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On the First Initial-Boundary Value Problem
of the Generalized Burgers’ Equation

By

Atusi TANI*

§1. Introduction and Notations

E. Hopf discussed in details on the Cauchy problem of Burgers’
equation in his famous paper [5]. Since then, many papers on the
equation and its related topics have been published. However, they
have not treated the initial-boundary value problem of it. The author
previously discussed on the first initial-boundary value problem of this
equation in [17]. Recently, N. Itaya has shown the existence and the
uniqueness, in a certain sense, of the temporally global solution of the
Cauchy problem of the following generalized Burgers’ equation:

02

(. [ eyt =]

v(x, t)—v(x,t) 5— 8 v(x, 1),

(1.1)2 1 6{3’; +ai(pu) 0, (u is a positive constant)
in [11] (cf. [9], [10]). Stimulated by his work, the author attempts to
discuss on the first initial-boundary value problem of (1.1) in [0, X]c<
R, especially from the view-point of the temporally global behavior of
the solution of (1.1).

The author expresses his hearty thanks to Professor N. Itaya, of
Kobe College of Commerce, whose stimulating guidance and encour-
agement with kind discussions have meant so much to him throughout
his work in the present paper, and to Professors T. Ugaheri and M.
Nagasawa who have given many valuable suggestions and constantly
encouraged him to write up this paper.
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Notations. The functions considered in this paper should be under-
stood to be defined in [0, X] or [0, X]x [0, T] 0<X <+ 00, 0<T< + )
and continuously differentiable as many times as necessary.

Q=(05 X)’ ‘(_2:[0’ X]! S%={0}X[O, T]’
(1.2) S¥={X}x[0, T], S;=SQu S%, I'y=S;UQx{0},
0r=02x(0,T), Or=8x[0, T].

[u(x) [ =sup [u(x)],
Q

(1.3)

lu(x)—u(x')]

u(x)|®= su
[u(x)] SUp = w [

)| ™= 3 [ Diu(x)|©,
(1.3y » =0
| oo = [ + D™ (120, 1,..).

loCx, NI =suplu(x, 1),
ar

H—v(x', 0]
v x’t (a) = su lv(x9 ; )
oG, 01 h= sup 2B DT

(1.4)

_ v(x, t)—v(x, ¢t
ID(X, t)”?z]/}):—sup '_L.W_)_,,

Qr,t#1r’

lo(x, ¥ =v(x, )|+ [v(x, )42 .
n
[olw=_ 3 DDy le,
2r+s=0

ol 0= oI+ S| DiD3ol )+

r+s=n

+ Y |DiDw|?, (avb=max(a, b)),
(14)' 2r+s=(n—1)VO0 ’

( n ( n—1
<o>po=3 | D]+ T | Dl
= =

'<o>ip0) = | Dyl P,

<v»PV=<p>Pd 4 <>,
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where r and s are non-negative integers.
Hr={u(o|lull ™ < + o0},
Hrro={u()|ul| ) < + oo},
Hypre={u(x, o)+ < + 0},

(1.5) A= {u(x, )| <v>» P9 < + o0},

Bi={v(x, )| 3 | DD (< + o0},
r+s=0

Byte={u(x, ) 3 |DDw|{®+ ¥ | D3| < + o0} .
r+s=0

ris=n
Other notations, not described above, will be explained where they
appear.
§2. Preliminaries
We assume for (1.1) the following initial-boundary conditions:

@.1) o(x, 0)=ve(x) € H2*%, p(x, 0)=po(x)e H',

(0<po Eigfpo(X)SPo(X)SﬁoEIpo(x)l“’))
2.2) (0, 1) =uv(X, t)=0,
and for u(x, t) the following compatible condition:
(2.3) Vxx(X, 1)159 = xulX, )53 =0.

Let (v, p) be a solution in H%t*x BL of (1.1) satisfying the initial-
boundary conditions (2.1) and (2.2), and Xx(z; x, f) be the solution curve
of the characteristic equation for (1.1)2 as a linear equation in p:

o4 4 5%, 0=0(565 %0, 1) OSTSIST),
2.4

X(t; x, H)=x.

Since ve H3*%, the solution curve for (2.4) starting at an arbitrary point
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(x, ) €0y is unique. By (2.4) we have
@.5)  x.(1;x, z)=%§_ (t; x, £) =exp {—S’ux(x(r'; x, 1), )d7’} .

If o(x, f)e H3** is given in (1.1)2, then p(x,t) or p,(x,t) is uniquely
determined by the formula:

@.6) p(%, )= p(x, ) =po(%(0; x, H)%(0; x, 1)
= po(x(0; X, t))exp{—g;vx(f(r’; x, 1), 7)d’}.

For simplicity, we put

p(t; x, )=p(X(z; x, t), 7),
(2.7) {

o(t; x, t)=v(X(t; x, 1), 1), etc.

By (1.1)2, (2.4) and (2.6), the following fundamental lemma holds (cf.
[.

Lemma 2.1. If (v, p) is a solution of (1.1) in H%**x B} with (2.1)
and (2.2), then the following equation holds:

@) ksl x, 050 x, Ddr=pCx, D0k, D00, D)),
where
2.9 Xo(x, £)=%(0; x, t).

Concerning p(x, t), we have, by (2.6) and simple calculations,

Lemma 2.2. If (v, p,) and (w, p,) are solutions of (1.1) with (2.1)
and (2.2) in H%**x B} (cf. (2.6)). then

(0
.5 <Cy(Tos0, wlv—wlO=T,<T),

To

(2.10) ] _1

where C,(Ty;v,w) 10 as T, 10.

From (2.6), (v, p) e H3**x B} implies u/p e H%.
Let
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1 _ -
(2.11) Z°%x—¢, 85 &, 75 u/p)=2—\/—7—(u/p(€, 1)) H2(t—1)" V2 x

xexp{=(x=9?/4-(¢ D=0} (0=T<1<T)
be the parametrix of the linear parabolic equiaton:
ow _u 02w
(2'12) "Et_(xs t) —"5(63 T) axz (x7 t) .
Then the parametrix of (2.12) with (2.2) is given by
213)  Z(x=& 58 T plp)= 3 {Z9x—E+2nX, 15 &, 75 lp)—

—Zo%(x+E+2nX, t; & Tou/p)}.

As is well known, Z° has the following properties:

Lemma 2.3.
(1)  |DrZO(x—¢,t;¢, w5 pulp) | SCPI(e—1) " 2" x
(0)
xexp{—(x—02/8| 2| “(t-1)},
HiT
(ii) for t>t'>1,

|DZ’Z°(X—€, t; fa 75 ,u/p)——D?Zo(x—é, t’; és T; .u/p)l écg’n)(t—tl)x

3+m

X =0 H exp {— (x= 07 8| £ V(e=m},

(iif) IDRZO(x—=¢, 15 &, 15 plp) =D Z°(x'—¢, t; &, 75 plp)| S CYVlx —x'|

x (=0 exp( = (= 978 L] Vo),
where
xGE x-gl<lx—¢)

’

X (otherwise),

(iv) |D¥D2Z0(z, t; &, T;5 u/p)—DEDTZO(z, t; &', 5 plp)| S Cm|E—E'|% x

1+m+2k

x(t—1)" 2 exp{—zZ/SI%i;O)(t~r)} .
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Using the relation (2.13) and Lemma 2.3, Z is estimated as follows:

Lemma 2.4.

1+m

[DrZ(x=¢&, t; ¢, 15 1/p) | SCP(t~1)" 2 x
(0)

xexp{—(x—g’)z/m,ﬁ‘ (t-—-r)}.
pir

”25"2 <(x+2nX)?

except the case that X<x<2X and n=—1. We have for any n,

2
Proof. In general, —X <x=<2X implies _x7_+

|DmZo(x—E4+2nX,t; &, t;ulp)| S C‘z""(t—r)“—“z”"x
(0)
xexp{—(x—&)2/16| &| " (t- )} x
pir
0)
xexp{—X2n2/16!i;—( (t—1)},
iplr

and for any n(#-—1), |D7Z%x+&+2nX, t; &, t; p/p)] has the same
bound. Hence we have

© (0) 1/2
@.14) £ |Dpz0Ge—¢+ 20X, 158, 3/ p)| S € {1+ AR L

x (t—7)" " exp{— (x—&)?/ 16{%\‘:’(:—r)} ,

@.15) (3 + FID2zo+E+20X, 15 &, % ulp)] S

(0)7)1/2 m
éC‘z""{1+4("|“/"}}T T) }(t—r)"l;—x

(0)
xexp{— (x—&)2/16| £| "@—0)}.
plr
In a direct way for n=—1, we obtain
(2.16) |DRZO(x+E-2X, 13 ¢, 13 p/p) | SCP(t—1) 7 3" x

xexp{—(x—c)Z/ls\%\‘T‘”(z—r)}.
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Thus, by (2.14), (2.15) and (2.16), we have finally

1+m

|DYZ(x—¢, t; &, T3 u/p) | SCQU(E—1)" 2

><exp{—(x—é)2/16[%\;°’(z—r)},

(0) /2
where =i {3+ BEIRILLTTITE Q.E.D.

Making use of the same procedure as in the proof of Lemma 2.4,
we have

Lemma 2.5.
(i) For t>t'>rt,

IDyZ(x—¢, t; &, t; plp)—DRZ(x—&, 15 &, 5 plp)| S CY™(t—1') x
x (=0 T exp (—(x=9)2/16| 4| V—n)},
(i)  IDYZ(x—¢&, ;& 15 u/p)— D Z(x' =&, 15 &, w5 p/p)| S CYP|x — x'| %
x(t—r)'z%exp{—(x—é)z/mi%’(TO)(I—I)},
(i)  |DEDTZ(z, t; &, 5 ulp)—DEDTZ(z, t; &, T; plp)| S Cm|E — &)= x

1+m+2k

X(1—1)" 2 exp{—zZ/IG‘%!(:)(t—r)}.

Furthermore, by Lemma 2.5, we have

Lemma 2.6.

2k+m—a

X
'S DiDnZ(x—E, 85 &8, 1o 1u/p)dE| £Clot—-1)" 2, for 2k+m>0.
0
It is easily seen that the fundamental solution I'(x,t; &, T; u/p) of
ov u 0%
’) — = e — >
("17) 8t (xa t) p(x’ t) a 2 (X', t) (T=t>0)

with (2.2) is given in the form
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2.18)  I(x, t5 ¢, w5 plp)=Z(x—¢&, 15 &, w5 u/p)+
+ S:d“S:K(X’ t; ¥, 05 ulp)P(y, 05 ¢, T; plp)dy.
The function @ satisfies a Volterra-type integral equation:
(2.19)  D(x, t; &, T5 plp)=K(x, t; &, 75 plp)+

t X
+S dGSOK(x, t;y, 05 ulp)P(y, 0; &, T plp)dy,

where

& }DiZ(x—é,t;é, T ulp).

(2200  K(x,t; &5 u/p)= {p—(ff—”‘p(g 1)

The function @ is given in the form
2.21) O(x, 15 & ©5 plp)= X Kn(x, 15, 75 41/p),

where

Ko(x, t; &, ©5 plp)=K(x, t; &, ©; u/p),
(2.22) . rx
K.(x, t; &, 15 u/p)=g dGSOK(x, t;y,0; u/p)K,_1(y,0; & 1; ulp)dy.

We shall prove the convergence of the series in (2.21) and estimate I
similarly to the way in which we did Z in Lemmas 2.5 and 2.6.

Lemma 2.7. |K(x,t;¢&, t;u/p)l §C11(t——r)‘%x

X eXp {x(—§)2/32|%};°)(t—r)}.

Proof. This follows directly from the Holder continuity of %
and Lemma 2.4 (m=2). Q.E.D.

Proceeding similarly to evaluate K,, K,, etc., for any integer m=0

we have

Lemma 2.8.
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m+1

| {2<2ni£ (o>>1/2 C“F(cx/Z)T“/Z}
‘Km <x, ;& T ’%)‘ é{ 2(2:‘£t(0)>”2 Fmt Dal2) T‘“/Zi\l x
plr

x (t—x)"rz*“exp{—(x—5)2/32}£¥(°)(z—r)} .
pir

From Lemma 2.8, it follows that the series expansion of @(x, t; &, 7;

%) is uniformly convergent for T=t=0 and ¢ is evaluated as follows:

Lemma 2.9. I‘P(x,l;é,r;u/p)léCu(tﬂ)“%lx
ez 3] 10—
xexp{~(x=2 /32| 4| T},

where C,,= i [---1; in Lemma 2.8.

m=0

Thus, using Lemmas 2.4 and 2.9, we have
Lemma 2.10.  [DII(x, 1: ¢, ©; pu/p) | SCI(i—7) " 3" x
(0)
xexp{—(x=0)?/32| 4| ")
In order to study I' in more detail, we shall need the following lemmas.
Lemma 2.11. |K(x, ;& 15 u/p)—K(x', 15 &, 15 u/p)| £ C a(t—1)"3/2 %
[(0)

x |x—x’|“exp{—(x—§)2/32‘%\r t—1)}.

Proof. From (2.20), it follows that the lemma holds, by using
the Holder continuity of %, Lemmas 2.4 and 2.5. Q.E.D.

By induction, we obtain
3
Lemma 2.12. |®(x,4;¢,1;u/p)—P(x', ;& t;u/p)| SCis(t—1p) 2 X
' 2 u |
x |x—x'|*exp{—(x—&) /32‘711 (t—1)} .

As a result, by using Lemmas 2.4, 2.5, 2.6, 2.9 and 2.12, we have, after
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lengthy calculations,
Lemma 2.13.

(1) 1Tt 8 w5 u/p)=T(x, £ 8 15 pfp)| S CQUu—1)( = )73 x
xexp{—(x—92/32| L] -0},
pr

_3
(i) |Drl(x,t;5& t5u/p)—Dil (x, ¢ ;&1 u/p)| SCY{G—)t'—1) 2+
2 —pi
2

,2omta 3 s\2 W
Fe=t) =) B expl = (x-9)2 32| £ | Vo)

§3. The Existence of a Temporally Local Solution of
(1.1), (2.1) and (2.2)

In the first place, we construct the sequence {v"(x, f)} such that
vO(x, 1) =vo(x) € HF**,

(3. 1) t X P -
| onx, t)=vo<x)+godr§0r(x, 65 &, 15 1fpa—) Nuo (G, D)dE

(0=t=T), where p,_;=pv,_, and N,,_1=p” vg+ortent (cf. (2.6)).
n—1

We also assume (2.3) for t=0, i.e.,

(%) .m0 = U5 (X)pex =0

The functions v" (n=1, 2,...) satisfy

(3.2) V)= K v;:x—v""v;;‘l
n—1
and
3.3) v'(x, 0)=vo(x), v*(0, )=v"(X, t)=0.

By using the lemmas obtained in §2, especially Lemmas 2.10 and 2.13,

we have

Lemma 3.1.
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(i) ol =Cy, (T,

K NN 99+ 100l
T

il pn—l [
| (0) (a)
where || K ’ = l Pu-1 i +“ K ,
' Pu—1 T u T 1 Pu-1 T

i) 1ol o7 || 5]

| INa I+ 1051,

I
(i) |04 < € (T,

| i

Pu-1
'l‘ 1
(iv) 1081201051+ 1051©)+ Coy o (T2 | S || ) IMai 1),
(V) Jorl s Cu (13 || ] Y v 1,
’ ’ Pn-1 l-T
|
SORNPYRICESAN ¢ [ (T ANEEAPATER
’ Pn-1 lT

Remark. The constants Cy5; (i=1, 2, 3,4, 5) increase monotonical-
ly as each argument increases and C,,;10 as T{0.

It is easy to see that v"~!e H%** implies K e H% and N,_, € H%.
n—1

Thus, by the above lemma, we see clearly that v"e A2+ and also v'e
H%**, Hence by induction we obtain

Lemma 3.2. v"(x, t)e H3+*,

Now, we take an arbitrary constant M, such that

(3.4) 1062 < My < + 0.
As for H[ £ ||, it holds that
Pn—1 T
35) A || S P exp(TIort 1) + 5oy exp{T e 19} +

+2ul{(Po) 2Pl @ + (o)~ 1 Tlviz 1§ exp {2T oz 1§} } +
+(po) texp{T|vr {9} ]+ 2u[(po) (14 |02~ 1 ]§?) x

xexp{T|vi~ {0} + [v2= 1 [$2{(po) 2| po |+
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+(Po) ' Tl |§° exp{2T vz~ [§2}}]
If we assume that [o" 1|{¥><M,, then we have
I
Pn-1 !

+2u(1+Mo){(Po)™21po 1P +(Po) ' Mo Te?MoT} = A(T, M) .

< {20+ u(5+2Mp)(50) '} exp (M, T} +
T )22 I

By Lemma 3.1, we have |[[v"[[$?’<|lvo®+(Cy7,+Cy7,2)IN,—;]¥. Fur-
thermore, [0 !|{¥) <M, implies
)

where C,g is monotonically increasing in each argument and Cigl’

U
Pn-1

(3.6) INa |9 = Coa(T, Mo,

|
1

a certain positive constant’ as T| 0. Therefore, we have
||U"||(T2)§ HUO“(TZ)'*"(CTLl +CT7,2)C18(T, M, ,A(T, My)),

where C%, ;=C7 (T, A(T, My)) (i=1,2). Hence, for a sufficiently small
T,e(0, T]

(3.7 o2 < M, .
By induction, for some T, e (0, T]
(3'8) “vn”g_Zz)éMo (n=15 25 3’--')!

For simplicity we choose T from the beginning in such a way that
T= Tz.

In the next place, by (3.2) the differences v"—v"~! satisfy the equa-
tion:

(3.9 (@ -vh,=—E _@—v) +N,,, (n=1,23,..),

n—1

where IV,,_1=<p” - pﬂ : >v;;1 +or (=" 2) 4 (v L") 2
n— n—

Hf (n=2,3,4,...), and by (3.3) it also satisfies the initial-boundary
conditions:
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(3.10) (v"—v"~ N (x, 0)=0, (v"—0v"1)O0, )=("—v"" )X, £)=0.

In the same way as we did in §2, we can construct the fundamental
solution of (3.9) and (3.10), and the solution of (3.9) and (3.10) is
uniquely expressed by

GA) = Y)(x, t)=g;drg);1"(x, 15 & 5 plpy_ )N, _ (& T)dE.

Similarly to Lemma 3.1, we have the following lemma.

Lemma 3.3. Ilv"—v"‘lll(T‘)SCm(T, t

e
pn—l

RIEANTD

T

(n=1,2,3,...), where C,y has the same property as C,, ;.

Directly by the above lemma, we have

(3.12) [om —om= 1§D S C1o(T, AT, Mo))IN,, 52
Lemma 3.4.

)24
Pn-1

|Res 1995 Coo(T, |

+m P:L—z

. T) ”Un—l _Un—zngrl)’

where C,, has the same property as C,s.

Proof. N, 19| A B |Vt
Pn-1 Pn—2 IT

+ |Dn—1 l(TO)l(Un_l _ Dn—Z)x|§r0)+ |vn—1 —pn—2 I(To)“,;—z |(T0)_

Using Lemma 2.2, we have

N 1995 Cao (T, | 2|+ 2| Yot —om2pg0.
Pn-1 liT Pu-2 lliT
Q.E.D.
Hence we have
(3.13) IN, =118 S Coo(T, A(T, Mg))|om —vm=2| 40

Combining (3.12) and (3.13), we obtain
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(3.14) e A Y [ e |
where C,, has the same property as Ci,.

By induction and (3.14), we have

(3.15) o w3150 S O3t ot =00 0.

Since C,, 10 as T |0, it holds, for some T,e(0, T], that C,(T,, A(T,,
(My))<1, whereas by Lemma 3.1

ot =00 8) < Cy7,1(To A(To, Mo)INol$0)

and

INoIS S (Bo) 'Moexp {MoTo} + M3< + .
Thus
(3.16) §ICg;1|lu1—v°ll‘T‘o’<+oo.

Therefore, {v"} converges to an element v of H#** as n—oo. As is
known the expression (2.5), {p,} converges to an element p, of B} as
n—o. N, also converges to N =t vjy+vv,. Hence, by the formula
(2.16), (2.18), (2.25), (2.26), (2.27), 0(2.28) and (2.29), Z°(x—¢&,t; ¢, 15
,u/p,,_l), Z(X—f, t; 6’ T ,“/pn—l)’ K,,,(X, t; 67 75 /’l/pn—l)y ¢(x’ t; 6’ T #/pn—l)’
and I'(x, t; & 15 p/p,—1) converge to ZO(x—¢, t; ¢, T plp), Z(x—¢,
t; & 5 ulpn), Ku(x, 58, 75 u/p,), O(x, 858, 15 u/p,) and I(x, t; &, T; p/p,),
respectively, as n—oo. Thus by (3.1), it holds, for 0=<t<T7, that

o(x, ) =vo()+\ de\"T(x, 13 ¢, 13 plpn) £ vi(8) -
0 0 Po

— o6, D}de.
As a result, we have

Theorem 3.1. For some Te(0, o©), there exists a solution of (1.1),
(2.1) and (2.2) in H3**x B}.

Remark. For v, Lemma 3.1 also holds.
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§4. The Uniqueness of the Solution of (1.1), (2.1) and (2.2)
in Hi * x B1.

Now let us direct ourselves towards the problem of uniqueness
concerning the system (1.1) of differential equations. (cf. [11]). We
assume that there exist two solutions (v, p,) and (w, p,) of (1.1) in
H2%** x B} satisfying one and the same initial-boundary conditions (2.1)
and (2.2). The difference v—w satisfies the equation (3.9) and the initial-
boundary condition (3.10) as v" and v " ! are replaced by v and w re-
spectively. Then v—w can be uniquely expressed in the form (3.11)
as v" and v"' are replaced by v and w respectively, i.e.,

4.1) (v—w)(x, t)=g;drS:F(x, 12 &, 1; ulp)N(E T)dE,

where N(x, )= <Tt - 7ﬁ‘—>(x, 1) —v(x, NB—w)(x, )+ O—w)x, Hwx, 1).

v w

As for v—w, in a way analogous to that used in the preceding section
for v"—v" !, we obtain

Lemma 4.1.
. o |l ~
i v—w (I)SC <T , \ 12 H _*_‘ */-_ > N fp),
(1) I w5 S Caa( To i lli 0. 1T IN|T
~ | | M
i Nito<c (T, u in_u H > —wl
(i) INITY =Cy3( To > T+m—pw i1 lo—wl7),

(O0<To=T), where C,, and C,5 have the same property as C,q and C,,,
respectively.

Finally, we have an inequality similar to (3.14):
4.2) lo—wlF) < Cou(To; v, W)llo—wl|§)),
where C,4(Ty;-++) has the same property as C,,.

Since C,4(Tp;+) 10 as Tyl 0, it holds for a sufficiently small T, e
(0, T, that
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(4.3) 0§(1—C24(T1))”U‘“W”£rl,)§_0-

Hence, we obtain [[v—w[{’=0,ie., v(x, N=w(x, ) (0S:<T,<T). Ac-
cording to the assumption, we can continue this procedure again by
starting at t=T,. After a finite number of repetitions of this procedure,
it is shown in a conventional way that the following assertion holds.

Theorem 4.1. If (v, p) and (w, p*)e H3**x B} satisfy (1.1), (2.1)
and (2.2), then (v, p)=(w, p*) (p=p*=p,).

§5. An a priori Estimate for [p[{’

We begin with the following well known lemmas. (see, e.g., [5],

[15]).
Lemma 5.1. If u(x, t) satisfies regularly the equation:

3 d 02 0
(5.1) —a—tu~=a(x, t)ayz—+b(x, t)%+c(x, Hu, (0<t<T)

where a(x, t), b(x,t) and c(x, t) are continuous in Qp and satisfy
.1y 0<a(x, D=l <+,  c(x, H=0,
then it holds that

5.2) max |u| Smax |u].
or r'r

Lemma 5.2. If u(x, t) satisfies regularly the equation:

0 02 0
(5.3) —£—=a(x, 1) a%+b(x, 1) Ecu—+c(x, Hu+f(x, 1),

where a(x, 1)>0 in Qp and if
D¢Dya, D¥Dyb, DfDyc, DYDYf  (0=m+2k=p, k=<q)

belong to H%, then DtDmu (0Sm+2k=p+2, ksq+1) exist and are
Hélder continuous (exponent o) in Qx[T', T] for an arbitrary T'e
o, 7).
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Directly by the above lemmas, we have

Lemma 5.3. If (v, pye Hi**x B} satisfies (1.1), (2.1) and (2.2),
then it holds that

(54) 0152 = [vo| .

Lemma 5.4. If (v, p)e H3**x B} satisfies (1.1), (2.1), (2.2) and
an additional condition:

(5.5) poEH!*,

then ve H¥t%py where the suffix [T', T] denotes that Qr in (1.4) and
(1.4) is replaced by Qx[T’, T]. [We note that (5.5) implies pe Bi+t]

Lemma 5.5. If (v, p)e H3**x Bl satisfies (1.1), (2.1), (2.2) and
(5.5), then it holds that

_ 1 1(0) _ 1 (0)
(5:6)  Foexp{—L|povo] X}éP(X,t)époCXP{-ﬁ‘POUO‘ x}.

X
Proof. By (2.5), we need to estimate S U(t; x, t)dt. Since
(1]

aa St U,(t; x, 0)dt =St Uer(T5 X, )x (75 x, t)dT =
x Jo 0

=LCD (o, )= v (o, D)}
(5.7) S;Ex('c; x, f)dt= {—L—S:c)pudx+s;ﬁx(r; 0, z)dr} -

—ﬂ’;p(x, D)0o(xo(x, D)dx .

The second term of the right-hand side of (5.7) is transformed, by using
(2.6), as follows:

S:mx, Dvo(xo)dx = pob)uo(ro)dxs.

We denote the first term of the right-hand side of (5.7) by y(x, ).
Then, we have
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e =" 0+ podx+ 0,0, 1) =L (= po vy,
On the other hand, VY (x, t)=%pv, <%¢x> =v,. Hence, we have

68 Y= (L 40 ),

(5.9) w(x,0)=%g’;povodx, VL0, =Y, (X, )=0  (T2t20).

Therefore, Y(x, t) is to be expressed by utilizing the fundamental solu-
tion of the linear parabolic equation (5.8) in the following way:

(100 (x, r)=§:f<x, & OW(E, owcﬁﬁjﬁx, ¢, m(SZpovody)dc

where I" is the fundamental solution of (5.8).
| x (0)
Hence, we have W——l——g p(x, Dvo(xo(x, t))dx‘ L
o r T U
As a result, we obtain (5.6). Q.E.D.

S—1povo|VX.

If (v, p)e H3** x B} satisfies (1.1), (2.1), (2.2), and (5.5), then by
Lemmas 2.1 and 5.2, we have

(5.11) Hﬁ (“)ss(!‘—[(o’+2j(l‘-> (°’+2\<ﬁ) ©
plr — Iplr p/xlT p/eT
< (542|014 u(Bo) " texp {|§’ 5.(t; x, 0)dT |0 +
0
+4]00 | O+ [06]©) +2u(5o)2 ] po | O + |06 ©) ,
since ,
(&), == Ehr= Lot o, )= voxo(x, 1),

ﬂ_> - B _ {L_U<L> }
<p ¢ p2 HUp p/x
By (5.11), we know that, in order to have an a priori estimate for

a9
plr

§6, we shall endeavor to have an a priori estimate for [v ]{®).

, we have to obtain beforechand one for [v,[{?’. Hereafter in
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§6. An a priori Estimate for |v,|{®

Lemma 6.1. Under the initial-boundary conditions (2.1), (2.2)
and (5.5), |v,%® is bounded by a constant depending only on the
quantities appearing in (2.1), (2.2) and (5.5) but independent of T.

Proof. The procedure of the demonstration is divided into three
steps.

((1-st step)). First of all, we note that (5.6) holds by Lemma
5.5. Now we define v,(x, t) by

6.1 v(x%, H=v,(x, 1)2+Av(x, 1)?,

where 1 is a constant to be determined later.

Since ve Hf*r; by Lemma 5.4, v, satisfies the equation:
(6.2) =2 @)t {(B) — o} @2
Let ¥ be defined by

(6.3) =0 kO L,

Then, we have for any &>0

X

A
(6.4) .s,ﬂv,1=2(i;_)xu,,uxx—2vg —2boz 2 8

- 2
<[ 20B0) 21951 +211o | Do~ 15y 02, +
T

1 o/~ -
| 25 (5021961 @210 @} +2] 0,4

2uk 7,
“Tp1® }”x '

We choose e=g, in such a way that
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L GE [po]@=]pe[(®=0)
(6.5) &g

i

){(Po) 21po| @ +2]v, |(O)} !

(otherwise).

Ipl<°

For such a fixed number g,(>0), it holds that

66)  F0,5| 5 (70) P 1pb] D +2110| @} +2]1, 1)
2ui 02,
el

P97 1 ¢n - (

If we take 2=ho= 2L ((50) 21501 4+2 00|} + 200,19 ],
2u 2gq

then we have an inequality

6.7) Zv,;,=0.

By (6.7) and the maximum principle, it holds that

(6.8) max v,;,<max (v2+Ay0?)
or I'r

S(v6]©)24+20(|vo|2)2 + max v2.
St

((2-nd step)). To evaluate the last term of (6.8), it is clear the
case |vg|(®9)=0. Then, suppose |[v|(® 0 and consider v=¢(w), where
¢ is a smooth function to be determined later. Thus, we get

" 1
6.9 L= ’l:w —ﬁwxx—-ﬂ j5Tw,§+ vvx]=0.
(6.9) ¢'| w, P P

If ¢'>0 and ¢’ <0, then it follows that

6.10 w ﬁwxx j-S——fiw,%—L,vv
(6.10) t & p

u " (0) v 0) ,
S Tia e e

Flolleal® 1)
2u ¢’
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Furthermore, we choose ¢ in such a way that

%L-Fm%gqﬁ’éo and (]S(O):O,

that is to say, for example,

2
(6.11) ¢(W)=mo)ll:7)'10g(l +W) )
- 2u
or 1V——1+6Xp{mwv}.

By (6.11), it is clear that wy, =0.
For such a function ¢, it follows from (6.10) that

(0) (0))2 2/1
6.12 wo— gy < LRI (0o )2 {__}EC _
©-12) op T 4y Pl 1@ 2

Differentiating both sides of (6.11) once in x and putting t=0, we get

2u1 21
6.13 max |w,(x, 0)| S+t |06 (P ex {———}
(©19 mp bl DTS T oy 1901 eXPy T, g

2p v | @ 2u
Define the constant C b max{ ex { }, 1}, then
20 Y 1157 061 ©@ P p [

it follows that

(6.14) max |wy(x, 0)] < Cse.
2

Now, consider the function w(x, f)+ve™*. For v=C,eeX, w(x, t)+ve*=0
and

(6.15) max {w+ve *} Smax {w+ve *}=v,
rr sg.

since —aa?{w(x, 0)+ve ™} xca S Cre—ve ¥ 0.

(0)
Next, if we take v=vOEeXmax{C26, ‘p-llf CZ_.-,}, then

2
(6.16) S v =Tt bvge) 0,
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because it holds that

w,——”—{w+voe”‘}xx_S_C25—-L(oo)e'xso.
p o7

Hence, by (6.15) and (6.16), the maximum of w+vee™ in Qp is attained
at all points of S9. Thus

(6.17) M 152 <v,.

Directly, from (6.17), we have

ov 2uvy
e << — ==Y
©19 0x 19 = T [®
In order to obtain the estimate for g—ilsg from below, it is suf-

ficient to apply the above one to the solution —u(x, t) of the equation:
('—U)t—-g_(— v)xx—vvx=0 .

As a result, we have

ov

2uv
s ST

1% =ToT 001 °

As for g—ilsg, consider the function #(x, f)=v(X—x, ), and repeat

the same argument for #, on S¢ as for v, on S{. Finally we get

2uv,
P15 0o @ "

((3-rd step)). By (6.8) and (6.20), we have

(6.20) max v, | <
St

(621) (10152 S (1051 ©)2 +20(|0g| ©)2 +

2uvg )2
+<|p1&°’|vo|<°>

< (1061 @)+ (logl 2 212 [ L gz0)2 02+
= 0 0 2# 280 0 0
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2uvy 2
421001} 421018 |+ ({000 o)

=a +bO|UxI(TO)'

(0) | — ,
where ag=(]v}](©)2 +[J.’21#L -28—0—{(/)0) 2|6l @+2 vy | @} x

2uv 2
X (lvg|¢)? +<I—W> ;

b= 121810 )2
u

Thus, it holds that

(6.22) |14 5 Dot (Boag) 2 Q.E.D.
From (5.11), it follows that

(6.23) N%Hr)gcﬂ(u(,, po) -

§7. An a priori Estimate for |v||{?** and the Main Theorem
By Lemma 3.1 for v instead of v", we have
Lemma 7.1. o] +* < C15(T; vo, po),
where C,g(T;---) increases monotonically as T increases.
Hence, from this, it follows that
[N = C,9(T; vo, po)
where C,o(T;:--) has the same property as C,g. Thus, we have
Lemma 7.2. ||Uxx||<ra)§cso(T; Vo> Po) -
From the discussions made thus far follows:

Lemma 7.3. Under the initial-boundary conditions (2.1), (2.2)
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and (5.5), if there exists a solution (v, p)e H¥**x B} of (1.1), then
[v]|?+ +[p]Y) has a priori bounds in T, where

[pl = iowwzpl&m (r and s, integers=0).

+5=

Proof. We have only to note that
(2)
o1+ <Pl (L 2] ol +
1

+lov .

The results obtained since §5 guarantee that each term of the right-

hand side of the above inequality has a priori bounds in T.
Q.E.D.

Combining Theorems 3.1, 4.1 and Lemma 7.3, we have the following
main theorem on the existence of a temporally global solution of (1.1),
(2.1), (2.2) and (5.9).

Theorem 7.1. Under the initial-boundary conditions (2.1). (2.2)
and (5.5), there uniquely exists a regular temporally global solution
and it holds that

|U(xﬂ t)l é lvol(o) ’

0= 5o eXP{——L—lpovo“o)X} <p(x,nE

(7.1) 1
<Poexp {T[I Povol (O)X} ,

| 1ae D1 SK (ool D, lpoll, 5-)< o0,

where K increases as each argument increases.

Remark. (i) The word ‘‘regular” means, exactly speaking, regular
up to the boundary.
(ii) If there exists a regular solution (v, p) defined in [0, X]x [0, o),
then (v, p)e H3**x B4** for an arbitrary Te (0, o).
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