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Approximation of Exponential Function
of a Matrix by Continued

Fraction Expansion
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Abstract

A numerical method for high order approximation of u(t) = exp (tA)uQ, where
A is an NX N matrix and HO is an N dimensional vector, based on the con-
tinued fraction expansion of exp z is given. The approximants Hk(z) of the
continued fraction expansion of exp z are shown to satisfy \Hk(z)\<*\ for Re
£<0, which results in an unconditionally stable method when every eigenvalue
of A lies in the left half-plane or on the imaginary axis.

§1. Introduction

The solution of an equation of evolution

(1.1) 4*L = Au9u(0) = u0

in which A is an NxN matrix is formally given by

(1.2) ii(0 = *Mu0

where the matrix expL4 is defined by

(1.3) etA = I+--A+~-A2+'.-.

Such a system of ordinary differential equation is often a result of

discretization of space variables of a certain time-dependent linear partial

differential equation. Varga [1] has shown the relation between various
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methods for numerical solution of parabolic partial differential equations

from the standpoint of the Fade approximation of the exponential

function expL4, and proposed new methods based on the higher order

approximation of expL4.

The purpose of the present paper is to give a method based on the

continued fraction expansion of expL4, where A is an NxN matrix,

as a device to solve an equation of the form (1.1). This method may

be included in those proposed by Varga, but it has an advantage that

it is reduced to an iterative method with a simple form owing to the

recurrence relation which gives the continued fraction expansion of ez.

Moreover, as will be shown below, the approximant Hk(z) of ez always

satisfies \Hk(z)\<l in Rez<0 and hence the resulting method is appli-

cable to a family of non-self adjoint problems and is unconditionally

stable as long as every eigenvalue of A lies in the left half-plane.

In order to express a continued fraction

(1.4)

in a simpler form, we use the notation

§2. Continued Fraction Expansion of e*

It is well known that the exponential function ez has a continued

fraction expansion

(2.1)
1 - 1 + 2 - 3 + 2 - 5 + + 2 - (2j- 1) +

and that the right hand side of (2.1) converges for any finite value of



(2.3)

(2.4)
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z in the complex z-plane. (See e.g. [2, p. 348], [3, p. 113].) If we

define two sequences {Fk} and {Gk} by

(2.2) F0 = U F1=i, G0=0, G1 = l

2i 7=2,4,6,. . .

2; j = 3, 5, 7,...

,-i-*Gj-2; j=2,4,6,.. .

J_1 + zG j_2 ; 7 = 3, 5,7,...,

the quotient

(2.5) Hn(z) EE G,(z)/FM(z)

is identical to the n-th approximant of (2.1) [2, p. 15], and converges
uniformly in any finite domain of z [3, p. 112]:

(2.6)
fl-»00

By contraction [3, p. 13] the expansion (2.1) is reduced to its odd

part

"7 "7 7^- 7-2 *r2

2-z + 6 + 10 + +2(2j-l)+ '

whose sequence of approximant s is that of odd approximant s H2k+i(z) =

^2fc+i(z)/^2fc+i(2) of (2.1). The approximants H2fc+1 can be generated
by the recurrence relation

(2.8) F,=1, F3=2-z, G , = l , G3=2 + z

(2.9) r F2;+1=2(2j-l)F2j._1+z2F2j._3; 7=2,3,4,.. .

(2.10) I G1 7 + 1=2(2/-l)G2 J_ I+z2G2 J_3 ; j=2, 3,4,...

These odd approximants are found in the diagonal elements of the Fade

table for ez [4, p. 16], and from (2.8) we see that H2k+l(z) satisfies

(2-11)
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corresponding to e~~z = l/ez.

In the similar way, we have the even approximants H2k(z) = G2k(z)/

F2k(z) of (2.1) by the relation

(2.12) F0 = l, F2 = l-z, G0=0, G2 = l

(2.14)

When z^O, another expansion can be obtained by equivalence

transformation [2, p. 19]. If we multiply every odd term of (2.1) by

s = l/z, we have

(2.15) e '=^_± + ̂ _^ + |_...+^_(2^l)j + ...; *=!/*.

the approximants Hn(z) = Gn(z)/Fn(z) of which are generated by the

recurrence relation

(2.16) F0 = l, Fi=l, G0=0, G1=l

l (j-VsFj^-Fj-ti 7=2,4,6,...
(2.17)

;=3,5,7,...

(2.18)
7=2,4,6,...

7 = 3,5,7,...

The truncation error of the n-th approximant of the continued frac-

tion (2.1) can be expressed in various forms. For example, if we write

(219) ez=— — — — — ... z — z
1 ' 1 - 1 + 2 - 3 + 2 - -2/c-l +2 -R2k+1(z)

and subtract

(2.20)
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from (2.19), we have the error of the odd approximant:

- = F2k+l(Zy{F2k+1(z)R2k+1(z)-zF2k(z)}

(2.22) =0(z2(l+1),

where

(2.23)

For the even approximant we have

E2k(z)=e*-H2k(z)

n 74) = __ (-D**2*
^ "

(2.25) =0(z2*),

where

(2.26) *»«=2-

As to the asymptotic behavior for large |z|, a difference is observed
between those of H2k+1(z) and H2k(z). When n is odd, since the

polynomials F2fe+1(z) and G2/c+i(z) are °f the same order with the equal
coefficients at the terms of the highest order, we have

(2.27) HmH2fc+1(z) = l
|z|->oo

so that for any g>0

(2.28) lim |£2fc+1(z)| =1, uniformly in -^ + e<argz<-^--£.
|z|-*oo / Z

On the other hand, when n is even, F2k(z) is a polynomial of order 2k

and G2fc(z) is of order 2k — 1, and hence
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(2.29) #2t(z)=0(l/z) (|z|-*oo)

so that

(2.30) E2k(z)

or for any e>0
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Fig. 2. Absolute errors \En(z)\ of continued fraction expansion of exp z on
the negative real axis.
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(2.31) lim |£2fc(z)|=0, uniformly in ^-
|z|-*oo -

As an example for the behavior of the error at intermediate value

of z we show the contour map of |£,,(z)|, n=4 in Fig. 1. The values

of \En(z)\ on the negative real axis for various values of n are also

shown in Fig. 2.

§3. Boundedness and Regularity of the Approximant in the Left
Half-plane and on the Imaginary Axis

In this section we shall prove that the approximant Hn(z) = Gn(z)/

Fn(z) is bounded in such a way that \Hn(z)\ <1 in the left half-plane including

the imaginary axis and hence is regular there. We use some elementary

relations satisfied by the following fractional linear transformation.

(a) If Res<0, the transformation

(3-D

maps the left half-plane Rew<l /2 into all or a part of \t —1|>1.

In fact, from (3.1) Re[(2jM)s + w]=Re[l/0=(* + 0/(2tf)> and since
Res<0 and Rew<l /2 , we have Re[(2/-l)s + w]^l/2 so that (t +

i)/(ft)<\, i.e. |/-1|>1.

(b) The transformation

(3.2) t = ^—

maps |w — 1|>1 onto Rer<l/2. This would be evident from the

relation

Theorem 1. If Rez<0, Hn(z) satisfies

(3.3) |HM(z)|<l

and is regular there.

Proof. Since s = l/z maps Rez<0 onto itself, we take the exapnsion

(2.15) instead of (2.1) and consider the images of Res<0. The con-
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tinued fraction expansion (2.15) can be regarded to be given by com-

posing the following fractional linear transformations:

(3.4)

(3.5)

(3.6)

= 1, 2, 3,..

— W
; 7 = 1, 2, 3,...

2 j+ l

That is, the (2/c+l)-th and the 2k-th approximants are given respectively

by

(37) f H (z) = T T T T TOl' fc = l 2 3

First we take H2k+1(z) and consider the image of Res<0 by

From (a) we see that (3.9) maps Res<0 into a part of |w2k-i —1|>1 .

Then from (b)

maps |w2fc_ 1 — 1\>1 into Rew2 f e_2<l/2. Successive and alternative uses

of (a) and (b) lead to K-l l^l , where w1=r1

Hence from (3.4) we finally have

Next we consider H2k(z). In this case Res<0 is mapped by

= r [ j-o]= l

onto Rew2 f c_1<0, and this is entirely included in the region \w2k-i~

1|>1. Then from the above proof for H2k+l(z), we can immediately
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conclude that |//2k(z)|=|w0 |<l. Finally, since Hn(z) is a rational function

of z, \Hn(z)\<l over Rez<0 implies the regularity of Hn(z) over Rez<0.

§4. High Order Iterative Approximation for exp£<4

For the approximation of expL4 where A is an NxN matrix, we

are ready to make use of the recurrence relation (2.2)-(2.4). The replace-

ment of z by the matrix tA leads formally to the following iterative

procedure for the approximation of expM.

(4.1) F0=I, F1=I9 G0=0, G!=/ (/: identity matrix)

2 ; 7=2,4 ,6 , . . .

2 ; 7=3,5,7, . . .

2; 7=2,4 ,6 , . . .

2; 7=3,5,7, . . .

(4.4) Hn(tA) = F~i (tA)Gn(tA) = exp tA

(4.2)

(4.3)

We take a certain norm for NxN matrix. Then as to the convergence

of Hn(tA) to exp tA, we have

Theorem 2. Let A be a square matrix of finite dimension. Then

for any finite t

(4.5) UmHn(tA)=QxptA
J1-+OO

Proof. Since Hn(z) converges uniformly to ez over any finite do-

main in the z-plane, Hn(z) is regular on any finite domain for suffici-

ently large n, so that the error En(tA) can be expressed in terms of

Dunford integral [5, p. 287] :

EH(tA)=e*ptA-HH(tA)

(4.6) =

The path C of the integral is a simple closed contour enclosing all
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of the eigen values A, of A and not enclosing any singularity of

as shown in Fig. 3. Taking the norm of (4.6) we have

X-PLANE

E I G E N V A L U E OF A

Fig. 3. Path C of Dunford integral (4.6)

(4.7)

Since A — A is regular along C, the integral | ||(A — ̂ )~1|||^/i| along C

is bounded, and hence in view of the uniform convergence of \En(tk)\

to zero as n-»oo as a scalar function over any finite domain in the

A~plane we have ||£W(L4)||-»0 as w->oo, which completes the proof.

By making use of a vector

(4.8) gj = GjU0

instead of the matrix Gj itself when calculating (exp tA)uQ, we can reduce

the product between two matrices into that between a matrix and a

vector as follows:

(4.9) F0=/, F,=I9 00=0, g,=u0

j.2i 7=2,4 ,6 , . . .

j-2; 7=3,5,7, . . .

j_2; 7=2,4,6, . . .

(4.10)

(4.11)

(4.12)
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If A2 is a priori calculated, we have another procedure from (2.8)-

(2.10) that makes, though theoretically, double the rate of convergence

of the above procedure:

(4.13) Fi

(4.14) r F2j.+ 1^2(2j-l)F2 j ._1-f^M2F2 j-_3 ; ;=2, 3,4,...

(4.15) 1 0 2 / + i ^ (2 j - l )£ 2 / _ 1 +fM 2 0 2 7 _ 3 ; 7=2,3 ,4 , . . .

(4.16) u(t) = (

When A'1 is obtainable, we may have other procedures by replacing

s by r^A"1 in (2.17) and (2.18), and, if preferable, by reducing it into

contracted forms.

We assume that every eigenvalue /(t of N x N matrix A lies in the

left half-plane, i.e. ReA,<0; 1 = 1,2,..., N. Then it can easily be seen

from the proof of Theorem 1 that the spectral radius p of Hn(tA)

satisfies p(Hn(tA)) < 1 for all t>0, and hence the matrix approximation

Hn(tA) under the above assumption is regular and unconditionally stable

for any n [6, p. 265]. It would be clear that Hn(tA) is a consistent

approximation to zxptA in the sense of Lax and Richtmyer [7, p. 271].

§ 5. Discussions

The present method has the advantages of a simple iterative pro-

cedure and of a high order stable approximation. It would yield a

result with high precision even when it is applied with a fairly large time

mesh t owing to the rapid convergence of the continued fraction expan-

sion, and hence this situation is considered to recover the disadvantage

of the method that it requires one matrix product for every one iteration.

It should be noted, however, that a serious situation may arise

at the actual computation when the maximum f|AM | of the absolute value

of the eigenvalues of the matrix tA is too large compared with 1 while

the minimum is less than 1 as in the case of a parabolic problem with

fairly large t, since then the condition number of
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' ( _ 1 ) t ( f c - D !

(5.1) Fn(tA) = \
f 1 \ t *C •

[1, p. 223] becomes remarkably large as n is increased to an appropriate

value for convergence, resulting in a seriously large error in the solution

F~l(tA)g}1. This drawback may be recovered if the eigenvalues of A

are shifted to the left by multiplying exp( — at) (a~ UM!) to exp(L4) so

that the condition number of A — a may be reduced to the order of near-

ly unity, but then the convergence would turn out to be very slow.

When A is a diagonal dominant sparse matrix as is obtained from a

parabolic equation, the factorization of F~1(tA) into

may be efficient.

The following procedure will generally be recommended. Divide

t into equal and small n subintervals At, i.e. t = nAt, and compute

Fk(AtA) for fixed value of At to an appropriate order k. Then, using

Fk(AtA\ iterate

(5.3) u(jAt)=Fi*(AtAJu((j-l)At), j = l, 2,,.., n

with the initial value w0=w(0). This method would be applicable with

slight modification to obtain an approximate solution of

(5.4) **L = A(t)u,

where A(f) depends on t moderately, if we use the matrix A(jAt) in

the calculation at the subinterval jAt<t<(j+l)At.

The present analysis may be formally extended to the approximation

of exp tA in a Banach space X in which A is such a closed linear

operator on X into X that the spectrum lies in the left half-plane

including the imaginary axis and that the Dunford integral representation

holds in En(tA). When A is a bounded operator the extension is im-

mediate. When A is unbounded, however, some additional conditions

must be satisfied. For example, such an operator that ||(A — ̂ l)"1!! <
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"1 holds for A in the resolvent set p(A) in a sector 7r/2 + c<

argA<37T/2 — c, e>0 comes within this class of operators, if we use the

even approximants H2k(tA) in view of (2.30).
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