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A Formal System of Partial Recursive Functions

By

Hiroakira ONO*

We know that many parts of ordinary recursive function theory

can be developed formally in a certain extension of the formal number

theory (e.g. Peano arithmetic). But we encounter some difficulties when

we want to deal with partial recursive functions, since in ordinary

logical calculi only total functions and predicates can be treated. The

most natural way to treat partial functions will be to take their graphs

instead of functions themselves. More precisely, to represent an «-ary

partial functions, an (rc + l)-ary predicate P having the property that

P(xl5..., xn9 y) holds for at most one y for any xl9...,xn is taken. How-

ever, it will entail considerable complications to express properties of

partial recursive functions in such forms.

In this paper, we shall attempt to formalize the theory of partial

recursive functions, which is called PRN, on a logical calculus in which

partial functions and predicates can be treated. For the logical calculus

mentioned above, we shall take a system which is obtained from the

one introduced by Ebbinghaus [1] by extending it to second order.

We shall introduce some extensions of PRN and examine their logical

powers. Our approach contrasts with the one by Scott [8]. In [8]

a partial function from a set A to another set B is regarded as a total

function from A to the set B with the element which represents the

undefined value.

In § 1 and § 2, the second order logic of partial functions SP and

its semantics are introduced. Axioms of the theory PRN are given

in §3. In §4, some completeness results for some extensions of PRN

are proved and applications of our theories to the mathematical theory

of computation are suggested.

Communicated by S. Takasu, January 23, 1974.
* Department of Mathematics, Tsuda College, Tokyo.
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§1. Second Order Logic of Partial Functions

In this section, we shall present the second order logic (with equality)

of partial functions, which is called SP. SP is an extension of Ebbing-

haus9 PPL [1]. Except for the notion of terms, the first order part

of SP is essentially same as PPL. The language of SP consists of the

following;

1) individual constants, function constants and predicate constants

(we assume that the language of SP contains the equality symbol =

as a predicate constant),

2) a list of countably infinite individual variables x, y, z etc.,

3) for each n, a list of countably infinite n-ary function variables
f(n)9 goo etc

Occasionally, we omit the superscript letter on a function variables.

We define the terms by the inductive definition;

1) each individual constant or variable is a term,

2) if tj,..., tn are terms and / is an n-ary function constant or

variable, then f(ti,...,tn) is a term,

3) if f!,..., tn, t, t' are terms and P is an n-ary predicate constant,

then (P^!,..., tn)=>t] t') is a term.

( => ; ) designates the if-then-else operation of McCarthy [7].

t, tf, s, s', tl9 $!,..., etc. are used to denote terms. We use as the logical

connectives, i, =>, A, V, V and 3 . Formulas (of second order) are

defined in the usual way. Thus, if A is a formula then V/4 and 3fA

are formulas, where / is a function variable. A9 B, C etc. are used to

denote formulas.

We now introduce some abbreviations. A = B is an abbreviation of

(A^B) A (5 =5,4). A A is an abbreviation of Ay-] A. A A means that

A is defined. ~A is a kind of the negation of A, which is an abbrevia-

tion of -}((A=>A)i=>A). At is an abbreviation of 3x(x = i), where x is

the first individual variable not appearing in a term t. At means that

t is defined. Then the meanings of ~ A A and ~At are "A is unde-

fined" and "f is undefined", t^t' denotes the formula Vx(x = f=>

x = t'), where x is the first individual variable appearing neither in t

nor t'. t^t' is an abbreviation of t^t'/\t'^t. x and t denote some
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sequences of individual variables x !,..., xm and of terms f j , . . . , fm, res-

pectively. For instance, V^P(x) denotes V^ ... VxmP(x l5,.., xm) for some

m.

^xi, ...,*„[*!> • > ? J denotes the formula obtained from A by replacing
simultaneously each free occurrence of x£ by th if no free occurrence

of xt in A is in the scope of a quantifier Vj> or 3y where y is an

individual variable in tt for each /. Suppose that / is an n-ary function

variable and g is an n-ary function constant or variable. Then Af[g~\

denotes the formula obtained from A by replacing f(tly..., tn), at all of

its occurrences in A at which / is free, by g(ti,...,tn), if no occurrence

of / in A is in the scope of a quantifier Vgr or 3g. Similarly, tXlimtmtXn

[s !,..., sj denotes the term obtained from t by replacing each oc-

currence of xf by s,-. For any n-ary function variable /, tf[A.xl...A.xns]

denotes the term obtained from t by replacing each / ( f j , . . . , fn) by s J C l > i i < ; C n

[f l 5 . ..,*„].

The logic SP is introduced in the same style as Gentzen's formal

system [3]. So, we call an expression of the form F-+A as a sequent,

if F is a sequence of formulas and A is a formula. Both r and A may

be null. Now, we give the axioms and the rules of inference of SP

in the follwoing.

I) Axioms.

1) - >A(x=y),

2) A - >A,

3)

II) Rules of inference

1) The structure rules (i.e., thinning, contraction and interchange),

cut and logical rules for =3, A and V are same as those of Gentzen's

LJ. (See [3].)

2) — i -rules.

2 1 -\A,r
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23) r > ~1~]Az>Jj r —> A

3) A -rules for A and V.

3 n ' — 3 ?)J ' l j A(A*B),r >C ^ '^

i ^ r—> A A r—> AB} r—> A(A^B)

3-4) r 7 7 , . t - 3.5)V 5) ' r - > A(AV B)

> r — * c ^^ r — " c), r — >c

4) Logical rules for the first order logic.

42)} r—>B

where y is a variable not where a is an individual
free in the conclusion. constant or variable.

A -,. F >AJal A A. AJy~\,F >B

where a is an individual where y is a variable not
constant or variable. free in the conclusion.

5) Rule for equality.

F - > A
T9x=t - ^,[/]

6) Other A -rules.

,~,6-2)F . VxAA } r >AVxA

r ^ r > AlxA f- A^ r > 3xAA6-3) -F . -I^A A 6-

6.5)

r —1 t t \Jm~TJ j-,
> 3xAA r •

f1?..., /w) /,- — i M\
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where P is an /i-ary predicate constant.

6.6) =-— ~~~JT" ' ~— (j' ~ ! » • • • » n)» zi 7-

where / is an n-ary function constant or a variable.

7) Rules for terms.

7.1) 7r_5(^/^^)a/ 7'2)
 r

 F 7^

T >A(A=>t;tf)7.3)

where >4 is a formula of the form P(r1,..., ^).

8) Logical rules for the second order logic.

r —
r — > v/4 ; v/^, r — > B

where ^ is a function variable where g is a function constant
not free in the conclusion. or variable.

where g is a function constant where g is a function variable
or variable. not free in the conclusion.

85) 86)' r — J

3fAA8 7 18-7^ ' r

The proofs and the provability in SP are defined in the same way

as Gentzen's. Remark that -£ — ~^-r does not holds in SP. We
L - > ~~\A

^ P _ ^
can show only that ' — — — holds. On the other hand,

1) - >AV~A, 2) Tr~? A — and 3) ^ F ' holds in SP.

Lemma 1.1. Following sequents are provable in SP.
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1) At >t = t,

2) t±=t2 >t2=tl9

3) tl=t29 t2=t3 >t,=t3,

4) At, t ~ t f >t = t'9

5) ~At,tm' >~At'.

§2. Semantics of SP

We shall give a description of the semantics of SP, following

Ebbinghaus [1].

A structure 91 for a language L of SP consists of the following

things:

1) A non-empty set A, which is called the domain of 91. The ele-

ments of A are called the individuals of 91.

2) For each n^l , a non-empty set A(n) of partial functions from

An to A. That is, A(n) is a set of subsets of An+1 such that for any

xeA(n\ if both <a1,,.., an, a> and <a l9..., an9 b> are in a then a = fr

holds. The elements of ,4(n) are called the n-ary partial functions of

91.

3) For each individual constant c of L, an element ca in A.

4) For each rc-ary function constant / of L, an element /m in A(n\

5) For each prepositional constant p of L, an element p91 in the

set {T, F, I/}, where T, F and U mean 'frwe', '/<a/se' and 'undefined^

respectively.

6) For each n-ary predicate constant P of L other than the equality

= , two subsets P91 and P| of A" such that P^cPg. P| means the

domain of the partial predicate P91.

If ^4(M) consists of the set of all partial functions from An to A

for each n, we say the structure 91 is total.

To define the validity of a formula A in 9C, it is convenient to

introduce the names for the individuals and the partial functions of 91.

So, for each individual a of 91 and for each n-ary partial function a
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of 21, we choose new constants a and a, respectively. The language

thus obtained is designated by L(2l).

In the following, we assume that terms and formulas are of L(2l)

and contain neither free function variables nor free individual variables.

Now, we shall define recursively the value of t® for a term t and 21(4)

for any atomic formula A. The value of t is either undefined or an in-

dividual of 21. In the latter case, we say that (* is defined. 21(4)

takes one of the values {T, F, U}.

1) If t is an individual constant c of L then tm=cm.

2) g®=a for any a eA.

3) f(t1,,..,tn)®=a if and only if all ffs are defined and <f?,..., fjj, a>

e/m, where /m is a if / is a.

4) For any prepositional constant p, 2IQ?)=p?t.

5) Suppose that P is a predicate constant other than =. Then,

2l(P(f1,...,f,,)) = T if all rfs are defined and <ff , . . . , fj> e F*,

f l s . . . , t I I))=F if all ffs are defined but <*?,...,$> ePj-P*, and

,..,O) = t7 otherwise.

6) 9l(f = O = rif both t« and f« are defined and f« t=f '« , 9l(f = O = F if
both t* and *'* are defined but t® ̂  t'*, and 2I(t = t') = U otherwise.

7) (P(f 1 , . . . ,O=>r;OH=a if and only if either M(P(tl9...,tJ) = T and
^=a, or 2l(P(flv.., fB))=F and f '«=a.

Next, we shall define 21(4) for any formula inductively.

T if 91(4) =F,

)=] U if 21(4) = 17,

F if 91(4) = T.

T if 2C(4)^T or
2)

F otherwise.

3) 21(4 A 5) =

T if 21(4) = 91(5) = T,

17 if 91(4) = 17 or 91(5) = 17,

F otherwise,
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' T if M(A) = T or 21(5) = T,

4) 2T(^V5)= U if 2I(A)=2l(B) = l7,

I F otherwise.

fT if 2I(Ac[c]) = T for any individual a,

5) 9l(Vx^)=| 17 if 2104JC|>]) = 17 for some individual a,

F otherwise.

T if 2I(y4JC[0]) = r for some individual a,

6) 21(3*4) = ^' U if 2I(y4JC[ff]) = 17 for any individual a,

F otherwise.

f T if 2l(/l/(H)[a]) = r for any n-ary partial function

a of 21,

17 if 2I(A/(«)[a]) = U' for some n-ary partial func-

tion a of SJH,

F otherwise.

T if 2l(y4/(n)[a]) = r for some n-ary partial func-

tion a of W,

8) 2l(3/(fl)^4) = ^ 17 if 2l(^l/(H)[a]) = [7 for any n-ary partial func-

tion a of 21,

F otherwise.

We can prove the following facts [1]:

1) 2l(Jr) = T if and only if t^ is defined.

2) W(AA) = T if and only if

3) 2I(~4) = T if and only if

Suppose that all the free variables occurring in a formula A of

are /!,.••>/« and Xi , . . . , x n , respectively. Then a closure >T of A
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is a formula of the form V/t ... V/n,Vx, ... VxnA. Now, define the

value of W(A) by 2lG4)=2l(v4'). We say that a formula A is valid
in a structure 21 if WL(A) = T.

A sequent Ai9...9An->B is said to be valid in a structure 21, if the

formula y^ A ••• A^^B is valid in 21. In particular, Al9...,An-> is

valid in 21 if A^h-- /\An is not valid in 21.

Let T be a theory on SP. That is, T is a formal system obtained

from SP by adding some sequents as its axioms. Then a structure 21

is called a model of T if all the axioms of T are valid in 21. Now,

we can show the completeness theorem of SP.

Theorem 2.1. Let T be a theory on SP. Then a sequent F-*A

is provable in T if and only if it is valid in any model of T.

Remark 2.2. The semantics mentioned above tells us that SP is a

3-valued logic. To treat partial functions, some other 3-valued logics

were introduced, e.g, by Kleene [5] and McCarthy [7]. Each of the

truth tables introduced by them differs from those of Ebbinghaus. But

they can be dealt with in SP as is shown below. First, extending the

notion of formulas, we consider the expression of the form (A=>B\ C)

for formulas A, B9 C, as a formula. This formula represents the if-

then-else operation of [7]. Now we add the following rules of inference

to SP.

a)
"•' r, A >(A=>B;C) J r,-1,4 >(A=>B; C)

F.A^B > D ,x F9-iA^C > D

e)

~r,(A=>B;C) >D J F,(A=>B;C) > D

r —
r—> AA

r v /<f) A,T - > A ( A = > B ; C )

,. _ AB, r — > D AC, r — >D
' D
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Let A^B be an abbreviation of (A = B)h(-\A=-\B) and (A ^

BI C) be an abbreviation of

(£^C=>£; (A=>Bi C)).

Then, as shown in [6], other connectives of Kleene (or McCarthy) can
K

be defined by formulas containing only the connective ( =^ ; ) (or

( = > ; ) , respectively).

§3. The Formal Theory of Partial Recursive Functions

We shall construct a formal theory of partial recursive functions

on SP. To do so, we first introduce axiom schemata which say that
Kleene's recursion theorem holds in our theory.

A formula A is said to be a system of equations (with respect to

/iv-j/m) if A is of the form

where /i,...,/m are mutually distinct function variables and each t{ is a

term containing no function variables other than /i,. •-,/„,> and no in-
dividual variables other than x£1,..., x /n.. Sometimes, a system of equa-

tions A with respect to /i ,-..,/,„ is written as A<fi,...,fm> . Now,
the axiom schemata R consist of sequents of the form

!... Vgm(A<gl9...,gm>

where A is a system of equations and A<g1,..., gm> is a formula obtain-

ed from A by replacing each /i,.--,/m by gly...,gm, respectively.

The axiom schemata R mean that any system of equations has
the minimum solution. We call the theory obtained from SP by adding

R as T(R). Since the width of the universe of partial functions is not

mentioned in T(jR), minimum solutions obtained by R may not be the
intended ones. More precisely, there may be a model 51 of T(R) such
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that the minimum solution of a system of equations in $1 is not mini-

mum in the total model with the same domain as SK.

We can say that in any total model of T(R), the axiom schemata

R determine abstract partial recursive functions. (Cf. [2].) But we shall

discuss only partial recursive functions on natural numbers in this

paper. Now, we give a formal theory of partial recursive functions PRN

on SP. The language of PRN consists of an individual constant 0 and

two unary function constants S and P, which designate the successor

and predecessor functions. In the following we abbreviate axioms of

the form -*A as A.

I) Axioms for number theory.

a. -i(S.x=0),

b. Sx=Sy^>x=y,

c. Px=y = Sy=x9

d. AX[Q] A Vx(A ID Ax[Sx']) .=>.A.

II) Axioms for partial recursive functions.

a. Axiom schemata R,

b. V/i '+^Vx, ... VxBVX/(*i,..., *B, 30 £ /(*!,..., *„, Sy))

for w

The axioms II) b. assert that if a function /(xlv. , xfl, j) is monotone

with respect to y then the limit function of f ( x l 9 , . . 9 xn, y) exists.

The formal theory PRN^ is obtained from PRN by adding the

following infinitary rule.

Ill) co-rule.
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where n denotes the term SS...SO.
n

The standard model 91 of PRN is the total model whose domain

is the set of natural numbers and whose interpretation for each constant

is defined in the obvious way.

Example 3.1. 1) Consider the following system of equations,

/(*!,. ..,*„) ^ S f ( x l 9 . . . , x n ) .

We have that any solution of the above system of equations satisfies

the condition that Vxt ... Vxn(~Af(xl9..., xj), since ~n(x=Sx) holds

in PRN. Thus in PRN the existence of the totally undefined n-ary

function is ascertained.

2) Consider the following system of equations, where Q is any

atomic predicate;

Vacf/ifs) ~/2(0, x ) ) * V x V y ( f 2 ( y , x)*(Q(y, x)=>y,f2(Sy9 x))) .

Let /* be the minimum solution for flm Then we can prove in PRN

that

a. go-,*), Vz(z<j 'z ,- ie(z,aO) - >f*(*)=y,

b. ~AQ(y, x), Vz(z<j/:D-i<2(z, *)) - » ^^/*(^)5

Thus, the Kleene's /^-operator can be dealt with in our theory. (Cf.

[7].)

Now, we prove the following two lemmas, which will be used in

later sections.

Lemma 3.2a Suppose that g is an n-ary function variable and

that fi and f2 are (n + m)-ary function variables. Then for any t

, n) c=/2(s, g)) i> (*,[>/, (x, t))] *t,\lxf2(x, t))])

is provable in PRN,
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Proof. It suffices to prove the lemma, when t has only one oc-

currence of #, which is of the form g(t'). By the assumption it follows

that fi(i', \))^/2(t', i)). So we have only to show that for every term

ti,t2,s, tl^t2 implies s j c[f1]c4yx[f2]. But this can be verified by in-

duction on the length of s.

Lemma 3.3. Suppose that s is a term containing no function vari-

ables and no individual variables other than x, and that t is a term

containing no function variables other than g(x) and no individual

variables other than £. // f1 and f2 are solutions of the following

system of equations, called the primitive recursion,

ViV.v(/(r, V) =. (y =0 => s; f.[A*/(x, Py)])),

then /i(.t, y)=i/2(s, y) holds in PRN.

Proof. We prove the lemma by induction on y. Clearly, f i ( x , 0) ^

s^f2(x, 0). Suppose that f^x, y) ̂  /2(x, y). Since n(Sy=0) holds, &(*,

Sy) ̂  tJtefAx, PSyJ] * f,[Ai/,(*, y)]. Similarly, f2(x, Sy) * f9[Ax/2(X, y)].

By the hypothesis of induction and Lemma 3.2, it follows that

>,!>/!(*, v)]:*f,[A*/2(x, V ) ] -

Hence, ^(r, 5v) -/2

We notice here that in a certain sense PRN and PRN^ are ex-

tensions of second order arithmetic A and /4t/, of [4]. For example,
m

Lesniewski schemata can be expressed in our systems as A VXf/dgr^at,-)^

3/Vx(/(aO = f), where t is a term containing only gi9...,gm as function

constants or variables. It is obvious that these formulas are provable

in PRN by using the axiom schemata R. Some of the results in the

next section have a close connection with those in [4].

§4. Extensions of PRN

First, we define conservative extensions PRN* and PRN^ of PRN

and PRNto, respectively. Suppose that A</ l5...,/m> is a system of

equations. The formula BA is defined as
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A^t,...,!,^ f,(Mgi ... Vgm(A<9l,..., gm>=>
i=l

Clearly, - >Bfl...3fmBA is an instance of R. Since it holds in

PRN that

functions /15 ..,/m satisfying BA are determined uniquely up to ~. Now,

we construct a theory PRN* from P#]V by adding a new function

constant fjftA (i^m) and a new axiom

for each system of equations A</ l5...,/w> of L(PRN), the language

of PfllV.

For each formula C of PRN*, define a formula C0 of PRN as

follows. Let nf^A^..., iifmAm be all the new function constants appear-

ing in C. We assume for simplicity that each At is of the form Ai<fi>.

We obtain a formula C' from C by replacing each ///j^ by ^-. Now
m

the formula C0 is V/j ... V/m( A ^.=)C').

Theorem 4.1. For eac/7 formula C of PRN*, C is provable in

PRN* if and only if C0 is provable in PRN.

From this theorem it follows that PRN* is a conservative extension
of PRN. By the same way, we can construct a conservative extension

PRN* from PRNW. In the following, we assume the consistency of

these theories.

We notice that the axiom schemata R of PRN* can be restricted

only to systems of equations of L(PRN). In other words, for any

system of equations A<f,,..> of L(PRN*) there exists a system of

equations B </,...> of L(PRN) such that for any x nfA(x)~[ifB(x).

Suppose that /^Cj,..., ttfnCn are all the new function constants appearing

in A. A'<f, #!,..., gn> denotes the formula obtained from A by replac-

ing each fjfiCi<fi,...> by a function variable gt. Now, let B be a

system of equations of PRN,
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A'<f,gl9...,gn> A Q<^, .. >.

Then, it is easy to see that iifA(si)^.^fB(ni) for any s.

The function and predicate constants of L(PRN) are only S, P

and =. Thus, by the recursion theorem each system of equations

^4</1?...,/m> determines partial recursive functions <pl9...,<pm in the

standard model 91. So, defining the interpretation of ^ftA by cpi9 we get

an extension 91* of the model 91. We say that 91* is the standard

model of PRN*. Using the results in Example 3.1, we have that any

partial recursive function can be introduced by the axiom schemata R

and hence is of the form (iifAy*1*.

Next we show how the computation of the value of nfA(m) for any

system of equations A and natural numbers m is executed in PRN*.

We consider only the case where A is of the form A<f>. Other cases

can be dealt with in the similar way. In the following, \-B means the

provability of a formula B in PRN*. Suppose that A<f> is

Define a function g(x, y) by the condition that

1) V*(~J0(*, 0)) and

2)

The existence and the uniqueness of such a function g can be verified

by Example 3.1 and Lemma 3.3. Now, we show by induction that

\-g(x, y) c 9(x9 Sy). By the definition, ~Ag(x, 0). Thus, g(x, 0) c g(x,

SO). Suppose that g(x, y) c g(x, Sy) holds. Then we have that tf[A,xg(x,

yy\^tj{teg(*,SyJ\- So g(x9 Sy)^g(x9 SSy) holds.
Using Axioms II) b, we have that there is a function h such that

Mz(h(x)=z = 'By(g(x9y')=z)). We can get the following lemma due
to [5].

Lemma 4.2. h is the minimum solution of A.

Proof. We first show that h is a solution of A. By the definition,

for any y g(*9 y) c h(x) .

By Lemma 3.2, tf[teg(x9 j)] £
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Hence, I y ( t f [ l x g ( x 9 y)] = z) ZD (/ /[AxA(x)] = z) .

Since g ( x , y) c g (x, Sy) ~ tf [teg (x9 7)], it holds that h(x) = z

> y)]=z). Combining these results, we obtain that h(x)

To prove that tf[teh(x)'] ^ /i(i), we first show by induction on the

length of t that

>')] = z)) .

We prove this only when t is of the form f(tl9...9 tk). We assume that

for each i

= z => ly(ti[teg(*, y}~] =z)) .

We write f| and ^J' instead of ^[Ax/jfx)] and tif[teg(x, y}]9 respectively.

Then, tf{_teh(x)] and tf&xg(x9 j)] are fc(r,,...,fO and 0(f'{,..., *?, }>)• In

SP, it holds that h ( t ' l 9 . . . , t ' k ) = z implies

(1) 3x, ...3

By the assumption, (1) implies

(2) 3*! ... 3xfc( A 3X/

By Lemma 3.2 and the above discussion, we have in PRN that y^yf

implies (^ c ^y[/]) A(0(x1?..., xk, y) c gf(x l5 . . . , xfe, /)) and that 3; ^ / V

j^'^}^. Thus, (2) implies

(3) 3y3x1 . . .3xk( jA iW=x l)Aflf(x1 , . . . ,xJ k ,^)=z).

Clearly, (3) implies 3X0(*i>".J **» )0 = z). Now, suppose that tf[Axh(xy]

= z. Then from the above discussion, it follows that 3y(tf[hxg(x9 y)~]

= z). So, 3y(g(x, Sy) = z). This implies 3y(g(x, y) = z). Thus h(x)=z.

Hence, ^[Axli(3E)]c|,(x).

Next we show that h(x) is the minimum solution. Let k be a

solution of A. That is, k(x)~tf[Axk(x)']. We prove by induction on

y that g(x9 y)^k(x). Since ~J#(s, 0), gf(x, O)cfc(x). Suppose that
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0(x, 30 £*(*)- By Lemma 3.2, g(x, Sy) * lf[teg(x, >0]^^/[^/c(x)]^ k(i).

Thus, VX0(x, y) £ fc(*))- From this, it follows that 3y(g(x, y) = z) =>
(k(x)=z). Hence h(x)^k(x). This completes the proof.

Lemma 4.3. Let I and m be a natural number and a k-tuple

of natural numbers, respectively. Then either \—g(m,'l) = n holds for

some natural number n or \—~Ag(m,l) holds.

Proof. First, we remark that

1) m = / 7 holds in 91* if and only if \-m = n,

2) Sm=n holds in 91* if and only if \—Sm = n9

3) Pm=n holds in 91* if and only if \-Pm = n.

Now, let Q(J) be the proposition which says that for any fc-tuple of

natural numbers in, either h-g(m , 7) = /7 holds for some n or \-~Ag(m,

1). We prove Q(l) by induction on /. If /=0, then h-~J0(m, 0) by

the assumption. Thus Q(0) holds. Suppose that Q(l) holds. By the

definition, h~00n, Sl)^t*f[fag(x, /)], where /* is ?s[m]. By induction

on the length of t*, we show that either |-?*[A£g(x, 7)]==n for some
n or h-~^f*[A3r0(j, /)] holds.

1) The case where r* is 0.

It is obvious that M*[Ax0(s, /)] =0.

2) The case where t* is of the form St'.

Then ry[Axgf(3e, /)] is equal to ^(^[Aa:^, I)]). By the hypothesis, either

, l)] = n for some n or | -- Atr
f^g(x9Ty\. In the first case,

it follows that M*[A£#(£, l)~]=Sn=n + \. In the second case, \-~AtJ

, /)] holds, since ^(^[^(i, 7)])z) ̂ ^[^(j, /)] holds in PJR]V*.

3) The case where r* is of the form f(tl9..., tk).

Then ^*[Axgf(x, I)] is equal to gf(r l 5 . . . , t'k, 7), where each r; denotes

^//[^^(^j 0]- Suppose that M^CA-e^-e, ])]=«,- holds for each f. By
the hypothesis that Q(l) holds, l - f l f (w, , . . . , /?fc, 7) = i? for some n or |-~

Ag(n},...,nk,l). In the first case, h- ̂ /[Axgf(x, 7)] = /T and in the second

case I -- AtJ[kxg(x, 7)]. On the other hand, if there exists at least one
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/ such that I -- Atif[teg(x, /)], we have that I -- AtJ[teg(x, I)].
Using the remark mentioned first, we can prove other cases similarly.

Thus we have

Theorem 4.4. Let g and h be functions mentioned above and

m be a k-tuple of natural numbers. Then

1) I -- Ag(m, 7) for any natural number / if and only if \-~Ah(m),

2) h-0(m, 1) = n for some natural number I if and only if \-h(m) = n.

Proof. 1) Suppose that f— ~Ag(m, 7) for any /. Then by co-rule,

(1) h-Vx~ Ag(m,x).

On the other hand,

(2) Ah(m) - >3j^0(m, y) ,

and

(3) 3yAg(m, y), Vx~Ag(m, x) - >

are provable. From (2) and (3), it follows that

Ah(m), \/x~Ag(m, x) - >

Using (1), we get Ah(m) -> . Thus }—~Ah(m). Conversely, suppose

that I -- Ah(m). Then Ah(m) -» . Since 3yAg(m, y)^>Ah(m) and

Ag(m, 7) -> 3yAg(m, y) are provable, Ag(m, 7) -> . Hence h-^J^m, /),

for any /.

2) Suppose that \-g(m,T) = n. Then | -- 3X^(^ y) = n). Hence \-h(m)

= n. Conversely, suppose that [-h(m) = n. If \-~Ag(m, 7) for any

I then h-~Ah(m) as we have just proved. But this is a contradiction,

since we assume the consistency of PRN*. Thus, there is an / such

that /\-~Ag(m, 7). By Lemma 4.3, there is a natural number n' such

that h-g(m, 7) = ft'. Then h-ft = n'. Hence h-#(m, 7) = n for some L

By Lemmas 4.2, 4.3 and Theorem 4.4, we have the following theorem.



FORMAL SYSTEM OF PARTIAL RECURSIVE FUNCTIONS 289

Theorem 4.5. For any system of equations A<f, ..> and any

natural number m, either \—fifA(m) = n for some natural number n or

\-~AufA(m).

A model 51 of PRN (or PRN*) is an co-model if every individual

a of 51 is n® for some natural number n. We can prove the fol-

lowing theorem in the similar way as Henkin-Orey theorem for theories

on classical logic (see, e.g. [9]).

Theorem 4.6. A formula of PRN (or PRN*) is a theorem of

PRNW (or PRN*) if and only if it is valid in every co-model of PRN

(or PRN*).

By this theorem, we can get the following theorems similarly as

[4].

Theorem 4.7. Let A be a formula of PRN which contains no second

order quantifiers. Then V/j ... V/k/l is a theorem of PRN^ if and

only if it is valid in 91.

Theorem 4.8. Let A be a formula of PRN* which contains no

second order quantifiers. Then V/, ... VfkA is a theorem of PRN* if

and only if it is valid in 91*.

Proof. Let 51 be any co-model of PRN*. Then we have only

to show that for every system of equations A</,...> and every natural

number m,

1) W(jjfA(m) = n) = T if and only if 9l*(nfA(m) = n) = T, an

2) ufA(m)® is not defined if and only if ]ufA(m)m* is not defined.

But this can be verified by using Theorem 4.5.

As a corollary of Theorem 4.8, we have that for any partial recursive

function cp there is a system of equations A<f,... > such that for every

natural number m,

1) cp(m) = n if and only if \-ufA(m) = n and
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2) <p(m) is undefined if and only if t-~AfjfA(m).

We say that the function constant \ajA represents cp.

Theorem 4.8 says that PRN* is powerful enough to prove many

theorems about partial recursive functions. For example, the enumeration

theorem for partial recursive function in [5] is expressed in the following

form:

There exists a system of equations A<f,... > such that for any

system of equations B<g9... >,

3yVxl9...Vxtt(iJLgB(xl9...9 xJ^nfA(y, *,,..., *„))

is provable in PRN*.

The above discussion suggests a way of constructing an extension

of PRN*. We have taken 91* for the standard model of PRN*. But,

another standard model of PRN* can be taken . Let 9l+ be a struc-

ture whose domain is the set of natural numbers and whose functions

are all of partial recursive functions. We can show that 9l+ is a model

of PRN*, since Axioms II) b holds in 9l+. Now, consider the partial

recursive function U(jjiyTn(z9 xl9...9xn9 y)) in [5]. Let $n be the (n + 1)-

ary function constant which represents the function U(uyTn(z9 xl9...,xn,

y)). Now, PjRAr+ (or PRN+) is the theory obtained from PRN* (or

PRN a) by adding the following axioms;

IV) V/(«)3zVx1 ... Vxn(/(xlv.., xj^z, *!,..., *„)).

Clearly, 9l+ is a model of PRN+. Similarly as Theorem 4.6, we can

prove that for any formula A of PRN+, A is provable in PRN+ if and

only if it is valid in any co-model of PRN+. Now, let 91 be any co-

model of PRN+ and a be any n-ary function of 91. For simplicity,

we assume that the domain of 21 is the set of natural numbers. Since

Axioms IV) are valid in 91, there is a natural number m such that

<m1,..., mn, k> ea if and only if <m, m lv.., mn, k> e$f for

every natural number m l5..., mn, k. By Theorem 4.5, $% is equal to

<P®+. Clearly, $®+ is (the graph of) a partial recursive function. So,

a is also partial recursive. Conversely, it is obvious that every partial
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recursive function is a function of $(. Thus. 31 is isomorphic to 9I+.

Theorem 4.9. For any formula A of PRN+, A is provable in

PRN+ if and only if it is valid in $l+. Hence, PRN+ is complete.

Applicability of our systems to problems in mathematical theory

of computation will be obvious. Since problems of equivalence, cor-

rectness and termination of programs about natural numbers can be

expressed by formulas of PRN* of the form mentioned in Theorem

4.8, they can be treated completely in PRN*. For another example,

theorems in [6] can be proved formally in the theory T(R). T(R) has

a close relation with the formal system in [8]. To strength T(R), some

axioms like Axioms II) b. are necessary. But in general case we can

not express Tl) b. in our language. So some rules like the induction in

[8] will be needed.
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