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Difference Approximation of Nonlinear
Evolution Equations and Semigroups

of Nonlinear Operators

By

Nobuyuki KENMOCHI* and Sinnosuke OHARU**

Introduction

In this paper we introduce a notion of weak solution of a nonlinear

differential equation

(DE) (d/dt)w(f) e Au(t\ 0 < r < T

in a Banach space X and discuss the construction of weak solutions of

the Cauchy problem for (DE) from the viewpoint of the difference ap-

proximation. The results obtained are applied to the generation problem

of nonlinear semigroups.

We shall treat (DE) with the initial condition

(1C) limu(0=M0
f-*+0

and shall use the following approximating difference scheme:

The hp stands for the mesh size of the difference and sptk is the error

which may occur at /c-th step with mesh size hp. If (DS) admits an

approximate difference solution {upjk; p, fc = l, 2,...} and if
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(CV) u(f)=lim upk, 0 < f < T
khp->t

holds, then the limit u(f) gives a "solution" of the Cauchy problem for

(DE).

Recently, Crandall and Liggett [6; Theorem I] proved that if A

is a dissipative operator in X satisfying the "range condition"

(R) R(I-hA)=>D(A) for O</K/IO ,

where D(A) and R(I — hA) denote the domain of A and the range of

I — hA respectively, then T(t)u=\imkh^t>h^0(I — hA)~ku exists for ueD(A)

and J^O. The limit operators T(i), J^O, admit continuous extensions

T(t) onto D(A) and {7X0; ^0} forms a semigroup of nonlinear con-

tractions on D(A). Crandall and Liggetfs result states that upik=(I —

hpA)~ku0, /c=0, 1, 2,..., gives a unique solution of (DS) with £p,k=Q

such that (CV) holds. That is, condition (R) can be regarded as a

sufficient condition for (DS) to have an exact solution and their result

gives an answer to our problem. Our first purpose is to weaken con-

dition (R) to a condition which guarantees the existence of approximate

difference solution with errors {spik} satisfying a certain stability condition

and then to derive sufficient conditions for (CV).

On the other hand, Miyadera [18] improved another result of

Crandall-Liggett [6; Theorem II], and showed that if u(t) = T(t)u0 obtain-

ed as above is strongly differentiate almost everywhere on [0, oo), then

its derivative satisfies (d/dt)w(r) G Au(i) for almost all t>Q. This fact

suggests that T(t)u0 should be called a "solution" of the Cauchy problem

for (DE). It is unfortune, however, that u(t) = T(t)u0 is not necessarily

differentiate. Therefore, it is necessary to introduce an approximate

notion of generalized solution of (DE). For instance, Kato [10], Webb

[25] and others show that if A is a particular type of dissipative operator

of semilinear form, then the limit u(t) = T(t)u0 is a solution of an integral

equation which is deduced from (DE) for the A. This kind of solution

is called a mild solution. Crandall [7] and Oharu-Takahashi [22]

treat accretive and dissipative operators which are associated with certain

first order quasilinear equations and show that the semigroups determined
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by those operators give generalized solutions of Kruzkov's type of the

Cauchy problems for the equations. Moreover, Benilan [2] introduced

a notion of "integral solution" together with "pseudo-generator". Our

second purpose is to introduce a notion of "weak solution" and then

to investigate the relationship between the limit obtained by (CV) and

the solution of the Cauchy problem for (DE). Benilan proves that an

integral solution is unique under a certain condition which is an extended

form of the range condition (R). Our weak solution is an integral solu-

tion and is unique, under the assumption that A — CD be dissipative for

some co^O. Moreover, we shall consider the relationship between the

generalized domain D(A) of A and the Lipschitz continuity of weak

solutions of (DE).

The arguments mentioned above can be considered from the view-

point of the theory of nonlinear semigroups. Our third purpose is to

discuss the generation of a nonlinear semigroup associated with the given

operator A.

This paper consists of five sections. Section 1 contains some special

notations used in this paper, some basic notions and the fundamental

facts concerning those notions. In Section 2, a notion of weak solution

is introduced and a Cauchy problem in a weak sense for (DE) is for-

mulated. Moreover, in that section, an approximating difference scheme

for the Cauchy problem is introduced and our main results are given.

Section 3 deals with the convergence of the difference approximation.

In Section 4, the unicity of a weak solution is proved and some basic

properties of weak solutions are studied. Finally, Section 5 treats the

generation problem of semigroups of local type.

§ 1. Preliminaries

In this section we list some notations, basic notions and some of

their fundamental properties.

Let X be a real Banach space with norm ||-||. By an operator A

in X we mean a (possibly multi-valued) operator with domain D(A)

and range R(A) in X, that is, A assigns to each u e X a subset Au of
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X. D(A) is the set {uEX;Au^0} and R(A) = \J Au \ Au is the empty
ueX

set if u $ D(A). A single- valued operator is referred to as a special case

of a multi-valued operator in which Au, UED(A), denotes the value of

A at u or the singleton set consisting of this element.

By G(A) we denote the graph of the operator A, i.e.,

G(A) = {(u, v)eXxX'9 veAu,ueD(A)}.

We can identify the operator A with its graph G(A). For each u e D(A),

we write \\\Au\\\ for inf{||t;||; veAu}.

Let SaX. We write A[_SJ for U Au. By the restriction of A
ueS

to S, denoted by A\S, we mean an operator such that D(A\S)=D(A) n S

and (A\S)u=Au for w e D ( y 4 ) n S . S denotes the closure of S in X.

Let A and 5 be operators in X. B is called the closure of A if G(B) =

G(A) in Xx^s f ; we write B=y4. We say that B is an extension of A,

and A is a restriction of B (denoted by ;4c:£), if G(^4)c=G(£). For the

notations of addition, scalar multiplication and composition of operators

in X, we use the same notations as in Oharu [21]. We sometimes

write y for the operator y/, where / denotes the identity operator on X

and yER. For an operator A, A'1 stands for the inverse of A which

is defined by

Moreover, given zeX, A + z denotes the operator defined by the cor-

respondence u l-*Au + z, we D(A).

Let A be a single-valued operator in X such that R(A)aD(A). Then

for positive integers i, we can define the iterations A1 on D(A) by Alu =

A(Ai~1u):> we write A°=I.

We denote by <u, w*> the natural pairing between ueX and

u*eX*. By the duality map F of X we mean the (multi-valued) map-

ping from X into its dual space X* defined by

Fu={u*eX*', <u, ti*>=||ii||2 = ||H*||2},

We define functional < , >^: XxX-^R1 and <

by
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<w, v> ;=inf{<w, v*> ; v* e F(v)}

and

<w, u> s=sup{<w, f*> ; t>*eF(»}

respectively. These functionals have the following properties (Crandall-

Liggett [6; Lemma 2.16]):

Proposition 1.1. Let u, v, weX. Then we have:

(a) <w, v>s=-<-u, v>t.

(b) </b + w, v>j=A\\v\\2 + <w, v>} forkeR1 andj = iors.

(c) <Aw, IAV>J=AH<U, v> j for /Iju^O and j = i or s.

(d) <w + w, y>J-^||w|H|i;|| + <M, y> J- for j = i or s.

(e) <W + M, t;>s^ <w, v>s+ <u, v>s and <w — u,v>s^<w9v>s

- < M , V>a.

(f) < , >s: XxX-^R1 is upper semicontinuous with respect

to the strong topology of X x X .

(g) For any one j of s and f, there exists a v* E Fv such that

<u, v> j = <w, v*> .

The canonical injection from X into its bidual X** is isometrically

isomorphic, hence the duality mapping F** of X** is an extension of

F. We denote by the same notations < , > and < , >Jy j=s, i,

the natural pairing between J£** and Jf*** and the functionals on Z** x
mentioned as above.

Let CaX and let T be a single- valued operator in X. T is called

a contraction on C if \Tu± — Tu2\\ ̂  H ^ ! — 1/2|| for M 1 , u 2 e C . An operator
4 in X is said to be dissipative if

(1.1) <vi~v2, M1-ii2> i^0 for (w l 5 uj, (w2, t;2)

It is well-known (Kato [11; Lemma 1.1]) that A is dissipative if and
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only if

(1.2) N1-w2 | |^||(t/1~At'1)-(W2-Ai'2)||

for A>0 and (uh v

Note that (1.2) implies that for every A>0, (I — AA)"1 exists as a contrac-

tion on R(I — kA). If A is a dissipative operator such that R(I — h0A)=X

for some A0>0, then we say that A is m-dissipative. It is well-known

that if A is m-dissipative then JR(/ — XA)=X for A>0. If A is dissipative

in X, then so is A.

Let SaX and A be a dissipative operator in X. Then A is said

to be maximal dissipative on S if any dissipative extension of A coin-

cides on S with ^4.

Let Ccz^T. A one-parameter family (T(t); t^O} of operators from

C into itself is called a semigroup of local type on C if it has the

following properties:

(1.3) there is a constant co^O such that e~wrT(f) is a contraction

on C for f^O,

(1.4) r(0)=/|C, T(t + s) = T(t)T(s) for t,

(1.5) for each ueC, T(t)u is strongly continuous in f^

If T is a Lipschitz continuous operator from C into itself, then T is a

Lipschitz continuous operator from C into itself. Hence, if {T(t)i £^0}

is a semigroup of local type on C, then {T(0; £=^0} forms a semigroup

of local type on C. On the generation of semigroups of local type,

the following theorem due to Crandall-Liggett [6; Theorem I] is funda-

mental :

Theorem 1.2. Let A — co be a dissipative operator in X for some

co^O. Let A satisfy condition (R): R(I-hA)=>D(A) for 0</?<l/co.

Then there exists a semigroup {T(i)\ t^Q} of local type on D(A) such

that

T(f)u=\im(l-hAYku for r^O and u E D(A) .
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This theorem was proved in an ingenious way and the proof of cm-

mam theorem (which will be given in Section 3) is essentially due to it.

Finally, we prepare some estimates which play a central role in our

arguement.

Proposition 1.3. Let A — at be dissipative in X. Then we have'.

(a) for (w1? vj, (u2, v2)EG(A) and for 1 with 0<A<l /co ,

(b) for (w l 5 i^), (w2, v 2) e G(A) and for A, (.1 with

Proof, (a) Let (u l9 vj, (u2,v2)eG(A) and let 0<A<l /o>. Then

for some /6F(w1 — w2). From this (a) follows.

(b) Let (w l 5 fj, (w2, D2)eG(v4) and let 0< jU^A<l / co . Since u2 — jj.v2

(M2-Au2) + (l-/*/A)M2 , (a) yields that

Q.E.D.

§2. Difference Approximation of (DE)

In this section we introduce a notion of weak solution of (DE)

and formulate a Cauchy problem in a weak sense, WCP, for (DE). We

then discuss the difference approximation to the WCP and state our

main results along with some comments. Moreover, we shall list some
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examples of WCP's in which the relationship between the limit of

difference approximation and the solution of WCP is studied.

Henceforth we let A be an operator in X such that A — oj is dissipa-

tive for some o>^0. Let J be a bounded interval whose end points are

a and b, a<b, and let us consider a differential equation in X

(DE) (d/dt)u(t) e Au(t) for t E J .

For this (DE) Brezis and Pazy [4] have introduced the following type

of solution:

Definition 2.1. An X-valued function u(f) on J is called a strong

solution of (DE) on J if it satisfies

(i) u(t) is Lipschitz continuous on J,

(ii) u(f) satisfies (DE) almost everywhere on J.

Condition (i) implies that u(d)= lim u(t) and u(b)= lim u(t) are
t-»a+0 f-»&-0

defined. Hence, u(f) can be regarded as a Lipschitz continuous function

on J and its derivative is essentially bounded on J. As was mentioned

in the Introduction, the above notion of solution is too strong in the

case of non-reflexive Banach spaces. We wish then to introduce other

notions of solution. Let u(i) be an X-valued function on a closed in-

terval J = [fl, 6]. Then we say that u(t) satisfies condition (I) on J,

if the following condition holds:

(I) u(f) is strongly continuous on J and there exists a null sequence

{hp} of positive numbers and sequences {up(i)} and {vp(t)} of X-valued,

strongly measurable functions on J such that

( i )s
 u

P(t) e D(A) and vp(t) e Aup(t) almost everywhere on J,

(ii), for every s>0, h'i(up(t)-uJit-hp))-vp(()-+V in L\J,\X) as
]?-»oo, where J£ = [a + e, b],

(iii)a up(i)-+u(i) in L°°(J; X) as p-»oo.

A strong solution of (DE) on J = [<z, b~\ satisfies condition (I) men-

tioned above. In fact, let hp i 0, up(f)=u(f) and let vp(t)=u'(t)9 p =
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1 ,2 ,3 , . . . Then, h-l\\up(t)-up(t-hp) \\ ^M for teJ with t>a

where M is the smallest Lipschitz constant of u(f). Hence [|

almost everywhere on J and the dominated convergence theorem yields

that for every e>0, hp
l(up(f)-up(t-hp))-vp(f)-^^ in Ll(J£\X) as j?-»oo,

where J£ = [a + e, ft]. Also, in a certain case, the function u(f) satisfying

condition (I) is closely related to the notion of generalized solution (in

the sense of Oleinik) which is treated in the theory of first-order quasi-

linear equations. See Oharu-Takahashi [22; Section 6].

Condition (I) can be modified as follows: We say that an Z-valued

function u(i) on a closed interval J = [o, b~] satisfies condition (I)' on

J, if it satisfies

(I)' u(t) is strongly continuous on J and there exists a family

{ J k \ fc = l, 2,..., N} of a finite number of closed subintervals of J such

that

0)s Jk — \-ak> flfc+i] f°r fc = l, 2,..., JV— 1, where ai=a and aN = b,

(ii)'s for each fc, ti(-)|^k satisfies condition (I) on the interval Jk.

Let J be a (not necessarily closed) bounded interval with end points

a and b, and let u(f) be an X-valued function on J. Then we say

that u(i) satisfies condition (II) on J, if the following condition is ful-

filled:

(II) u(t) is strongly continuous on J and there exist a family

{ J£; k = l, 2,,.., JVp, p = l, 2, 3,...} of closed subintervals of J and a se-

quence {wp} of X-valued, strongly measurable functions on J such that

(i) -/{ = [>{,&£], 6JE^«?+i for fc = l ,2, . . . ,Np and p = l,2,...,

(ii) for every ]? and fc, wp(-)|J^ satisfies condition (I) on the interval

Np Np-1

(iii) E(flJ+i-feJ)-»0 and Z Np(«fc+i)-^p(^DIH0 a$ p-»oo, where

(iv) sup||wp(0-w(0||~*0 as p-^oo, where Jp = \jjp
k.
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Remark. Let u^f) and u2(t) be Jf-valued functions satisfying

condition (II) on intervals [0, b) and [b, e), respectively. If u2(b) =

limw^O, then the function u(i) defined by

for f e [a , ft)

u2(t) for f e [ 6 , c )

satisfies condition (II) on [a, c), that is, a continuation of ^-valued

functions satisfying condition (II) satisfies condition (II) on its domain.

Moreover, we shall see in Section 4 that an ^-valued function u(f)

satisfying condition (II) on J gives an integral solution which has recently

been proposed by Benilan [1]:

Definition 2.2. Let u(t) be a continuous function on J. u(t) is

said to be an integral solution of (DE) on J, if for every pair (s, i)E

JxJ with

e-2<ot\\u(t)-x\\2-Q-2(OS\\u(s)-x\\2 ^ 2 e - 2 o > T < v,
Js

holds for all (x, y)eG(A).

We can obtain the following result (Theorem 4.4 in Section 4):

Theorem 2.3. For each u0eD(A), there exists at most one X-

valued function satisfying condition (II) on J and Iimu(t)=u0.
t-+a+Q

In view of this we introduce two types of solution of (DE):

Definition 2.4. An X-valued function u(f) on a bounded closed

interval J = {a, b} is called a simple weak solution of (DE) on J

if it satisfies condition (I)' on J.

Definition 2.5. An X-valued function u(t) on J is called a weak

solution of (DE) on J if it satisfies condition (II) on J.

By a Cauchy problem in a weak sense, WCP, formulated on J for

an operator A we mean the following:

WCP. Given «0, find a weak solution u(f) of (DE) on J satisfying
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the initial condition Iimu(i)=u0.
t la

The M0 is called the initial-value and a weak solution u(f) of (DE)

on J satisfying l imw(0=M0 *s cau"ed the solution of WCP associated
r l a

with the initial-value u0. The initial-value u0 of a solution of WCP

must belong to D(A) and Theorem 2.3 states that a solution of WCP

associated with the initial-value u0 e D(A) is unique.

By a Cauchy problem, CP, formulated on J for A we mean the

following :

CP. Given w0, find a strong solution u(t) of (DE) on J satisfying

Iimw(r)=w0 .
f l a

A strong solution u(f) of (DE) on J satisfying Iimw(£)=w0 is called
t ia

a solution of CP associated with the initial- value u0.

We want to find solutions of WCP by employing the finite-difference

method. Here we consider the following type of difference approxima-

tion:

vptk e An ,.» fc = 1 , 2, . . . , Np = [(ft - fl)//g ,

where {hp} is a certain null sequence of positive numbers depending on

uQ. The sptk is the error which may occur at the k-ih step of the

approximation with mesh size hp. In this sense (DS) can be regarded

as an approximating difference scheme for WCP which permits errors.

For this type of difference scheme we introduce two notions of "approxi-

mate difference solution".

Definition 2.6. Let v>0. We call the family {(uv
p>k, vv

ptk)} cG(A)

({up,k}^D(A) tf A is single-valued) an approximate difference solution

of (DS) with error bound v if there exists a PQ = PQ(UO, J, v) such that

(a x ) for every p^p0 and every k with l^k^Np = [_(b — a)lhp"]9

Definition 2.7. A family {(upJl,vp^}cG(A)({iipit}cD(A) if A is
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single-valued) is called an asymptotically approximate difference solution

of (DS), if

(Pi) hpi(Up,k~^P)k~i)-^P,k=^p^ upi0=u0

for l ^ fe^JV p = [(fc-fl)/hp] and p = l, 2,...,

(j82) max ||e k||->0 as p-»oo.

If ep>fe = 0 /or a/1 k and p, we say that {(upik, vpik)} is an exact differ-

ence solution of (DS).

An asymptotically approximate difference solution is an approximate

difference solution with error bound v for every v>0. In fact, let

{(Mp,fc» vp,k)} c G(>4) be an asymptotically approximate difference solution
of (DS). Let v>0 and choose a p0 such that

max || sptk || g v/(b - a) for p ̂  p0 .
/c

Np

Then, /ip 2 ||spjfc|| ^v for p^p0', this means that {(upsk, vpik)} is an ap-

proximate difference solution with error bound v.

As will be seen in Examples 2.13, 2.14 and 2.15, the range condi-

tions (R) and (Rloc) are special cases of the condition that (DS) has an

approximate difference solution. On the convergence of the difference

approximation, we have the following results:

Theorem 2.8. Let u0eD(A).

I. Assume that for every v>0, (DS) has an approximate difference

solution {(Wpsfe, uj.fc)} wiffc error bound v. Suppose that there is a

constant C>0S independent of v, p and k, such that

(S) ll«; ifc-«;.*-ill^C(l + ||fi;iJk||)Ap, for l^k^Np and

where p0 is the integer given in condition (o^). Then: (a) there exists

a unique simple weak solution u(f) of (DE) on J = [a, b~] such that

for every sequence vt 4 0, there exists a subsequence {pt} and

u(t)= lim ttjjfk, r e J ,
a+khp.-*t

i-»oo
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(b) ||n(0-ti(s)||gC-if-s| for t,seJ. (c) u(a) = u0.

II. Assume that (DS) has an asymptotically approximate differ-

ence solution {(UP!I!, vpik)} satisfying

(S)' K.k-wp.i-iii^c-v fc=i,2,...,jvp, P=i,2, . . . .

77zen we have: (3)' there exists a unique simple weak solution u(i) of_

(DE) on J such that

u(f) = lim wpjW, J e J ,
a+mhp-^r

p-*oo

together with (b) and (c).

The proof of this theorem will be given in the next two sections.

Remark 2.9. Suppose that (DS) admits an asymptotically approxi-

mate difference solution {(up}k, vp>k)} satisfying

(j82)' there exists a constant M = M(w0, J)>0 such that

\\sptk\\^Mhp for fc = l ,2, . . . ,Np and p = l,2,.. . .

If there exists a constant JV>0 such that \\uptl—u0\\^Nhp for p^l, then

(Sy is satisfied. In fact, \\uptk-uptk_1--hpvpik\\^Mh* for \^k^Np and

p^l; hence

^^^

Theorem 2.8 states that if (DS) formulated for u0eD(A) admits

an approximate difference solution satisfying condition (S), then it con-

verges to a Lipschitz continuous function u(i) on J. Conditions (S)

and (S)' are closely related to the generalized domain of A. The

notion of generalized domain was first introduced by Crandall [8];

Benilan [2] gives a modified version:
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Definition 2.10. Let X** be the bidual of X. Since D(A)aXci

*, A can be regarded as an operator in X**. We define an exten-

sion A of A whose graph is given by

= {(x, y)eD(A)xX**', <y-v, x-u

for all (u, v)EG(A)}.

Here, note that < , >f is the functional on Z**xX**. We also

consider the set

}<= G(A): x, — x in X

and {yn} is bounded in X**} .

Clearly, Ac A and D(A)aD(A)^D(A)c:D(A). A dissipative opera-

tor A in X, considered in X** is still dissipative. Let A — co be dissipa-

tive in X. Let (x, y)eG(A) and define an operator Al in X** by

G(A1) = G(A) U {(x, y)}. Then Al—a> is dissipative in Z**. Moreover,

we have the following (see Theorem 4.9):

Theorem 2.11. Let u(t) be a weak solution of (DE) on an interval

J = [a,b). Then u(a)eD(A) if and only if u(f) is Lipschitz continuous

on J.

The function u(t) obtained by Theorem 2.8 was a solution of WCP

for A. In order for it to be a solution of CP, some additional assump-

tions are needed:

Theorem 2.12. Let A —CD be maximal dissipative on D(A). Let

u0eD(A). Then CP for A and u0 has a solution if and only if for

every v>0, there exists an approximate difference solution of (DS)

with error bound v satisfying condition (S) and the limit u(f) obtained

by Theorem 2.8 is strongly differentiate almost everywhere on J.

Remark. If in the above theorem, condition (R) holds for A, then

we obtain the convergence u(i)= lim(/— hA)~lt/h^uQ; in this case the
fc-> + 0

maximal dissipativity of A — CD is not needed and it is sufficient to

assume the closedness of A. See Brezis-Pazy [4] and Crandall-Liggett

[6; Theorem II].
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Now, in the remainder of this section we mention some examples

of approximate difference solutions.

Example 2.13. Let J = [0, T] and let us assume that A satisfies

condition (R). If u0ED(A), then {(uptk, vptk)} defined by

(2.1) upik=(I-hpA)-ku0, i>p,k = VK,fc--wP,*-i)>

is an exact difference solution of (DS). Moreover, in this case, condi-

tion (S)' with C=exp(2a>T)|||Xi*olH holds. In fact,

for sufficiently large p, where yp = (l — cohp)~
l.

As mentioned in the above example, condition (R) yields that

(DS) has an exact difference solution (2.1) for each uQeD(A). Converse-

ly, in order to check condition (R) we must at least find the exact

difference solution of (DS), whereas in our argument, it is sufficient to

find just an approximate difference solution of (DS). It should be noted

that we do not need to consider the "unicity" of the difference solution

of (DS); this fact is important for extending the results obtained so far

to more general cases. From this point of view, we can say that con-

dition (R) is a special case of the assumption that (DS) has an asymp-

totically approximate difference solution satisfying condition (S)'.

Example 2.14. Let A — CD be dissipative. Let C be a subset of X

such that D(A) a C c D(A) and let us assume the following condition

which is an extended form of (R):

(Rloc; A9 C) For every xeC, there exist a sequence {hp} of positive

numbers, a sequence {zp} in X and a neighbourhood U of x such that

h -+Q, z.-»0 and

Then for each u0 e D(A) n C, there exists an asymptotically approxi-

mate difference solution of (DS) satisfying (S)'. In fact, let {hp}9 {zp}
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and U=B(u0;p) be respectively the sequences and neighbourhood such

that R(I — hp(A + zpy)^>U n C for all p. We choose a positive number

T so that

0 < T < p/(2r + exp (2a)t)( || v0 \\ + sup || zp || )) ,
p

where i;0e^w0» and then construct {(uptk, vptk); k=Q, 1, 2,..., NJ, = [T//IP],
p = l, 2, 3,...} as follows:

First, take an (wp>1, t;p>1)eG(X) so that

and define an operator Al by G(^41) = G(^4) U {(u0, v0)}. Since ^! — co

is dissipative in X**, we see employing Proposition 1.3 that

and so, UP}I eD(A) n U.

Now, assume that (UP)P vpfj)eG(A)9 J = 19 2,..., k<Np, are defined such

that W p JeD04)nl7 and \\upj-hpvpj-hpzp-upj^\\^-^^h^ We

define (w^+i* t;M+1)eG(y4) as follows: By condition (Rloc; A, C) there

exists an (uptk+l9 vpjk+l)eG(A) such that

Hence,

p,fc + Vp~lW + MP,^

and furthermore,
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k + i

Thus, by induction, {(wp)k, i;p>k); A'=0, 1, 2,..., Np, p = 1, 2, 3,...} is defined

and simultaneously satisfies condition (S)' with C=2T + (||tf0||+ sup||zp||)

exp(2cot). Moreover, since \\BpJ^y*-N*hp+\\zp\\£hp+\\zp\\ for" fc = l,

2,...,]VP, we see that max ||e fc||-»0 as p-»oo. Therefore, this system
l^k^Np

gives an asymptotically approximate difference solution of (DS). Con-

sequently, it follows from Theorem 2. 8-II that for each w 0eD(/ i )nC

there is a unique (local) simple weak solution of (DE) on [0, T] with

the initial- value u0.

Example 2.15. Let C be a subset of X such that D(A) c C c: D(A)

and u0eCnD(A). Assume condition (Rloc; A, C). Then for every v>0,

there exists an approximate difference solution of (DS) with error

bound v for which (S) holds. In fact, let {/?pj, {zp} and U=B(uQ;p)

be respectively the sequences and open ball such that /?p->0, zp-»0 and

))^> C n U. On the other hand, from the definition of

D(A) one can find a positive constant M such that for each v>0, there

is an element (xv, *;) e G(A) with | |XV-MO | |^V and ||x;|l<^M. For these

M and p we choose a number T so that

0 < T < p/2{2t + exp (2cor)(M + sup || zp \\ )} .
p

Now, let l>v>0, /7p+||zp||gv/2T and take an element (xv, x'v)EG(A)

such that ||xv-w0||^min{v/2, p/2} and ||x'v||^M. Then

- hp(A + zp)) = C n B(xv ; p/2) .p
Hence, as was seen in Example 2.14, there is an asymptotically approxi-

mate difference solution {(upjt, t>M)} ( c: G(Aj) of (DS) such that t?pj0=xv

and ||£pJH|fc;KwM-V-i)-»PJ^P+M for fc = l ,2 , . . . , JV p ( = [T/V|).
Put (uj,t, »;.t)=(a,it, Spjt) for k = l ,2,. . . , jVp . Then,

and
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||e» i t||gfc,+ ||zp| for k=2,3,...,Np;

hence

k=l

Moreover, as we have shown in Example 2.14, we have

for 2^k^Np and noting that He^iH^fc^H^-Uol l -v^T,

Thus, {(uv
ptk, vv

ptk); fc=0, 1, 2,..., JVp, p = l,2,...} is defined and is an

approximate difference solution of (DS) satisfying condition (S) with

C=2t+ l/2T + (M+sup||zp|])exp(2coT). Consequently, it follows from
p

Theorem 2.8-1 that for each u0ED(A)nC, there is a unique local simple

weak solution of (DE) on [0, T] with the initial- value w(0)=w0. In

fact, we can continue this local solution to obtain a weak solution in

a global sense; we shall mention the continuation in Section 4.

Example 2.16. Recently, Kruzkov [16] discussed the problem of

unicity and existence of a solution of the Cauchy problem for the

following quasilinear equation:

(2.2) ut+ X^Me, =<K«) t>0, x=(xl9 x2,..., xd)eRd.

Crandall [7] has treated this problem from the viewpoint of the theory

of nonlinear semigroups by restricting ^(w) = 0.

Definition 2.17. Let A0 be an operator defined in X=L^(Rd) by

the following condition: (u, v) e G(A0) if and only if u,veX, ^

for i = l,29...,d and for every nonnegative /eCg^l^) and every
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sign (u(x) - k){ f [&(u(*)) - Wfc)]/», W - »W/(*)}«fr ^ 0 ,
Rd i=l

where signr fs a function on R1 such that signr = l for r>0, =0

for r=0 arid = — 1 for r<0.

A0 should be regarded as a multi-valued operator in general. If
d

UED(AQ) n L°°CRd), then ^40w = — X ^i(u)x. holds in the sense of distribu-
» = i

tions. Crandall proved that if <££ is of class C^jR1) and (^(0)=0, then

A0 is m-dissipative in X. Therefore, a semigroup (T(f); f^O} of non-

linear contractions on X can be constructed by Theorem 1.2. Moreover,

if M 0 e X nL°°(#d), then n(f ; x) = [r(0w<)](*) gives a generalized solution
in the sense that conditions (G.I), (G.2) and (G.3) (mentioned in Theo-

rem 2.21) hold with ^ = 0 and M=0.

Oharu and Takahashi [22] obtained the following result by employ-

ing a convergence theorem and an approximation theorem for non-

linear semigroups which are given in Brezis-Pazy [5] and Miyadera-

Oharu [20].

Let Xm = {ueXnL"(Rd)i \\u\\ ̂ m}9 m=l ,2 , . . . and X0= U Xm =
m^l

X n L™(Rd).

Theorem 2.18B (i) There exists a single-valued, dissipative operator

A with domain D(A) such that C^(Rd}^D(A)dXQ and for each UED(A),
d

Au = — X <fri(u)Xi holds in the sense of distributions.

(ii)1 For every h>Q, R(l-hA)=XQ (=>D(A)) and v^I-

satisfies

d

<t)i(v)x.=u.
=

/ f \-n
(iii) For every u0eX0, T(()w0=lim(I -- A) u0 holds for t^

II-^QO \ n /
and the limit operators T(t)\ J^O, form an L1 -contractive semigroup

on X0. Moreover, u(t9 x) = [T(t)Uo](x) gives a generalized solution of

(2.2) with \I/ = Q in the sense that conditions (G.1)-(G.3) with ^ = 0 and

M=0 are satisfied.

Remark 2.19. It is proved that A=A0\D(A), D(A) = {uED(A0)]

u, A0ueLco(Rd)}. Hence A=A0 and A is m-dissipative in X. Each
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T(r) admits a continuous extension T(0 onto X and {T(f)\ t^Q} coin-

cides with CrandalFs semigroup.

If u0 e X0, then T(t)uQ is a simple weak solution of (DE) for A

on every bounded closed subinterval of [0, oo). Moreover, as is seen

from Theorems 4.7 and 4.10, for each u0eX, T(t)u0 gives a unique

weak solution of (DE) for A on every bounded subinterval of [0, oo).

This means that the Cauchy problem for (2.2) with \j/ = Q has "solu-

tions" for "bad initial data".

Now, let us consider the original equation (2.2). We assume that

is a locally Lipschitz continuous function on .R1 such that

(2.3) M£)|£M|{| for qeRi.

Define an operator <F on X0 by [Yu](x) = \l/(u(x))9 xeRd. Then by

(2.3), Y maps X0 into itself;

(2.4) \\Wu\\q^M\\u\\q for ueXQ and g = l, oo ,

where \\u\\ ̂  and \\UM\\ mean L1- and L°°-norm of w, respectively. Let

com be the smallest Lipschitz constant of ^ on [ — m, m] and let u,

v e Xm. Then, since \\l/(u(x)) — \ls(v(xj)\ g a>m\u(x) — v(x)\ almost everywhere

on Rd, we have

(2.5) ll^ii

Setting A1=A+Y, D(A1)=D(A), we consider (DE) for

(2.6) (d/dtXO=X1u(0, t>Q; ii(0) =ii0.

This is an abstract version in X of (2.2). We then consider (DS) for

this (2.6) and demonstrate that the system {uptk} defined by

(2.7) upjfc=(/-^)

gives an asymptotically approximate difference solution of (DS).

Lemma 2.20. Let T>0, Then \\uptk\\q^eMr\\u0\\ for O^/C/IP^T and

= \, oo.
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Proof. First, it is seen from the proof of Theorem 2.18 that |1(/ —

hpA)-*u\\q£\\u\\q for ueX0 and q = \, oo. Hence, (2.4) yields that
\\upti\\q^(l + hpM)\\UQ\\q for q = l9 oo; and so, w p > 1eX 0 and ||wpjl||^

eMr\\u0\\q for g = l, oo. Next, suppose that upfk,ieX0 and Hw^-J^

(\+hpM)k-l\\u0\\q for 4 = 1, oo. Then by (2.4) and (2.7), we have

M^ for <f = l, 00.
Q.E.D.

Let T>0, || M0 1| ^m0, m=eMtm0, and let O<^/C/?P^T. Then {Wp.Jp

by Lemma 2.20 and hence (2.5) yields that

(2.8) Kj-tt^-JiHC/-^^

This means that {uptk} satisfies condition (S)' with C=exp(a)mr)||,41u0||1.

Furthermore, since

(2.5) and (2.8) imply that

This means that {uptk} satisfies conditions (j^) and (j82) and consequently,

{upik} becomes an asymptotically approximate difference solution of (DS).

Therefore by Theorem 2.8-II and a way similar to [22; Theorem 5.1],

we obtain

Theorem 2.21. For every

exists for f^O. u(f) gives a unique weak solution of (2.6) and at the

same time, u(t, x) = [u(tj](x) is a unique generalized solution of (2.2)

in the following sense:
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(G.I) for every t>0, \\u(t)\\q^eM*\\u0\\q for te[_Q, t] and « = l,oo,

(G.2) for every /ce/?1 and every nonnegative /eCg^O, co)xRl),

{\u(t, x)-k\ft(t, x) + sign(«(f, x)-/c)
Rd i=l

+ sign (lift, x)-fc)iKn(f, x))/(f, x)}dxdt^0,

(G.3) w(r) is strongly continuous in £^0 and lim ||w(0 — M o l l j =0.

Example 2.22. Let X be a space consisting cf real-valued, uniformly

continuous and bounded functions on .R1. X is a Banach space under

the supremum norm. Any real number a can be regarded as a constant

function a(x) = a which belongs to X. We can introduce into X a partial

ordering " ^ " by letting w ^ t> if u(x) ^ t>(x) for all xeR1 ; we write

M>I; if u^.v and w = l = y . We denote by X~Q the positive cone, {ueX\

w>0}, of this partially ordered Banach space X. Now, let us consider

a linear operator A defined by

(2.9) (Au)(x) = u"(x\ xeR1 for u eD(A) = {u eZ; M, w' e C1^1), u"eX} .

A is the infinitesimal generator of a linear contraction semigroup {ef^;

*^0} defined by [eMM](x)=(47iO~1/2\ exp{-(x-(T)2/4r}M(cr)da. Also,
JR1

every positive number X belongs to the resolvent set p(A) and (/ —

UY1 is given by [(/-;.J)-1u](x)=(4A)-1/2( exp{-|x-cr|/ JT}ii(ff)d(7.
J^1

Observe that (/ — A^)-1a=a for all ueR1 and the operator (/ — /Ld)"1

is order-preserving. Next, we define an operator R on X% by

(2.10) [l?M](x)=(w(x))1/2, xe^ 1 .

R is also order-preserving. Since \\Ru- Rv\\^ \\u-v\\ /2^/ s for u, v^.

8>0, .R is Lipschitz continuous on XJ={w eX+; u^.s}9 e>0.

Now, we define an operator A in X by the relation

(2.11)

and consider the Cauchy problem for (DE):

(2.12)



DIFFERENCE APPROXIMATION 169

which is an abstract version in X of the Cauchy problem for the semi-

linear equation ut = Au+ ^/ u . (For a detailed argument on this kind

of problem, see Fujita-Watanabe [9])
Let u0eD(A)nX+ for an e>0. We consider (DS) for this (2.12).

We shall show that the system {up>k} defined by

(2.13) wpsfeKJ-M)

gives an asymptotically approximate difference solution of (DS).

First, (I + hpR)upi0^(I + hpR)s=s + hp^/T, and so,

Similarly, upi2^(I + hpR)2£. Inductively, we obtain

(2.14) upik^(I+hpR)ks^B and {iî

Next, since \\uptl-upt0\\£hp\\Au0\\, we have

Therefore,

Now, let t>0 and C = C(T) = ||4w0||exp(i:/2>/~e~)- Then we have

(2.15) || U^ -!!,.*_!
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This means that {uptk\ fc = l, 2,..., Np\ p = l, 2,...} gives an asymptotically

approximate difference solution of (DS) satisfying (S)'. Since T was

arbitrary, Theorem 2.8-II yields the convergence

(2.16) n(f; HO)= lim upik= lim [(/- V)
^

for f^O. Observe that w ( f ; w 0 ) e Z + for f^O. Let w 0 e^+f l / ) (^) and

{up>k} be the associate asymptotically approximate difference solution

(defined as in (2.13)). Then we obtain the limit function u(t\ w0) in

the same way as in (2.16). Moreover, noting that \\upik — uptk\\ g ||[(/ —

fi^)-K/+M)]*«o-K/-M^ we

have

(2.17) \\u(t\ u0)-u(ti fi0)||g

Set Te(t)uQ=u(t', M0) for ^0 and u 0 e X + ( ] D ( A ) . Then, in view of (2.17)

we can obtain a semigroup {Te(t)
m, t^O} of local type on X+. As is

mentioned in the preceding example, Te(i)u0 gives a unique weak solution

of (DE) on every bounded subinterval of [0, oo).

On the other hand, we see in a way similar to Webb [25] that

for each w 0 e^T+, T(t)u0 gives a unique mild solution of (2.12). In fact,

)=(I-hpA)-^hp(I-hpA)^R, and so,

Hence,

i=0

V)~(k~°^

-^

Set k = [t/hp~]. Since (/ — /?pzl)~[s/h^] converges to esd as p->cx), uni-

formly on bounded subinterval of [0, oo) as well as on compact subsets

of X, we have
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(2.18) u(t\ w0)=e ' J i fo + \ Q(t-s)ARu(si u0)ds for
Jo

by letting p-»oo in the above estimate and applying (2.16). The unicity

of a strongly continuous solution of the integral equation (2.18) can be

proved in a way similar to Webb [25; Proposition 3.6]. These facts

mean that TE(t)u0 is a unique mild solution.

Finally we note that

lim h~ l [Tf(t)u -u\=Au for u e X+ n D(A) .
ft-*+0

Example 2.23. (Product Formula)

Let A be the infinitesimal generator of a semigroup of linear con-

tractions on a Banach space X and let B be a nonlinear dissipative

operator in X satisfying

(i) there exists a subset D of X with D c D(A) ft D(B),
(ii) Jft=(/-/j£)-i(/-/L4)-i and Jf tDc=D for 0</i</i0 ,

(iii) for every ueD and t>0, there exists a constant M = M(u, i)

>0 such that

\\ABJk
hu\\^M for 0</2</? 0 and 0^/c/?^u.

We want to consider the Cauchy problem for (DE) formulated to

the operator A + B of semilinear form:

(2.20) (d/dt)ti(0=(4 + 5MO, '^0; w(0) = M0-

Webb [26] and Kobayashi [13] give some sufficient conditions

guaranteeing the above conditions and some examples of the operators

A and B satisfying (i), (ii) and (iii). For instance, let X=Lp(Q9 oo),

where l^p<oo, and Au = — u', D(A) = {u EX; u' eX}. Let &(•) be a

continuously differentiable, nondecreasing function on Rl such that b(Q)

=0 and define an operator B by [_Bu~\(x) = b(u(x)) for ueX such that

BueX. Moreover, let Avu = -uf for uED(A1) = {u eC[0, oo); u'eC[0,

oo)}, where C[0, oo) is the space of bounded uniformly continuous

functions on [0, oo), and let D=D(A)nD(Al)r\D(AB). Then, it is

proved that (i), (ii) and (iii) hold for these A, B and D.

Now, let uQeD and i>0. We consider (DS) for (DE) on [0, T]
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and show that the system {up)k} defined by

(2.21) uptk = (I-hpB)-l(I

gives an asymptotically approximate difference solution of (DS) satisfying

condition (S)'.

In fact, (I-hA)(I-hB)=I-h(A + B) + h2AB on D(AB) n D(A), and

so, (I-hp(A + B) + h*AB)upik = up^l for l^k^Np and p^l . Hence,

for \^k^Np

and p ̂  1 .

Moreover, in view of Remark 2.9 we have

for l^k^N and p^ l .

Consequently, we obtain the following result by employing Theorem

2.8:

Theorem 2.24. Under conditions (i), (ii) and (iii), we have:

(a) For each ueD,

(2.22) T(t)u=lim [(/-/i^)-^/-/?^)-1]^/^^
p-»00

holds uniformly on bounded subintervals of [0, oo).

(b) Let T(f) be the continuous extension onto D of T(t), for each

r>0. Then {T(t); t^Q} forms a semigroup of contractions on D.

Moreover, for each ueD, T(t)u gives a unique simple weak solution

of (DE) on each bounded subinterval of [0, oo).

Remark. A converse of Theorem 2.24 holds: Assume that condi-

tions (i) and (ii) hold. Let u(i) be an X-valued function on [0, oo)

such that w(0)=w0 . If for every t>0, u(t) restricted to [0, T] is a strong

solution of (2.20) on [0, T] such that \\ABu(i)\\^Mx for almost every

fe[0, T] and for some constant MT>0, then u(t) is represented as the

product formula (2.22). See [13; Theorem 1.1].
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§3. Convergence of Difference Approximation

In this section we prove Theorem 2.8 in several steps.

Throughout this section A denotes a fixed operator in X such that

A — co is dissipative for some co^O and we suppose all of the assump-

tions of Theorem 2.8-1.

Let v, v '>0 and let hp and hq be some fixed elements of the null

sequence {hp} such that hq^hp. Write h=hp and h' = hq for simplicity,

until before Theorem 3.9. Set

oL = h'/h.) /? = ! — a, y=(l — coh)~1, a1=ay and Pi=Py.

By {(up,k, !>„,*); fc=0, !,...,#,, p = l,2,...} and {K,;, t^,./); 7 = 0, 1,...,
JV,, 4 = 1, 2,...}, where Np = \_(b-d)lhp] and JV, = [(fc-a)/fcJ, we denote

the approximate difference solutions of (DS) with error bounds v and

v', respectively. Moreover, we write

v p i k = Ap | | f iJ i J k | | and vt
qj = hq\\Blf

tJ\\9

where sv
p>k and ev

q'fj denote the errors at the fc-th and j'-th steps, respec-

tively, and set

ak,j = \\Uq,j-uP.k\\ for k, 7^0.

First of all, condition (S) implies the following:

Lemma 3.1. Let m^n, a + mh^b and let a + nh'-^b. Then

m

Z Vp f k) ,
fe=l

Lemma 3.2. Let 1^/c^m anJ l^ j^n /or the same m and n as

in Lemma 3.1. Then we have

Proof. Applying Proposition 1.3 we have
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^Xiak-u-i+Piakj-i+yfaVpt + v'qj}. Q.E.D.

Lemma 3.3. Le£ a + nh'^b. Then we have

a1>n^ ±^ a^r^Ij^o^. + jS?^^

Proof. First, Lemma 3.2 yields that

Suppose now that for 2^k<n,

Then, since

we obtain

fe
Since aX^-7 '^!, we have the assertion by induction.
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Lemma 3.4. Let a + mh^b. Then,

, -. ,
j=0 \ J / j=0 j=0

Proof. By Lemma 3.2,

Suppose that for 2:g/c<m,

Since

it follows that

.J=0 \ J / j=0

j=o /=o j=o

Therefore, by induction

o ,

Now, we estimate the last term of the right side. First we observe that

m-1

£0
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If /? = !, then a=0 and hence we have the desired estimate. We then

assume that 0 </?<!. Then,

«=0\ n

Setting n=/-7, we obtain (n + j } = ( (\. hence £ f 7

\ w / \ 7 / i=y \ 7
=or-/'~1. This completes the proof. Q.E.D.

Lemma 3.5. Let l^m^n, a + mh^b and let a + nh'^b. Then

m / O T \ . n / 7 _ 1\
< V f I o^ Rn-Jn 4- V f •/ \r/mRJ~mn^m,n^2^\ j J t f l P l • /«m-j,0+ Z- I w_ 1 J a lP l aO,n-j

j=0\ J / j=m\ rn L /

m— 1 n—l
+ vwf TV •+ y v r •)-1-7 l^Vm-J-*-^^."-^-

Proof. In view of Lemmas 3.2, 3.3 and 3.4, it is sufficient to show

that am + lin+1 satisfies the inequality with m and n replaced by m + 1

and n + l respectively, under the assumption that am^n and 0 m +i > n satisfy

the corresponding inequalities. By Lemma 3.2, we have

;=o

_ , ,
j=m \ frt l / j=m+ 1

,
7=0 7=0

, ,

m+ 1 . / w J- 1 \ n+ 1 • / i 1
V r/J Rn+l-Jt ~l~ 1 // 4- V r/m+l QJ-(m+l)f ~L

a J a a

(n+1)— 1

- E v^^
7=0 7=1 7=1
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This means that am+ltn + l satisfies the inequality in question with m

and n replaced by m + 1 and H + ! respectively. Q.E.D.

Lemma 3.6. Let l ^ m r g n , a + mh^b and let a + nh'-^b. Then we

have

(a) l
j=

(b) j=m

(c) .
i=o\J

Z ( * I \ } x"'PJ-'"(n -j)
/ = »i \ » */ A /

Proof, (a) and (b) are easily seen. The proofs of (c) and (d) are
stated in Crandall-Liggett [6; Lemma 1.4]. Q.E.D.

Combining this lemma with the estimate given in Lemma 3.5, we

have the following:

Lemma 3.7. Let l^m^n, a + mh^b and let a + nh'^b. Then,

Proof. In view of Lemmas 3.5 and 3. 1, we have

j _ 1
;

7
j=0\J / j=m

n / j _ 1\
yJ J a
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Since yn^QXp(2conh/), we have the assertion by applying Lemma 3.6 to

this estimate. Q.E.D.

Remark 3.8. It should be noted that the right side of the estimate

given in Lemma 3.7 is independent of the choice of approximate solu-

tions {uptk} and {u'qj} of (DS).

Now, we are in position to prove the first half of Theorem 2.8.

Theorem 3.9. Let A be an operator in X such that A — a* is

dissipative for some co^O. Let J be a bounded interval whose end

points are a and b and let u0eD(A). Assume that for every v>0,

the approximating difference scheme (DS) has an approximate differ-

ence solution {(uPik, vPik)} with error bound v. If condition (S) is

satisfied, then we have:

(a) For every null sequence vt 4 0 there exists a subsequence {pt}

and

u(t)= lim uy.tk

exists for teJ=[a, b~\.

(b) Given a v>0, let {(uPtk, vPik)}c:G(A) be an approximate differ-

ence solution of (DS) with error bound v satisfying (S), then

for every sequence {mphp} converging to teJ,

EE || ii(0 - up>mp || ^ exp (2co(b -
a+mpnp->t

(c) n(0 is Lipschitz continuous on J, that is, \\u(t) — u(s)\\ ^

C\t-s\ for t, SG J.

Proof, (a) Let vt 1 0. For each vi9 let {(u]jtk, vi
Ptk)}p^Pi be an

approximate difference solution with error bound vf, where pt is the

integer associated with vt through condition (ax). Let a, b (a<b) be

the end points of J and let

(3.1) ^(0=

Then ki(f)hPi 1 1 — a as i->oo and Lemma 3.7 yields that
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+ c(hpjkj(t)(hpj-hPi)+{kj(t)hpj -

for i^j.

Hence, lim ||w/0 — u/(OII =0 uniformly for J E J . We set
i ,J->00

tt(0 = limii(0, te J .

(b) Let {(uPfk, vPtk)} be any approximate difference solution of (DS)

with error bound v satisfying conditions (a2) and (S) for the same con-

stant C as in (a). Then by Lemma 3.7,

for f sufficiently large. Letting /->oo, we obtain

(3.2) exp(2co(a-bMu(t)-upi

+ C)v.

From this it follows that lim ||M(O-K || ̂ Qxp(2co(b~0))(1 + C)v
a+mphp-*t

for every sequence {mphp} converging to te J.

(c) Let 5, teJ, s<t. Then, condition (S) yields that

l l " p , , f c + l - K p , . f c l l

Letting i-^oo, we have that ||n(0-w(s)||^C|f-s|. Q.E.D.
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Theorem 3.10. Let A be an operator in X such that A — a> is

dissipative for some o>^0. Let J be a bounded interval whose end

points are a and b and let uQED(A). Assume that (DS) admits an

asymptotically approximate difference solution {(uptk, vptk)} satisfying

condition (S)'. Then we have:

(a) n(f)= lim uptm

p-

holds for every teJ and u(f) does not depend on the choice of the

approximate solutions {(uptk, vptk)} of (DS).

(b) \\u(t) — u(s)\\^C\t — s\ for r, seJ, where C is the constant given

by condition (S)'.

Proof, (a) Let hq^hp and l^m^n. Then by Lemmas 3.5 and

3.6,

-« max
j=0

-a max
j=m

+ y.(b-a){ max ||epsfc||+ max

= 0\ J / j=m

-a-) max

-a) max ||e,i7|| t ^(^"—

max | | e k + max

Now, we set np(0=«Pikp(o. ^0 = [(*-«)/*,] for /eJ. Then,
\ t — a and

(3.3) ||«p(0-",(0llexp(2co(a-0)
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max \\eptk\\+ max \\eqj\\} .
gfcgNp l^j^Nq

Hence, lim \\up(i) — uq(i)\\ =0 holds uniformly for teJ. Set

Then we have

|| w(0 -«,.., || exp(2eo(fl-0)

pimax 8
1 ^ fe^

Thus, (a) is proved, (b) follows from Theorem 3.9 (c). Q.E.D.

§4. Abstract Cauchy Problem

In this section we investigate some properties of weak solutions of

(DE) and discuss the uniqueness of a solution of WCP. Moreover, we

consider the relationship between the generalized domain D(A) and the

Lipschitz continuity of weak solutions of (DE).

Throughout this section we assume that A is an operator in a

Banach space X such that A — CD is dissipative for some co^O.

We start with the following:

Lemma 4.1. Let u(i) be a simple weak solution of (DE) on a

closed interval J = [a, &]. Then for every pair s, teJ with s^t and

every (x,y)eG(A), the following inequality holds:

(4.1) e-2wt||w(0-x|l2-e-2

Moreover, (4.1) holds for s, teJ with s rgf and (x, y)eG(A) by letting

< , >s be the functional on
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Proof. Let {/?p}, [up(f)} and {vp(t)} be the corresponding null se-

quence and sequences of ^-valued, strongly measurable functions satisfy-

ing conditions (i)s-(iii)s. Put

(4.2) ^(0 = hp * (up(t) - up(t - hp)} - vp(t).

First, let (x, y)eG(A). Define an operator A1 in X** by G(Al) =

G(A) U {(x, y)}. Take an e>0 sufficiently small. Since AI — CD is dissipa-

tive,

(4.3) <vp(t) — >', WP(T) — X>J^CO||WP(T) — x||2 for a.a. t eJ .

Since vp(i) -y = hp
i {up(i) -x}~h~l {UP(T - hp) -x}-y- ^P(T) for a.a. T e

jE = [0 + e5 fo] and /ip<e, (4.3) and Proposition 1.1 imply the following

estimate:

(4.4) (B||«.(T)-XP

1 1| «P(T) - .v || 2 - (2hp)- > || WP(T - /7p) - A- || 2 - < ;•, «p(t) - x > .

for almost all T£j £ . On the other hand, ||«P(T) — x\\ is uniformly essen-

tially bounded on J, and so, a constant M>0 can be found such that

||UP(T) — x||^M for almost all teJ and all n.

Let s, t e Js, 5 5j f, and set

(4.5) tp
k=a + khp, fe=0, 1,.. ,Np = [(fo-fl)//ip]; fcp<e.

Let m and n be such that S6K_ 1 ? f£] and ^e[r^, ̂ +1]. Then by (4.4),

f^5
(4.6) 2»\ p

•''m
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-2«<' +**>||«,(T)-x||2dT

Since '; Wp(T)||dT WP(T)||£/T->O and IIP(-)-»M(-) in L»(JB; X) (and
J 'm Jjg

hence, in L°°(JE; J£**)) as p->oo, and since < , >s: *** x ***-># '

is upper-semicontinuous, the limit superior of (4.6) is not greater than

On the other hand, /7-1(e-2cOT-e-2c^t't'tp))-^2coe-2wt as p->oo, uniformly

on J£, and so, the right side of (4.6) tends to

From this we obtain the inequality (4.1) by letting p-^oo in (4.6).

Since e>0 was arbitrary and u(t) is strongly continuous on [a, b], we

have the required inequality (4.1) for every pair s, feJ with s^t. Next,

the proof of (4.1) in the case of (x,y)eG(A) is similarly proved; note

that in this case we can take A itself, instead of A±. Q.E. D.

Remark. Let u(t) be as in Lemma 4.1. Then we can prove the

following inequality in a way similar to the above: For every s, teJ

with s^J and (x, y)

(4.7)

Ct
+ 2

Note that (4.7) holds for s, teJ with s^t and (x,y)eG(A) by letting

< , >s be the functional on

Lemma 4.2. Let u(t) and u(i) be simple weak solutions of (DE)

on intervals «/ = [fl, ft] and J = [fl, 6], respectively. Then
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(4.8)

Js J a

for every a, /?eJ wfr/7 a:g/? a/id e^erj; 5, £e J with s^t.

Proof. Let {/?p}, {up(t)} and {^p(0} be the corresponding null se-

quence and sequences of ^-valued, strongly measurable functions on J

satisfying conditions (i)s-(iii)s. Let {^p(t)} be the functions defined by

(4.2). Since (up(a\ vp(a))eG(A) (<=-G(A)} for almost all aeJ, (4.7)

in the Remark after Lemma 4.1 implies that

(4.9) \\u(t)-up(a)\\2-\\u(s)-up(a)\\2

for 5, tE J with s^t and for almost all creJ. Let Q<s<b — a and hp<

s. Then, it follows from Proposition l.l that

(4.10) <vp(al u(?)-up(a)>s

^<hp
l{u(i)-up(a-hp)}-hp^{u(i)-up(a)}, u(i)-up(o)>s

+ <-\lfp(a\ u(i)-up(a)>s

^ - (2hp)- 1 1| fi(r) - 11 (̂7) || 2 + (2fcp)-
 J II 0 (T) - iip((7 - fcp) ||

 2

for a. a. <jeJ £ = [a + e, i?] and a. a. ieJ. Let a, j5eJ£, a^jS. Let tf

be the points of J defined by (4.5) and let m and n be such that

a e [£_!,£] and jBe[C*S+ i] . Then, applying (4.10) produces



DIFFERENCE APPROXIMATION 185

Combining this with (4.9), we obtain

(4.11)

\\u(-i)- u

- || l7(T)-«p(c7)||d(7.

Therefore, letting p->oo, we have the inequality (4.8) for a, /?eJ£ with

a:g/?. Since e>0 was arbitrary and u(t) is strongly continuous on J,

we have the assertion. Q.E.D.

Lemma 4.3. Let u(t) and u(f) be two weak solutions of (DE) on

bounded intervals J and J, respectively. Then, the inequality (4.8)

holds for every a, /?eJ with a^jS and every s, t e J with s^t.

Proof. Let {J£; JS = [a?, fcj], fe = l, 2,..., Np, p-1, 2,...}, {Jj; J? =

[«1, £?], k = \,2,...,Nq, q = \,2,...}, {up(t}} and {i7,(0} be the corre-

sponding families of closed subsets of J and J and sequences of X-

valued strongly measurable functions on J and J satisfying (i)-(iv) in

condition (II), respectively. Let a, /?eJ, oe^/? and for each p, choose

ap in some |>£, b£,] and j8p in some [0£, 5£] so that ocp-oc=inf {t — a;

teJP = VJZ,t^a} and p-pp = 'mf{p-t', teJ*, t^0}. First, we fix a

(? and assume that both s and t belong to an interval •/? = [#?,£?].

Then by Lemma 4.2,

(4.12)

k
dT\ | |W 9 (T)-M ((7)||2dflT, fe = /71, 711 + J , . . . , W,
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where we set fl£=ap and bp
n=f$p. Therefore, we have

(4.13)

k=mJ s

Since ||wp(cr)|| and ||wg(T)|| are uniformly bounded with respect to (o", i)e

JpxJt and p,# = l, 2,..., the second term on the right side of (4.13)

is majorized by

k=m

for some constant M>0. Since u(a) is strongly continuous on the closed

interval [a, /?], a constant M'>0 can be found such that

k=mJ a

= M^, for all TG[S, *] .

Similarly, the difference between the first term on the left side of (4.13)

and

is majorized by 2M'P.

Note that ocp-»a and /?p-»/? as p->oo. Hence, it follows from the

definition that wp(a
p)-»w(a) and wp(j3

p)->w(j8) as p-»oo. Consequently,

letting p->-oo in (4.13) we see that
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|ff,(T)-tt(^)||2-||^(T)-M(a)P}dT

This inequality always holds if the s and t belong to the same interval

Jf. Therefore, we can prove by applying this inequality, instead of

(4.12), and by a routine argument that the inequality (4.8) holds for

every pair 5, fe J with s:gf. Q.E.D.

Now, applying a method due to Benilan [2; Lemma 1.2], we

obtain the following result:

Theorem 4.4. Let u(i) and u(i) be weak solutions of (DE) on a

bounded interval J. Then

(4.14) e lot\\u(t) — u(t')\\^e~ios\\u(s') — u(s')\\ for s, teJ with s^t.

Proof. Let a and b be the left and right end points of J, respec-

tively. Set

||M(T) — u(a)\\2 if (T, cr)eJx J,

0 otherwise

and then consider the following regularization of 0:

4>E(i, <T)=(P£*(^)(T, <7) = \\ p£(i —f, cr—a)0(f, <7)dfd<r,

where p£(^5 ?^)=e2p(s^)p(e^), (^ ,^)eK 2 , and p is a modifier such that

peC^CR1)* p^O, supp[p]c[—1, 1], \ pd£ = l and p is symmetric.
J.R1

Let 0<e0<(6-a)/2. Let fl + e0^5

Then applying Lemma 4.3, we have
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e(r, cr)dtrdT.

Thus, in a way similar to Benilan [2; Lemma 1.2], we have

This implies that e-2wr</>£(r, r) ̂  Q-2cos(/)E(s, s). Therefore, letting e i 0,

we have e~2cor0(f, t)^e~2fos(/)(s, s) for fl+e0<^<^6-e0. Since £0

was arbitrary and since w(f) and z7(£) are strongly continuous on J,

we have the assertion. Q.E.D.

Remarks. (1) Theorem 4.4 guarantees the uniqueness of a solution

of WCP. Hence Theorem 2.3 is valid.

(2) Theorem 4.4 states that the u(f) mentioned in a remark after

the statement of condition (II) gives a unique weak solution of (DE)

on [a, c).

The proof of Theorem 2.8 is given by Theorems 3.9, 3.10 and the

following :

Corollary 4.5. Each of the limit function u(f) obtained by Theorems

3.9 and 3.10 gives a unique simple weak solution of (DE) associated

with the initial-value u0.

Proof. Let u(t) be the limit function obtained by Theorem 3.9

(a). Let w f(f) be the functions defined by (3.1) and let

Then, ut(t) and vt(t) are step functions and v^eAu^f) for all t. Theo-

rem 3.9 (a) states that u(t)=]imui(i) holds uniformly on J, so wf(.)-»w(0
i-»oo

in L°°(J; Z) as i->oo. Since

we have
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where t(=a + khPi. Therefore, for every s>0,

>0 as / - > o o .

From this and Theorem 3.9 (a) it follows that u(t) is a unique weak

solution of (DE) associated with the initial-value u0. Q.E.D.

Since u(i) gives a unique weak solution, the limit u(t) does not

depend on the choice of the sequence {vj, and hence, Theorem 2.8

is valid.

Now, we investigate some properties of weak solutions in the sequel.

First we show that a weak solution is an integral solution in the sense

of Definition 2.2.

Theorem 4.6. Let u(t) be a weak solution of (DE) on a bounded

interval J. Then for every pair s, teJ with s^t and every (x,y)e

G(A), the inequality (4.1) holds:

Moreover, (4.1) holds for s, teJ with s^t and (x, y)eG(^4) by letting

< , >s be the functional from X**xX** to R1.

Proof. Let { Jp
k\ Jp

k = \_ap
k, bp

k~], fc = l, 2,..., Np9 p = l, 2,...} and {up(t)}

be the corresponding family of closed subsets of J and sequence of X-

valued, strongly measurable functions on J satisfying (i)-(iv) in condition

(II), respectively. Let s, f e J , s^t and for each p, choose sp and tp

in Jp = \jjp
k so that sp — s=inf{a — s; cr^s, ere Jp] and r — rp=inf{? — a\

k ^

o>^t,aeJp}. Let s p E [ a p
n , b p

n ] and fpe [a£, 5^]. First, let (x, >') 6 G(>4).

Then making use of Lemma 4.1, we have

(4.15) e~2co fp | |w (tp) — x\\2—s~2cosP\\i
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where aj,=sp, ^ = tp, ^=ak for /c = m + l, m + 2,..., ?i, and

for /c = m, m + 1,..., n — 1. Moreover,

Z |p-2eobf I I ,|e k | | i

k=i

The right side goes to 0 as p->oo by (iii) in condition (II). Since

sp-+s and tp-*t as p->oo, we have the required inequality by letting

p->oo in (4.15). Next, the proof of (4.1) in the case of (x, y)eG(A)

is quite similar. Q.E.D.

Remarks. (1) We have shown in the above theorem that a weak

solution of (DE) satisfies the inequality (4.1). We can also prove by

a way similar to the proofs mentioned above that a weak solution u(f)

of (DE) on J satisfies the inequality (4.7):

Js

for s, teJ with s^t and (x,y)eG(A), and at the same time that for

every s9teJ with s^t and every (x,y)eG(A) by letting < , >s

be the functional on X** x X**.

(2) Let u(f) be a strongly absolutely continuous function on J.

Then, u(t) satisfies (4.1) if and only if it satisfies (4.7). In fact, suppose

(4.1) holds. Then we have for teJ and /i>0 sufficiently small
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Since ||i/(f) — x|| is absolutely continuous on J, we have

- ~ - - , s (t)~x\\2, a.a. / e J ,

by letting h 1 0, from which (4.7) follows. The converse is similarly

proved. As is seen from this fact, we can employ (4.7) to give a defini-

tion of integral solution, instead of (4.1).

Theorem 4.7. Let (u(l)(f)} be a sequence of weak solutions of (DE)

on a bounded interval J. Suppose that u(l\t) converges to u(t) as

/-»oo, uniformly on J. Then the limit u(t) on J gives a weak solution

of (DE) on J.

Proof. For each w<'>(0, let {u(
p
n(t}} and {/£(/)] be the corresponding

sequence of functions on J and family of closed subintervals J{(1) satis-

fying conditions (i)-(iv). Let J{(/) = [>KO, &K01 k = l, 2,..., Np(l\ p, / =
1,2,..., Then there exist subsequences {/t-} and {pj such that

sup

// and Z
k=0 fc=l

Clearly, u(t) is strongly continuous on J and w^.^l/f >(/,-) is a simple

weak solution of (DE) on JJK/J for each /c = l, 2,..., JVP.(/.) and i =

1,2,3,. . . . Hence, u(t) gives a weak solution of (DE) on J. Q.E.D.

Corollary 4.8. Suppose that A — co is dissipative for some co^Q.

Let S<^D(A) and J = [_a, b). If for every veS, (DE) on J has a weak

solution u(t',v) with the initial-value v, then for every weS, there

exists a unique weak solution u(t; w) of (DE) on J such that u(a; w) =

w.
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Proof. Let weS and let {wp} be a sequence in S such that wp-»w.

Then, Theorem 4.4 yields that \\u(t; wq)-u(t; wp)|| ^e^-^Hv^-w^l-^O
as p, g-»oo. Hence, w(r ; w)=limw(?; wp) exists uniformly for f e J .

p-»oo

Therefore, it follows from Theorem 4.7 that u(t\ vv) becomes a unique
weak solution of (DE) on J. Q.E.D.

Next, we give some necessary and sufficient conditions for a weak

solution to be Lipschitz continuous.

Theorem 4.9. Let J = [a, b) and u(f) be an X-valued function on

J satisfying (4.7) and u(t)eD(A) for all teJ, and Jet us consider the

following conditions:

(L.I) u(t) is Lipschitz continuous on J;
(L.2) u(t)eD(A)for all teJ and limu(t)e D(A);

(L.3) u(a)eD(A)i

(LA) u(d)eQ(A).

Then (L.l)=>(L.2)i=>(L.3)i=>(L.4). // u(t) is a weak solution of (DE)
on J, then the above conditions together with the following condition

are equivalent:

(L.5) u(f)eD(A)for all teJ and

||>?M(fl)||| for all teJ.
hlO

Moreover, in this case, we have

\\u(t)-u(s)\\^e^b-^\\\Au(a)\\\.\t-s\ for t,seJ.

Proof. First, let u(t) be an X-valued function on J satisfying (4.7)

and u(t)eD(A) for all teJ. Assume that (L.I) holds, i.e., there exists

a constant M>0 with

(4.16) ||ii(0-ti(s)||^M|f-s| for t, seJ .

Fix any 1 0 e J and set

hlO
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Then by assumption, a(f0)^M. Let z(t0)eX** be any weak-star limit

point of the set {h-l(u(t0 + h)-u(t0))}. Then ]|z(f0)|| ^a(f0). By the
way, (4.7) and Proposition 1.1 yield that for every (x, y) e G(A),

u(t0)\ w>

t0

for weF(u(to) — x) and /?>0. Therefore, we have

<z(f0)- J>, u(t0)-x>i^a}\\u(t0)-x\\2 .

This states that (u(tQ), z(tQ))eG(A), and so,

(4.17)

Since u(t) is Lipschitz continuous on J, limu(t)=u(b) exists. Since

t0 was arbitrary in J, it follows fiom (4.17) that u(b)eD(A), and so,

(L.2) follows. It is clear that (L.2) «=>(L.3)"=>(L.4). Next, suppose u(t) be

a weak solution of (DE) on J satisfying (4.16). Then, we have shown

that condition (L.2) holds. Let t0 e J and take a z e Au(t0). Let

(u(to), z(£0))=(x, y) in (4.1). Then Theorem 4.6 implies

Ct
e 2lot\\u(t) — u(t0)\\

2—e 2fos||w(1s) — w(^ 0 ) l l =2\ e 2™°<z, u(o)~u(tQ}>Ao
Js

for s,teJ with s^r. From this it follows (Brezis [3; Lemma 51]) that

e-"lw(0-tt(*o)ll-e-

for s, teJ with s^r. Hence, we have

h l O

this is valid for any zeAu(to). Combining this with (4.17), we have

lim ft-' || tt(r0 + Ji)-«(f0) || = |||Ai(fo) I I I .
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and in particular, lim /r 1 1| u (a + /i) - u(a) \\ = ||| An (a) ||| . Thus, applying
hlO

Theorem 4.4,

J i i O

/i 40

and hence condition (L.5) is obtained. Finally, assume that (L.4) holds.

Then by definition, a sequence {(xn, yn)} c G(A) can be found such

that xn-*u(a) in X and {yj is bounded in Z**. Therefore, Theorem

4.6 implies that

for every n and every pair s, teJ with s^J; hence

Now, taking a constant K>0 with HyJ^X and letting H-»OO, we have
f t

||M(0-w(a)||^K\ e-^^da for reJ. From this and Theorem 4.4 it
J a

follows that w(r) is Lipschitz continuous on J, that is, (L.I) is satisfied.

The last Lipschitz condition in the statement of the theorem follows

from condition (L.5) and Theorem 4.4. Q.E.D.

Remark. In view of Remark after Theorem 4.6, we can obtain

the same assertion by assuming in Theorem 4.9 that u(t) be an integral

solution of (DE) on J such that u(t)eD(A) for teJ. Conditions (L.I)

-(L.4) are introduced in Benilan [2; Chapitre I] as the properties of an

integral solution and the crucial step of the proof of Theorem 4.9 is

due to him. Also, Theorem 4.9 is closely related to Crandall [8; Co-

rollary 1].

Condition (Rloc; A, C) mentioned in Example 2.14 is a modified

version of a condition S(^4; C) proposed by Benilan [1;§3]. As a

corollary to Theorem 4.9 we can obtain an existence theorem of weak

solutions which is closely related to [2; Theorem 1.3]:
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Theorem 4.10. Let A — co be dissipative for some co^O. Assume

that condition (Rioc; A, D(A)) holds. Then we have:

(a) For every xeD(A) and r>0, there exists a unique simple

weak solution of (DE) on [0, T] with the initial-value x.

(b) For every x e D(A) and r>0, there exists a unique weak solu-

tion of (DE) on [0, T] with the initial-value x.

Proof, (a) Let xeD(A) and t>0. As already seen in Example

2.15, there is a positive number rr and there is a simple weak solution

Ui(f) of (DE) on [0, TJ] satisfying 1^(0) =x together with a Lipschitz

condition. Hence, we see from Theorem 4.9 that ||M1(0 — Wi(s)||^ewtl|r —

s|.|||v?x||| for r, se[0, rj and u^t^e^A). So, by a routine argument,

a positive number T2(>T1) exists and (DE) has a simple weak solution

M2(0 on [TI? T2] such that t/2(T1)=w1(t1). Here, we note that w^tje

Dtf) and ||tt2(0-w2(*)ll^e»<*'^ for
f, se[t1,T2]. In fact, under condition (Rloc; A, D(A)}, "xeD(/4)" is

equivalent to "xeD(^)" by Theorem 4.9. Now, it is clear that the

function u(i), defined on [0, T2] by setting u(t)=ul(t) for *e[0, TJ] and

u(f)=u2(t) for f e [ T l 9 T2], gives a simple weak solution of (DE) such

that \\u(t}-u(s)\\^e™*\t-s\.\^Au(Q}l for f, se[0, T2]. In this way,

there exist a sequence {TM} and a sequence of simple weak solutions

MB(0 of (DE) on [T,,.!,!,,] such that nn(Tn) = wn _ , (TB), and a function

u(i) obtained by continuing un(t), w = l ,2, . . . gives a simple weak solution

of (DE) on each finite interval [0, tno] such that \\u(t) — u(s)\\^ePTn°\t —

s|.|||^u(0)||| for t, se[0, TBO]. We want to show that we can let Tn->

+ oo as n->oo. To this end, assume that TW->T+ for some t+>0. Then,

u(f) is defined on [0, T+) and ||W(O-M(S)|| ̂ e°"\t-s\ -|||^ii(0)||| for t,se

[0, T+). Since u(t) is a weak solution on [0, T+), w(T+)=limw(0 =
t t t +

limw(Tn) exists and u(t+)eD(A) (and hence u(t+)eD(AJ) by Theorem
H-+OO

4.9. So that there exist sequences {hp} and {zp} and an open ball

B(M(T+), p) such that /?p->0, zp->0 and r\R(I-hp(A + zp))=>B(u(i:+), p) n

Let M=e£OT+ l l l^xlH, sup||zp||^l and take a T0>0 such that TO<
p

p/4{2r0-f exp(2c0T0)(M + l)}. Choose an n0 so that |tno — t+ |<T0/2 and

||M(tno)-W(T+)||<p/2. Then, ^R(I-hp(A + zp))^B(u(tnQ\ p/2) n fi(X), and

so, there exists a simple weak solution wno(0 of (DE) on [TBO, T
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(3[Tno, T+))- This means that the sequence {-rj can be taken such
that TW-> + OO. Consequently, we have the assertion (a).

(b) follows from (a) and Corollary 4.8. Q.E.D.

Finally, we give some results on the strong solution of (DE).

Theorem 4.11. Let A —CD be dissipative for some co^O and let A

be an extension of A such that A — co is maximal dissipative on D(A).

Let u(f) be an X-valued continuous function satisfying (4.7) on J and

such that u(i)eD(A) for teJ. If u(f) is weakly right-differentiable

at a point t0eJ with t0 + heJ for h>0 sufficiently small, then u(t0)E

D(A) and (w -D+)u(t0) e Au(tQ\ where (w-D+)w(r0)= w-lim/T1(w(*o +
fclO

h) — u(to)). Therefore, if u(f) is an integral solution of (DE) formulated

on J to A and if u(i) is Lipschitz continuous and strongly differentiable

almost everywhere on J, then u(f) is a strong solution of

(DE)- (dldt)u(t)eAu(i), a.a. t<=J.

Proof. Let (x, y) e G(A). Then by the same argument as in the

proof of "(L.1)-KL.2)" part of Theorem 4.9, we have

), w> ̂
tQ

Cto+h
+ wh-i\ \\u(i)-x\\2di

JtQ

for weF(u(t0) — x) and /i>0 small. Since F(u(tQ) — x) is star-weakly

compact in Z*, there exists a C* e F(u(t0) - x) such that <y, u(t0)-x>s =

<y,£*>. Noting that < , >s:XxX-+R1 is upper semicontinuous
and letting h->+0, we have

(4.18)

for all (x, y) e G(A). Now, we set

Au(tQ) U {(w - D+X*0)} if x = u(to),

Ax if x =f= w(*0) •
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Then (4.18) states that A1 — co is a dissipative operator with domain

contained in D(^). Hence A^aA. Therefore, u(tQ)ED(A) and (w —

Q.E.D.

Theorem 4.12. Let A — co be dissipative for some co^O. Let u(t)

be a strong solution of (DE) on an interval J = [fl, b], satisfying u(a) =

u0eD(A). Let {hp} be any null sequence of positive numbers. Then

for every v>0, there exists an approximate difference solution {(uv
pik,

vp,k)} °f CDS) with error bound v for which condition (S) holds.

Proof. Since u(f) is Lipschitz continuous on J, there exists a

constant C>0 such that \\u(t)-u(s)\\^C\t-s\ for f, seJ. Let fcp-»0

and for each p, set

0 re[

and

i;(f)=(d/dt)M(0 (e^w(O) for almost all teJ .

Since llvv^r) — u(r)||->0 as p-»oo for almost all teJ, it follows from

EgorofT's theorem that for every v>0, there exists a closed, measurable

set £v in J such that n(J\Ev)<v and sup||w-(f) — t;(t)||->0 as p-»oo,
teEv

where ju denotes the ordinary Lebesgue measure on R1. Fix any v

with l>v>0. Then a p0 = Po(v) can ^e found such that

(4.19) 0</?p<v and \\wp(t)-v(t)\\^v for p^p0 and teEv.

Now, we set

UP,O=UO, tpj0=a, for P^PO-

and then define sequences {(uv
ptk, vv

pik)}aG(A), {vptk} and {tp9k = tptk.1 +

hp + vp,k\ as follows:
First, define

( 0 if hp + tp>0eEv
V I =

fcp, Ev\[a, a + hp)) if hp + tpt^Ev.
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Here, note that £v\[a, a + hp) is a non-empty closed set if v is sufficiently

small. Then tptQ + hp + vpiie Ev. We then set

tp,i=tp,o + hp + vpil, u*pil=u(tpil) and vpil=v(tptl).

Then, (4.19) implies that

Assume that (uv
pj, vv

ptl)eD(A).> vpth tpth / = !, 2,..., fc are defined as above.

If hp+tp^b, then we set

If hp+tptk<b, then we set

( 0 if
VP,*+I =

and

In this way, we can define {(uv
ptk, vv

ptk)}<=G(A), {vptk} and {fpsfc}, fc =

l ,2 s . . . , JV p = [(fc-fl)/fcJ. Let

«;.*=*;1{«;.t-«ji*-i}-»;i*, /c=i, 2,...,Arp.

If ^ik-i + *p^*, then /fpll^kll^M^.fc-iH^IW^k-OII^CV If ^,*-i
hp<b, then
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and similarly hp\\s^

0-

If fp , k o- i<b^W then tp,ko-i=a+ I, (^P + vp>i) = a + (/c0-l)/ip

feo-l *o-l
Zv,^ and so b^tp>ko_1 + hp = a + k0hp + £ vpti. Therefore, setting JVp
i=l ' i=l

[_(b-a)/hp], we have Nphp^b-a^k0hp + v and

Consequently,

Nn Np

Z K.J^V^ + C Z vp.. . P,k
K— 1 k=I

This means that conditions (a t) and (a2) are satisfied for {(uv
ptk, v^k)}

constructed above. Since | | M j i k - M p f k - i l l =| |M(rp i k)-ii(rp i k_OII =l lw(^ f k- i +
hp + vpik) — w(^p, fc-i)|| ^C(/ip4-vpjfe)^C(||ep j fc | |/7p + 2/7p) for i^k^Np and p^.

p0, condition (S) is also satisfied. Q.E. D.

Combining the above-mentioned results, we have the following result

which is closely related to Crandall-Liggett [6: Theorem II]:

Theorem 4.13. Let A — w be maximal dissipative on D(A) for

some co^O. Let u0ED(A) and J —[a, &]. Then conditions (a) and (b)

below on a function u(t) on J are equivalent:

(a) u(t) is a strong solution of (DE) on J with i*(a) = w0.

(b) For every v>0, there exists an approximate difference solution

of (DS) (formulated to A, J and w0) with error bound v for which

condition (S) holds, and u(i) is the limit of the approximate difference

solutions (in the sense of Theorem 2.8). Moreover u(f) is strongly

differentiable almost everywhere on J.

Proof. If (a) is satisfied, then (b) follows from Theorem 4.12.

Conversely, suppose (b). Then the approximate difference solution

converges to a unique simple weak solution u(f) of (DE) by Theorem

2.8. Thus, Theorem 4.6 states that u(t) is an integral solution of (DE)

on J. Since u(i) is strongly differentiable almost everywhere on J and

since u(i) is Lipschitz continuous on J by condition (S), Theorem 4,11
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yields that u(f) becomes a strong solution of (DE) on J and hence condi-

tion (a) is satisfied. Q.E.D.

Corollary 4.14. Let X be reflexive. Let A — co be maximal dissipa-

tive on D(A) for some co^O. Let u0ED(AJ and J = [a, b~\. Then CP

for A and u0 has a solution on J if and only if for every v>0, there

exists an approximate difference solution of (DS) with error bound v for

which condition (S) holds. Moreover, in this case u0eD(A).

The proof is obtained by combining Theorems 4.13 and 4.9 with

the fact that a Lipschitz continuous function on J is strongly differ-

entiable almost everywhere on J, provided that X is reflexive.

Let zeX and let us consider a differential equation

(DE; z) (d/dt)u(0e4tt(0 + z=(4 + z)w(0, t <= [0, T] .

We then consider the following type of difference scheme approximating

the (DE; z):

(DS; z)
= l, 2, 3,...,

Corollary 4.15. Let X be reflexive and let A be dissipative. Then

the following conditions are equivalent:

(M.I) A is m- dissipative.

(M.2) For every XED(A), zeX and T>0, there is a strong solution

u(f) of (DE; z) on [0, T] with u(Q) = x.

(M.3) D(A)=D(A) and for every xeD(A), zeX and T>0, there is

a strong solution u(t) of (DE; z) on [0, T] with u(0) = x.

(M.4) A is maximal dissipative on D(A) and for every xeD(A), ze

X and for every v>0, there exists an approximate difference

solution of (DS; z) on [0, T] with error bound v for which

condition (S) holds.

Proof. It is shown in [12] that (M.1)-(M.3) are equivalent. The

equivalency between (M.2) and (M.4) follows from Corollary 4.14.

Q.E.D.
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Corollary 4.15 states that a range condition (R) for A follows from

the existence of approximate difference solutions with error bound v.

§5. Nonlinear Semigroups of Local Type

In this section we review the results obtained so far from the view-

point of the theory of nonlinear semigroups.

Let A be an operator in X such that A — a) be dissipative for some

co^O. By WCP for A and u0 on a half-real line R* = [0, oo) we mean

a problem to find a strongly continuous function u(t) on R+ satisfying

a given initial condition w(0)=t/0 such that u(t) restricted to any bounded

interval [0, T] is a weak solution of (DE) on [0, T].

Suppose that there exists a one-parameter family {U(i)\ f^O} of

operators from a subset D of X into X such that for every i/0eD,

u(i) = U(f)uQ is a unique solution of WCP for A and u0 on [0, oo).

Then we call the operator U(t) a solution operator of WCP for A.

From the definition of weak solution we see that DaD(A) and each

17(0 maps D into D(A). Moreover, Theorem 4.4 states that each 17(0

is Lipschitz continuous on D with Lipschitz constant ewf. The following

result is a nonlinear version of Takahashi-Oharu [24; Theorem 4.1]

and at the same time an extension of Miyadera-Oharu [20; Theorem 3]:

Theorem 5.1. Let A —CD be dissipative. Suppose that there exists

a set D such that D = D(A) and for every xe£>, there exists a solution

u(f, x) of WCP for A and [0, oo) with w(0, x)=x. Then there exists

a unique semigroup {T(t)i t^Q] of local type on D(A) such that T(i)x =

u(t\ x) for xeD and {T(t)i t^.0} forms a semigroup of solution operators

of WCP for A on [0, oo).

Proof. From assumptions, Theorem 4.4 and Corollary 4.8, it follows

that for each XED=D(A) there exists a unique weak solution u(t\ x)

with u(0;x)=x. Hence, we can define solution operators T(0, f^O,

by setting T(t)x = u(f, x) for t^O and xeD(A). We also set T(0) =

I\D(A). Then Theorem 4.4 states that for every pair x, yeD(A), \\T(i)x-

T(f)y\\ 5^ewr||x — y\\ for all t^O. Now, it remains to prove the semigroup

property of {T(t)m, f^O}. Let xeD(^i) and let {un(t\ x)} be a sequence
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of X-valued, strongly measurable functions satisfying (i)-(iv) in condition

(II) and converging to u(t\ x). Let s^O and set un(f, x)=Mn(f + s; x)

and w(f ; x) = u(t + s; x). Then w(0; x) = w(s; x) = T(s)x and it is clear that

conditions (i)-(iii) hold for fin(f, x) and u(t; x) restricted to every bounded
interval [0, T]. Hence, by the unicity of weak solution, T(f + s)x =

u(t + s\ x) coincides with T(t)T(s)x. This means that T(t + s) = T(t)T(s)

on D(A) for t, s^O. Q.E.D.

Combining this theorem with Theorem 4.4 we have the following:

Theorem 5.2. Let A —CD be dissipative for some CD^.0. Then there

is at most one semigroup (T(r); f^O} on D(A) such that for each xe

D(A), T(t)x is a solution of WCP formulated to A. Moreover, such

a semigroup is of local type on D(A).

The semigroup {T(f); £^0} mentioned in the above theorem will

be called a semigroup of solution operators of WCP for A. Summariz-

ing the above-mentioned with Theorems 3.9 and 3.10, we obtain the

following :

Theorem 5.3. Let A — CD be dissipative. Suppose that there exists

a set DaX with D=D(A) such that for every xeD, T>0 and v>0,

the approximating difference scheme (DS) has an approximate difference

solution {(uv
ptk, vv

pfk)} with error bound v satisfying condition (S). Then

there exists a unique semigroup {T(t)} of local type on D(A) such that

(a) for every t>0 and every null sequence vt J, 0, there exists

a subsequence {pt} of {p} and

T(t)x= lim i i j j f k , *e[0,T] , x e D ,
khp.->t,i->ao

(b) (T(f)} is a semigroup of solution operators of WCP for A.

Moreover, if for every xeD and r>0, (DS) has an asymptotically

approximate difference solution {(upik, vptk)} satisfying condition (S)',

then we have

(a)' for every i>0, T(t)x= lim M p m , te [0, T], xeD,
mhp-+t,p-+ao

instead of (a).
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Proof. Let xeD and i>0. Then by Theorem 3.9, wj ; j k converges

lo u(t) as khp.-*t and i->oo for te[0, T] and tf(r) gives a unique weak

solution on [0, T]. Since T is arbitrary, we obtain a unique solution

u(t\ x) of WCP for A on [0, oo). Therefore, by Theorem 5.1, there

exists a unique semigroup {T(i)} of local type on D(A) which is a semi-

group of solution operators of WCP for A. The last assertion is similar-

ly obtained by employing Theorems 3.10 and 5.1. Q.E.D.

Now, in the remainder of this section we restrict ourselves to the

case of reflexive Banach spaces and give a characterization of the in-

finitesimal generator of a semigroup of local type. By the infinitesimal

generator of a semigroup {T(f); ^0} of local type on a subset XQ of

X we mean an operator A0 which is defined by

A0x= lim/r^TX/Ox-A')
fc-»+0

whenever the limit exists. Note that A0 — a) is dissipative if Q~MtT(t)

is a contraction on X0 for f^O.

Recently, Martin [17] has given a characterization of the infinitesimal

generator of a contraction semigroup on X0 with D(A0)=X0 in the case

in which both X and X* are uniformly convex. Miyadera [19] has

extended the result to the case in which only X* is uniformly convex.

Here we refer to [19].

Definition 5.4. Let {T(t)i t^Q} be a semigroup of local type on

X0 with the infinitesimal generator A0. We define a set D by

D = {xeX0; \\T(h)x-x\\=Q(h) as h->+0}.

Let A be an operator in X with domain D(A) contained in D. If

A is an extension of A0 (note that D(A0)c:D) and if A — OJ is maximal

dissipative on D, then A is called a (g)-operator of {T(t); f^O}.

If D(A0)^09 then D =5 D(A0) and the (#)-operator is well-defined
by the maximal principle.

Lemma 5.5, Let X be reflexive and A be an operator in X such
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that A —co is maximal dissipative on D(A) for some co^O. Assume that

there exists a semigroup {T(r); ^0} on D(A) of solution operators of

WCP for A. Then A=A, D(A)=D and A is a (g)-operator of {T(f)\

Proof. Since {T(f)\ £^0} is a semigroup of solution operators of

WCP for A, Theorem 4.9 yields that D=D(A). Since X**=X, A is

an operator in X and at the same time A^>A. Let (x, y)EG(A) and

define an operator A± by putting Avu=Au U {y} for u=x and A±u=Au

otherwise. Then Al is dissipative and D(A1)<^D(A). Since A is maximal

dissipative on D=D(A), we have A1aAm, hence (x, y)eG(A1)c:G(A).

This means that G(A)c:G(A), that is, A=A. Finally, it follows from

Theorem 4.11 that A0aA. Q.E.D.

Lemma 5.6. Let X be reflexive and X0c:X. Let {T(0; r^O} be

a semigroup of local type on X0 with the infinitesimal generator A0

and let A be a (g)-operator of {T(t)i t^O}. Then we have:

(a) Let Xl=D(A0)(]X0 and 7^(0 = 7X01*1 for t^Q. If B is an

operator in X such that A0aB9 D(B)c:D(;40) and B — OJ is dissipa-

tive, then D(B)c:D and {^(f); ^0} is a semigroup of solution operators

of WCP for B on [0, oo). In particular, {7\(f); f^O} is a semigroup

of solution operators of WCP for a (g)-operator A.

(b) DG40)iD£>; and D(A)=X0 if and only if D(A0)=X0.

(c) A=A and D(A)=D.

(d) A — CD is maximal dissipative on D(A).

Proof, (a): If xeD, then T(t)x is a strong solution of (DE) on

every bounded interval for AQ and hence it is a strong solution of (DE)

for B. Therefore, it follows from Theorem 5.1 that {T^t)} forms a

semigroup of solution operators of WCP for B. In view of this and

Theorem 4.9, we see that D(B) = D, so D(B)aD. A (g)-operator is a

special one of those B in question; hence we have the last assertion of

(a).

(b) is easily seen from the above-mentioned.

(c) follows from (a) and Lemma 5.5.

(d); Let A be an extension of A such that D(A)<^D(A) and A — a>
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is dissipative. Since D(A0)=D(A)1 it follows from (a) that

But, A — CD is maximal dissipative on D\ hence AaA. This means that

A — co is maximal dissipative on D(A). Q.E.D.

Remark. The assertion (d) is due to Miyadera [19; Lemma 2.2].

Definition 5.7. Let A be an operator in X. We say that A has

the property (0), if for every xeD(A), T>0 and every v, (DS) formu-

lated on [0, T] to A and x has an approximate difference solution

{(up,k-> vp,k)} with error bound v for which condition (S) is satisfied.

Using this property, we can characterize a (g)-operator as follows:

Theorem 5.8. Let A be an operator in a reflexive Banach space

X and let X0 be a closed subset of X. Then conditions (i)-(iii) below

on the operator A are equivalent:

(i) A is a (g)-operator of a semigroup {T(0; f ^O] of local type

on X0 such that X0=D.

(ii) D(A)=X0, A has the property (&) and A — CD is maximal

dissipative on XQ.

(iii) D(A)=X09 A — co is maximal dissipative on D(A) and there

exists a semigroup {T(f)'9 t^.0} on D(A) of solution operators

of WCP for A.

Moreover, the semigroup in (i) coincides with that in (iii).

Proof. First, assume (i) holds. Since D is dense in X0, Lemma

5.6 implies that D(A)=X0 and A — CD is maximal dissipative on X0.

Moreover, D(A)=D and for every xeD(A) and T>0, T(t)x is a strong

solution of (DE) on [0, T] for the operator A. Therefore, Theorem 4.11

states that for every null sequence {hp} of positive numbers and v>0,

there exists an approximate difference solution of the (DS) with error

bound v. This means that A has the property (^) and hence condition

(ii) holds. Next, suppose (ii) holds. Then, it follows from Corollary

4.14 that for every xeD(A) and T>0, there exist a strong solution of

(DE) on [0, T] for A. Here we note that A — CD is maximal dissipative

on D(A) (<^D(A)=X0). Hence, by Theorem 5.1, there exists a semi-
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group {T(0; ^0} of local type on D(A)=X0 which is also a family

of solution operators of WCP for the operator A. Hence, (iii) follows.

Finally, it is proved by employing Lemma 5.5 that (i) follows from

(iii). The last assertion is clear from the unicity of a weak solution.

Q.E.D.

Miyadera [19] has shown that if X* is uniformly convex, then A

is a (#)-operator of a semigroup {T(t)} of local type on X0 such that D

is dense in X0 if and only if D(A)=X0, A has the property (&) and

A — CD is maximal dissipative on X0. Hence, if X* is uniformly convex

and if A — CD is maximal dissipative on D(A), then the property

is equivalent to the property (0).
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