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On the First Initial-Boundary Value Problem
of the Generalized Burgers5 Equation
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§1. Introduction and Notations

E. Hopf discussed in details on the Cauchy problem of Burgers'

equation in his famous paper [5]. Since then, many papers on the

equation and its related topics have been published. However, they
have not treated the initial-boundary value problem of it. The author

previously discussed on the first initial-boundary value problem of this

equation in [17]. Recently, N. Itaya has shown the existence and the

uniqueness, in a certain sense, of the temporally global solution of the

Cauchy problem of the following generalized Burgers' equation:

(l.l)2 -JP- + -£—(pv)=Q9 (]u is a positive constant)

in [11] (cf. [9], [10]). Stimulated by his work, the author attempts to

discuss on the first initial-boundary value problem of (1.1) in [0, X~\a

R1
9 especially from the view-point of the temporally global behavior of

the solution of (1.1).

The author expresses his hearty thanks to Professor N. Itaya, of

Kobe College of Commerce, whose stimulating guidance and encour-

agement with kind discussions have meant so much to him throughout

his work in the present paper, and to Professors T. Ugaheri and M.

Nagasawa who have given many valuable suggestions and constantly

encouraged him to write up this paper.
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Notations. The functions considered in this paper should be under-

stood to be denned in [0, X] or [0, X] x [0, T] (0<X< + 00, 0<T< + 00)
and continuously differentiable as many times as necessary.

(1.4)

(1.4)'

•fl=(0,X), 0 = [0, X}, S? = (0}x[0, T],

(1.2)

- |«(*)|«»sEsup|tt(x)|,

, r r=5 ruflx{0},

(1.3)'

(n=0, 1,...).

,01,

IJ^- sup '"<*.•/> 7'%
QT,t*t' \l — l I ;

2r+s=0

2r+s=(«-l)VO

f i ^» i (
T

o) + z 1
s=0 s=0

«i;»^w'a) =
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where r and s are non-negative integers.

(1.5)

f* = {u(x,t)\ , \
r+s=0 r+s=n

Other notations, not described above, will be explained where they

appear.

§ 2. Preliminaries

We assume for (1.1) the following initial-boundary conditions:

(2.1) i<x,0)

(2.2) t<0,0

and for v(x, t) the following compatible condition:

(2.3) vxx(x, t){s9r=vxx(x, 0|s? =0 .

Let (y, p) be a solution in H%+*xB%- of (1.1) satisfying the initial-

boundary conditions (2.1) and (2.2), and X(T; x, 0 be the solution curve

of the characteristic equation for (l.l)2 as a linear equation in p:

(2.4)
^-X(T; x, 0 = H*(j; x,t), i)

: (f ;x,0=*.

Since veH%+ct, the solution curve for (2.4) starting at an arbitrary point
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(x, t)eQT is unique. By (2.4) we have

(2.5) XX(T; x, /) = JJ(T; *, 0 =exp {-J^(T'; x, /), T')</T'} .

If y(x, f)eH%+* is given in (l.l)2, then p(x, 0 or pu(x, 0 is uniquely

determined by the formula:

(2.6) p(x, t)=pv(x9 O=PO(*(O; *, 0)**(0; *, 0

=Po(*(0; x, r^expl-T^^T'; x, 0, T')</T'} .
Jo

For simplicity, we put

p(r; x, O=P(^(T; x, 0, T),
(2-7)

U(T; x, t) = v(x(t'9 x, 0, T), etc.

By (l.l)2, (2.4) and (2.6), the following fundamental lemma holds (cf.

[11]).

Lemma 2.1. // (v, p) is a solution of (1.1) m #£+ax£f witft (2.1)

and (2.2), r/sen r/?e following equation holds:

(2.8)

(2.9) x0(x, 0 = 3c(0;x, 0-

Concerning p(x, f), we have, by (2.6) and simple calculations,

Lemma 2.2. // (v, pv) and (w, pw) are solutions of (1.1) with (2.1)

(2.2) in H%+« x J5f (cf. (2.6)). then

1 1 (0)

(2.10) L L

Pv Pv

where C^T^i v, w) ; 0 as T0 i 0.

From (2.6), (v, p) e H%+* x B\- implies \i\p e H%.

Let
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(2.11) Z°(x-{, t; t, T; ̂ /p )=—
2-v/ 7T

be the parametrix of the linear parabolic equiaton:

(2.12) ( , , / ) = « ,

Then the parametrix of (2.12) with (2.2) is given by

(2.13) Z(x-{, t; {, r; nlp)= t {Z°(x-£ + 2nX, t; £, T;

, f; {, T;

As is well known, Z° has the following properties:

Lemma 2.3.

(i) |

(ii) /or

(iii) |D»Z°(x-^, t; ^, T; 0/p)-I>»,Z0(x'-£, t; «, T; A»/P)| gCi»)|x-x'| x

where

f x (if |x-£|<|x'-
x" =

[ x' (otherwise),

(iv) \D*D?Z°(z, t' ^ T; nlp)-D*D?Z°(z9 i\ ?, T

x(^-T)~1 + m2+ &exp{-z2 /8 — (
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Using the relation (2.13) and Lemma 2.3, Z is estimated as follows:

Lemma 2.4.

(0)

V2
Proo/. In general, -X£x£2X implies ^-

except the case that X<x^2X and n = — 1. We have for any

xexp{-(*-02/16

xexp{-JT2«2/16

(0)

(/-T x

and for any «(/-!), |D^Z°(x + { + 2nX, r; f, T; /^/p)| has the same
bound. Hence we have

(2.14) £ |/>jz0(x-{ + 2 / iAr , f ; { ,T ; j i /p ) | ^^
K=-00 I A J

(0)

(2.15) ( S + f
n=—oo n=0

l+m
2 X

In a direct way for n = — 1, we obtain

(2.16) |JD™Z°(^ + ̂ -2^f ;^

xexp{-0t-02/16
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Thus, by (2.14), (2.15) and (2.16), we have finally

xexp{-U-02 /16 JL
P T

where C^ = C 2'»>J3 + °^'A*//y '/ _| . Q<E.D.

Making use of the same procedure as in the proof of Lemma 2.49

we have

Lemma 2.5.
(i) For t>t'>i,

i (0)

r (0)

(iii)

X(/ -T) - +m2+ fcexp{-z2/16 -£- (/-T)}

Furthermore, by Lemma 2.5, we have

Lemma 2.6.

x

0

2fc+m-a

It is easily seen that the fundamental solution T(x, i; £, T; ;t/p) of

with (2.2) is given in the form
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(2.18) r(x, t; {, T; /x/p)=Z(x-& t', f, T;

(x, r; j', a; ii/p)$(y, a\^i\ l*/P)dy.

The function $ satisfies a Volterra-type integral equation:

(2.19) 4>(x, f; £, T; fjL/p)=K(x, t\£9t\

da\ K(x, t\y9a\
T JO

where

(2.20) *(*, /; {,T

The function 0 is given in the form

m=0

where

{ -""OV 5 ^' ^5 ^ 5

_ ,

^r JO

We shall prove the convergence of the series in (2.21) and estimate F

similarly to the way in which we did Z in Lemmas 2.5 and 2.6.

Lemma 2.7. \K(x, f; f, T;

Proof. This follows directly from the Hdlder continuity of -f^-

and Lemma 2.4 (m=2). Q.E.D.

Proceeding similarly to evaluate Kl9K2> etc., for any integer ra^O

we have

Lemma 2.8.



GENERALIZED BURGERS' EQUATION 217

Km

( 0 ) \ l / 2

T /
< 0 ) \ 1 /2

) r ( (w+l )a /2 )
T /

. J--a/2

x(/-T)-TSxp{-(*--O2/32 A -T)}.

From Lemma 2.8, it follows that the series expansion of <P(x, f; £, T;

-^-) is uniformly convergent for T ^ r ^ O and 0 is evaluated as follows:

Lemma 2.9. $(*, /; f, T; fi/p)\ ^Cl2(t-i)~i~ x

xexp{-(.T~02 /32

C 1 2 =Z ["•]/ 'n Lemma 2.8.
m=0

Thus, using Lemmas 2.4 and 2.9, we have

Lemma 2.10. \D%r(x, t;^i;

xexp{-U-02 /32

In order to study F in more detail, we shall need the following lemmas.

Lemma 2.11. \K(x, t\ <J, T; /i/p)-X(x', f; 5, T; ̂ /p)| ^C14(?-T)-3/2 x

l (0)
x |.x-

Proof. From (2.20), it follows that the lemma holds, by using

the Holder continuity of A5 Lemmas 2.4 and 2.5. Q.E.D.

By induction, we obtain

Lemma 2.12. | <£>(>, /; L 1 \ M/p) ~ <P(.v', /; £, r ; j*/p) | g Q 5(/- rp)"2 x

x jc-jc' |aexp{-U-02/32 A ( 0 ) ( f -T)} .

As a result, by using Lemmas 2.4, 2.5, 2.6, 2.9 and 2,12, we have, after
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lengthy calculations,

Lemma 2.13.

(i) \r(x,t;$,i;nlp)-r(xtt';S,

i (0)

2-m+a

§3. The Existence of a Temporally Local Solution of
(1.1), (2.1) and (2.2)

In the first place, we construct the sequence {vn(x, t)} such that

(3.1)
, t; £, T;

o Jo

(O^r^r), where pn,^L=pvn_l and N^^—^—v^ + v"-^'*-1 (cf. (2.6)).
P/J-I

We also assume (2.3) for f=0, i.e.,

The functions vn (n = l, 2,...) satisfy

(3.2) V» = —yL-Vnx-Vn-lvn-l

Pn-1

and

(3.3) v"(x, 0) = i;0(x), t;'!(0, t) = vn(X, 0=0.

By using the lemmas obtained in §2, especially Lemmas 2.10 and 2.13,

we have

Lemma 3,L
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( i ) M r ^ c ^ r , -£ -
\ ! l Pn-l

Pn-l

Pn-lwhere
(0)

Pn-l

(a)

IT

« | ( « / 2 ) <\tiT ^ (0)

(iv)

I fi» I ( a / 2 )
\Vx\t,T =

Pn-l

Pn-J

| | (a)_|_ I n" I («Ju •

Remark. The constants C17>e (i = l, 2, 3, 4, 5) increase monotonical-

ly as each argument increases and C17jl- 1 0 as T| 0.

It is easy to see that vn~l e//J+a implies — — e H% and Nn_l e//f^.
Pn-l

Thus, by the above lemma, we see clearly that vn e ff £+a and also v11 E

H%+!X. Hence by induction we obtain

Lemma 3.2. u»(

Now, we take an arbitrary constant M0 such that

(3.4)

As for

(3.5)

0
Pn-l

, it holds that

Pn-l

~1Tb"x1l(r0)exp{2r|t;r1l(r0)}} +
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If we assume that ||un~"1 | |^2)<M0, then we have

Pn-l I T

By Lemma 3.1, we have ||f"||^2)g ||t?0||(2) + (C17>1 + Clli2)\\Nn-i\\T
l). Fur-

thermore, HZ^H^^MO implies

(3.6) II ̂ n-ill n
Pn-l

where C18 is monotonically increasing in each argument and C18 | '

a certain positive constant' as T J, 0. Therefore, we have

ll»1li-2)^ll»olli-2)+(C!7.1+CT7.2)Cl8(r, M0 ,A(T, M0)),

where C?7ii=C17ii(r, A(T, M0)) (i = l, 2). Hence, for a sufficiently small

rl6(o, rj

(3.7)

By induction, for some T2 e (0, 7]

(3.8) |

For simplicity we choose T from the beginning in such a way that

r=r2.
In the next place, by (3.2) the differences vn — v"~l satisfy the equa-

tion:

(3.9)
Pn-l

where fJn.i=--J^--J^v^1 + vn'1(vn-1-vn-2)x + (vn'1-
\Pn-l Pn-2 /

Hf (n=29 3, 4,...), and by (3.3) it also satisfies the initial-boundary

conditions :
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(3.10) (v"-v"-})(x, 0)=0, (vn-vn-l)(Q, i)=(vtt-vn-l)(X, /) = 0.

In the same way as we did in §2, we can construct the fundamental
solution of (3.9) and (3.10), and the solution of (3.9) and (3.10) is
uniquely expressed by

(3.11) (v*-v*-i)(x, 0 = o d T r ( x , t; {, T; iilpn-jft,

Similarly to Lemma 3.1, we have the following lemma.

Lemma 3.3. \\v»-v»
Pn-l

(n = l, 2, 3,...), where C19 has the same property as C1 7 > 1 .

Directly by the above lemma, we have

(3.12) \\v"-V->\\^^Cig(T, A(T, M0)

Lemma 3.4.

Pn-l T I I Pn-2 T .

where C2o has the same property as C18.

/ // (°)
Proof.

Pn-l Pn-2 T

+ I u "~ 1 1 (TO) I (vn~l - un~2)x |
 (
T

0) + | vn~l - vn~21 (
T

0) | «;-21 (
T

0).

Using Lemma 2.2, we have

Pn-l T II pn-2 ?J

Q.E.D.

Hence we have

(3.13) |JVW_J<P^C20(T, A(T, M0

Combining (3.12) and (3.13), we obtain
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(3.14) \\v"-v*-l\\p£C2l\\v"-l-v"-2\\P,

where C21 has the same property as C19.

By induction and (3.14), we have

(3.15) ll^-^-Ml^^cri1!^1-^0!!^0.

Since C21 J, 0 as T; 0, it holds, for some T0e(0, T], that C21(T0, A(T0,

(M0))<1, whereas by Lemma 3.1

and

+ co.

Thus

(3.16) £ C" 2 l ' [k 1 -^°l l i -V<+Q O -

Therefore, {vn} converges to an element v of //£+a as n-»oo. As is

known the expression (2.5), {pn} converges to an element pv of B^ as

n-»oo. Na also converges to N=-^—VQ + VVX. Hence, by the formula

(2.16), (2.18), (2.25), (2.26), (2.27), "(2.28) and (2.29), Z°(x-f, f; & T;

H/Pn-il Z(x-t, t\ £, T; /(/pn_0, ^(x, r; f, T; /i/p^O, ^(x, r; f, T; ^/Pn-i).

and r(x,f, $,-<:; nlpt-t) converge to Z°(jc-f, *; <*, T; 0/pJ,

f ; £, T; ///pD), ^m(x, f; £, T; ju/py), ^(x, f ; f, T; ju/py) and F(x, r; {, T;

respectively, as n-»oo. Thus by (3.1), it holds, for Q^t^T, that

O JO

As a result, we have

Theorem 3.1. For some Te(0, oo), there exists a solution of (1.1),

(2.1) and (2.2) in H$+«xB^.

Remark. For i;, Lemma 3.1 also holds.
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§4. The Uniqueness of the Solution of (1.1), (2.1) and (2.2)

in H*+a x B£.

Now let us direct ourselves towards the problem of uniqueness

concerning the system (1.1) of differential equations, (cf. [11]). We

assume that there exist two solutions (v, pv) and (w, pw) of (1.1) in

H%+*xB^ satisfying one and the same initial-boundary conditions (2.1)

and (2.2). The difference v — w satisfies the equation (3.9) and the initial-

boundary condition (3.10) as vn and v"'1 are replaced by v and w re-

spectively. Then v — w can be uniquely expressed in the form (3.11)

as vn and vn~} are replaced by v and w respectively, i.e.,

(4.1) 0>-w)(x, 0 = T(x, f; £ T; /i/
Jo Jo

where ft(x, i)=(JL—JL.\X9 t)-v(x9 t)(v-w)x(x9 /) + (i;-w)(x, t)wx(x9 t).
\ P v Pw /

As for f — w, in a way analogous to that used in the preceding section

for vn — vn~l, we obtain

Lemma 4.1.

( i) \\v-

(ii) |N |

Pv T ( Pw T

C22 ««^ C23 /?az;^ r/?e same property as C19 anrf C20,

Finally, we have an inequality similar to (3.14):

(4.2) lb-

where C24(T0;"«) has the same property as C22.

Since C24(r0;»-) 4 0 as T0 1 0, it holds for a sufficiently small Tie
(0, T], that
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Hence, we obtain ||u — w||7^=0, i.e., v(x, f) = w(x, t) (Q^t^Tt :g T). Ac-

cording to the assumption, we can continue this procedure again by

starting at £ = T\. After a finite number of repetitions of this procedure,

it is shown in a conventional way that the following assertion holds.

Theorem 4.1. // (v, p) and (w, p*) e Hj+a x B^ satisfy (1.1), (2.1)

and (2.2), then («, p)=(w, p*) (p=p*=pj.

§58 An a priori Estimate for |p(r0 )

We begin with the following well known lemmas, (see, e.g., [5],

[15]).

Lemma 5.1. // u(x, t) satisfies regularly the equation:

(5.1) %£-=*a(x,t

where a(x, f), b(x., t) and c(x, t) are continuous in QT and satisfy

(5.1)' 0^«(x, r)^i<40)< + oo, c(x, f)^0,

then it holds that

(5.2) max|w|:gmax[w| .
QT rT

Lemma 5.2. // u(x, t) satisfies regularly the equation:

(5.3) = a(x> t

where a(x9 i)>Q in QT and if

, Dk
tD™c, D*

belong to H$, then Dk
tD™u (Q^m + 2k^p + 2, k^q + 1) exist and are

Holder continuous (exponent a) in Q x [T', T] for an arbitrary T' e

(0, T).
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Directly by the above lemmas, we have

Lemma 5.3. // (v, p)eH$+*xBl
r satisfies (1.1), (2.1) and (2.2),

it holds that

(5.4)

Lemma 5.4. // (v, p)eH%+*xB}. satisfies (1.1), (2.1), (2.2)

aw additional condition:

(5.5)

ueHp/^r-j w/?ere fne swgfo [71', T] denotes that QT in (1.4) and

(1.4)' fs replaced by Q x [T, T]. [We note that (5.5) implies p

Lemma 5.5. // (y, p) e Hf +a x fi| satisfies (1.1), (2.1), (2.2) and

(5.5), f/zen if /io/ds

f 1(5.6) p0exp|-—

_
Proof. By (2.5), we need to estimate \ ^(T; x, r)dt. Since

d ff _ f ' _
-«— \ ^(T; x, t)dt = \ vxx(t'9x,t)xx(T;',x,t)
ox )o Jo

(5.7)

__!_

A*

The second term of the right-hand side of (5.7) is transformed, by using

(2.6), as follows:

f* f*\ p(x,t)vQ(x0)dx=\
Jo Jo

We denote the first term of the right-hand side of (5.7) by \l/(x, t).

Then, we have
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(Q9t)=-~(-p

On the other hand, ^x(x, f)= — pv, (—i//*) = *V Hence, we have
H \ p /x

(5.8)

(5.9)

Therefore, {//(x, t) is to be expressed by utilizing the fundamental solu-

tion of the linear parabolic equation (5.8) in the following way:

(5.10) MX, t) = T(x9 t; &
o

where f is the fundamental solution of (5.8).
<o) j] Cx

Hence, we have ^-— \ p(x, r)i;0(x0(x,
/w Jo r

As a result, we obtain (5.6). Q.E.D.

If (v,p)EH$+«xBi satisfies (1.1), (2.1), (2.2), and (5.5), then by

Lemmas 2.1 and 5.2, we have

(5.11)
(a)

px pt

(0)

T

since

P/x

By (5.11), we know that, in order to have an a priori estimate for
(a)

, we have to obtain beforehand one for |ux|
(
r
0). Hereafter in

§6, we shall endeavor to have an a priori estimate for |^|r0).
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§6. An a priori Estimate for \vx\
(
T

0)

Lemma 6.1. Under the initial-boundary conditions (2.1), (2.2)

and (5.5), |ux|r
0) is bounded by a constant depending only on the

quantities appearing in (2.1), (2.2) and (5.5) but independent of T.

Proof. The procedure of the demonstration is divided into three

steps.

((1-st step)). First of all, we note that (5.6) holds by Lemma

5.5. Now we define i?A(x, t) by

(6.1) vfat

where A is a constant to be determined later.

Since reHpji"T] by Lemma 5.4, vx satisfies the equation:

(6.2) (vx), = j^(vx)xx

Let & be defined by

(6.3) <rs t p

Then, we have for any e>0

(6.4)

We choose e=80 in such a way that
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(if | p ' 0 | < ° > = |

(6.5) SQ = '

(otherwise).

For such a fixed number e0(>0), it holds that

(6.6) J?v,..

If we take X = ̂ - { ( p Q T 2 l p ' o l ( 0 ) + 2 | v0 l ( 0 )} + 2|

then we have an inequality

(6.7) J^Ao^O.

By (6.7) and the maximum principle, it holds that

(6.8) max t;Ao^max (v% +A0i;2)
QT rT

((2-nd step)). To evaluate the last term of (6.8), it is clear the
case |i?0|

(0)=0. Then, suppose |u0|(0)^0 and consider v=<p(w), where
(j> is a smooth function to be determined later. Thus, we get

(6.9)

If <£'>0 and <t>"<0, then it follows that

(6.10) W-^ -M, = J L
p (j) p

\P\(TO)\VO\W
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Furthermore, we choose <£ in such a way that

; + M K I ( 0 V ^ O and

that is to say, for example,

(6.11)

By (6.11), it is clear that w!&.T=0.

For such a function </>, it follows from (6.10) that

Differentiating both sides of (6.11) once in x and putting £=0, we get

(6.13) max

Define the constant C26 by max {jp
2fco)P|°J0 [ (of exP ; !? then

it follows that

(6.14) max|wx(x, 0)|^

Now, consider the function w(x, f) + ve~x. For v^C26e
x,w(x,

and

(6. 1 5) max { w + ve~x} ̂  max { w + ve~x} = v ,
FT S°T

snce - - w (

Next, if we take v=v0se*max|c26, ^-*r°"C25|, then

(6.16) _
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because it holds that

Hence, by (6.15) and (6.16), the maximum of w-fv0e~* in QT is attained

at all points of S£. Thus

(6.17)

Directly, from (6.17), we have

Sv

In order to obtain the estimate for -^-\ST fr°m below, it is suf-

ficient to apply the above one to the solution — v(x9 f) of the equation:

As a result, we have

(6.19) |L|

As for -*T-\ST> consider the function D(x, t) = v(X — x, r), and repeat

the same argument for ^ on S? as for ^ on S£. Finally we get

(6.20)

((3-rd step)). By (6.8) and (6.20), we have

(6.21) (|rf))2g(
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where f 1 ( 0 )

Thus, it holds that

(6.22) |p j ( r o)g"o- rv«/o-T--mo; • ^ Q.E.D.

From (5.11), it follows that

(«)
(6.23)

§7. An a priori Estimate for \\v\\¥+a} and the Main Theorem

By Lemma 3.1 for v instead of v", we have

Lemma 7.1. IMIr1+a) = ^28(^ vo-> Po)>

where C28(^;-") increases monotonically as T increases.

Hence, from this, it follows that

where C29(T;---) has the same property as C28. Thus, we have

Lemma 7.2. ||o«||i?) ̂  C30(T; »„, Po).

From the discussions made thus far follows:

Lemma 7.3. Under the initial-boundary conditions (2.1), (2.2)
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and (5.5), if there exists a solution (v, p) e H%+" x B^ of (1.1), then

||y||^2+a) + [p]^1) has a priori bounds in T, where

LP^T}= Z \Dr
tD

8
xp\(

T
0) (r and s, integers^).

H-s=0

Proof. We have only to note that

The results obtained since §5 guarantee that each term of the right-

hand side of the above inequality has a priori bounds in T.

Q.E.D.

Combining Theorems 3.1, 4.1 and Lemma 7.3, we have the following

main theorem on the existence of a temporally global solution of (1.1),

(2.1), (2.2) and (5.5).

Theorem 7.1. Under the initial-boundary conditions (2.1), (2.2)

and (5.5), there uniquely exists a regular temporally global solution

and it holds that

(7.1)

\vx(x, 01 ̂ | | i>oll ( 1 ) , I I P o l l ( 1 )
5 -< +00 ,

\ Po /

where K increases as each argument increases.

Remark, (i) The word "regular" means, exactly speaking, regular

up to the boundary.

(ii) If there exists a regular solution (v, p) defined in [0, X~\ x [0, oo),

then (i?, p)e#f f ax£j+ a for an arbitrary Te(0, oo).
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