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A Remark on Cauchy-Kowalevski's Theorem

By

Masatake MIYAKE*

§ 1. Introduction

Professor S. Mizohata has proposed in his paper [5]: what is a

kowalevskian system? And he has given a necessary condition to hold

the Cauchy-Kowalevski theorem for the general system of linear partial

differential equations. Especially for the single equation,

(1.1) Sfu+ f aj(x, f; dx)df-Ju=f9j=i

(where all the coefficients and / are analytic in a domain KcJ£s+1),

he has given the following result: in order that the Cauchy-Kowalevski

theorem for (1.1) hold at every point in F, it is necessary and sufficient

that the order of <z/x, t\ Sx)^j in V. (see Th. 2 and its remark in [5])

We want to give a more strong characterization of the kowalevskian

equation, but in this article we consider only the following equation,

(1.2) 3,« = E <*.(x, f)3;ii,
|« |£m

where ajfr, t)eH(Q)9 Q = Qxx Q^cC^C1, Qx = {xeCs- \x\ < rj, Qt =

{reC1; |f |<r2}, and H(Q) denotes the set of all holomorphic functions

defined on Q. The topology of H(Q) is given by the uniform conver-

gence on every compact set in Q, and by its topology H(Q) is a Frechet

space.

In order to give a precise statement of our theorem, let us give

a definition.

Definition 1. We say that the Cauchy-Kowalevski theorem for (1.2)
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holds at a point (x0) t^eO, if for any holomorphic function u0(x) in

a neighborhood of x=x0, there exists a unique holomorphic solution

u(x, 0 of (1.2) in a neighborhood of (x0, tQ) satisfying u\t=to=u0(x).

Then we have the following

Theorem. The Cauchy-Kowalevski theorem for (1.2) holds at a

point (x0, t0)eQ if and only if ax(x, t) = Q in Q for any a such as

Hence, the kowalevskian equation is best possible to consider the

theorem of type Cauchy-Kowalevski.

The sufficiency is the classical Cauchy-Kowalevski theorem, so we

show only the necessary condition. Without loss of generality we shall

prove the necessity by setting (x0, t0)=(0, 0). When the case where

0ao(0, 0)^0 for some a0(|a0| =m^2), trivially the Cauchy-Kowalevski

theorem does not hold at the origin, therefore we must prove that when

0a(0, 0)=0, ax(x, 0^0 for some a(|a|^2), the Cauchy-Kowalevski theorem

does not hold at the origin. Thus, let us decompose the coefficient

fla(x, t) in (1.2) as follows,

aa(x, t) = ax(x)t»« + bx(x, Of"-+ 1 ,

na^0 (integer) and aa(x)^0, and we rewrite the equation (1.2) fol-
lowingly,

(1.3) dtu= Z {
|a |^m

Now let us define modified order of differential operator.

Definition 2.1} We say that the modified order of aa(x)tn*d$

at t=Q is J-^J-. We say that X fla(x)f"«3; (na=const.) is a modified

principal part of (1.3) at r=0, if ---r = max -- and if --> max

1) This notion will be used in another problems, for instance, in the degenerate para-
bolic differential equations, (see M. Miyake [3], [4]).
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An elementary lemma for the proof of our theorem is the following

one which is a special case of our theorem.

Lemma 1. If the modified principal part of (1.3) at t=Q consists

of the part of |a|^2, then there exists a point x0eQx such that the

Cauchy-Kowalevski theorem does not hold at (x0, 0). And the set

of such a point x0eQx is dense in Qx. More precisely, we can con-

struct a holomorphic function u0(x)eH(Qx) such that there can not

exist holomorphic solution of (1.3) satisfying u\t=Q=u0(x) in any neigh-

borhood of (x0, 0).

Our method of the proof can not be applied to the equation (1.1).

Seemingly similar result should be obtained for the equation (1.1), but

its proof will be fairly complicated.
In section 2 we prove the theorem, in section 3 we investigate pro-

perties of modified order given in Definition 2 and from section 4 on

we prove Lemma 1.

§2. Proof of the Theorem

In this section we prove our theorem using Lemma 1, and we

provide the following two lemmas. Now let us rewrite the equation

(1.2) as follows,

(2.1) [.8t+aej(x,t)3Xj-]u= Z fl.(x,0
j=l J J 2g|a|^m

where e/=(0, .., 0, 1, 0,..., 0), aej9 aa, aeH(Q). Then we have
j

Lemma 2. For any positive integer I, there exists a holomorphic

transformation of the coordinates (x, i)-+(y, t) having the following

properties in a neighborhood of the origin;

(i) By its transformation, the equation (2.1) is transformed to

j j
7=1 \<x\

(ii) In the right hand side of (i), the modified principal part

at t=0 is that of the right hand side of (2.1).
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Remark. Lemma 2 asserts that when aa(x, f)^Q (|a|^2), there
exists such a transformation of the coordinates that by its transformation
modified principal part at £=0 consists of the part of |a|^2.

Proof. It suffices to prove the lemma when / = !, since for general

/ (^2) we can prove by induction on /. Let yfi; x) (7 = !,..., s) be

a solution of -j^- + ae.(y, t) = 0 (j = 1,..., s) satisfying y;(0; x) = xs (j =

1, ..,s), and let the transformation of the coordinates ((x, i)-+(y, ?)) be
yj=yj(t: x) (7 = !,..., s), then it is obvious that

since -^J- = -^-L and -~^- =<>jki where djk is Kronecker's 6. Thus

we have that df+2X/x, t)dx^dt+^ce(x9 t)d where ce.(x, t)=ae.(x, f)
j j

-ae.(y(t; x), t)+^,taekckj. Considering that j;/0; x)=xp we have

aej(x9 f)dx. > dt + t^bej(y, t)dyj.

On the other hand it is obvious that

Hence, in the right hand side of (i) its modified principal part at £=0 is
that of the right hand side of (2.1). Finalyl we note that if d{a(x, f)|f=0

= 0(j=0, 1,..., 1-1) then it follows that d{{a(x9 t)-a(y(t\ x\ 0>Uo = 0
(7=0,1,...,!). From this the lemma follows for general /_•!. Q.E.D.

Generally, the next lemma is obtained from Baire's category theorem.

Lemma 3. // for (1.2) the Cauchy-Kowalevski theorem holds at

the origin, then there exists a domain Dd = {(x, i)eCsxC1', \x\<8,

\t\<5} (5 is a positive constant) such that for any u0(x)eH(Qx) there

exists a unique solution u(x^t)eH(Dd) of (1.2) with the Cauchy

datum U(XQ),



CAUCHY-KOWALEVSKI'S THEOREM 247

For the proof see Proposition 1 in [5], or we can prove it by the

similar way with Proposition 4.1 in [6] since the uniqueness of the
solution (if it exists) follows in view of the construction of the formal

solution H(X, 0^ Z wlfl(x)P//w!, where u0(x) is the Cauchy datum.
m^O

Using above lemmas we can prove our theorem.

Proof of the Theorem. We prove it by the principle of contradic-

tion. So we assume that ax(x, f )^0 f°r some |oc|g;2. We may assume
that the modified principal part of (1.2) at ?=0 consists of the part

|a|^2 from Lemma 2. If the Cauchy-Kowalevski theorem holds at the

origin, then by Lemma 3 there exists a common existence domain Dd of

the solution for any Cauchy datum uQ(x)eH(Qx). Let x0ED8r\{t=Q}

be a point stated in Lemma 1, so there exists u0(x)eH(Qx) such that

there can not exist holomorphic solution in any neighborhood of (x0, 0)

with the Cauchy datum u0(x). This contradicts from the assumption of

the solvability, because of (xQ,Q)eDd. Q.E.D.

§3. Modified Order

In this section we investigate modified order defined in section 1,

and the main result is Lemma 4. In order to justify the definition of

modified order, we give a order relation between differential operators.

Let

J', n , ^ 0 (integer), <?,(*)

(/ = !, 2) be two differential operators, then we give

Definition 3. We say that ^!>J^2 at t=Q if |a1|/(n1 + l)>|a2|/

(n2 + l) and J^~^2 at r=0 if |a1|/(n1 + l)

For the differential operator jS?(x, f; dx) given by

where fl^(x)^0, n;-^0 (integer), we rewrite it folio wingly,
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(3.1) •y=g if"^/U;g,) + ^(x9j
the part where the parts where modified
modified order order are less than that
is maximum. of *n'P/.

where P/x; dx)= X aa(x)d*. Without loss of generality we may
\*\=PJ

assume that Q^n1<n2<~- <nk and Q<pi<p2<--- <pk- In the decom-

position (3.1), Pl
 t = P2

 t = - . .= ^fe -. We note also that the mod-v nl + l n2 + l nk + l
ified principal part of (3.1) at £=0 is t"kPk(x', dx) from Definition 2.

Remark. If we rewrite & by & = Z *j^ j(x ; dx) instead of (3.1),
j'^o

we have

(i) order ^ < - - ^ 1 if y'tj ~t~ i
(3.2)

(ii) order ^ni = ̂ ±^.pl=pi and
/Zj -f- 1

&ni=Pi + (lower order terms), i = l, 2,..., fe,

where order ^7- = max {order &J(XQ ; 3,)} .
x0eQ

Let us consider the following Cauchy problem,

(3.3) Ptu=&(x,f,dx)u9

(3.4) iiU=u0(x)6/f(QJC),

where J2f is the differential operator given by (3.1). And let

be a formal solution of the Cauchy problem (3.3)-(3.4), then um(x)

^l) is represented by

(3.6) iim(jc) = Sm(x ; d >0(x) , (m ̂  1),

for some differential opertor 5w(x; 5J. In fact, um(x) is given by sub-

stituting (3.5) into (3.3) and comparing the coefficients of f1""1. Then

for Sm(x; dx) we have
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k
Lemma 4. (i) For m=Z /^+1), / £^0 (integer) we have

order sm(xi dx)^-^-9 ( /=! , . . . ,*) .

// we denote the principal part of Sm by Qm(x\ dx) (the part where

the equality hold) we have

(3.7) Qm(xl V=i.^_ Pt(*l OC.-.,-^; 0,

), where < 2 m _ n i _ , s O // m-nt-l* 7/^ + 1) /or any 7^
7~ 1

(integer), and Q0 = \.
k

(ii) For m^ Z 'i(wf + l) /or anj; / t-^0 (integer), we have

Proof. Let w(x, 0~ Z um(x)tm/m! be a formal solution of (3.3)-

(3.4), then obviously

Therefore if we put wm(x)=Sw(x; dx)w0(x), it follows that

ml m~l

where S'0 = l.

The lemma is trivial for m = l, since M1(x) = j^f0(x; dx)u0(x). In the

case where nl>Q, we can prove that order Sm<mp1/(/i1 + l) for 0<

m^n 1 ? by induction on m. In fact, if it is valid for m = l, . . . ,m0

(rg^-1), then considering Smo+1=™° { *jSmo-jl(m0-jy.} we
mo i I j=o

have that order J^7
J-Smo_J-<(m0 + l)]71/(?71 + l). This implies order S'wo + 1<

Next, we consider 5ni + 1 = ^"" J ^ ^ + g const. &jSni-j. Con-

sidering J*?ni =P, + (lower order terms) and order ^efSni_j<pi (j=0,
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1,. ..,«!-!), we have S,,,^ = (ni + 1)! P t+.R,,1 + 1 where order /*„,
A*! ~T 1

When fc = l, we can prove the lemma by induction on in.

(i) m^ /(«! + !) for any />] (integer): let us consider (3.9). In

the case where j~nl9 order ^'ni=pi. On the other hand, order S,^,,^!

<(m — «! — 1)pi/(fti + 1), since m — H! — [^'l(nl + 1) for any /^O (integer).

Hence, order &niSm-ni_l<mpl/(nl + l). In the case where jVn1?

it is also valid that order ^JSm_j_1 <mpl l(nv 4- 1), because of order

(ii) m = /(«! + !) for some /^2 (integer): in the case where j = nl9

- i H n i + i ) from the induction. Hence, &niSm-ni-i
order terms). Finally, in the case where

7V«i, it follows that order ^jSm.j^l <mp1 /(«! + 1).
This completes the proof in the case where /c — 1, and in this case

6i(m + D is iiven explicitly by

In general case where k^2, we can also prove the lemma by induc-

tion on m. In fact, in view of (3.9) it suffices to consider jSfjS^-y-j.
k

(iii) m^ £ 'i(Hi+0 fc>r any / f ^ 0 (integer): By the similar way

with (i), it follows that order ^f J-Sm_ J_1 <mpi/(ni+l) (/ = !,..., /c) from

the induction on m.
/c

(iv) m= ]T /;(??;+!) for some L^O (integer): in the case where
i=i

j^tii (i — 1, 2,..,, /<-), order &jSm-.j-i<mpi/(ni+ i) O' = l,.. , /c). In the case

where 7 = wi0 f°r some /0, m — H£O — 1 =Z^(«f+l) for some /£^0 or not

for any 1^0. In the latter case, order »5fn .oSm_M i o_1 <mpi/(ni+l),

but in the former case order &nioSm-nio-1=mpi/(ni+l) and its principal

part is that of Pio(x-9 dJQ^^-Ax', dx).

This completes the proof. Q.E. D.

The above lemma shows that the principal part Qm depends only

on Ff(x; dx) (z = l,..., k) appeared in (3.1). We note that when m =

= Zlp since

Now if we put Sm(x;dx) = Qm(x',dx) + Rm(x;dx), where order Rm<

l), we have
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(3.10) «„(*) = Cn,(*; r

Concerning Qm we have easily

Lemma 5. If Pt(x0\ dx)^Q for some / e {1, 2,..., A:}, and some

x0eQx, then for infinitely many m Qm(xQ\

Proof. We assume that Qw(x0; 5X)^0 for finite number of fris.

We note also that for at least one m, Qm(x0', dx)^Q. Let »70 =

(for some /^O) be a maximum such that Qmo(x0', dJ^O, and let j0 =

max{;; P/x0; dx)^0}. Then by (3.7) obviously we have that Qmo+njo + l

(x0; fl,) = c(;o)Py0(x0; 5x)Qmo(x0; SJ^O, where c(;0) is a constant ap-

peared in (3.7). This contradicts from the determination of m0.

Q.E.D.

§4. Asymptotic Formula

k
In this section, we consider a series {«,„; m = X / iCf l f+l ) , for some

t= i
non-negative integer /J satisfying

ITT -^" -

where 0^ / i 1 <n 2 <"-<«/ £ . In the above formula, a m _ H j _ 1 = 0 when

m — tij— 1^ Z ^i(w i+l) f°r anY ^0 (integer) and a 0 ~l . We have

easily that am^Q for infinitely many m. From the proof of Lemma 5

we see that there exists at least one m e(m0, m0 + « fc+ 1] such that

am^0 if am o^0.

Now let flmo7^0 and let m(j) = mQ + nk — n j ( j = l,...,k) and w(0) =

ni0 + H f c -h l , then at least one of the following inequalities holds;

(4.2) |fl»o)/fl»tt,l^c.m(/)!/»i(*)! (7 = 1,..., k-l),

(4.3) K(0)/am(k,| £c. m(0)!/m(0). m(fc)! ,

where c = min , ,...,
. I /C

In fact, if (4.2) does not hold, then obviously (4.3) holds.

We assume that corresponding with {njf=1 there exist positive
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integers {pj?=i satisfying

where
Our purpose in the followings is to show

(4.5)

Now let {n(i)}f=0 be a subsequence of {m; m = ̂ li(ni+l)} satisfying;
i

n(G) = m0=mm{m; am^Q}.

n(l) is a minimum m satisfying (4.2) or (4.3) when we set m0 =
Ji(0). Generally, n(i + \) is a minimum m satisfying (4.2) or (4.3)

when we set m0=n(i).

Considering that an(i}=
 a"(i} . g»"-i> . ... . *»<ll. .fl therefore if

an(i-l) an(i-2) an(0)

n(i) — n(i—l)<nk+l for any i = l, 2,..., then by (4.2) we have

Generally from (4.2) and (4.3) we have

(4.6) \amw\ ^^xn(i)!/n((j(l)

where n(cr(l))<M(cr(2))<--- are defined by n

Obviously, m^ ~ where [ ] denotes Gauss' symbol. On
nk + 1

the other hand, since n(0) + (fcj.-l)(wfc + l)gw((7(j))<»(0) + fc/nk+l) for
some fc/^2, we have

Therefore it follows

n(i) 1, '
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in view of 2£k1<k2< — <km ^[-/g^ n^ 1+1. Hence we have1 L nk+i I

Lemma 6.

n(l(4-8) (ll/\an(i)\'l[-^T-pk}\ln(i)l — oo as i — » oo .

Proof. Considering (4.7) and the assumption pk^2, (4.8) is obvious.

§5. Proof of Lemma 1

From the arguments in section 3, we may consider the following

Cauchy problem;

(5.1) a,tt = [i*"'P/*;aj + ^ ( x 9 t j 9 d x ) - ] u 9

the part where the parts where modified
modified order orders are less than that
is maximum. of WPj.

(5.2) ii|r=0=i<0(x)Gtf(OJ,

where order Pfc^2, (0^n 1 <n 2 <-- - <nk).

Let apj(x) be a coefficient of d%{ of P j ( j = l,...,k}, then since

Pk(x; 5X)^0, we may assume that flpk^0, if necessary transforming the

coordinates. Therefore without loss of generality, we assume that apk ^ 0

in a neighborhood of the origin. Let u(x, f)~ E um(x)tm/m! be a formal
m^O

solution of the problem (5.!)-(5.2), then for m = ̂ li(ni+l\ / f ^0 (integer)
i

we have

(5.3) um(x) = Qm(x • d>0(x) + Rm(x ; 3>0 W ,

where order Qm= , order R m < - - . From (3.7) we know that

= "= i?i m^m-nt-l)! Pi(x'9 Og.-n.-i^; OgeC'), therefore the coe-

fficient am(x) of ^;pk/(Wk+1) of Qm is given by

(5.4) gm(*) = Z ^./^ml rvr«
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Hence

(5.5) um(x) = am(x)^^+ ' >Mo(x) + Rm(x ;

where order Rm^mpk/(nk+l) and order of Rm with respect to x1<m-pk/

(w f c+l). Without loss of generality we may assume that apj (0)^0 for

7 = 1,2,..., fc, then by Lemma 5 for infinitely many m 0m(0)^0. Let

us consider the series (0m(0); m = £/£(n f+l)} satisfying the asymptotic

formula (4.1).

Now let {an(j)(ty}J=Q be a subsequence satisfying lemma 6, and let

(5.2)' w | r = o = Z ^^^ajc!)"0'^701^^,
J=o

be a Cauchy datum of (5.1), where we choose A>0 so that {xeCs;

p.Xj^l}^^. Thus, Cauchy datum belongs to H(QX).

Substituting (5.2)' into (5.5), it follows that

1^^where fn^ is a constant depending only on 00,..., 6J-_1. We give 90

arbitrary and if we choose the argument 07- (7' = !, 2,...) satisfying

(5.6) ^

we have

(5.7) \Un(j}m>\an(j}(Q)\.^^^

Thus

n(jl/\unu)(0)\ln(j)l ^A

Therefore Lemma 6 implies

(5.8) w°Vl^o-)(°)iM7)! > + oo as j > + o>.

(5.8) shows that the formal solution £ um(x)tm/ml is not holomorphic
m^O

in any neighborhood of the origin.
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Finally we note that at a point x0 such as aPk(x0)^0, we can con-

struct such a Cauchy datum that there can not exist holomorphic solu-

tion in any neighborhood of (x0, 0). This completes the proof.

Q.E.D.

This argument of the proof is originally used in [1], (see also [2],

[5]).
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