; p)
be respectively the sequences and open ball such that h,—0, z,—0 and

NR(UI—h,(A+z,))=2CnU. On the other hand, from the definition of
p

D(A) one can find a positive constant M such that for each v>0, there
is an element (x,, x,)e G(4) with ||x,—u,||<v and |x'|<M. For these
M and p we choose a number 7 so that

0<1<p/2{2t+exp Rwt)(M +sup | z,|)} .
14

Now, let 1>v>0, h,+|z,[|<v/2t and take an element (x,, x;)e G(A)
such that |x,—ugl S<min{v/2, p/2} and |x,[|[<M. Then

NRA=h(A+2,)>C 1 B(x,; pf2).

Hence, as was seen in Example 2.14, there is an asymptotically approxi-
mate difference solution {(i,, 7,)} (=G(4)) of (DS) such that &,,=x,
and (18, il =hy 1,k — T pp—1) =Tyl Sh,+2,ll for k=1,2,...,N, (=[t/h,]).
Put (up i, vy, )=l Dpp) for k=1,2,.., N, Then,

ley, Ll =Mhgtuy, 1 —x,)—vp (|| +[1hy (4o —x,)|l
<h,+ |z, +v/2h,

and
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ley,xll Sh, + iz, for k=2, 3,..., N,;

hence
Np Np
he 3 lep.ull <v2+ 35 hylhyt |z, )Sv.

Moreover, as we have shown in Example 2.14, we have

lup, =ty -1 = hp{2f+(M+SI;P 2,11 exp (2w1)}

for 2<k=<N, and noting that [ep ;[l=h,*[x,—uol —v/21,
lup, 1 —uoll S llupy, 1 — x| + %, —uo|

Sh,{2t+(M+sup |z, /) exp Rwt)} +h,lley, 1 | +vh,/2t
p
Shy{2t+1/2t4+(M+sup ||z, |[) exp Qut) +|ley, 1 ||} -
p

Thus, {(u}. vy4); k=0,1,2,..,N,, p=1,2,...} is defined and is an
approximate difference solution of (DS) satisfying condition (S) with
C=2t+1/2t+(M +sup||z,||) exp(2wt). Consequently, it follows from
Theorem 2.8-1 that fgr each u,eD(A)n C, there is a unique local simple
weak solution of (DE) on [0, t] with the initial-value u(0)=u,. In
fact, we can continue this local solution to obtain a weak solution in
a global sense; we shall mention the continuation in Section 4.

Example 2.16. Recently, Kruzkov [16] discussed the problem of
unicity and existence of a solution of the Cauchy problem for the
following quasilinear equation:

2.2) u,+ ilqbi(u)xi:l//(u) t>0, x=(xy, X5,..., X;) €R4.

Crandall [7] has treated this problem from the viewpoint of the theory
of nonlinear semigroups by restricting y(u)=0.

Definition 2.17. Let A, be an operator defined in X=LY(R% by
the following condition: (u, v)e G(4,) if and only if u,veX, ¢(u)eX
for i=1,2,...,d and for every nonnegative fe CZ(R?) and every keR!,
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[, sign (=R & [8x) — 015, () = o0 ()} dx 20,

where signr is a function on R such that signr=1 for r>0, =0
for r=0 and =-1 for r<O.

Ao should be regarded as a multi-valued operator in general. If
ue D(4,) N L°(RY), then Aju=— Z ¢u),, holds in the sense of distribu-
tions. Crandall proved that if qb, 1s of class C!(R!) and ¢40)=0, then
A, is m-dissipative in X. Therefore, a semigroup {T(t);t=0} of non-
linear contractions on X can be constructed by Theorem 1.2. Moreover,
if ugeX nL*(RY), then u(t; x)=[T()uy](x) gives a generalized solution
in the sense that conditions (G.1), (G.2) and (G.3) (mentioned in Theo-
rem 2.21) hold with =0 and M =0.

Oharu and Takahashi [22] obtained the following result by employ-
ing a convergence theorem and an approximation theorem for non-
linear semigroups which are given in Brezis-Pazy [5] and Miyadera-
Oharu [20].

Let X,={ueXnL?RY; |ull,=m}, m=1,2,... and X,= U X, =
X n L=(R9). met

Theorem 2.18. (i) There exists a single-valued, dissipative operator
A with domam D(A) such that C§(RY)=D(A)c= X, and for each ue D(A),
Au=— Z oi(u),, holds in the sense of distributions.

(i) For every h>0, R(—hA)=X, (5D(4) and v=(I—hA)'u
satisfies

v+h 3 B0), =u

(i) For every uge X, T(t)u0=lim<1-%A>_nu0 holds for =0

and the limit operators T(t); t=0, form an L'-contractive semigroup
on X, Moreover, u(t, x)=[T()uy]l(x) gives a generalized solution of
(2.2) with y=0 in the sense that conditions (G.1)-(G.3) with y=0 and
M =0 are satisfied.

Remark 2.19. It is proved that A=Ay|D(A), D(A)={ueD(A,);
u, AgueL®(R%)}. Hence A=A, and A is m-dissipative in X. Each
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T(t) admits a continuous extension 7T(f) onto X and {T(f); t=0} coin-
cides with Crandall’s semigroup.

If upeX,, then T(H)u, is a simple weak solution of (DE) for A
on every bounded closed subinterval of [0, c0). Moreover, as is seen
from Theorems 4.7 and 4.10, for each wuyeX, T(H)u, gives a unique
weak solution of (DE) for A on every bounded subinterval of [0, o).
This means that the Cauchy problem for (2.2) with {y=0 has ‘“‘solu-
tions”” for ‘‘bad initial data™.

Now, let us consider the original equation (2.2). We assume that
Y =y(&) is a locally Lipschitz continuous function on R' such that

(2.3) W(OI=M|¢]  for CeR!.

Define an operator ¥ on X, by [Wul(x)=y(u(x)), xeR¢ Then by
(2.3), ¥ maps X, into itself;

(2.4) [Pul ,<M|ul, for ue X, and g=1, o0,

where |lu|; and |u,| mean L!'- and L*-norm of u, respectively. Let
w, be the smallest Lipschitz constant of ¢ on [—m, m] and let u,
ve X,. Then, since [Y(u(x))—y(v(x))|Zw,lu(x)—v(x)| almost everywhere
on R4, we have

(2.5) Wu—¥olly Sw,llu—vl,.
Setting A, =4+ ¥, D(A,)=D(A4), we consider (DE) for A,:
(2.6) (d/dtyu(t) = A u(t), t>0; u(0)=u,.

This is an abstract version in X of (2.2). We then consider (DS) for
this (2.6) and demonstrate that the system {u,,} defined by

2.7 Up=(I—h,A Y T+h,Pu,,_y, k=1, 2,...,
up,0=uOED(A1)9 hpi«oy
gives an asymptotically approximate difference solution of (DS).

Lemma 2.20. Let t>0. Then |lu,,l|,<eM*|uy| for 0<kh,<t and

g=1, oo.
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Proof. First, it is seen from the proof of Theorem 2.18 that [(I—
hyAy 'ul,<llull, for ueX, and g=1, co. Hence, (2.4) yields that
lup, ;A +h,M)ugll, for g=1, co; and so, u,;€Xo and |[u,,|,<
eM*|uyll, for g=1, co. Next, suppose that u,,_;e€X, and [u,;_[,=
(1 +h,M)*uel, for g=1, co. Then by (2.4) and (2.7), we have

ltpillg SN+ My PYup s i llg (L +HM) o, < eMlugl, for g=1, 0.
Q.E.D.

Let >0, |lugl|Smqy, m=eM'm,, and let 0<kh,<t. Then {u,,}<=X,
by Lemma 2.20 and hence (2.5) yields that

2.8)  Nupe—tpp— il =1T=h,A) T +h, ), —tps_ily
= ”(I-l—hplp)up,k— 1 "(I""hpw)“p,k—z” 1 =( +hp0)m)”up,k—1—up,k-2”1
é(l +hpa)m)k—1”up,1 —up,OIII ghp(1 ‘i_hp('um)k_1 ”AIUOHI .

This means that {u,,} satisfies condition (S)' with C=exp(@,7)|A4 uol;-
Furthermore, since

Upr—Up—1—hpAqt,  =(I=h, A, —up, = h,Pu,,
=h,(Pup, -1 —Yu,s),
(2.5) and (2.8) imply that
“"p,k_up,k—1—hpA1up,k|[1éhgwmeXP(me)“Axuolh-

This means that {u,,} satisfies conditions (f,) and (f,) and consequently,
{u,x} becomes an asymptotically approximate difference solution of (DS).
Therefore by Theorem 2.8-11 and a way similar to [22; Theorem 5.1],
we obtain

Theorem 2.21. For every uge X,,

u(t) = lhim [ —=h,A)" (I +h,¥)]Fu,
khp—
p-'wt
exists for t=0. u(t) gives a unique weak solution of (2.6) and at the
same time, u(t, x)=[u(t)](x) is a unique generalized solution of (2.2)
in the following sense:
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(G.1) for every >0, |[u(t)l,<eM"|luql, for te[0, ] and q=1,00,
(G.2) for every keR' and every nonnegative fe CZ((0, o) x R1),

77, utt 9= kA x)+sign @t 0=k £ 19, ) - 61t 0

+ sign (u(t, x)— k)W (u(t, x))f(t, x)}dxdt=0,

(G.3) u(t) is strongly continuous in t=0 and lim |u(t)—u,l, =0.
t—=>+0

Example 2.22. Let X be a space consisting cf real-valued, uniformly
continuous and bounded functions on R!. X is a Banach space under
the supremum norm. Any real number a can be regarded as a constant
function o(x)=a which belongs to X. We can introduce into X a partial
ordering ‘=" by letting u=v if u(x)=v(x) for all xeR!; we write
u>v if u=Zv and u%v. We denote by X§ the positive cone, {ueX;
u>0}, of this partially ordered Banach space X. Now, let us consider
a linear operator 4 defined by

29) (Qu)(x)=u"(x),xeR' for ueD(A)={ueX;u,u eC(R!),u"eX}.

4 is the infinitesimal generator of a linear contraction semigroup {e’4;
t=0} defined by [e“’u](x)=(4m)‘1/zg lexp{—(x—-0')2/4t}1,¢(a)d0. Also,
every positive number /. belongs to tRhe resolvent set p(4) and (I—
J4)~1 is given by [(I—).A)‘1u](x)=(4/1)‘1/23 exp {—|x—ol// 4 }u(o)do.
Observe that (I—Aid) 'a=a for all aeR?! aﬁcli the operator (I—14)1!
is order-preserving. Next, we define an operator R on X} by

(2.10) [Ru](x)=(u(x))!/2, xeR!.

R is also order-preserving. Since |]Ru—RvH§||u—vH/2\/? for u, v=
e>0, R is Lipschitz continuous on X;={ueX*;u=e}, ¢>0.
Now, we define an operator A in X by the relation

(2.11) Au=Au+ Ru, ueX§nD(4),
and consider the Cauchy problem for (DE):

(2.12) (d/dt)u(t) = Au(r), t=0; u(0)=uy,
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which is an abstract version in X of the Cauchy problem for the semi-
linear equation u,=Au-+./u. (For a detailed argument on this kind
of problem, see Fujita-Watanabe [9])

Let ugeD(A)n X+ for an ¢>0. We consider (DS) for this (2.12).
We shall show that the system {u,,} defined by

(2.13) Upp=I—=h, )" I+h,Ru,,_, U,o=tog,
k,p=1, 2,...

gives an asymptotically approximate difference solution of (DS).
First, (I+h,R)u, o= +h,R)e=¢e+h,\/¢, and so,

U, =I—h,)" I +h,Ryuo=I~h,4)"'(I+h,R)e=(I+h,R)e.
Similarly, u,,=(+h,R)?s. Inductively, we obtain
(2.14) u,x=(I+h,Ryeze and {u,,J<Xf.
Next, since |lu,, —u, ol Sh,|Auyll, we have
|lup,k—up,k_1||g||(I+I1I,R)up’k_1—(I—hpA)up’k_IH
=T +h,Rupp -y —T+h,R)u, |
S +h, 2 &) Hu, —u, ol Sh,exp (kh,/2 e )| Au,ll .
Therefore,
lupp—hpdu,  —h,Rup,—u,, |
=[(I+h,R)upy—y—h,Ru, —u, .|
< (hyf2/ &t —thp |
Sh2exp(kh,/2/¢€)|Auoll/2 & .
Now, let t>0 and C=C(t)=|lAu,l exp(r/2\/&). Then we have
(2.15)  Jup—u,,—| =Ch,

upp—hpAu, o —u,, | S(C/2 V’—a_)hj, k=1,2,...;, Ny=[z/h,].
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This means that {u,,; k=1,2,...,N,; p=1,2,...} gives an asymptotically
approximate difference solution of (DS) satisfying (S)’. Since 7 was
arbitrary, Theorem 2.8-II yields the convergence

(2.16) u(t; ug)= lim u,, = lim [(I —h,4)~*(I+ h,R)]*u,

khp—> khp—

p-'wt p-*wt
for t=0. Observe that u(t; ug)e X7 for 1=0. Let id,eX? nD(4) and
{ii,,} be the associate asymptotically approximate difference solution
(defined as in (2.13)). Then we obtain the limit function u(t; éi,) in
the same way as in (2.16). Moreover, noting that [u,,—i,,|<|[(I—
h, )Y+ h,R)T*ug—[(I — h,d) '+ h,R)T¥ido || S (L4 h,[ 2/ € Y¥llug—doll, we
have

(2.17) lu(t; uo)—u(t; do)| Sexp(t/2/e)llug—ilol,  t20.

Set T(Hug=u(t; uy) for t=0 and uge X7 nD(4). Then, in view of (2.17)
we can obtain a semigroup {7,(t); t=0} of local type on X}. As is
mentioned in the preceding example, T,(t)u, gives a unique weak solution
of (DE) on every bounded subinterval of [0, oo).

On the other hand, we see in a way similar to Webb [25] that
for each uye X/, T(t)u, gives a unique mild solution of (2.12). In fact,
Jy=(I—=h,4) (I +h,R)y=(I—=h,4)"'+h,(I-h,4) 'R, and so,

Teuo=(1—h,d) *uo+h, Z_(‘;;(I—hpA)'““”RJj,uo .
Hence,
15— {et4ue + i_‘g;hpe("‘“hPARTa(ihp)uo} I
<1 (= hyd) g — et ugl +hy &, | (I=hy Ay =0 {RIfuto = RT (ih,)uo} |
+hy & [{U~hyA) 070 = G0k} R (i Yo |
Set k=[t/h,]. Since (I—h,4)"Is/k»] converges to €4 as p—co, uni-

formly on bounded subinterval of [0, c0) as well as on compact subsets
of X, we have
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t
2.18 u(t; ug)=etdug+\ e 94Ru(s; uy)ds for t=0
0 0 0 0

by letting p—oo in the above estimate and applying (2.16). The unicity
of a strongly continuous solution of the integral equation (2.18) can be
proved in a way similar to Webb [25; Proposition 3.6]. These facts
mean that T,(t)u, is a unique mild solution.

Finally we note that

lim i~ [T,(tyu—u]=-Au for ue X} n D(4).
h=+0

Example 2.23. (Product Formula)

Let 4 be the infinitesimal generator of a semigroup of linear con-
tractions on a Banach space X and let B be a nonlinear dissipative
operator in X satisfying

(i) there exists a subset D of X with D<D(A) n D(B),

(ii) J,=(I—hB)"Y(I—hA)"! and J,D<=D for O<h<h,,

(iii) for every ueD and 1>0, there exists a constant M=M(u, 1)

>0 such that

|ABJkul| =M for O<h<hy and 0Zkh<~.

We want to consider the Cauchy problem for (DE) formulated to
the operator A+ B of semilinear form:

(2.20) (d/dOu(t) =(A+Bu(f),  t=0; u(0)=u,.

Webb [26] and Kobayashi [13] give some sufficient conditions
guaranteeing the above conditions and some examples of the operators
A and B satisfying (i), (ii) and (iii)). For instance, let X =L#?(0, c0),
where 1Sp<o, and Au=-—u', DA)={ueX;u'eX}. Let b() be a
continuously differentiable, nondecreasing function on R! such that b(0)
=0 and define an operator B by [Bul(x)=b(u(x)) for ue X such that
Bue X. Moreover, let Aju=—u" for ueD(4,)={ueC[0, o0); u’ e C[0,
)}, where C[0, c0) is the space of bounded uniformly continuous
functions on [0, ), and let D=D(A)nD(A) N D(AB). Then, it is
proved that (i), (ii) and (iii) hold for these A, B and D.

Now, let upeD and 7>0. We consider (DS) for (DE) on [0, 7]
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and show that the system {u,,} defined by

(2.21) Uy =I=h,By *(I—h,A) u,,_y, k=1,2,..., N,=[t/h,],
Upo0=Uo, h,10,

gives an asymptotically approximate difference solution of (DS) satisfying
condition (S)".

In fact, (I—hAYI—hB)=I—h(A+B)+h?AB on D(AB)N D(A), and
so, (I—h(A+B)+h2AB)u,,=u,,_, for 1=ks<N, and p=1. Hence,

lupr—h(A+Byu, —upy_i || =|—h2ABu, | <Mh} for 1Sk<N,
and p=1.
Moreover, in view of Remark 2.9 we have
lup,e—tpr—11 =@Mt +|[(A+B)uol)h, for 1Sk<N, and p=1.

Consequently, we obtain the following result by employing Theorem
2.8:

Theorem 2.24. Under conditions (i), (ii) and (iii), we have:

(a) For each ueD,

(2.22) T(tyu=1lim [(I—h,B)~1(I—h,A)~1]*/kely
p—©

holds uniformly on bounded subintervals of [0, c0).

(b) Let T(t) be the continuous extension onto D of T(t), for each
t>0. Then {T(t);t=0} forms a semigroup of contractions on D.
Moreover, for each ueD, T(f)u gives a unique simple weak solution
of (DE) on each bounded subinterval of [0, o).

Remark. A converse of Theorem 2.24 holds: Assume that condi-
tions (i) and (ii)) hold. Let u(f) be an X-valued function on [0, o)
such that u(0)=uy. If for every >0, u(t) restricted to [0, ] is a strong
solution of (2.20) on [0, ] such that |[[ABu(t)|<M, for almost every
te[0, 7] and for some constant M_ >0, then u(t) is represented as the
product formula (2.22). See [13; Theorem 1.1].
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§3. Convergence of Difference Approximation

In this section we prove Theorem 2.8 in several steps.

Throughout this section A denotes a fixed operator in X such that
A—w is dissipative for some w=0 and we suppose all of the assump-
tions of Theorem 2.8-I.

Let v, v'>0 and let h, and h, be some fixed elements of the null
sequence {h,} such that h,<h, Write h=h, and h'=h, for simplicity,
until before Theorem 3.9. Set

a=h'lh, f=1—a, y=(1—wh)™ !, a;=ay and B, =Py.

By {(upw vp0); k=0, 1,..., N,, p=1,2,...} and {(ug,;, vy ;); j=0,1,..,
N, q=1,2,...}, where N,=[(b—a)/h,] and N,=[(b—a)/h,], we denote
the approximate difference solutions of (DS) with error bounds v and
v', respectively. Moreover, we write

Vp,k=hp”8;v;,k” and V;,j=hq”8;:j” >

where e} , and e} ; denote the errors at the k-th and j-th steps, respec-
tively, and set

A =luy, =l for k, j=0.

First of all, condition (S) implies the following:

Lemma 3.1. Let m<n, a+mh<b and let a+nh'<b. Then

m m
A0 é kzl ”up,k_—up,k— 1 ” § C (Wlh + kzl vp,k) 5
n , n
ag,, < J;I luy, j—ug, j-1 | SC-(nh' + J;lv:“-) .

Lemma 3.2. Let 1=k<m and 1<j<n for the same m and n as
in Lemma 3.1. Then we have

A i S0ag_q,j- 1+ B1akj— 1 +y{av, e+ ;).

Proof. Applying Proposition 1.3 we have
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ak,j§°‘1“(“fl,j_hl%,j)"‘(up,k_hvp,k)”+ﬁ1“(ufl.j—h’%,j)“up,k”
Sog{ll(ug, ;= h've, ) —ul j- |+ lug, jo1 =g |+ Upi—1
—(pp—hv, I+ B {ll(ug, j—h'vg )—ug i1 | +ug -1 —up,ll}
Soag_q,j—1+ B0 ;1 Hy{av, + VG ). Q.E.D.
Lemma 3.3. Let a+nh’'<b. Then we have
a1 = i alﬁ{ﬂ({:i)ao,n—j+ﬂ'1'<g>a1,o+7"{"p,1 +nil Vin—j} -
j=1 j=o
Proof. First, Lemma 3.2 yields that
al,n§°‘1ao,n—1+ﬂl[“1ao,n—z+ﬁ1al,n—2+)’{°“’p,1+V;,n—1}]
+y{ov,, 1 + Vi, nt
S0, 1+ 180 -2+ B1ay p_ 292 v, 0(14f)
+92 (Vont+Va,n-1)-

Suppose now that for 2<k<n,

k =1 -
a1 3 0B (2] ) Bomm st Brasait P vy oL B )

k=1
R AT VR AN
Jj=0
Then, since
k
Bray y-r=o Bt (1 ~1 Ao -+ 1y B 1y ey TV {aBRY V] k) s
we obtain

k+1 . i1 k.
ay = Zlo‘lﬂjl 1({_1)ao,n—j+ﬂ’f+lal,n—(k+1)+7k+1"’p,1“ _ZoﬁJ
i= j=

k
+1
+yErL Zov:b”-j .
i=

k
Since o) /<1, we have the assertion by induction.
i=0
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Lemma 34. Let a+mh<b. Then,

[ m m—1 m—1
< ; >am—j,0+ym{ Z Vp,m—jt Z_: Vom—j} -
J j=0 j=0

Proof. By Lemma 3.2,

am méalam— 1,m—1 +B1am,m— 1 +y{avp,m+v:1,m} .

Suppose that for 2<k<m,

k /& S k=1 _
ammS 3 (5 )l B a0 et P Z Vomes 5, 3 (5 )}

Since

am Jj.m k—alam—j—l,m—k—l +ﬁlam—j,m—k—1+y{avp,rn—j+v:1,m—k} H

it follows that

903 (K Nal b rias 3 (4 )iy
o\ J p.m=J i=o0 j=o\J pm=J

Kl k+1
é ( ] )ajlﬁ,{+1 Jam—j m—(k+1)

"*1{sz Vi m—j +a2 Z( )alﬁ’ vam_j}.

Jj=0 =0 j=0

Therefore, by induction

ms i Jﬂm—j(’?>am—j,o+7 {Z Vom—j+0 Zo JZO( )O'Jﬂl_ pm—j}'

Now, we estimate the last term of the right side. First we observe that

=0 j=0
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If p=1, then «=0 and hence we have the desired estimate. We then

assume that O0<f<1. Then,

(=g =S (I D =pr= 3 (")

n=0

Setting n=I—j, we obtain (n:j>=<§.>: hence i(?)ﬂl—j=(1—ﬂ)_"_l
i=j
=a~J7!, This completes the proof. Q.E.D.

Lemma 3.5. Let 1=m=<n, a+mh<b and let a+nh'<b. Then
A= 2 ( )ajﬂ Jam Js 0+ Z( >amﬂ1 aO,n—j

m—1 n—1
+ }’"{ 2 vp,m—f+ Z V:I’"_.i} .
Jj=0 Jj=0

Proof. In view of Lemmas 3.2, 3.3 and 3.4, it is sufficient to show

that a,,.,,+; satisfies the inequality with m and n replaced by m+1

and n+1 respectively, under the assumption that a,, and a,.,,, satisfy

the corresponding inequalities. By Lemma 3.2, we have

am+1 n+1Salanl,n+ﬁlam+1,n+v{avp,m+1 +v:1,n+1}

m J+1 m+1 1 n
; 1 ﬁn !< ) Ay~ Js 0+ Z a}ﬁn J<j>am+1—j,0

l Jj=m+1

+ Z am+1ﬁ! m( :1>a0 e J+ 2 am+1ﬂ! (m+1)+1(]nzl>a0,"_"

j=m

n—1 n—1
+ac1y * 'ZO v;,u—j"‘ﬁly"‘ .Eoviz,n—j'}"yv;],lﬁl
J= J=

m—1 m
+oyp”. .Zovp,m—j + By Zovpmﬁ 1-j TPV me1
j= j=

II/\

1
Jj=m+1

mE1 n +1 - j—1
JZ’O ol pr+t1- 1( >am+1 1ot Z o1 g +1)<(m]+1)—1>a°’"+1"f

(n+1)-1 1 m m
2 Vonri—j " {‘x.zlvp,m+l—j+ﬁ.zl Vp,mt1—j
i= i=

Jj=

+yn+1_

+ﬂvp,m+ 1 +avp,m+ 1} .
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This means that a,.,,,, satisfies the inequality in question with m
and n replaced by m+1 and n+1 respectively. Q.E.D.

Lemma 3.6. Let 1<m=<n, a+mh<b and let a+nh’<b. Then we
have

m

@ E(Mwpist,

j=0

(j
) % (S )amprs,
(

(c) f ]>o¢1ﬁ" i(m—j)<{(n—m)? +naf}'/2,

@ 5 (A1 )= S {mpla? +(mfat m—n)2} 12

Proof. (a) and (b) are easily seen. The proofs of (¢) and (d) are
stated in Crandall-Liggett [6; Lemma 1.4]. Q.E.D.

Combining this lemma with the estimate given in Lemma 3.5, we
have the following:

Lemma 3.7. Let 1=<m=<n, a+mh<b and let a+nh'<b. Then,
[lu

won—Upml Sexp Ronh)[C{(nh'—mh)? +nh'(h—h")}1/2
+C{mh(h—h")+(mh—nh")2}112 4+ (1 +C)(v+v)].
Proof. In view of Lemmas 3.5 and 3.1, we have
auS 3 (1) el Brocion= i+ S v, + £ (I aapimcion— i
n—1J m—1 n—1 ,
+ Z vrq,k} +-ync{ Z vp,m—j+ Z v q,n—j}
k=1 j=0 j=0
<nm n jRn—j - < j J_1>m j—m(y__ 7 ’
<y $ (5)wbrim=i)Ct 3 i J71)angimn= )Cah

+va"io<?>a1ﬁ” i+ cy 2 7 < %)“"’ﬁj-"'+?"{v+v'}-
f=

=m
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Since y"<exp(2wnh’), we have the assertion by applying Lemma 3.6 to
this estimate. Q.E.D.

Remark 3.8. It should be noted that the right side of the estimate
given in Lemma 3.7 is independent of the choice of approximate solu-
tions {u,,} and {u; ;} of (DS).

Now, we are in position to prove the first half of Theorem 2.8.

Theorem 3.9. Let A be an operator in X such that A—w is
dissipative for some w=0. Let J be a bounded interval whose end
points are a and b and let uge D(A). Assume that for every v>0,
the approximating difference scheme (DS) has an approximate differ-
ence solution {(upy, vp,)} with error bound v. If condition (S) is
satisfied, then we have:

(a) For every null sequence v;} 0 there exists a subsequence {p;}

and
u(®)= lim wupi,

atkhp, >t
i-w

exists for te J=[a, b].

(b) Given a v>0, let {(ii,;, Upu)} =G(A) be an approximate differ-
ence solution of (DS) with error bound v satisfying (S), then
for every sequence {mpﬁp} converging to teJ,

li? u(®)— i p,m, | Sexp Qaw(b—a))(1+C)v.
atmphp—t

(¢) u(t) is Lipschitz continuous on J, that is, |u(t)—u(s)|<
Clt—s| for t,seJ.

Proof. (a) Let v;10. For each v, let {(u}, vhi)},>p, be an
approximate difference solution with error bound v;, where p; is the
integer associated with v; through condition («;). Let a, b (a<b) be
the end points of J and let

3.1 u(t)=up, .0y k()=[(t—a)hp,] for tel.

Then ky(t)h,, 1 t—a as i»oo and Lemma 3.7 yields that



DIFFERENCE APPROXIMATION 179
[lui(8) —u (1)) -exp 2w(a—1))
< CC{kDy, = KOy Y2+ iy DBy, =y )2
+C(hy, ki(t)(hy —h, )+ {k(Dh, —k(Dh, }*)'/?
+(1+C)(v;+v;) for izj.
Hence, il}.r_{lwllu,-(t)—uj(t)n=0 uniformly for teJ. We set
u(t) =§£1110 uy), tel.
(b) Let {(ii,,, Dp,)} be any approximate difference solution of (DS)

with error bound v satisfying conditions (x,) and (S) for the same con-
stant C as in (a). Then by Lemma 3.7,

exp Qaw(a—D)ut) =i,

S C({kit)h,, —mh,}* +(t—a)h,—h,))'/>
+C(mh(h,—h, )+ {mh,—k(t)h, }*)'/?
+(1+O)v;+v)

for i sufficiently large. Letting i—oco, we obtain
(3.2) exp Qw(a —b))[u(t) — it | 2C{(t—a—mh,)* +(b—a)h,} '/
+({1+C)v.

From this it follows that Lm |u(t)—i,,, | Sexp(w(b—a))(l+C)v
-t

at+mphp _
for every sequence {m,h,} converging to teJ.

(¢) Let s, teld, s<t. Then, condition (S) yields that

ki(1)—1 . .
lud)—uGI s X lup, xe1— b, il
k=ki(s)
ki()-1
=C LZ) (T+ ezt kDA,

G

< C(ki(t)— k)hp, + Cv;.

Letting i—oco, we have that |u(t)—u(s)| ZC|t—s]|. Q.E.D.
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Theorem 3.10. Let A be an operator in X such that A—w is
dissipative for some w=0. Let J be a bounded interval whose end
points are a and b and let uyeD(A). Assume that (DS) admits an
asymptotically approximate difference solution {(u,,, v,,)} satisfying

condition (S)'. Then we have:

(a) u()= lim u,,
atmhp—t
P

holds for every teJ and u(t) does not depend on the choice of the
approximate solutions {(u,,, v,,)} of (DS).

() |u(®)—u(s)|SClt—s| for t,seJ, where C is the constant given
by condition (S)'.

Proof. (a) Let h,<h, and 1=m=<n. Then by Lemmas 3.5 and
3.6,

S n\,ipn—j .
It =5l S 35, (F )t BICLm =Dy + (b =) max. leyl}

J

+ 2 (A71)mBlmCln= byt (b-a) max Je, ;1)

+7-(b—a){ max |, I+ max |, I}
1sksm 15jsn
<973 (1) im—Chy+ 3 93( ] ] Jempim(n—j)Ch,
=0\ J fem Am—1
+C(b—a) max oy ally" 35(%)osprs
1<k=m j=o\J
_ L i j_'l mRj—m
+Cb—a) max lle,;| 3 yi( J7 ] Janps
7" (b—a){ max |lg, [+ max [e, ;l}.
15k=m 15jsn

Now, we set wuy(f)=uy,; o, k()=[({—a)/h,] for teJ. Then, k,(h,
tt—a and

(33) llup(8) —uy(t)lexp 2w(a—1))

S C({k,(Oh, =k, ()h,}* + hk()(h,—h,))! /2
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+ Ok (O)(h,— h,) + {k ()h,— k(DR ,}2)1 /2
+(b—a)1+ C){1 éné?fvpﬂﬁp,k” +, 15_111_215‘1||84,,-||} .
Hence, pliqr_r}mllu AD—u, (O =0 holds uniformly for teJ. Set
u(t) =1}i»r£ u (1), tel.
Then we have
u() —u,,ull exp 2w(a —1))
< C{(t—a—mhy)? +(t—a)h,} /2 + C{mh2 +(mh,—t +a)?}/?

+(b—a)(1+C) lngg)émllep,kll .

Thus, (a) is proved. (b) follows from Theorem 3.9 (c). Q.E.D.

§4. Abstract Cauchy Problem

In this section we investigate some properties of weak solutions of
(DE) and discuss the uniqueness of a solution of WCP. Moreover, we
consider the relationship between the generalized domain D(4) and the
Lipschitz continuity of weak solutions of (DE).

Throughout this section we assume that A4 is an operator in a
Banach space X such that A—w is dissipative for some w=0.
We start with the following:

Lemma 4.1. Let u(t) be a simple weak solution of (DE) on a
closed interval J=[a, b]. Then for every pair s, teJ with s<t and
every (x,y)e G(A), the following inequality holds:

4.1) e 2ot u(t)—x||2 —e 29| u(s)— x| ? gZSte‘z‘"’<y, u(t)—x>.drz.

Moreover, (4.1) holds for s, teJ with s<t and (x, y)e G(A) by letting
< , >, be the functional on X** x X**,



182 N. KenmocHr AND S. OHARU

Proof. Let {h,}, {uy(t)} and {v,(t)} be the corresponding null se-
quence and sequences of X-valued, strongly measurable functions satisfy-
ing conditions (i)~(iii),. Put

4.2) W) =y {u (1) — 10,1 — )} — 0,(0) -

First, let (x, y)e G(A). Define an operator A4, in X** by G(4,)=
G(A) U {(x, y)}. Take an &>0 sufficiently small. Since 4, —ow is dissipa-
tive,

4.3) <v (1) =y, uy (1) —x>; S ofuy(t)— x| for a.a. 1eJ.

Since v, (t)—y=h, {u,(v)—x}—h,{u,(t—h,)—x}—y—,(r) for aa.tre
J.=[a+e, b] and h,<e, (4.3) and Proposition 1.1 imply the following
estimate:

(44 oluyr)—x|?
Zhy Hu (1) = x[|12 = <hy H{u,(t—h,) = x}+ y +P,(1), up(t) — x>
2 hyHluy(t) = xI|2 — by Huy(t—hp) — x| -Ju (1) - x|
= <Y, up(D) = x> [, (D] [u,(7) — x|
Z@2hy) Hu (D) —x]2 = 2h,) " Hu(t—hp)—x||2 = <y, uy(1) = x>
— W, flu (1) — x|

for almost all teJ,. On the other hand, [u,(t)—x|| is uniformly essen-
tially bounded on J, and so, a constant M >0 can be found such that

lu()~x|=M for almost all teJ and all n.
Let s, teJ,, s<t, and set
4.5) th=a+kh, k=0, 1,..., N,=[(b—a)/h,]; h,<e.

Let m and n be such that se[tf_,, t?] and te[t?, t7,,]. Then by (4.4),

(4.6) ZwS "e-20t) up(r)—x||2d1+2St"e"2“"<y, 1y (1) — x> dt
o

t
4
tm

+20 (7 1y, () e
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21 (" e sy ()~ x| 2de iy
t? t?

n-—1 m-=1

e—lw(r+hp) “ up(f) — x" 2dt

thoy
+h;1g ’ (e—Zmr_e—Zw(f“"”p))H ul,(‘C) - x||2d‘L' .
t

Since Sz: |||//p(‘c)||dt§g [¥,(Dldt—=0 and wu,()—>u(-) in L=(J,; X) (and
m JE

X**XX**—’RI

is upper-semicontinuous, the limit superior of (4.6) is not greater than

hence, in L*(J,; X**¥)) as p—oo, and since < , >

s*

ZwSte‘z“"|lu(1:)—x!|2d‘c+2gte‘2“’f<y, () —x> dr.
s s

On the other hand, h,!(e”2¢r—e 2@(*hp)) »2e~ 2" as p— oo, uniformly
on J, and so, the right side of (4.6) tends to

&= 20t | u() — x| 2 — e~ 295 Ju(s) — x| 2 +2w3'e—2wruu(r)— x| 2de.

From this we obtain the inequality (4.1) by letting p—oo in (4.6).
Since ¢>0 was arbitrary and u(f) is strongly continuous on [a, b], we
have the required inequality (4.1) for every pair s, teJ with s<t. Next,
the proof of (4.1) in the case of (x, v)e G(A) is similarly proved; note
that in this case we can take A itself, instead of A4,. Q.E.D.

Remark. Let u(t) be as in Lemma 4.1. Then we can prove the
following inequality in a way similar to the above: For every s,reJ
with s<t and (x, y) e G(A4),

“.7) Ju() = x11* = Ju(s) = x> <20 Ju() - x] 2d¢
+2$t<y, u(t)—x>dr.

Note that (4.7) holds for s, teJ with s<t and (x, y)e G(4) by letting
< , >, be the functional on X**x X**,

Lemma 4.2. Let u(t) and 1i(t) be simple weak solutions of (DE)
on intervals J=[a, b] and J=[d, b], respectively. Then
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(48) [t -u@)> = 156 u@)]?)d0
+{ W@ —u@+ 13 -u@)|2)de
< 20| 4t 2@~ u@)|do

holds for every a, BeJ with a<p and every s, teJ with s<t.

Proof. Let {h,}, {u,(t)} and {v,(#)} be the corresponding null se-
quence and sequences of X-valued, strongly measurable functions on J
satisfying conditions (i)~(iii);. Let {y,(t)} be the functions defined by
(4.2). Since (uy(0), v,(0))eG(A) (cG(4)) for almost all ceJ, (4.7)
in the Remark after Lemma 4.1 implies that

(4.9) () — u ()12 — [[i(s) —u (o) ?
< 25’ <00, D) —u,(0)> dr+ 20| [ 0) —u,(0) e

for s, teJ with s<t and for almost all seJ. Let O<e<b—a and h,<
e. Then, it follows from Proposition 1.1 that

(4.10)  <v,(0), ii(t)—u,(0)>,
S <h Yia(r)—uyo—h,)} —hy {i(t) —uy(0)}, @(r)—u,(0)>
+ < =¥, (0), d(r)—uy(0)>,
S —@hy) (D) —u(o)12 +(2h,) Hld(r) —u (o — )l
+ 1=y li(x) — uy (o)l

for a.a. oeJ,=[a+e b] and aa. teJ. Let a, feJ, a<B. Let 1
be the points of J defined by (4.5) and let m and n be such that
ae[th_4,t2] and Be[t?, t8,,]. Then, applying (4.10) produces

2S: <0,(0), i(x) — u(0) > do

m

P
t"l

<=1 (" 1a) - uyo)|2do+ i |

m-1

()~ u,(0)|2do
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20 1@ 1 18(5) = (o) dor

Combining this with (4.9), we obtain

@i " ao -2 - 136) - uyo)|?) do

p p
m

g-S'de’: h;lnﬁ(r)—upw)|12da+gdfgtp hy8(1) —up(0)|*do

t
n s m— 1

+2wS:d‘cg:: lid(t) —u,(o)||*do+2 g:drg:p [W,(a)l-ii(r) —u,(o)ldo .

Therefore, letting p—oo, we have the inequality (4.8) for «, feJ, with
a<f. Since &>0 was arbitrary and u(t) is strongly continuous on J,
we have the assertion. Q.E.D.

Lemma 4.3. Let u(t) and 1(t) be two weak solutions of (DE) on
bounded intervals J and J, respectively. Then, the inequality (4.8)
holds for every o, feJ with a<p and every s, teJ with s<t.

Proof. Let {J§;Ji=[af, bf], k=1,2,..., N, p=1,2,...1}, (Ja, Ji=
[ag, g1, k=1,2,..., N, q=1,2,...}, {u,(t)} and {ii(f)} be the corre-
sponding families of closed subsets of J and J and sequences of X-
valued strongly measurable functions on J and J satisfying (i)—(iv) in
condition (II), respectively. Let a, feJ, a<f and for each p, choose
of in some [af, bE] and BP in some [daf, b¥] so that af —a=iunf{t—a;
teJr=\UJi, t=a} and B—pP=inf{f—1t;teJr, t<p}. First, we fix a
g and assume that both s and t belong to an interval J9=[4%,b7].
Then by Lemma 4.2,

@12 0 -u,© 1 - 156 - 1,02 de
(07,0 = u, DI = 13,0 - uaDl e

b,
§2wgtdrg pllﬁ,l(r)—up(a)ﬂzda, k=m, m+1,...,n,
s ﬂk
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where we set a’=a? and bi=pfP. Therefore, we have

n

@) 2 0a0-u01 - i) -uo)*de

k=m

+{ 7,O= )1 = 1,0 - om)]2)de

;zwg'dr 3 S”" ()~ u,(0) ] >do
s k=m az

n—1

% (a0 -u b - 13,0 -uyal. ).

k=m

Since |lu,(0)]| and |d,(7)| are uniformly bounded with respect to (g, 7)€
Jrx Ji and p, qg=1,2,..., the second term on the right side of (4.13)

is majorized by
n—1
Mit—s| 3, llup(bi)—up(ake )l

for some constant M >0. Since u(s) is strongly continuous on the closed
interval [a, f], a constant M'>0 can be found such that

n b£ - 8 .
’Emga,, [d,(t)—u,(o)|*do— Sa“uq(‘[)—u(a) I2de

NP
=M'{ glelgllu,,(o) —u(o)| + ,Eo (ahey — %)+ (a—a?)+ (B~ BP)}

=M,, for all 7el[s,t].

Similarly, the difference between the first term on the left side of (4.13)
and

[tz -~ 1) -u@)2)do

is majorized by 2M,,.

Note that aP—a and fP—f as p—oo. Hence, it follows from the
definition that wu,(a?)—u(x) and u,(f?)—u(f) as p—oo. Consequently,
letting p—> oo in (4.13) we see that
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Si{”f‘q(t) —u(0)] 2= lli (s)—u(0)| 2} do
+{ a0 —u®? - 17,6 - u@|2)ds
<20{'@r{ a0 -u0)2do.

This inequality always holds if the s and t belong to the same interval
J9 Therefore, we can prove by applying this inequality, instead of
(4.12), and by a routine argument that the inequality (4.8) holds for
every pair s, te J with s<t. Q.E.D.

Now, applying a method due to Bénilan [2; Lemma 1.2], we
obtain the following result:

Theorem 4.4. Let u(t) and 1(t) be weak solutions of (DE) on a
bounded interval J. Then

(4.14) e u(t)—d()| e 5| u(s)—i(s)|| for s, teJ with s<t.

Proof. Let a and b be the left and right end points of J, respec-
tively. Set

o(z, 0)=

‘ la(x)—u(o)|> if (r,0)exJ,
otherwise

and then consider the following regularization of ¢:
85 N =(prd)e D= p.—7 0-20(, H)dnda,
R2

where p, (¢, n)=e2p(e)p(en), (£, n)eR?, and p is a modifier such that
peCP(RY), p=0, supp[pl<[—1, 1], gRlpdé=l and p is symmetric.
Let O<egg<(b—a)/2. Let a+e=<s<t<b—¢g, and a+eSa<f=<b—g,.
Then applying Lemma 4.3, we have

’

([0t =65, o+ {9z, H— 4.(5, @)dr
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t(8
§2wg S (7, o)dodr.
sJa
Thus, in a way similar to Bénilan [2; Lemma 1.2], we have

t
Blt, D=9, 9=20( 95, s
This implies that e 29 (1, 1) e 2@ (s, s). Therefore, letting &0,
we have e 29ig(t, t)Se 295¢(s, s) for a+ey<s<t<b—g, Since g,
was arbitrary and since u(t) and idi(tf) are strongly continuous on J,
we have the assertion. Q.E.D.

Remarks. (1) Theorem 4.4 guarantees the uniqueness of a solution
of WCP. Hence Theorem 2.3 is valid.

(2) Theorem 4.4 states that the u(f) mentioned in a remark after
the statement of condition (II) gives a unique weak solution of (DE)
on [a, ¢).

The proof of Theorem 2.8 is given by Theorems 3.9, 3.10 and the
following:

Corollary 4.5. Each of the limit function u(t) obtained by Theorems
39 and 3.10 gives a unique simple weak solution of (DE) associated

with the initial-value u,.

Proof. Let u(f) be the limit function obtained by Theorem 3.9
(a). Let uyt) be the functions defined by (3.1) and let

e =Vh, k)0, =L[(t—a)/h, ], ath, <t<b, i=1,2,...

Then, uy(f) and v(t) are step functions and v(f) e Auyt) for all t. Theo-
rem 3.9 (a) states that u(¢f)=lim uyt) holds uniformly on J, so u,(.)—u(-)

in L*(J; X) as i—»oo. Since
hp! {uO) —ut—hp )} —v(t) =€, k., a+hp, St=b,

we have

[ I ) =t =g )y = oA =yl | 1SEEN,, 1,
i

y 43
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where ti=a+kh,. Therefore, for every >0,
b
[ WA —uti=hy ) —o(0d v —0 as i—sco.
ate

From this and Theorem 3.9 (a) it follows that u(f) is a unique weak
solution of (DE) associated with the initial-value u,. Q.E.D.

Since u(t) gives a unique weak solution, the limit u(f) does not
depend on the choice of the sequence {v;}, and hence, Theorem 2.8
is valid.

Now, we investigate some properties of weak solutions in the sequel.
First we show that a weak solution is an integral solution in the sense
of Definition 2.2.

Theorem 4.6. Let u(t) be a weak solution of (DE) on a bounded
interval J. Then for every pair s, teJ with s<t and every (x, y)e
G(A), the inequality (4.1) holds:

e~ 29t u(t)— x||? —e~2o5(u(s) — x| 2 §23te‘2‘°"<y, u(o)—x>do.

Moreover, (4.1) holds for s, teJ with s<t and (x, y)e G(A) by letting
< , >, be the functional from X**x X** to R!.

Proof. Let {Ji;Ji=[af, b7], k=1,2,..., N,, p=1,2,...} and {u,(t)}
be the corresponding family of closed subsets of J and sequence of X-
valued, strongly measurable functions on J satisfying (i)-(iv) in condition
(IT), respectively. Let s,teJ, s<t and for each p, choose s? and ¢*
in JF=\UJ{ so that sP—s=inf{o—s;0=s,0€JP} and t—t?=inl{t—o0;
o=t, ael}"}. Let s?e[a®, b2] and tPe[a%, b2]. First, let (x, y)e G(A).
Then making use of Lemma 4.1, we have

(4.15) e 2" lu, (1) — x| ? —e 2" lu, (sP) — x||?

IIA

n Bp
2y S :e‘2‘°“<y, uy(o)—x>do

k=mJay

=S e 208 (B2) — x| —e 2990 u () — x 2}
k=m
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=sP, ph=tr, af=a] for k=m+1, m+2,...,n, and pL=>}

for k=m, m+1,..., n—1. Moreover,

where of

m

n—1
2 le7 29 lu, (7)) — x |12 —e™ 2%k i up(afs ) — x12 |
k=m
Np—1 R
< k; [up(B7) = x 112 — llup(aRsr) — x11? |
Np—1
+ 8 (1—e 206h, D) u,(aly,) — x|
k=1

Np—1 Np—1
Sconst.( § [uy(8) —up(af)l + 5 (abs —0).

The right side goes to 0 as p—oo by (iii) in condition (II). Since
sP—s and tP—>t as p—oo, we have the required inequality by letting
p—oo in (4.15). Next, the proof of (4.1) in the case of (x, y)e G(A)
is quite similar. Q.E.D.

Remarks. (1) We have shown in the above theorem that a weak
solution of (DE) satisfies the inequality (4.1). We can also prove by
a way similar to the proofs mentioned above that a weak solution u(f)
of (DE) on J satisfies the inequality (4.7):

llu(®)—x||*— Hu(S)—XI|2§2St<y, u(G)—x>sd0+2wgtllu(0)—XII2d6

for s, teJ with s<t and (x, y)eG(4), and at the same time that for
every s,teJ with s<t and every (x,y)eG(4) by letting < , >,
be the functional on X** x X**,

(2) Let u(t) be a strongly absolutely continuous function on J.
Then, u(t) satisfies (4.1) if and only if it satisfies (4.7). In fact, suppose
(4.1) holds. Then we have for teJ and h>0 sufficiently small

h1(e~200+h) _e=201) |y (¢ + k) — x||?

+e 29t U |u(t+h)— x||2 — |lu(t) — x| 2}

t+h
gh-lg e 209<y u(c)—x>do.
t
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Since ||u(f)—x| is absolutely continuous on J, we have
%Ilu(t)—xllz__<_<y, u(t)—x> +20) u(®)—x|?, aa tel,

by letting h |0, from which (4.7) follows. The converse is similarly
proved. As is seen from this fact, we can employ (4.7) to give a defini-
tion of integral solution, instead of (4.1).

Theorem 4.7. Let {u'®(t)} be a sequence of weak solutions ¢f (DE)
on a bounded interval J. Suppose that u’)(t) converges to u(t) as
I—> o0, uniformly on J. Then the limit u(t) on J gives a weak solution
of (DE) on J.

Proof. For each u®(t), let {ul’(s)} and {J{(I)} be the corresponding
sequence of functions on J and family of closed subintervals J{(I) satis-
fying conditions (i)-(iv). Let Ji()=[af(D), bi(D)], k=1, 2,..., N,(D, p, I =
1,2,.... Then there exist subsequences {/;} and {p;} such that

sup [u"@®) —u(@®)||=1/i,

sup [[ufl2(@)—uD@IS1/i, Jeul)=UJE(l,),
k

tegPi(li)

1;)—1

Npy(19) Npi(
k;o (afy (1) —bi(l;))=1/i and kél lup (afi (7)) —u, (BEUD)|
<1Ji.

Clearly, u(r) is strongly continuous on J and u{?|JPi(l) is a simple
weak solution of (DE) on Jfy(l) for each k=1,2,.,N,(l;) and i=
1,2,3,.... Hence, u(t) gives a weak solution of (DE) on J. Q.E.D.

Corollary 4.8. Suppose that A—w is dissipative for some w20.
Let ScD(A) and J=[a, b). If for every veS, (DE) on J has a weak
solution u(t; v) with the initial-value v, then for every weS, there
exists a unique weak solution u(t; w) of (DE) on J such that u(a; w)=
w.
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Proof. Let weS and let {w,} be a sequence in S such that w,—w.
Then, Theorem 4.4 yields that |lu(t; w)—u(t; w,)| Se*®=9|w,—w,||-0
as p,gq—oo. Hence, u(t; w)=1£m u(t; w,) exists uniformly for telJ.
Therefore, it follows from Thei)roeom 4.7 that u(t; w) becomes a unique
weak solution of (DE) on J. Q.E.D.

Next, we give some necessary and sufficient conditions for a weak

solution to be Lipschitz continuous.

Theorem 4.9. Let J=[a, b) and u(t) be an X-valued function on
J satisfying (4.7) and u(f)e D(A) for all teJ, and let us consider the
following conditions:

(L.1) u(t) is Lipschitz continuous on J;

(L.2) u(t)e D(A) for all teJ and limu(t) e D(A);

(L3) u(a)e D(A):; e

(L.4) u(a)e D(A).

Then (L.1)=>(L.2)=(L.3)=>(L.4). If u(t) is a weak solution of (DE)
on J, then the above conditions together with the following condition

are equivalent:
(L.5) u(t)e D(A) for all teJ and
lim W= u(t+ k) —u(@)| = | du(@®) || e« || du(a)[|  for all teJ.
Moreover, in this case, we have
lu@®—u(s)| Se® || Aua)||-lt—s|  for t,seJ.
Proof. First, let u(t) be an X-valued function on J satisfying (4.7)

and u(f)e D(A) for all teJ. Assume that (L.1) holds, i.e., there exists
a constant M >0 with

(4.16) lu(®)—u(s)| = M|t —s| for t,sedJ.
Fix any t,eJ and set

o(to) =Lim A~ lu(to + h) —u(to)ll -
hl0
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Then by assumption, a(ty)<M. Let z(ty)e X** be any weak-star limit
point of the set {h '(u(to+h)—u(ty))}. Then |z(tx)| Salty). By the
way, (4.7) and Proposition 1.1 yield that for every (x, y)e G(A4),

<h=Y(u(ty+h)—u(ty)), w>
S (h)y~ " {{lu(to+h)— x| — llu(to) — x[*}

to+

gh‘lg "<y, u(t)—x>sdr+wh‘18t°+hHu(r)—xllzdt
t

to o

for we F(u(ty)—x) and h>0. Therefore, we have
<z(to) =y, u(te) —x>;Swllu(te) —x||?.

This states that (u(t,), z(t,)) € G(A), and so,

(4.17) M Za(to) 2 |l Au(to) || -

Since wu(t) is Lipschitz continuous on J,limu(t)=u(b) exists. Since
t, was arbitrary in J, it follows fiom (4.17)””,[hat u(b) e D(A), and so,
(L.2) follows. It is clear that (L.2) =(L.3)=>(L.4). Next, suppose u(t) be
a weak solution of (DE) on J satisfying (4.16). Then, we have shown
that condition (L.2) holds. Let t,eJ and take a zeAu(t,). Let
(u(ty), z(ty))=(x, y) in (4.1). Then Theorem 4.6 implies

e 2 Mlu@) —uto) > —e 2 lu(s) —u(to)||? §2S:e“2“’”<z, u(o) —u(ty)>.do
for s,teJ with s<t. From this it follows (Brezis [3; Lemma 51]) that
e lu(t) —u(to)l| —e™*Ju(s) —u(to)ll = IIZI!S:e'“"’dG

for s, teJ with s<t. Hence, we have
%h‘lllu(toﬁ-h)—u(to)lléllZII ;

this is valid for any zeAu(t,). Combining this with (4.17), we have

lim b= [Ju(ty + k) —u(to)| = [| Au(to) I,
hi0
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and in particular, lin(} h='|u(a+h)—u(a)| = ||Au(a)||. Thus, applying
. i
Theorem 4.4,

Il Autto) Il = Hm A~ [lu(to + h)—u(to)|
<lime®to 04~ u(a+h)—u(a)| =e=to~ || Au(a)|l ,
hi0

and hence condition (L.5) is obtained. Finally, assume that (L.4) holds.
Then by definition, a sequence {(x,, y,)}=G(A) can be found such
that x,—u(a) in X and {y,} is bounded in X**. Therefore, Theorem
4.6 implies that

t
e“z“"llu(t)—xnllz—e‘z‘“llu(S)—xn!Iz§2l|y.,llg e 2°7u(o) — x,[do
s
for every n and every pair s, teJ with s<t; hence
t
e fu()—x,l e fu(@— x| S|yl | eoodo,  red, nz1.
a

Now, taking a constant K>0 with ||y,|<K and letting n—oo, we have
|[u(t)—-u(a)[|§KS'e““"’da for teJ. From this and Theorem 4.4 it
follows that u(t)ais Lipschitz continuous on J, that is, (L.1) is satisfied.
The last Lipschitz condition in the statement of the theorem follows
from condition (L.5) and Theorem 4.4. Q.E.D.

Remark. In view of Remark after Theorem 4.6, we can obtain
the same assertion by assuming in Theorem 4.9 that u(f) be an integral
solution of (DE) on J such that u(tf)e D(4) for teJ. Conditions (L.1)
—(L.4) are introduced in Bénilan [2; Chapitre I] as the properties of an
integral solution and the crucial step of the proof of Theorem 4.9 is
due to him. Also, Theorem 4.9 is closely related to Crandall [8; Co-
rollary 1].

Condition (R,,.; 4, C) mentioned in Example 2.14 is a modified
version of a condition S(A4; C) proposed by Bénilan [1;§3]. As a
corollary to Theorem 4.9 we can obtain an existence theorem of weak
solutions which is closely related to [2; Theorem 1.3]:
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Theorem 4.10. Let A—w be dissipative for some w=0. Assume
that condition (R.; A, D(A)) holds. Then we have:

(a) For every xeD(A) and ©>0, there exists a unique simple
weak solution of (DE) on [0,1] with the initial-value x.

(b) For every xeD(A) and t>0, there exists a unique weak solu-
tion of (DE) on [0,1] with the initial-value x.

Proof. (a) Let xeD(A) and ©>0. As already seen in Example
2.15, there is a positive number 7, and there is a simple weak solution
u,(t) of (DE) on [0, 7,] satisfying u,(0)=x together with a Lipschitz
condition. Hence, we see from Theorem 4.9 that [u,(t)—u(s)]| Se“":|t—
s|-l|Ax|| for t, se[0, t,] and u,(r,)eD(A). So, by a routine argument,
a positive number t,(>1t;) exists and (DE) has a simple weak solution
u,(t) on [1,, t,] such that u,(r,)=u,(r;). Here, we note that u,(r,)e
D(A) and |luy(t) —uy(s)|| e~ |t —s|. | Au(z,) || Ses2|t—s| - || Au(0)[| for
t,se[ty, 7,]. In fact, under condition (R; 4, D(4)), “xeD(A)" is
equivalent to ““xeD(A)” by Theorem 4.9. Now, it is clear that the
function u(t), defined on [0, 7,] by setting u(t)=u,(t) for te[0, 7,] and
u(t)y=u,(t) for te[r,, 7,], gives a simple weak solution of (DE) such
that  [Ju(f)—u(s)|| Se*r2|t—s|. || Au(0)|| for t,s€[0,7,]. In this way,
there exist a sequence {r,} and a sequence of simple weak solutions
u,(t) of (DE) on [1,_,,7,] such that wu,(t,)=u,_,(z,), and a function
u(t) obtained by continuing u,(t), n=1, 2,... gives a simple weak solution
of (DE) on each finite interval [0, 7,,] such that [u(t)—u(s)|| Se®ro|t—
s|- 1 Au(0)]| for t, se[0, T,,]. We want to show that we can let 7,—
+o00 as n—oo. To this end, assume that 7,—t, for some 7,>0. Then,
u(t) is defined on [0, 7,) and [u(t)—u(s)| <evr|t—s|-||Au(0)|| for t,se
[0, t,). Since u(t) is a weak solution on [0, 7,), u(r+)=}i1mu(t)=

limu(t,) exists and u(t,)eD(A) (and hence u(zr,)eD(A)) by Theorem
24900 So that there exist sequences {h,} and {z,} and an open ball
B(u(z,), p) such that h,—0, z,»0 and NR(I—h,(A+z,))>B(u(z,), p)n
D(A4). Let M=cow[|Ax||, sup|z,|<1 and take a 7,>0 such that o<
pl4{21o +exp Qwty)(M +1)}. pChoose an n, so that |7,,—74+|<70/2 and
lu(t,,)—u(zy)| <p/2. Then, QR(—I—h_p(ZTz,,)‘):B(u(T,,O), p/2) n D(4), and

so, there exists a simple weak solution u, (f) of (DE) on [1,,, 7,,+To]



196 N. Kenmocur AnD S. OHARU

(R[4 T+))- This means that the sequence {r,} can be taken such
that 7,—+ 0. Consequently, we have the assertion (a).
(b) follows from (a) and Corollary 4.8. ’ Q.E.D.

Finally, we give some results on the strong solution of (DE).

Theorem 4.11. Let A—w be dissipative for some w=0 and let A
be an extension of A such that A—w is maximal dissipative on D(A).
Let u(t) be an X-valued continuous function satisfying (4.7) on J and
such that u(f)eD(A) for ted. If u(t) is weakly right-differentiable
at a point toed with to+held for h>0 sufficiently small, then u(ty)e
D(A) and (W—D"u(ty) € Au(t,), where (w—D%)u(t,)= w-’l'il%lh“l(u(to+
h)—u(ty)). Therefore, if u(t) is an integral solution of (DE) formulated
on J to A and if u(t) is Lipschitz continuous and strongly differentiable
almost everywhere on J, then u(t) is a strong solution of

(DE)~ (d/dD)u(r) e Au(t), aa. ted.

Proof. Let (x, y)eG(A). Then by the same argument as in the
proof of ‘‘(L.1)—(L.2)” part of Theorem 4.9, we have

<h Y u@y+h)—u(ty)), w> §h‘15to+h<y, u(r)—x>dr
to

_ to+h
+wh lg lu(t) — x| 2de

to

for weF(u(ty)—x) and h>0 small. Since F(u(t)—x) is star-weakly
compact in X*, there exists a (¥ e F(u(t,)—x) such that <y, u(ty)—x>,=
<y, (¥*>. Noting that < , > XxX-R! is upper semicontinuous
and letting h— +0, we have

(4.18) <(W—=DNu(to) -y, u(to) —x>; = <(W—DMu(ty) -y, {*>
Solu(ty)—x|?
for all (x, y)e G(4). Now, we set

Au(to) U{(Ww—D%u(to)}  if x=u(ty),
7 ax if x+u(ty).
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Then (4.18) states that 4,—w is a dissipative operator with domain
contained in D(A). Hence A,cA. Therefore, u(ty)eD(A) and (w—
DH)u(ty) € Au(ty). Q.E.D.

Theorem 4.12. Let A—w be dissipative for some w=0. Let u(t)
be a strong solution of (DE) on an interval J=[a, b], satisfying u(a)=
uoe D(A). Let {h,} be any null sequence of positive numbers. Then
for every v>0, there exists an approximate difference solution {(u} x,
vy )} of (DS) with error bound v for which condition (S) holds.

Proof. Since u(t) is Lipschitz continuous on J, there exists a
constant C>0 such that [u()—u(s)|=C|t—s| for t,seJ. Let h,—0
and for each p, set

hy H{u(t)—u(t—h,)}, tela+h, b]
wy(1) =
tela, a+h,],

and
v(t)=(d/dtyu(?) (€ Au(r)) for almost all teJ.

Since [w,()—v(t)||-0 as p—oo for almost all teJ, it follows from

Egoroff’s theorem that for every v>0, there exists a closed, measurable

set E, in J such that u(J\E,)<v and sup|w,(t)—v(t)|—0 as p—oo,
teE,

where u denotes the ordinary Lebesgue measure on R!. Fix any v
with 1>v>0. Then a py=py(v) can be found such that

(4.19) O<h,<v and [w,(t)—v(®)|<v for p=p, and t€E,.
Now, we set
Uy o =ug, tp0=4a, for p=p,.

and then define sequences {(u} i, vp )} <=G(A), {v,i} and {t,;=t,4—1+
h,+v,i} as follows:
First, define

0 if h,+1,0€E,

A\ =
" dis(athy, EN[a, athy)  f hytt,o ¢ E,.
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Here, note that E\[a, a+h,) is a non-empty closed set if v is sufficiently
small. Then t,,+h,+v,;€E, We then set

th1=tpoth,+v,1, uy  =u(t,,) and vy ; =uv(t, ).
Then, (4.19) implies that
lup,1 —hyvy, 1 —up ol S llu(ty)—hu(t, ) —u(a+v, )l

+llu(a+v, ) —uoll =h,y+Cv, ;.

Assume that (up , vy,;) € D(A), v, t,;, 1=1,2,..., k are defined as above.
If h,+t,,=b, then we set

(Up,kv1> Up+1)=Up i, px) and t,,.,=b.
If h,+t,,<b, then we set

0 if t,,+h,€E,,

vp,k+ 1=

dis(t,x+h, E\la, t,,+h,) if t,,+h,¢E,,
and
o+t =tppthy+Voesy,
Uy r1 =U(tprs1)s
Vp vt =0(tpn41) -

In this way, we can define {(u},, vy )} <=G(A4), {vpx} and {t,,}, k=
1, 2,.., N,=[(b—a)/h,]. Let

8;,]‘=h;1{u;,k—u;,k_l}—l);,k, k=.1, 2,..., Np.

If t,,—1+hp2b, then he; || =h,llvp k-1 | =h,ll0k- I SChy. I t,,_ 1+
h,<b, then

hplla;;,k ” é ” u(tp,k) - u(tp,k - hp) - hpv(tp,k)”
Slutyp—hy)—u(t, -l

Shy+Cvyy,
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and similarly h,llep (| ZCv, i~y Cv,—h,

ko—1

If 1<b=t then tp,ko_1=a+‘;(hp-%—vp,,-)=a+(k0—-1)h,,+

psko— pko?

ko—1 ko—1
i;v,,,i and so bgt,,,ko_1+hp=a+koh,,+:;1 v, Therefore, setting N,=
[(b—a)/h,], we have N,i,<b—askoh,+v and

Np

k;((,hplls;,kll§CI1P(NI,—I{0+1)§C111,(Np——k0)+Chngv+Chp.
Consequently,

N Np
h, k);’l 3,4l S VN +C 3% v+ Cv+ Chy < (b—a+3C)y.

This means that conditions (x,) and («,) are satisfied for {(u} s, v}.4)}

constructed above. Since [uy —up ol =llu(t, ) —ult, - )l =lu(t,p_y+
hy+v,0)—u(t, NS Ch,+v, )=C(lep kllh,+2h,) for 1Sks<N, and p=
Po, condition (S) is also satisfied. Q.E.D.

Combining the above-mentioned results, we have the following result
which is closely related to Crandall-Liggett [6: Theorem II]:

Theorem 4.13. Let A—w be maximal dissipative on D(A) for
some ©=0. Let uoe D(A) and J=[a, b]. Then conditions (a) and (b)
below on a function u(t) on J are equivalent:

(@) u(t) is a strong solution of (DE) on J with u(a)=u,.

(b) For every v>0, there exists an approximate difference solution
of (DS) (formulated to A, J and uy) with error bound v for which
condition (S) holds, and u(t) is the limit of the approximate difference
solutions (in the sense of Theorem 2.8). Moreover u(t) is strongly
differentiable almost everywhere on J.

Proof. 1If (a) is satisfied, then (b) follows from Theorem 4.12.
Conversely, suppose (b). Then the approximate difference solution
converges to a unique simple weak solution u(f) of (DE) by Theorem
2.8. Thus, Theorem 4.6 states that u(tf) is an integral solution of (DE)
on J. Since u(t) is strongly differentiable almost everywhere on J and
since u(t) is Lipschitz continuous on J by condition (S), Theorem 4.11
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yields that u(f) becomes a strong solution of (DE) on J and hence condi-
tion (a) is satisfied. Q.E.D.

Corollary 4.14. Let X be reflexive. Let A—w be maximal dissipa-
tive on D(A) for some w=0. Let uyeD(A) and J=[a, b]. Then CP
for A and u, has a solution on J if and only if for every v>0, there
exists an approximate difference solution of (DS) with error bound v for
which condition (S) holds. Moreover, in this case ugeD(A).

The proof is obtained by combining Theorems 4.13 and 4.9 with
the fact that a Lipschitz continuous function on J is strongly differ-
entiable almost everywhere on J, provided that X is reflexive.

Let ze X and let us consider a differential equation

(DE; 2) (d/dt)u(t) € Au(t) + z =(A+ z)u(t), te[0, t].

We then consider the following type of difference scheme approximating
the (DE; 2):

-1 — —
hy H(Up = Upg—1) — Vp—Z =Epps Up,0=X

Uy € At g, k=1,2,3,.,h,10.

(DS; 2)

Corollary 4.15. Let X be reflexive and let A be dissipative. Then
the following conditions are equivalent:

(M.1) A is m-dissipative.

(M.2) For every xeD(A), ze X and >0, there is a strong solution
u(t) of (DE; z) on [0, t] with u(0)=x.

(M.3) D(A)=D(A) and for every xeD(A), zeX and >0, there is
a strong solution u(t) of (DE; z) on [0, t] with u(0)=x.

(M.4) A is maximal dissipative on D(A) and for every xeD(A), ze
X and for every v>0, there exists an approximate difference
solution of (DS;z) on [0,t] with error bound v for which
condition (S) holds.

Proof. It is shown in [12] that (M.1)-(M.3) are equivalent. The
equivalency between (M.2) and (M.4) follows from Corollary 4.14.
Q.E.D.
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Corollary 4.15 states that a range condition (R) for A follows from
the existence of approximate difference solutions with error bound v.

§5. Nonlinear Semigroups of Local Type

In this section we review the results obtained so far from the view-
point of the theory of nonlinear semigroups.

Let A be an operator in X such that A—w be dissipative for some
w=0. By WCP for 4 and u, on a half-real line R*=[0, c0) we mean
a problem to find a strongly continuous function u(t) on R* satisfying
a given initial condition u(0)=u, such that u(f) restricted to any bounded
interval [0, 7] is a weak solution of (DE) on [0, t].

Suppose that there exists a one-parameter family {U(t); t=0} of
operators from a subset D of X into X such that for every uy€D,
u(t)=U(t)uy is a unique solution of WCP for 4 and u, on [0, o).
Then we call the operator U(t) a solution operator of WCP for A.
From the definition of weak solution we see that DcD(A) and each
U(t) maps D into D(A). Moreover, Theorem 4.4 states that each U(f)
is Lipschitz continuous on D with Lipschitz constant e®’. The following
result is a nonlinear version of Takahashi-Oharu [24; Theorem 4.1]
and at the same time an extension of Miyadera-Oharu [20; Theorem 3]:

Theorem 5.1. Let A—w be dissipative. Suppose that there exists
a set D such that D=D(A) and for every xeD, there exists a solution
u(t; x) of WCP for A and [0, ) with u(0, x)=x. Then there exists
a unique semigroup {T(t); t=0} of local type on D(A) such that T()x=
u(t; x) for xe D and {T(t); t=0} forms a semigroup of solution operators
of WCP for A on [0, o).

Proof. From assumptions, Theorem 4.4 and Corollary 4.8, it follows
that for each xeD=D(A) there exists a unique weak solution u(t; x)
with u(0; x)=x. Hence, we can define solution operators T(t), t=0,
by setting T(f)x=u(t; x) for t=0 and xeD(4). We also set T(0)=
I|D(4). Then Theorem 4.4 states that for every pair x, y e D(A), | T(t)x—
Tyl Ze“t|x—y| for all t=0. Now, it remains to prove the semigroup
property of {T(t); t=0}. Let xeD(A) and let {u,(t; x)} be a sequence
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of X-valued, strongly measurable functions satisfying (i)-(iv) in condition
(IT) and converging to u(f; x). Let s=0 and set i, (f; x)=u,(t+s; x)
and 4(t; x)=u(t+s; x). Then @(0; x)=u(s; x)=T(s)x and it is clear that
conditions (i)-(iii) hold for 4,(t; x) and #(t; x) restricted to every bounded
interval [0, 7]. Hence, by the unicity of weak solution, T(t+s)x=
u(t+s; x) coincides with T(f)T(s)x. This means that T(t+s)=T(t)T(s)
on D(A) for t, s=0. Q.E.D.

Combining this theorem with Theorem 4.4 we have the following:

Theorem 5.2. Let A—w be dissipative for some w=0. Then there
is at most one semigroup {T(t); t=0} on D(A) such that for each xe
D(A), T(t)x is a solution of WCP formulated to A. Moreover, such
a semigroup is of local type on D(A).

The semigroup {T(t); t=0} mentioned in the above theorem will
be called a semigroup of solution operators of WCP for A. Summariz-
ing the above-mentioned with Theorems 3.9 and 3.10, we obtain the
following:

Theorem 5.3. Let A—w be dissipative. Suppose that there exists
a set DcX with D=D(A) such that for every xeD, t1>0 and v>0,
the approximating difference scheme (DS) has an approximate difference
solution {(up 4, vy )} with error bound v satisfying condition (S). Then
there exists a unique semigroup {T(f)} of local type on D(A) such that

(a) for every >0 and every null sequence v;|0, there exists
a subsequence {p;} of {p} and

T()x= lim wu;;',k, te[0,7], xeD,

khp, > 1,i~

(b) {T(®} is a semigroup of solution operators of WCP for A.

Moreover, if for every xeD and t>0, (DS) has an asymptotically
approximate difference solution {(u,4, v,,)} satisfying condition (S),
then we have

(@) for every t>0,T()x= lim u,,,te[0, 1], xeD,

mhp—t,p—0
instead of (a).
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Proof. Let xeD and t>0. Then by Theorem 3.9, ujy:, converges
to u(t) as khp,,—t and i—»oo for te[0, 7] and u(f) gives a unique weak
solution on [0, t]. Since t is arbitrary, we obtain a unique solution
u(t; x) of WCP for A on [0, o). Therefore, by Theorem 5.1, there
exists a unique semigroup {T(#)} of local type on D(A4) which is a semi-
group of solution operators of WCP for 4. The last assertion is similar-
ly obtained by employing Theorems 3.10 and S5.1. Q.E.D.

Now, in the remainder of this section we restrict ourselves to the
case of reflexive Banach spaces and give a characterization of the in-
finitesimal generator of a semigroup of local type. By the infinitesimal
generator of a semigroup {T(f); t=0} of local type on a subset X, of
X we mean an operator A, which is defined by

Aox=lim h™{(T(h)x —Xx)
h—+0

whenever the limit exists. Note that Ay,—w is dissipative if e !T(t)
is a contraction on X, for t=0.

Recently, Martin [17] has given a characterization of the infinitesimal
generator of a contraction semigroup on X, with D(4,)=X, in the case
in which both X and X* are uniformly convex. Miyadera [19] has
extended the result to the case in which only X* is uniformly convex.
Here we refer to [19].

Definition 5.4. Let {T(t); t=0} be a semigroup of local type on
X, with the infinitesimal generator A,. We define a set D by

D={xeXq; IT()x—x| =0(h) as h—+0}.

Let A be an operator in X with domain D(A) contained in D. If
A is an extension of A, (note that D(Ay)cD) and if A—w is maximal
dissipative on D, then A is called a (g)-operator of {T(t);t=0}.

If D(Ay)+ @, then D> D(A,) and the (g)-operator is well-defined
by the maximal principle.

Lemma 5.5, Let X be reflexive und A be an operator in X such
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that A—w is maximal dissipative on D(A) for some w=0. Assume that
there exists a semigroup {T(t); t=0} on D(A) of solution operators of
WCP for A. Then A=A, D(A)=D and A is a (g)-operator of {T(1);
t=0}.

Proof. Since {T(t);t=0} is a semigroup of solution operators of
WCP for A, Theorem 4.9 yields that D=D(A). Since X**=X, A4 is
an operator in X and at the same time A>A. Let (x, y)eG(4) and
define an operator A; by putting A,u=Au U {y} for u=x and Au=Au
otherwise. Then A, is dissipative and D(4,)cD(A). Since A is maximal
dissipative on D=D(A), we have A,cA; hence (x,y)eG(4,)=G(A).
This means that G(A)c=G(A), that is, A=A. Finally, it follows from
Theorem 4.11 that A, A. Q.E.D.

Lemma 5.6. Let X be reflexive and Xy,cX. Let {T(t); t=0} be
a semigroup of local type on X, with the infinitesimal generator A,
and let A be a (g)-operator of {T(t); t=0}. Then we have:

(@) Let X,=D(Ay)nX, and T,()=T({®)|X, for t=0. If B is an
operator in X such that A,=B, D(B)cD(A,) and B—w is dissipa-
tive, then D(B)yc D and {Ty(t); t=0} is a semigroup of solution operators
of WCP for B on [0, ©). In particular, {T\(t); t=0} is a semigroup
of solution operators of WCP for a (g)-operator A.

(b) D(Ay)=D; and D(A)=X, if and only if D(Ay)=X,.

(c) A=A and D(A)=D.

(d) A—w is maximal dissipative on D(A).

Proof. (a):If xeD, then T(f)x is a strong solution of (DE) on
every bounded interval for A, and hence it is a strong solution of (DE)
for B. Therefore, it follows from Theorem 5.1 that {T;(f)} forms a
semigroup of solution operators of WCP for B. In view of this and
Theorem 4.9, we see that D(B)=D, so D(B)cD. A (g)-operator is a
special one of those B in question; hence we have the last assertion of
(a).

(b) is easily seen from the above-mentioned.

(c) follows from (a) and Lemma 5.5.

(d); Let 4 be an extension of A such that D(A)cD(A) and A—w
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is dissipative. Since D(A,)=D(4), it follows from (a) that D(A)<D.
But, A—w is maximal dissipative on D; hence AcA. This means that
A—w is maximal dissipative on D(A). Q.E.D.

Remark. The assertion (d) is due to Miyadera [19; Lemma 2.2].

Definition 5.7. Let A be an operator in X. We say that A has
the property (2), if for every xeD(A), ©>0 and every v, (DS) formu-
lated on [0,7] to A and x has an approximate difference solution
{(upk, v3,0)} with error bound v for which condition (S) is satisfied.

Using this property, we can characterize a (g)-operator as follows:

Theorem 5.8. Let A be an operator in a reflexive Banach space
X and let X, be a closed subset of X. Then conditions (i)-(iii) below
on the operator A are equivalent:

(i) A is a (g)-operator of a semigroup {T(t); t=0} of local type

~

on X, such that X,=D.

(i) D(A)=X,, A has the property (2) and A—w is maximal
dissipative on X,,.

(iii) D(A)=X,, A—w is maximal dissipative on D(A) and there
exists a semigroup {T(t); =0} on D(A) of solution operators
of WCP for A.

Moreover, the semigroup in (i) coincides with that in (iii).

Proof. First, assume (i) holds. Since D is dense in X, Lemma
5.6 implies that D(A)=X, and A—w is maximal dissipative on X,.
Moreover, D(4)=D and for every xeD(A) and >0, T(f)x is a strong
solution of (DE) on [0, t] for the operator 4. Therefore, Theorem 4.11
states that for every null sequence {h,} of positive numbers and v>0,
there exists an approximate difference solution of the (DS) with error
bound v. This means that A has the property (2) and hence condition
(ii)) holds. Next, suppose (ii) holds. Then, it follows from Corollary
4.14 that for every xeD(A) and t>0, there exist a strong solution of
(DE) on [0, 7] for A. Here we note that A—w is maximal dissipative
on D(A) (cD(A)=X,). Hence, by Theorem 5.1, there exists a semi-
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group {T(t); t=0} of local type on D(4)=X, which is also a family
of solution operators of WCP for the operator A. Hence, (iii) follows.

Finally, it is proved by employing Lemma 5.5 that (i) follows from
(iif). The last assertion is clear from the unicity of a weak solution.
Q.E.D.

Miyadera [19] has shown that if X* is uniformly convex, then A4
is a (g)-operator of a semigroup {T(f)} of local type on X, such that D
is dense in X, if and only if D(A)=X,, A has the property (¢) and
A—w is maximal dissipative on X,. Hence, if X* is uniformly convex
and if A—w is maximal dissipative on D(A), then the property (2)
is equivalent to the property (9).
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