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A Remark on Cauchy-Kowalevski’s Theorem

By

Masatake MIYAKE*

§1. Introduction

Professor S. Mizohata has proposed in his paper [5]: what is a
kowalevskian system? And he has given a necessary condition to hold
the Cauchy-Kowalevski theorem for the general system of linear partial
differential equations. Especially for the single equation,

(1.1) omy + ilaj(x, t;0,)0m iy=f,
P

(where all the coefficients and f are analytic in a domain Vo Rst!),
he has given the following result: in order that the Cauchy-Kowalevski
theorem for (1.1) hold at every point in V, it is necessary and sufficient
that the order of afx,t;0,)<j in V. (see Th.2 and its remark in [5])
We want to give a more strong characterization of the kowalevskian
equation, but in this article we consider only the following equation,

(1.2) 6,u=| |2 a,(x, t)0%u,

where a,(x, )e H(Q), Q=0 .x Q,cCsxC', Q. ={xeCs; |x|<r}, Q=
{teC"'; |t|<r,}, and H(RQ) denotes the set of all holomorphic functions
defined on Q. The topology of H(Q) is given by the uniform conver-
gence on every compact set in @2, and by its topology H(Q) is a Fréchet
space.

In order to give a precise statement of our theorem, let us give
a definition.

Definition 1. We say that the Cauchy-Kowalevski theorem for (1.2)
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holds at a point (xg, t,)€Q, if for any holomorphic function uy(x) in
a neighborhood of x=x,, there exists a unique holomorphic solution
u(x, t) of (1.2) in a neighborhood of (x,, t,) satisfying ul,—,, =uy(x).

Then we have the following

Theorem. The Cauchy-Kowalevski theorem for (1.2) holds at a
point (xq, t,)€Q if and only if a x,)=0 in Q for any o such as
o] 22.

Hence, the kowalevskian equation is best possible to consider the
theorem of type Cauchy-Kowalevski.

The sufficiency is the classical Cauchy-Kowalevski theorem, so we
show only the necessary condition. Without loss of generality we shall
prove the necessity by setting (xq, t,)=(0, 0). When the case where
a,,(0, 0)#0 for some ay(lag|=m=2), trivially the Cauchy-Kowalevski
theorem does not hold at the origin, therefore we must prove that when
a,(0, 0)=0, a,(x, t)#0 for some a (Ja|=2), the Cauchy-Kowalevski theorem
does not hold at the origin. Thus, let us decompose the coefficient
ax, t) in (1.2) as follows,

a,(x, ) =a,(x)t"=+b,(x, t)tr=*1,

n,=0 (integer) and a,(x)#0, and we rewrite the equation (1.2) fol-
lowingly,

(1.3) O.u =I IZS {a(x)t"=+b,(x, t)t*=t1}0%u .
Now let us define modified order of differential operator.

Definition 2.7 We say that the modified order of a,(x)t"=0%
o]

at t=0 is —/—1-. We say that Y a,(x)t"=0% (n,=const.) is a modified
nu+1 la[=Jo

R =0 i Jo _ |°‘l} ; Jo
principal part of (1.3) at t=0, if mt1 msx {na I and if na+1>lmalg)jco
{ ! }
n,+1J°

1) This notion will be used in another problems, for instance, in the degenerate para-
bolic differential equations. (see M. Miyake [3], [4]).
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An elementary lemma for the proof of our theorem is the following
one which is a special case of our theorem.

Lemma 1. If the modified principal part of (1.3) at t=0 consists
of the part of |x|=2, then there exists a point x,€Q, such that the
Cauchy-Kowalevski theorem does not hold at (x,,0). And the set
of such a point x,€Q, is dense in Q,. More precisely, we can con-
struct a holomorphic function uy(x)e H(Q,) such that there can not
exist holomorphic solution of (1.3) satisfying ul,—o=uy(x) in any neigh-
borhood of (xq, 0).

Our method of the proof can not be applied to the equation (1.1).
Seemingly similar result should be obtained for the equation (1.1), but
its proof will be fairly complicated.

In section 2 we prove the theorem, in section 3 we investigate pro-
perties of modified order given in Definition 2 and from section 4 on
we prove Lemma 1.

§2. Proof of the Theorem

In this section we prove our theorem using Lemma 1, and we

provide the following two lemmas. Now let us rewrite the equation
(1.2) as follows,

@.1) [6,+ ilael(x, D2 Ju= % v Dot ats, du,
J= Slx|=m

where e;=(0, .., 0, 1,0,...,0), a,, a,,ac H(Q). Then we have
J
Lemma 2. For any positive integer 1, there exists a holomorphic
transformation of the coordinates (x,t)—(y,t) having the following
properties in a neighborhood of the origin;

() By its transformation, the equation (2.1) is transformed to
L9, ,;1 tb,(: )0,,Ju= | % by(y, t)0%u,

(ii) In the right hand side of (i), the modified principal part
at t=0 is that of the right hand side of (2.1).
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Remark. Lemma 2 asserts that when ay(x, )#0 (l«|=2), there
exists such a transformation of the coordinates that by its transformation
modified principal part at t=0 consists of the part of |x|=2.

Proof. 1t suffices to prove the lemma when [=1, since for general
1(22) we can prove by induction on I. Let yt; x)(j=1,...,5) be
a solution of da{:J +a.,(y,0)=0(j=1,...,s5) satisfying y;(0; x)=x; (j=
1, ..,s), and let the transformation of the coordinates ((x, f)—(y, t)) be

yi=yit:x)(j=1,...,5), then it is obvious that

at — at_ jglae'i(y(t; x)’ t)ay_, s
60, — Oy, 41 T culx, Dy,
k=

0y;_4dy; il
since =g 2nd axy ,O—‘Sik’

we have that ¢ +Zael(x, 1)0,,—0, +Zc J(x, D0, where ¢, (x, t)=a,(x, 1)

where 6, is Kronecker's 6. Thus

—a(y(t; x), )+ Z taekckj Cons1der1ng that y;(0; x)=x;, we have
at+ E_ae_,(x’ t)axj - at+tzbej(ya t)ay_, .
J J

On the other hand it is obvious that

0% — 0%+t by(y, )b .
y wg’car #(r> 00

Hence, in the right hand side of (i) its modified principal part at t=0 is
that of the right hand side of (2.1). Finalyl we note that if é&fa(x, f)|=o
=0(j=0, 1,...,1—1) then it follows that &!{a(x, H)—a(y(t; x), )}|,=o=0
(j=0,1,..., ). From this the lemma follows for general /=1. Q.E.D.

Generally, the next lemma is obtained from Baire’s category theorem.

Lemma 3. If for (1.2) the Cauchy-Kowalevski theorem holds at
the origin, then there exists a domain D;={(x, )e C:xC'; |x|<9,
|t|<8} (6 is a positive constant) such that for any uy(x)e H(Q,) there
exists a unique solution u(x,t)e H(D;) of (1.2) with the Cauchy
datum u(x,).
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For the proof see Proposition 1 in [5], or we can prove it by the
similar way with Proposition 4.1 in [6] since the uniqueness of the
solution (if it exists) follows in view of the construction of the formal
solution wu(x, t)~ gou,,,(x)t'"/m!, where uq(x) is the Cauchy datum.

m=

Using above lemmas we can prove our {heorem.

Proof of the Theorem. We prove it by the principle of contradic-
tion. So we assume that a,(x, )#0 for some |¢|=2. We may assume
that the modified principal part of (1.2) at t=0 consists of the part
|¢j=2 from Lemma 2. If the Cauchy-Kowalevski theorem holds at the
origin, then by Lemma 3 there exists a common existence domain D; of
the solution for any Cauchy datum wuy(x)e H(Q,). Let xqeDs;n {t=0}
be a point stated in Lemma 1, so there exists ugy(x)e H(L2,) such that
there can not exist holomorphic solution in any neighborhood of (xg, 0)
with the Cauchy datum wuq(x). This contradicts from the assumption of
the solvability, because of (x,, 0)e D;. Q.E.D.

§3. Modified Order

In this section we investigate modified order defined in section 1,
and the main result is Lemma 4. In order to justify the definition of

modified order, we give a order relation between differential operators.
Let

Li=a;(x)t"0%, n; = 0 (integer), a/(x) #0,
(i=1, 2) be two differential operators, then we give

Definition 3. We say that %, >%, at t=0 if |o]/(n;+1)>]a,|/
(ny+1) and &, ~%, at t=0 if |o,|/(n +1)=|o,|/(ny+1).

For the differential operator #(x, t; ¢,) given by
finite
L(x, 1;8)= 3 {aXm+a(x, Ot 1}om,
j=1

where ay(x)#0, n;=0 (integer), we rewrite it followingly,
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(.1 L=3 P,(x;0,) + P(x,1;0,),
o A . s

the part where the parts where modified
modified order order are less than that
is maximum. of t"iP;.

where Pj(x;0,)= X a,(x)0z Without loss of generality we may
al=p;j

assume that 0<n,<n,<---<n, and O<p;<p,<---<p,. In the decom-

g Pi  __ Py _ ... __ Pk _
position (3.1), o T mAl" We note also that the mod

ified principal part of (3.1) at t=0 is "<Py(x; d,) from Definition 2.

Remark. If we rewrite & by #=3% t;,%;(x;0d,) instead of (3.1),
jZo

we have

. o Jtl :

(i) order Z; <n1+1 Py if j#n;,
(3.2)

2 _ n,+1 — .

(i) order ’g’”—nl+1 pi=p; and

&£, =P;+(lower order terms), i=1,2,.,k,

where order ¥ ;=max {order & j(x,; 0,)}.
Xp€R

Let us consider the following Cauchy problem,
(3.3 ou=ZL(x, t; o )u,
(3.4) Uli—o =uo(x) € H(Q,),
where % is the differential operator given by (3.1). And let
(3.5) u(x, t)~m§0u,,,(x) t"/m!

be a formal solution of the Cauchy problem (3.3)-(3.4), then u,(x)
(m=1) is represented by

(36) um(x) = Sm(x 5 ax)uo(x) s (m g 1),

for some differential opertor S,(x;d,). In fact, u,(x) is given by sub-
stituting (3.5) into (3.3) and comparing the coefficients of ™=, Then
for S,(x;d,) we have
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Lemma 4. (i) For m= ‘i I{n;+1), 1,20 (integer) we have
i=1

. < mp,-_ P
order S, (x; 6x)___——ni+1 s (i=1,...,k).

If we denote the principal part of S, by Q.(x;0,) (the part where

the equality hold) we have

L m!
(3'7) Qm(x; C)= z I S R Pl(x5 C)Qm—ni—l(X; C) )

i=1 m'(m——ni—])!

k. ~
({e€C®), where Q,_,-=0 if m—ni—laéjgllj(nj-f-l) for any [;20
(integer), and Q,=1.

(i) For m# i I(n;+1) for any 1,=0 (integer), we have
=1

m:p;
order S, < nl

Proof. Let u(x, )~ > u,(x)t"/m! be a formal solution of (3.3)-
m=0
(3.4), then obviously

m—1
(3.8) () (=1 1="5 Lt s (¥)(m—j= DL
iz
Therefore if we put u,(x)=S,(x; 0,)ug(x), it follows that
A= ,
(3.9) Su(x3 00 =" AS LSy [(m=j= 1)1},
Jj=0

where Sp=1.

The lemma is trivial for m=1, since u (x)=Ly(x; 0, )uy(x). In the
case where n,>0, we can prove that order S,,<mp,/(n;+1) for 0<
m=<n,;, by induction on m. In fact, if it is valid for m=1,..., m,

L _(my+1)! Mo N
(£n,;—1), then considering S,o+1=—"2-—"{Y £ ;Sp,—;/(Me—j)'} we
m0+1 j=0 0
have that order % ;S,,,_;<(mo+1)p,/(n;+1). This implies order S, .+ <
(mo+1Dp,/(ny +1).
_(my+1)!

ni—1
Next, we consider S, ,,=-—-"1-——~%, + 3 const.&;S, _;.
! n1+1 Jj=0

sidering %, =P,+(lower order terms) and order %S, _;<p;(j=0,

Con-
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(ny+1)!
ny+1
When k=1, we can prove the lemma by inducticn on m.

(i) m#lIl(n;+1) for any [>1 (intcger): let us consider (3.9). In
the case where j=n,, order £, =p,. On the other hand, order S, _, -
<(m—n,—=1)p,/(n;+1), since m—n,—1#I(n,+1) for any 1=0 (integer).
Hence, order %, S,_, —y<mp;/(n;+1). In the case where j#n,,
it is also valid that order #;S,_;_;<mp,[(n,+1), because of order
L;<(j+1)py/(ny+1).

(ii) m=Il(n;+1) for some =2 (integer): in the case where j=n,,

1,...,ny—=1), we have S, . = P,+R,, ., where order R, ,,<p;.

Sp—ny-1=8u-1ym1+1y T Ry=1\n,+1) from the induction. Hence, &, S,,_,, -
=P;'Qu- 1y, +1)+(lower order terms). Finally, in the case where
j#ny, it follows that order £;S,_;_,<mp,/(n;+1).

This completes the proof in the case where k=1, and in this case
Qim,+1y is given explicitly by

Qunrrnn(: D=L (P, e

In general case where k=2, we can also prove the lemma by induc-
tion on m. In fact, in view of (3.9) it suffices to consider &;S,,_;_;.

(iii) m;ﬁijl [{(n;+1) for any [;=0 (integer): By the similar way
with (i), it flo—llows that order %,S,_;_ <mp;/(n;+1) (i=1,..., k) from
the induction on m.

(iv) m=£1i(ni+1) for some [,=0 (integer): in the case where
j#n; (i=1, 2,..':11(), order &;S,,_ ;- <mpif(n;+1) (i=1,.. , k). In the case
where j=n; for some ip, m—n; —1=%1I(n;+1) for some [;=0 or not
for any [;=0. In the latter case, order & S—nig—1 <mpif(n;+1),

Rig

but in the former case order %, S, _, -1=mp;/(n;+1) and its principal

part is that of P; (x; 0)Qu_n,,—1(X; ).
This completes the proof. Q.E.D.

The above lemma shows that the principal part Q,, depends only
on Pyx;?d,) (i=1,...,k) appeared in (3.1). We note that when m=
;lj(nj+1), m-pi/(ni+1)=§ljpj since p;/(ny+1)=---=p,/(n,+1).

Now if we put S,(x;0,)=0,(x; 0,)+R,(x; d,), where order R,<
mp;/(n;+1), we have
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(3' 10) il",(x) = Qm(x; ax)uo(x) + Rm(x; 6)‘)”0(.\') ’ (l" g 1) .

Concerning Q,, we have easily

Lemma 5. If' Pyxqy; 0)#0 for some ie{l,2,...,k}, and some
Xo € Qy, then for infinitely many m Q,(xq; 0,)#0.

Proof. We assume that Q,(xq;0,)#0 for finite number of m's.
We note also that for at least one m, Q,(xq; 0,)#0. Let 1170=27,-(n,-+1)
(for some [;>0) be a maximum such that 0.no(X05 0,)#0, andl let jo=
max {j; P{xo; 0,)#0}. Then by (3.7) obviously we have that Q. 1n0+1
(%03 0x)=c(Jo)P; (X0 0x)Qme(X0; 0)#0, where c(j,) is a constant ap-
peared in (3.7). This contradicts from the determination of my,.

Q.E.D.

§4. Asymptotic Formula

In this section, we consider a series {a,; m=ili(ni+1), for some

non-negative integer [;} satisfying o
k n!

(4.1) a,,,-‘=j§l m Ci" Ayn,—1s c;#0eC,
where 0=n;<n,<---<m. In the above formula, a,_,_;=0 when
m—n;—1# 3 I{n;+1) for any [;=0 (integer) and a,=1. We have
easily that ;cm;éO for infinitely many m. From the proof of Lemma 5
we see that there exists at least one me(mg, mo+n,+1] such that
a,#0 if a, #0.

Now let a,,#0 and let m(j)=my+n,—n;(j=1,...,k) and m(0)=
mo+n,+1, then at least one of the following inequalities holds;

4.2) | @iy Qmey| Z € - m( )Y m(k)! (j=1,...., k=1,

(43) |am(0)/am(l¢)I g C. n1(0)'/n1(0) : ’"(k)! s

—min JL el lel .5 _ }
where c—mm{k lel’ s j=1l.., k=1
In fact, if (4.2) does not hold, then obviously (4.3) holds.

We assume that corresponding with {n;}k, there exist positive
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integers {p;}%., satisfying

(4.4) Py P2 .- Pk 1Sp, <p,<-<pp,

where p,=2.
Our purpose in the followings is to show

Tim A Am o =
4.5) "111_)11010 «/laml {nk+1 pk}./m. + 0.

Now let {n(i)}%2, be a subsequence of {m;m=3 I(n;+1)} satisfying;
n(0) =mg =min {m; a,,#0}. ’
n(l) is a minimum m satisfying (4.2) or (4.3) when we set mg=
n(0). Generally, n(i+1) is a minimum m satisfying (4.2) or (4.3)

when we set mg=n(i).

Considering that a,,=-2t@ . %nG=1) ... 9w .4 = therefore if
An(i~1) n(i-2) a,(0)

n(i)—n(i—1)<n,+1 for any i=1, 2,..., then by (4.2) we have

[@ny| Z Act x n(i)!, A=la,q)l/n0)!.
Generally from (4.2) and (4.3) we have
(4.6) |aniiy| Z Act x n(i) ! n(a(1))* n(a(2)) - -+ - n(a(my),

where n(o(1))<n(o(2))<:-- are defined by n(6(j))—n(c(j)—1)=n,+1.

Obviously, métL(in);_i_n#)—] where [ ] denotes Gauss’ symbol. On
k

the other hand, since n(0)+(k;—1)(n,+1)=n(o(j))<n(0)+kin,+1) for
some k;=2, we have

. _ n(0)
n(a(j))<d(k;—1)(n,+1), dgn—k+—1+2.

Therefore it follows

n(i)!

ci
@n el 24g0 D G S D0 - D (=D

ct . n(@)!
2 A e+ D)} O
I_nk+1 )
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in view of 2=k, <k,<--- <l\,,,‘§1_£(’—)—+’11(~0lj+1. Hence we have
ny
Lemma 6.
n(i)
(4.8) Viawol {220 pftn)t — @ asi— .

Proof. Considering (4.7) and the assumption p,>2, (4.8) is obvious.

§5. Proof of Lemma 1

From the arguments in section 3, we may consider the following
Cauchy problem;

5.1)  du=[3 P (x;0) + P(x,1;0)]u,
j=1 —

the part where the parts where modified
modified order orders are less than that
is maximum. of t"P;.

(5.2) ul—o =uo(x) € H(Q,),

where order P,=2, (0=n,<n,<---<ny).

Let a,(x) be a coefficient of 0% of P;(j=1,...,k), then since
Py(x; 0,)#0, we may assume that a, #0, if necessary transforming the
coordinates. Therefore without loss of generality, we assume that a, #0
in a neighborhood of the origin. Let u(x, t)~ ; u,(x)t"/m! be a formal
solution of the problem (5.1)-(5.2), then for mz=z_ojli(ni+1), 1;=0 (integer)
we have '

(5.3) Un(X) = Qx5 0)uo(x) + Ry (x5 O )uo(x),
where order Q,,,= mp "1 , order R, < mi "1 . From (3.7) we know that
0.(x; O)= Z -0y Py(x; O)Qm—n,—1(x; O({ € C%), therefore the coe-

m: (m n;
flicient a,(x) of omPx/(mtl) of Q is given by

(5.4) an(x) =2

i m: (m n; ])l api(x)am—n,-—] (x) .
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Hence
(5.5 Up(X) = a,,(x)0mP/ (it Dy o(x) 4+ Ry (5 0,)uo(X)

where order R, <mp,/(n,+1) and order of R, with respect to x;<m-p,/
(n+1). Without loss of generality we may assume that a,(0)#0 for
j=1,2,...,k, then by Lemma5 for infinitely many m a,(0)#0. Let
us consider the series {a,(0); m=>Y Il(n;+1)} satisfying the asymptotic
formula (4.1).

Now let {a,;(0)}%, be a subsequence satisfying lemma 6, and let

(5.2)' Ulimo= 3 €i0(dx,) mDpeliner1)

j=0
be a Cauchy datum of (5.1), where we choose A>0 so that {xeCs;
|[x,]<1}=Q,. Thus, Cauchy datum belongs to H(Q,).

Substituting (5.2)" into (5.5), it follows that
un(j)(0)=an(j)(0){"%} A met Dgibi f (0, 04,..., 0;-1) ,

where f,; is a constant depending only on 0,,...,0;_;. We give 6,
arbitrary and if we choose the argument 0;(j=1, 2,...) satisfying

(5.6) Bj =arg (fn(j)) —arg (an(j)(o))

we have

.7 |0 > 1,55(0) | - {2 oty
ny -+ 1

Thus

) i Pk n(j) : )
"Rty 225" Ly () {20211
Therefore Lemma 6 implies
(5.8) 2D 5O /n(j) — + o0 as j——4o00.

(5.8) shows that the formal solution Y u,(x)t"/m! is not holomorphic
m=0

in any neighborhood of the origin.
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Finally we note that at a point x, such as ap(x,)# 0, we can con-
struct such a Cauchy datum that there can not exist holomorphic solu-
tion in any neighborhood of (x4, 0). This completes the proof.

Q.E.D.

This argument of the proof is originally used in [1], (see also [2],

[5D.
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