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On Resolutions of Cyclic Quotient Singularities
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Akira FUJIKI

Introduction

Let G be a finite cyclic group with a fixed generator g, acting on

a complex affine m-space C lfl=Cm(z1,..., zm) by the formula;

(1) g: (z lv..,zm) >(^z l5...X>»zm),

where n, pt, 1 ^ i ^ m, are integers satisfying 0 ̂  ^ < n and e£* =

exp(27iv/ — Ipi/ri). Then the quotient space X=Cm/G has the natural

structure of a normal affine algebraic variety such that the quotient

map n: Cm-+X is a morphism of algebraic varieties [10] [13]. We

call this X a cyclic quotient singularity and denote it often by Nntplt_tpm

according to the particular expression of the generator g as above.

Now the main purpose of this paper is to show the existence of

certain natural ways of resolution of these cyclic quotient singularities,

which have some good properties. (For the precise statement, see Theo-

rem 1.) Such resolutions were first constructed by Hirzebruch in [3]

when m=2 and then, by Ueno [12], when m = 3, p±=l and p2=Pi

in (1). On the other hand, the author recently learned that Mumford

has found the equivariant resolutions of toroidal singularities, which

contain cyclic quotient singularities as special cases [6]. However, our

method is different from his and is connected more closely with the

above expression of g. So it may be of some interest to compare the

resolutions obtained here with those in [6].

In § 1 we prove Theorem 1 and then, in § 2 we apply this theorem

to obtain resolutions of the general isolated quotient singularities and

the isolated singularity with C* action in the case where the dimension
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of the spaces is 3. This is done by methods similar to those used in

[1] for the former and in [8] for the latter respectively in the 2-dimen-

sional cases. The unpleasant restriction on the dimension comes from

the fact that ue cannot prove the statement corresponding to Lemma

7 in higher dimensional cases.

In this paper the variety means an irreducible algebraic variety de-

fined over C in the sense of FAC. Further we adopt the following

notational conventions; for positive integers n l5..., nh (n l9..., w/) denotes

the greatest common divisor of them. If T is an automorphism of Cm

defined by T(zl9..., zm)=(t1z1,..., tmzm) with T feC*, then we abbreviate

it to T=(T I?..., tm). Moreover for Q^p<n, ^=exp(2;rN/ —Ip/n).

JVWjpl .. pm=O/{0} if g = ( e f l
1 , . . . , e%n) in the above notation. We also use

the notation Nnipj(} to express Nntiiptq in 1.4.2.

In concluding the introduction, the author wishes to express his

hearty thanks to Prof. S. Nakano and Dr. K. Ueno for their kind en-

couragement during the preparation of this paper.

§1. Resolutions of Cyclic Quotient Singularities

1.1. Let the notations be the same as in the introduction, except

that in the sequel we assume (n9 p1,..., pm) = l in the expression (1) of

g. In this section we study the singular locus S of X. For this purpose,

let F be the fixed point set of G in Cm, namely, the set of those points

whose stabilizers are nontrivial with respect to the action of G. This

F, with reduced structure, is in general a subvariety of Cm. But to

describe F more closely, we put in general, for any nonempty subset

M = {m l f...,m t}£{l,...,m}, H(M) = {(z1)eC-; zwi =zma = - =0} and call
it a coordinate subspace of Cm defined by M. Then we have

Lemma 1. Let F(i) be the fixed point set of g1 for lg i<n . Then

each F(i) coincides with some coordinate subspace H(M) of Cm. Con-

versely, a coordinate subspace H(M) of Cm coincides with F(i) for

some i if and only if the following condition is satisfied; if we put

d=d(M)=(n, pj^...^^^ then d f ( n , pmt) for any t, where M =

{m l5...,mj and {jlv.., jw-J is the complementary set of M in {!,...,

m}.
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Proof. Suppose gl=(e*l\ -., e*mi) has t = t(i) Ts as its component,
say, on the /1 5 . . . , / r-th places. Then a point z=(z t , . . ,zm) is fixed by

gl if and only if Zj=0 for any ./V/a, I r g a ^ f . Thus if we take M to

be the complementary set of {/!,..., /J, then F(i)=H(M) and the first

assertion is proved. Next, for the given M, let nl=njd(M). Then ^

is easily seen to be the least integer ^ for which g^ has 1 on the f-th

component for every i^M. Thus we have only to show that H(M) =

Ftyi) if and only if the above condition holds. But H(M)=F(n1) is

equivalent to the fact that for any jeM, the j-th component of g"1

is different from 1, or equivalently, (e*j)"i =ej"1 ^ \, where n} =

n/(n, PJ) and p'j=Pjl(n, PJ). Then, since («}, py) = l, this in turn is

equivalent to the fact that n'^)(n^ namely, (n\d)\(n\(n^ pjj)=(ny Pj)/d is

not an integer for jeM. This proves the second assertion. Q.E.D.

In particular, if (/?, pt) = l for some f, hyperplane z, = 0 contains

every F(i).

Now let G(i) be the stabilizer of the coordinate hyperplane H{i},

i = l , . . . , /?? , #(/) a generator of G(i) and G0 be the subgroup of G gener-

ated by {G(/)}i=i,...,m. Each g(i) has the form (1,,.., etti, . , I) with en.

on the f-th component and nt\n. From this, we see that €m(z)/G0^

Cm(w) and in fact the quotient map /?0: C'm(z)->Cw(vv) is defined by

(w) = /70(z)=(zI
1 '1,...J zj,"1). Further the quotient group G = G/G0 acts

naturally on Cw(w) by g=(e*ini,...9e*mnm) so that X=Cm(w)/G, where

g is the natural image of g in G. Then G has no element whose fixed

point set is a coordinate hyperplane of €m(w). For otherwise, there

exists an element gkeG, the fixed point set of which is, say, H{1} of

Cm(w). Then this has the form gk=(et, !,.,!) and we infer from this

that gk has the form 0£lfe, e^,..., e*™) and hence gkg(2)~t2...g(rri)~tm =

(e^lk, 1,..., l)eG(l), gkeG0. This implies gk=e, the unit element of G,

which is a contradiction. Now we say that a cyclic group acting on Cm

as above is small, if it has no element whose fixed point set coincides

with some coordinate hyperplane (c.f. [9]). Thus we have shown that

in the expression X=Cm/G of the cyclic quotient singularities, we may
always take G to be small.

The following lemma is a special case of the fundamental result
of Prill [9, Theorem 2].
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Lemma 2. Two cyclic quotient singularities Ntltpit pm=Cm/G and

Nn,P'l,...,P^=£'mIG'> with G and G' small, are isomorphic if and only

if n = n', and there exist a permutation i of {!,.. , m] and an integer

/c, Q<k<m, such that (/<, n) = i and Pik = pf
n(i) mod n.

In fact, Prill has proved more precisely that Cm/G and Cm/Gf are

analytically isomorphic as germs of analytic spaces at 7r(0) and 7r'(0)

respectively, if and only if G and G' are conjugate in GL(m, C), where

n and n' are quotient maps.

From this we get the following.

Corollary. // G is small, then the singular locus S of X coincides

with n(F), where F is the fixed point set of G.

Proof. It is clear that S^n(F). So let ^en(F) and take a point

CeF such that n(&) = ($. Then there exists a neighborhood U of

Q in Cm such that if G0 is the stabilizer of Q, then U is Gn invariant

and the quotient l//GD is analytically isomorphic to some neighborhood

V of 9J. On the other hand, as we have already seen, the fixed point

set of 0D, a generator of GQ, is some coordinate subspace //(M) of Cm.

After a suitable renumbering of coordinates if necessary, we may assume

that M = {!,..., fc}, where dimH(M) = m-/c and that g& acts on Cfe

by 0 n = O n o ' - - - ' g n o ) > where st are some integers. Let Q' = (0, z')e
Ck/G^xCm~k be the image of Q by the quotient map €m->C fe/GBx

£jm-fc composed with the above isomorphism. Then (t//GD, 7r(^D)) and

(Cfe/G0 xCm~k , , O') must be analytically isomorphic as germs of analy-

tic spaces. Then if F is nonsingular, we conclude that C f c /GQxC'm~ f c

and hence Ck/G0 is nonsingular. But since it is easy to see that GD,

considered naturally as a subgroup of GL(/c, C), is small, we have

Go = {e} by the lemma. This contradicts the assumption that QeF.
Q.E.D.

Remark 1. By Lemma 1 we have in particular

a) G is small if and only if (n, p l5..., pt,..., pm) = l for every i, where

^ means that pt is omitted, and

b) if G is small, then dimS=0 if and only if («, p^) = \ for every i,
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In fact, a) and the sufficiency of the condition in b) are immediate.

So suppose dim5=0, and (n, p f)>l for some f. Let {ji,...,A} be the
subset of {1, . , m} consisting of those elements for which (n, pjo) is

divisible by (n, pt) for every a, l ^a fg /c , and let M be the complementary

set of {ji , . . . , jfc} in (I,, . . , m}. Then by Lemma 1, /f(M) coincides with

F(f) for some f. But since F(0 = {0} by the assumption, M must coincide

with {!,..., m}. This is a contradiction because i£M.

1.2. The next procedure is the key step in the course of our

resolution of X. Namely, we propose to show the following

Lemma 3. Suppose X =NH>P1 mmmtpm is a cyclic quotient singularity

and assume that the group G is small. Then there exist a variety

X19 a finite affine open covering U = {Ui9...9 [//} of X± for an integer

/, l^l^m, and a proper birational morphism f: Xl->X such that for

each i there are isomorphisms cpt: U~Np'^qi t ^ql, where the integers

pi and ql
x are determined by the following formula:

p'i=Pi/d, with d = ( /? ! , . , pj,

q^p'a mod pi if a^i, and

0 mod p\.

(2)

Proof. The construction we have in mind when p/>0 for every /

is roughly as follows; first, we take an abelian covering /?:€'"(f)-»

C'"(z) with the covering transformation group // and then, define an

action of G on Cm(t) compatible with h so that X=Cm(t)IG®H. Next

we perform a monoidal transformation a: W0-*Cm(t) at the origin and

observe that the actions of G and H extend naturally onto W0. Finally,

we put X1=W0IG@H and define / to be the morphism induced by cr.

Then we see that this Xi and / have the desired properties.

Now we shall see these more closely. First we consider the case

where pt> 0 for each i. Then the abelian covering /?: Cm(t)-+Cm(z)

is defined by

The covering transformation group H of /? is isomorphic to the direct
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sum GiQ-'-QG,,,, where Gt is the cyclic group of order pt, a generator

gt of which acts on €m(0 by 0f =(!,..., epi,..., 1) with epi on the j-th

place. Moreover, we define the action of g on C"'(t) by

g =(en,...,en).

Then it is easy to see that this is compatible with /?, namely, the equality

g-h=h-g holds. Now let a: W0-+Cm(t) be the monoidal transformation

at the origin. Then VV0 has the natural structure of a line bundle over

a projective (m — l)-space P'""1 with homogeneous coordinates ( ^ 1 : - - - :

<Jm). Indeed, if we define 1^ = {({) e P1"- * ; ^ ^ 0}, then py0 is expressed

as Wr
0 = C/(PjxC) , where (p, f , ) eF £ xC and (g, C^eJ / .xC are identified

i-l
if and only if p = q and ^.=(^./^.)^.. Then the map cr has the following

form on each Wf = VtxCi

if

Note that Wf is isomorphic to Cm with the coordinates O^/^,..., ^w/Ci?

Q. By (3) we see that the actions of # and ^t-, / = !,.. ., m, extend onto

% as follows; on W?9

•=(1,..., 1, ^J5 I , . . - , 1) with ^Pj on the j-th place, if j ^ i

=(1,..., 1, O

i=(e~^...,e-^ epi).

Then, as in 1.1 if we set W}=Wf/Gt with G^GQG^ ...... ®Gt® ......

©Gm, then W\ ^Cm(w\1,..., w^1) and if we identify W\ with Cm(wn) by

this isomorphism, then the quotient map is defined by

with C" on the /-th place. Moreover the action of Gt induced on

takes the form;

However, Gt may not be small with respect to the action on W\. In
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fact, by Remark la), Gt is not small if and only if rf=(p1,...5 p l f l)>l,

since G is small. In any case we put Wi = WH{g$}. Then again as in

1.1, W^Cw(w\,..., wj,), the quotient map pt: W}->Wi is defined by

and the induced action of G—GiKgt} has the form

where Pi=pi/d9 gt is the natural image of g{ in Gi9 and Gt is small.

Now we set X^W^G®H and U^^Wfl l ^ i ^m, where n'.W^X^

is the quotient map. Then by the above description we have Ut =

WjlGh and hence U = {C/1,...5 Um] makes a finite affine open covering of

X± such that each member L/f is isomorphic to a cyclic quotient singu-

larity Np'tqitmfmtqi of order pj. Here the integers ql
a are defined by

(2), taking 071 as a generator of Gj. Finally, if we recall that X =

Cm(z)/G@H, and that the action of G and H on W0 and X commute

with cr, then we see that a induces a birational morphism /: Xf+X.

Next, we consider the case when pt = 0 for some /. After a suitable

permutation of w;, we may assume that pl+i = ••• =pwl=0 and Pf>0 for

/^/ for some />0. Then gf =(££',,.., ej1, 1, , . . , 1) and A" is naturally

isomorphic to (C'/G) x C'11"', where the action of G on C' is defined

by g =(^S1,..., ej1)- ^ut Y=Cl/G. Then we may apply the above
considerations to 7 instead of to X. Suppose Y1? 23 = {K l5..., FJ, and

^: yj-^y correspond in the above consideration to Xl9 It, and /: X^-tX

respectively. Then we put Xl = YxCm~l, ll = {Ut' l/^l^xC, 1 ̂  f ̂  /},
and f=gxid: X1->X9 where id is the identity map of Cm~l. Cor-

respondingly, we get the groups Gt and the isomorphisms q>t: Ut^

NP',qi,...,qm with qi = Q for / ^ /+1 . The relations in (2) are obvious,

and hence the proof of the lemma is completed.

Now we summarize in the following lemma the properties of the

covering H, and the morphism /, thus obtained.

Lemma 4. i) // we denote by nt: W{- >l/f, l :g /^/ , the quotient

maps, then Wij=n^l(Ui(}Uj) is an open subset of Wt defined by w^O.

ii) The multivalued map nij=nYinj: Try^L^n Uj)-^nYl(Ui fl U j) is de-
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fined by

where (w/) i /p i denotes any p'rth root of w{.

in) The multivalued map 7c0i=7i;"17r;: W;-»Cm(z) is defined by

if

iv) Let T 6e £/ie automorphism of X induced by an automorphism

T' of Cm(z) of the form T I /=(T I , . . . , TOT), then T extends uniquely onto

X so that it leaves each Ut invariant and T\Ut is induced by the

automorphism Tt of Wi=Cm(wi) of the form

T- = (T TTPllPi T»/Pl T TTPm/Pi}A i — \ L l L i > • • • » L i » • • • > lmli ) '

v) Let F0 be the fixed point set of g, 50=7r(F0), and Sl=f~l(S0),

then n T ^ U i f t S i ) is defined by w}=0 in Wt.

The proofs are all straightforward and we omit them. We only

note that the construction of Xi and /A depends crucially on the choice

of a generator g of G as in (1), or equivalently, on the choice of an

isomorphism cp: X ^Nlliplj >Fm (see an example in 1.4).

1.3. For resolutions of the cyclic quotient singularities, we have

to deal with a little more general situation. So let X be a variety and

suppose there exists a finite affine open covering U = {Ul9..., l/J of X

such that there exists for each i an isomorphism (pt: l/i = Nn i p(o.. .p(i),

where each N, j£p(o...p(n =Cm(ui
1,..., t/jJ/Gj is a cyclic quotient singularity

defined in the introduction. In this case we call nt the order of Ut.

We denote such X and U simply by the pair (X, U). Hence, when we

speak of a pair (X, U), it is supposed that we are given a variety X

and a finite affine open covering H of X such that to each U{ there
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are assoicated an m -dimensional affine space Cm with the coordinate

system (w\, . . . , wjn), a cyclic group Gi with a fixed generator gh and an
(o (o

action of G; of the form gi=(ep
n^ ,..., e*>M ) on Cm together with an iso-

morphism (pi". Ui^CmjGi. Now let (X, II) be a pair. We say that l/^ell

is adjacent to 17/eU if TrrH^i fl t//) is defined by the equation u\ ^ 0

for some k = k(i9j). Note that in this case Uj is also adjacent to I7f.

Definition 1. A pair pf, U) as above is said to be admissible

if the following three conditions are satisfied:

(a) Any two members Ut and Uj of H can be connected by a

finite sequence of adjacent ones, namely, there exists a finite sequence

Ul9...,Ud with l7aeU such that Ul=Uh Ud = Uj and 17, _t is adjacent
to 17, for 0<f<;d.

(/?) Suppose I7f is adjacent to 17 -̂ and n^1(UinUJ) (resp. 7rj1(l7ic:

17;)) is defined by wj^O (resp. nj, ^ 0) in Cm(nO (resp. in Cm(us)),

where TI,-: C1"-^ I7f (resp. 7ij'.Cm-^Uj) is the quotient map p f :C m ->

Cm/Gj (resp. p^: Cm->Cw/Gj) composed with the isomorphism cp^1

(resp. (pj1). Then the multivalued map 7iij = nY1nj\ n'J1(UinUj)-^nY1(Ui

n 17 j) has the following form;

where n^ = ord Ui9 nj = ord UJ9 a(s)9 l^s^m, s^k, are certain rational

numbers, and finally n: {!,..., £,..., m}->{!,..., I,..., m} is some bijective
map.

(7) The groups Gf are all small.

Remark 2. a) For any point PeCm(ul) nll(n(P)) consists of at

most nt distinct points. From this, we see that the denominators of a(s)

do not exceed nt in their irreducible expressions.

b) Let Ui and Uj be as in (j8) and if Tttj has the form stated in

(j5), then so does n^ as is seen by solving the equation with respect

to uj.

Now let (X,U) and (7, S3) be admissible pairs and f:X-+Y be

a proper birational morphism. We say that / is compatible with the
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coverings U and 8 if for any Fae8, Ha = {l^eU| l^. c /-'(]/)} makes

an affine open covering of f~l(Vtx). Then the pair ( f ~ l ( V ^ , Ua) with

groups G/9 coordinates {u*}, and isomorphisms (pt: l/ f^Cm(M')/G» induced
by those of the original Ut is admissible. We denote this also by

Definition 2. Suppose (X, U), (7, 93), and / are as above. We

say that / is admissible as a morphism of admissible pairs (X, U) and

(7, 8) if / satisfies the following two conditions:

(a) / is compatible with the coverings It and 33.

(P) Suppose /(l^)cKa, then the multivalued map n~lfni: Cm(ul)-+

Ctn(va) takes the following form;

where b(i, s) are positive and rational numbers. Moreover an automor-

phism T of X is said to be admissible if r(C/i) = t/f for every UteU

and T\UI is induced by an automorphism Tt of Cm(ul) of the form

f f=(T l 5 . . . ,TW J) , T^eC*, where l/^C'V)/^.
For example, let X=€m/G be a cyclic quotient singularity. Then

(X, {X}) can be trivially regarded as an admissible pair. Next let Xl9

U, and f'.X^-^X be as in Lemma 3. Then, by Lemma 4 ( X l 9 K )

and / are admissible, and any admissible automorphism of X extends

uniquely to that of (Xl9 U).

On the other hand, if X is nonsingular in an admissible pair (X, U),

then since Gt are small, we must have nt = l and Ut are isomorphic to

Cm(ul). Then the multivalued maps nu in (/?) are nothing but the trandi-

tion functions with respect to this covering. Rewriting these, we have

where a(s) are now integers.

Now recall that a resolution of a variety X is a pair (X,f) consist-

ing of a variety X and a proper birational morphism /: X-+X such

that / is isomorphic outside f~1(S), S being the singular locus of X.

Then we are able to state our main theorem.
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Theorem 1. Suppose (X, IT) is an admissible pair. Then there

exists a resolution (X,f) of X and a finite affine open covering II

of X such that the following conditions are satisfied;

1) (X, K) is admissible,

2) / is admissible as a morphism of admissible pairs (X, II)

and (X, U),
3) any admissible automorphism T of Ut extends uniquely to that

off-l((Ui9{Ut})l and

4) f'1(S)f]tfgt is defined by w f t . . . w f t = 0 in #a^Cw(wa) for some

&!,.. . ,&„ if it is not empty.

From 4) we derive easily the following.

Corollary. Let E = f ~ } ( S ) . Then E has only normal crossings in

X and every irreducible component Ei of E is nonsingular and rational.

Further E{ is covered by finite affine open subsets, each of which is

isomorphic to Cm~l.

Proof of Theorem 1. First we consider the set 0 of maps (p: JV->

AT U {0} such that (p(N)^Q and (/?(/i)=0 for all but a finite number of

n's, where N is the set of natural numbers. We shall introduce an order

on the set 4> in the following manner. Let <pl9 (p2£& and n0 be the

largest integer for which 9i(no)^(p2(nQ). Then we define <pi<(p2 by

the inequality <pi(H0)<(P2(wo)- % this, <P becomes a totally ordered set
with a minimal element <p0, which is defined by 90(1) = 1 and <p0(n)=0

for n^2. We associate then to each admissible pair (X, U) an element

of <P, which we denote simply by <px since no confusion may arise, by

<Px(ri) = %{UiEll', ord Ut = n} for w e J V , where 9 means the number of
elements of the corresponding set. Then by the above remark we may

try to prove the theorem by induction on cpx. If (px=(p0.> or more

generally, if (px(n)= 0 fc>r n^2, then it is sufficient to define (X, U) =

(X, U) and f=idX9 the identity map of X, because then X is non-

singular. Thus we may assume that (px(ri)^l for some n^2 and that

the theorem has already been proved for admissible pairs (7, S3) for

which (pY<(px-
We define an integer /(i) for each 17, by /(0=#{pfc°
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k^m}9 where Ut is isomorphic to N n i i p d ) ,...,p(o by the isomorphism (p-t.

Clearly this is equal to the codimension of the fixed point set of Gh

and hence does not depend on the particular choice of the generator.

Set /=max/( / ) and take and fix one UioeU for which / = /(f0). Next,
i

let F0 be the fixed point set of giQ9 Si0 = ni0(Fo) and S0 the closure of

Si0 in X, where ni0: C
m-+Ui0 is the quotient map. Then our purpose

is to construct an admissible pair (X^U^ and a birational morphism

fi:Xl-+X, such that fl is admissible for ( X ^ U ^ ) and (X,U), that

/! is isomorphic outside f~1(SQ)9 and that (pXl<9x- For this, first we
construct for each Ut an admissible pair (Wi9 33f) and a birational mor-

phism il/iiWi-tUi admissible for (Wi9 Wt) and (Ui9 (t/J), such that \j/t

is isomorphic outside \l/ll(S0 n t/,-). And then we show that these WJ.

and £ are patched together and form the desired variety X1 and the
morphism f1.

First, put Wt = Uh J* = {tf,-}> and ^ = /rfU| if ^nS0=0.
Suppose then l/f e U is such that 17^ n S0 7^ 0, then, since Ff =

nY1(S0) is coordinate subspace in Cm(ul) of codimension /, we may as-

sume that Ft is defined by the equations M \ = - . . = W | = O in Cm(ul). Then

flf£ must be of the form gt = (eP
H^ 9..., e

p
n™ ) with rf}^0 for I g f e ^ / ,

but then by the maximality of /, we have pjt i )=0 for fc>/, namely,

flf(=(<sl),...,<}l>, i,..., i).
Now suppose further that Uj is adjacent to t/f and Uj

Then if nYl(Ut n I//) is defined by w^O in C^u4), then we must have

fe>/, for otherwise Ft would be contained in the hyperplane 14 =0 and

hence S0 n Ut n Uj = (/)9 which contradicts the assumption. Thus we may

assume that k = m renumbering the coordinate if necessary. Considering

analogously with UJ9 we may also assume that Fj = n~j1(S0) (resp. n~j
l(Ui

nUj)) is defined by M { = . . . = W / = O (resP- wm/°) in Cm(uj) and ^ =
p W) n (j-)

(e^1 ,..., en
z ,!,...,!) on Cm(uj). Then we get the multivalued map

Uij in he following form;

«i = «i((«i)flfc if * T^I
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Assertion 1. i) For the given generator gt of Gh we can take a

generator g;- of Gj so that nt = n} and p(^=p^j} for all a.

ii) The multivalued map n{j above lias in fact the following form',

(4)

4 = w£(w,i) f lk if k * i and k ^ I

k = uk(um)ak9 with ak integers if k>l

Proof. Let Gt act on C'(w\,. . . , «{) by g=(eP
nf ,..., e\\ ). Then cor-

responding to the decomposition Cm(ui)=Cl(u\,...,u\)xCm~l(u\+^,...^ui
m),

we have an isomorphism CmIGi^ClIGixCm~I such that the quotient

map pi:C
m-*CmIGi corresponds to the product of p\\ Cl -*€*/£; and

the identity map of Cm~l. Identify CmIGt with C / /G /xC'm- / by this

isomorphism. Then we have the commutative diagram

1 <^- U.<pt

Proceeding analogously with I77-, we have the similar diagram for j.

Thus we get PT1-<PT l '(pj'pj = nll -uj on n~j
l(Ui n Uj). From this, we

obtain the following commutative diagram

CIG, x (C"-'- K=o}) -^> c'/^ x (c»-'- (i/^o})

where 9ij = <Pi<P71|(P7(\/£nt/J)5 ^i an(i ^j are tne projections to the second
factors and ntj is the multivalued map defined by ui

k = u{(u{l)
ak^ / + 1^

k^m — l, and i4I = (w/J)~"-' /"£. But since q)tj is an isomorphism, so must

be ntj. In particular it is single-valued. Hence, we conclude that n~

HJ and ak, l+l^k^m — 1, are all integers. This proves ii). On the

other hand, the linear isomorphism ^^-(P): C1 -+C1 defined by u[ =

uj
k(u

j
n)

ak,l^k^l, for each fixed point P =(i//+1,..., UJ
m) e Cm-l-{uj

m=Q},

induces the isomorphism (p^lcoj^F): C //GJ-=C //G i. Hence, by
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Gt must be mapped isomorphically onto Gy by Lemma 2, since both Ct-

and Gj are small. But gt is mapped to g'j = (e*i ,..., e^1' ) by the

definition of $,-//?), so we may take this to be the generator of Gj.
Q.E.D.

Now fix once and for all a generator gioeGio. Then by the admis-

sibility of (X, U) and by the above assertion, we can successively define

a distinguished generator g't of Gt for every f for which C / j f iSo^^ ,
with the following properties; if C/f is adjacent to I/,-, and is related to

Uj by the multivalued map ntj as above after a suitable renumbering of

coordinates depending on i and j, then nt = nj ( = nio) and pi0^*^,
Igfcg/ . We leave the precise argument to the reader. But for the

proof it makes no difference if we change the generator gt to g\. So

we assume that this change has already been done, and we denote the

new generators also by the same letters gt. Then by Lemma 4 3)

and 5), we see that \l/f is isomorphic outside \l/jl(S0nUi).

We define now for each Uh l/,nS0^ Wi9 ^ = {^,...,7}} and
il/i'. Wi-^Ui as those constructed in Lemma 3, taking Ut = X, Gt = G and

so on.

The next step is to show

Assertion 2. The birational map ^ij=^Tlll/j gives an isomorphism
of^(U^Uj) and ifc-Wnl/,).

Proof. If either U f n S 0 = < ^ or 1/^05 = 0, then this is obvious, be-

cause then both \j/j l and i/fj1 are isomorphic on Utr\ Uj. So we assume

that Ut n Uj n SQ ̂  ^ (note tnat tms is equivalent to Ut n S0 ̂  0 and I/, n
SQT^^). If we show that i^fj- is holomorphic at each point of i^y1(l7 fn
17 j) as a map of analytic spaces, then by Z.M.T., we see that this is a

morphism of varieties, and since this holds also for \l/ij9 we get that i//^

is an isomorphism. To prove that ^{j is holomorphic, we go back to

the situation and the notations given in the proof of the Assertion 1.

There, we defined for each point P = (w/+1,..., uj
m)e €m~l — {uJ

m = Q}9

the linear map (pij(P): Cl-*Cl. But if we take a simply connected

subdomain D in Cm~l — {uJ
m—Q} and choose a suitable branch for each

(uj
m)ak, the same formula with $0-(P) defines the isomorphism
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Cl-+Cl depending holomorphically on D: Further this fits into the

following commutative diagram;

Cl x ntj(D) <--̂ ^ -̂ Cl x D

1 !
C l I G i x n i j ( D ) < - ̂

D .

From this we infer readily that i/^- is holomorphic on \l/^l(D) by the

definition of \l/j. Q.E. D.

s
Now we define X1 to be the union X L = W F^, where if Ut is ad-

1=1
jacent to Uj, then (w f) e W\ and (w-0 e Wj are identified if and only if

(wOei/r^n t//) (resp. (w-Oefj1^ n UJ)) and ^yl(w
i)=(w-'). Then de-

fine fi\ X<L-*X by the condition that f \\W~\jJi. It is easy to see that

by the definition, Xl becomes a variety and fl a morphism of varieties.

Moreover we shall prove

Assertion 3. The pair (Xl,l\1) is admissible, where 111 is the

union of the ocverings (tB/.

Proof. First we fix Ut and Uj which are mutually adjacent and

make some preliminary considerations. We distinguish three cases; 1)

neither Ut nor Uj intersects with S0, 2) either Ut or Uj intersects with

S0 but not both, and 3) both Ut and Uj intersects with S0.

In case 1), since Wt (resp. Wj) = Ut (resp. Uj) by construction, Wt

is adjacent to Wj and the corresponding multivalued map satisfies the

condition (/?).

Next we consider the case 3). We may assume that ntj is given by

(4). Then Wt (resp. Wj) is covered by / affine open subsets Vil9...9 Vn

(resp. VJ19...9 Vjd and the multivalued map TiJ"1^^: C^v^-tC^u*),

1 ^ s ̂  /, has the form ;
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(5) 4 = <yis)&k4s for l ^ f c g

[w^ = y[s for m^.k^.l+1,

where TT^: Cw(t>'s)-»F^s is the quotient map, and bk are certain rational

numbers. Here we write down also the inverse to the above map for

convenience.

I ?»=( I /J)«i/n,.

(6) i4s = i4(wi)~l"6k/li|- for 1 ̂ & = / and k^s

Is = u\ for m ^ A: _ / + 1 .

These follow from Lemma 4. From this, it is easy to see that Vis and

VJs are adjacent to each other, and no other two Vik and Vjv are ad-

jacent. Moreover since 7itj = 717l KJ = (TT^^TT^)' 1 (717l nj) (7171 \l/jnjs)9 using

(4) and (5) we infer that this has the following form;

Cl\

^ J

Hence the condition (jS) is satisfied for Vis and Vjs.

Finally, we deal with the case 2), say, when U y D S o ^ ^ - The
alternative case can be treated analogously. Then if nY1(UinUj) is

defined by w^O, then l^s^L For, otherwise, l^nSo?^- Hence
we may assume that the multivalued map ntj has the form ul

k = (uj
s)

akuj
k

for k^s and ui
s=(ui

s)
nJ/ni. Then we see readily that Vis is the only ele-

ment which is adjacent to Wj and that ^Tlnjs=(7lTlnj)(n^1{l/jnjs) takes the
following form;

(8)
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This gives the condition (/?) for Wt and Vjs.

Using these results we shall now prove the condition (a) for (Xl9

U^). So suppose Ff is adjacent to F§. Then, by the admissibility of

(X, U), there exists a finite sequence UQ9..., Ut such that U0 = Ui9 Ut =

Up and Up is adjacent to Ufl + i for Q^^i^t — 1. Then, by the previous

considerations, there exist for each successive pair (Uk9 Uk+l), Q^k<t,

Fa(fc)e33k and J^(k)e33k+1 such that 7a(k) is adjacent to Vp(k}. But by

virtue of Lemma 4 Fa(fe+1) is adjacent to Vp(k). Hence, Va9 Fa(0), Vp(0},...9
Vp(t-i), Vp is the sequence of adjacent members of Ul5 which connects

Fa and Vp. This proves (a).

Next, in order to see the condition (/?), again by the previous con-

sideration, we have only to show that if Fa is adjacent to Vp and if

Fae93,. and VPE3$J9 then C7f is adjacent to Uj. But this is easy to check

by virtue of Lemma 4, iii).

Finally, the groups Gf are small by construction. This is (y), thus

completing the proof of the assertion.

In order to apply the induction hypothesis to the admissible pair

(Xl9 Uj), we have to see that (pxi«Px- But by construction we see

that for any Vxe^t if l / f f lSo^, tnen ord Fa<ord 17, and if l / f nS 0 = 0,
ord Fa = ord C/f, where ord Fa (resp. ord [/,-) denotes the order of Fa (resp.

of Ut). Hence cpXl<9x-

Hence by the induction hypothesis there exist a resolution (X9f2)

of Xi and a finite affine open covering U of X satisfying the properties

stated in the theorem. Hence 2)j_ /2 is admissible as a morphism of

admissible pairs (X9 H) and (X l5 Hj), 3)j any admissible automorphism

of (X19 Ht) extends uniquely onto that of (X, U), and 4)t /iH^i) n C/s

is defined by M j 1 . . . w J M = 0 for some fclv.., fcM if it is not empty, where

Sj is the singular locus of Xl. Set /=/2'/i, then since /x is isomorphic

outside /I1 (S0) and S0^S, we see that (X,/) gives a resolution of JsT.

We show that these (X, /) and (X9 U) satisfy the requirement of the

theorem. For this, we have to check the conditions 2), 3) and 4)

of the theorem. Note first that f^ is admissible since so is each ^

by Lemma 4, 3). Then it is clear that / is admissible as a composition

of two admissible morphisms /t and /2. This checks 2). Next, let T

be an admissible automorphism of Ui9 then by Lemma 4 this extends
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uniquely onto an admissible automorphism of (Wh 2^) and this in turn

has the unique extension to an admissible automorphism f ~ l ( ( U i 9 (£/J))

by 3)t. This is 3). Finally we deal with 4). Note first that f ~ l ( S ) =

/zKSOU/lK/I^So]), where /I1 [So] is the proper transform of S0

in X^. By virtue of 4)x above it is enough to see that /21(/T1[S0])n

Us is defined by the equation M|1w|2...w|M=0 on U5 if it is not empty.

But this follows from 5) of Lemma 4 and the admissibility of /. This

completes the proof of the theorem.

Remark 3. a) From our construction the resolution map / is seen

to be naturally decomposed into /=/i-../d, such that ft: Xi-^Xi_l9 l ^ f g
d, are proper birational morphisms with X0=X and Xd=X whose excep-

tional loci Et are irreducible. Moreover if we put s(0=dim/i(£i), then

the function s(f) is nondecreasing for I rg igd . Further if s(i) is constant

for a^i^b and if we put f1...fi(Ei) = Ei
a9 then these El

a, a^i^b, are

disjoint. Hence we have f i f i + l =fi+ifi for a ^ f , i + l£b in an obvious

sense. For example let X=Nnipli tpm be a cyclic quotient singularity.

Then 5(0=0 for all i if and only if n,pi9...9pm are all relatively prime

as follows from Lemma 4 and Remark Ifo).

b) In constructing a resolution of an admissible pair (X9 II) accord-

ing to the inductive method described in the proof of the theorem, we

have a finite number of choices in taking generators of Gi9 or taking

isomorphism (pt: U^ Nnttp(n f...§p(o at each step. In general different

choices of generators lead to different resolutions, as was indicated in the

remark at the end of 1.2 (see an example in 1.4).

c) We say a resolution /: X-+X is special if in each step f{: Xt-+

Xi^1 of the resolution, the isomorphisms (pt: Ui^Nn.tp(n,...,p<o are taken

so that p(k) = l for some k. If X = N n t p i t t m m t p q and (pt, ri) = l for some

i, then a special resolution of X exists as follows from Lemma 3. For

the motivation for this definition, we refer to Remark 6 after Proposi-

tion 1 in the next section.

1.4. By way of illustration we apply the above method when m=2,

and next, examine the case when m = 3.

1.4.1, Let X = C2/G be the cyclic quotient singularity of dimension 2.
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If the group G is small, then it is easy to see that there exists a unique

generator geG such that g=(en, e?) with Q^p<n and ( p , n ) = \ with

respect to the coordinate (z l5 z2) of C2. Then taking g as a generator

of G we construct Xl5 U = {1/1, C/2} and /: X\-»* as in 1.2. Then by

Lemma 3 U^C2(u^ v{) and I/2 = N p > l i P l , where P! is defined by the

following formula; 0^ Pi<p, n=blp — pl, b^2. Next applying the

same process to U2=Nptltpl, we have a variety X2 .with an affine open

covering {U1? l/21, 1722} such that U21 ^C2(w2, i;2) and L/22= Npl,i,p2,

where this time p2 ^s defined by 0^Jp2<p1, P = b2pi—p2i b2^2. Then
using 2) and 3) of Lemma 4 the transition functions between Ul and

1/21 are calculated as follows;

Continueing analogously we are finally led to the minimal resolution /:

X-+X of X first constructed by Hirzebruch in [3] (see also [12]): De-

fine positive integers lk, ]nk Org /c<s+l , and bk, l^k^s by the formula;

(9)

Then X is covered by s+1 copies Wk, 0^/<^5, of complex affine place

C2 with the coordinate (uk, vk) and the transition functions between Wk^.l
and Wk are given by the following formula;

The rational map T: C2(z l5 z2)-+X is given by

(10) r f c : ( j l f r 2 ) - > (z i*z r s -T^«rS^ t ) e fF fc.

Further if we define nonsingular subvarieties 9k9 1^/c^s, on X by

on l

on
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k
then / is isomorphic outside 9=\j9iy Ok ^ F1 and the selfinter section

i = l

number Ok-9k= — bk. Hence in particular there are no exceptional curves

of the first kind in f ~ l ( t y ) , where ^ is the singular point of X. But

if we make no normalization of the generator as above, then the resolu-

tion is in general not minimal. For instance, let X = C2/G and G = {g}

with g acting on C2 by g=(e\, e*). Further let /: X-+X be the resolu-

tion of X obtained in the theorem and let tyeX the singular point of

X. Then /~H^P) consists of nonsingular rational curves Cl5 C2, and

C3 with intersection numbers (C1)
2 = -3, (C2)

2 = -l, (C2)
2 = -4, CVC2

= 1, C2-C3 = 1 and CVC3=0.

1.4.2. So we may consider some kind of normalizations also in the

higher dimensional cases, and expect a certain minimality condition for

the resolutions. But in the following we shall restrict ourselves half for

simplicity to the case when m=dimZ = 3, and assume that (n, pi) = l.

In this case we can take the canonical generator g E G by the condition

that g =(en, e*9 e*), where O^p, q<n and (n,p,q) = l. Here we have

assumed that the group G is small (c.f. Remark 1). Then we often

write X=Nn.pmk instead of X=Nntltptq.

Now suppose Xl9 U1={L/1 , U2, U3} and f^.X^X are as in

Lemma 3. Then since q2=q3=l, we nave tne canonical isomorphisms

and U^Nqiq2939

where p2, p3, q2 and q3 are determined by the following formulas;

(11) p2 + n = Q modp, p^ = q modp and Q^

and

By Lemma 4 the transition functions n{j and the rational map

C3(z) are given respectively by

(12)
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l/» r ?i=w2(w2)l/n

From this we see that we can define the canonical way of resolution

for such X. To state this precisely, we shall consider some preliminary

cases. So suppose X=NrtilipxC and h0: Nntltp->Nn^tp is the minimal

resolution. Let h=hQ x idc\ N,1j l>px C->JV n > l f p x C be the resolution of

X obtained as the product of /?0 and the identity of C. Then we say

that the resolution /? of X is minimal. Next suppose (X9U) with U =

{£/!, L/2} is an admissible pair. Assume that Ui = C2(ul, vl
9 w')/{#J and

9i=(en, ep
n, 1), / = 1,2. Obviously each L^ is isomorphic to NnAtpxC.

Then the minimal resolutions of Ut coincides on the intersection L/t n C/2

and gives a resolution /: X-+X of X. We call this the minimal resolu-

tion of X. Further in this case if the transition functions between Ui

and U 2 are given by the formula

with a£ some rational numbers, then X is covered by 2s copies v(9 1 ^

fc^s, / = 1,2, of C3 with the coordinates (w[, v[9 w() such that the transi-

tion functions between them are given by the following formula;

U\

(14)

where 5fe and Afc, /xfc are defined by (9). This can be proved easily if

one uses (10). Note that the minimal resolution is unique.

Now suppose X=Nn;piq as before and /: X^X is one of the resolu-

tions obtained in the theorem. Decompose / into /=/!•.. /<* as in the
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Remark 3 a). Let Et be the exceptional locus of /> X-^X^^ and set
£).=/.(£.). D. is either a single point or isomorphic to a projective line.

We may assume that Dt is a point for i^b and is a line if i>b (c.f.

Remark 3 a)). Each Xt has a natural affine open covering Uf such

that (Xt, 11^ is an admissible pair. If Df is a point, then there exists

a unique member C/i'-^eU,..! such that D£el/<r1} and //l/rH^"0):

/r1(^"Li~1))"> ^i""1) is tne maP which replaces (7^~1} by three affine open
sets U(£, E/J& and 17$ according to the method of 1 .2. We say that

/i.../i, l ^ i ^ f c , is canonically defined if inductively 1) fl...fi-l is canoni-

cally defined and 2) /il/rK^a'""1*) is wrtn respect to the isomorphisms

C^t/L'2
) = 7V, I(o ; l 7(o,co a n d n i P

prescribed in Lemma 3 as explained above for suitable integers n^,

P(o?k> q.(Kk' Next, consider the admissible pair (Xb9 Ufc). The singular
locus of Xb is the disjoint union of nonsingular curves Q, i = 1,..., /,

each isomorphic to a projective line. For each Q there exists a unique

pair (U(b\ U(^) of the members of Ub such that (£/<*> U U(
p
b\ (U(*\

U(pb)}) is an admissible pair of the type considered before. So we may

speak of the minimal resolution of X along each Q. Then

Definition 3. We say that the resolution / is canonical, or / is

the canonical resolution of X, if i) /!•••••/& is canonically defined and

ii) fb+i'-fd defines the minimal resolution of each Q.

The canonical resolution is one of the special resolutions defined in
Remark 3 c).

To describe the minimality condition, we make the following defini-

tion after Moishezon.

Definition 4. Suppose X is a complex manifold of dimension 3 and

S is a connected submanifold of X of codimension 1. Let Ns/x be

the normal bundle of S in X. We say that S is the exceptional surface

of the first kind, if either S is isomorphic to F2 and Ns/z^—HP2,

or S is isomorphic to a F1 bundle over a manifold of dimension 1 and

NS/X I F = — Hp, where H is the hyperplane bundle of the corresponding

projective space, and F is the general fiber of the fibering of S.
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Remark 4. If an exceptional surface of the first kind S is compact

and rational, then either S ^ P2 or S ^ Tm, the Hirzebruch surface of

degree m. Im is a P1 bundle over P1 obtained by adding an oo-

section to a line bundle of degree — m on P1. We call the 0-section

of this line bundle also the 0-section of Im. In particular, I'0=P1x

P1 and it has two different fiberings of P1 associated to the projec-

tions to the first and to the second factors. Conversely, it is known

that I0 is the only one among Im which has two structures of P1

bundles.

Now let /: X->X be the canonical resolution of X=Nn,p>q. Let S

be the singular locus of X, 9 = f ~ l ( S ) and Ol9...,0c be the irreducible

components of 9. Let /=/i,...,/d be the decomposition of / as in

Remark 3. Suppose some 0a = r0
 anc* is the proper transform of the

exceptional locus of ft: X^X^^. Then either of its fiberings fj,:0gi-*Pl

is said to be incompatible with f if f t , . . . , dd(9a) is a curve Ca and /),...,

fd sends each fiber of ju onto Ca. Then we can prove

Proposition 1. Suppose /: X->X /s f/?e canonical resolution of X =

Nn.ptq and S, 9 and 9t are as above. Then none of 9a are exceptional

surfaces of the first kind except when 9^ = I0 and N0gc/x\F=—HF9 where

F is the general fiber of the fiber ing of 9X incompatible with f.

Proof. Let /=/1? ..,/d be the decomposition of / as in Remark 3

and Ei the exceptional locus o f / f : X^X-^^ Let Et be the proper trans-

form of Ei in X. We have to show that Et are not the exceptional
surface of the first kind unless it comes under the above exceptional

case. Set />£=/)(£/). First we consider the case when dimD£ = 0. Then

EI is isomorphic to a projective plane divided by a cyclic group. Indeed,

by Lemma 3 and 5) of Lemma 4 we see that Et is covered by 3 affine

open subsets F1? V2, V3, each isomorphic to C2, Np'tltp.^ and Nq>tq>2ti

respectively, where we assumed that there exists UKell(i~l) with the ca-

nonical isomorphism with Nn>.p>q- such that /^eUa and where p'3 and

q'2 are determined from p' and qf by the formula corresponding to (11).

But since Et are nonsingular by the theorem, the induced map EI-^EI

gives the resolution of the singularity of Et. Now since Ztn (resp.

P2) have 2 (resp. 1) as the second betti number, from this, we can
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readily infer that Et is isomorphic to neither of them unless in the

following three cases; i) (p'3, g'2)=(0, 0), ii) (p'3, q'2)=(\, 0) (iii) (p'3, g'2) =

(0, 1). But i) is equivalent to p = q ii) to p=\ and iii) to q = i. These

cases are dealt with in the following two lemmas.

Lemma 5. (Ueno [12]) Suppose f: X-*X is the canonical resolu-

tion of X=Nn.ptp. Then X is covered by 2s + 1 copies Vk, l^fcgs,

/ = !, 2, and V0, of C3 with the coordinates (uk, v
l
k, wl

k) and (u°, v°, w°)

respectively and they are connected by the system of transition functions

as follows;

(15)

where Afc, jufc a/trf bk are given by (9).

Proof. Set h=f2,-,fd: X^Xt and ^^fc-Ht/i) for i = l, 2, 3.
Then // |^2U^3 defines the minimal resolution of t/2 U C73. Hence W^2 U P73

are covered by 2s copies Vl
k, 1^/c^s, i = l, 2 of C3 with the coordinates

(14, y^, iv^) and the transition functions among them are given by (14),

namely,

u\ =

where kk, \i'k, b'k are determined by the euclidian algorithm of (9)

putting this time A0=/> and kl=p2. In fact, in this case we can take
ai = — l/P and a2=njp in (14), as is seen from (12). But if Afc and
fj.k are the integers defined by (9) from n and p, then we can show

inductively the following relations;

Hence we have obtained the first two relations. The last one is easily



CYCLIC QUOTIENT SINGULARITIES 317

deduced from (12), (13) and (8). Q.E.D.

Lemma 6. Suppose f: X-^-X and /': X'->X be the two canonical

resolutions of X, according to the isomorphisms X^Nn;ptp and X^

JVn;l p> respectively, where p and p' are related by pp' = lmodn. Then

there exists an isomorphism ft: X-+X' such that f'h=f.

Proof. We shall only indicate the method of proof and leave the
explicit computations to the readers. It suffices to prove that X' is
covered by 2s + 1 copies of C3 and that the transition functions between
them are given by (15). Decompose / into /=/i •••/<* as in Remark 3.
We prove the lemma by induction on d. In fact, in this case we have
Ui^U2 = C3 and U3=Np,.1>p'3 by (11). Thus we may apply the
induction hypothesis to the canonical resolution ft: h~l(U3)-> l/3, where
h=f2-"fd\(fd'"f2)-

l(U3). Hence if we set W3>=h~1(U3), then W3 is
isomorphic to the canonical resolution Np>.p,'p>, of Np>.p,.p», where p"
is defined by the formula p"pf = 1 (mod p') and Q^p"<p'. Then we

~ . s-l .
have to show that NP>;P"P" is isomorphic to W Vl

k U F0 in the nota-
fc= 1

tion of Lemma 5. But this corresponds to the fact that if n/p =
b1-llb2-llb3---_\/bs, fr/^2, is the expansion of n/p into the continued
fraction, then that of p'/p" is given by p'lp" = b} _ l / 6 2 _ - - - _ l / b s _ 1 .
This can be derived from n / / ? / = b s _ l / b s _ 1 _ - - - _ l / b J . Now it remains
to see that the transition functions with respect to V\ and l/0. But
these can be calculated using (12) and (8) to coincide with the last
relations of (15). Q.E.D.

Now we define nonsingular subvarieties 0k, l^k^s, of X by the
following formula;

0! : M° =0 in F0, v{ =0 in F{, v\ =0 in Ff

wi_ 1 =0 in Fi_! f = 2 , 3 and fc=2,...,s.

4=0 in V\

s
Then f ~ 1 ( P ) = ^ j 9k, where P is the singular point of X and 9k is the

k=l

proper transform of the exceptional locus of fk) when we decompose
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/ into f = f i ' " f d as usual. Note on the other hand that if /'=/i •••/;*

is the decomposition of /', then 6k is the proper transform the ex-

ceptional locus of fd_k. Roughly speaking, / and /' are the resolutions

of X from the opposite sides. Now from Lemma 5 we can see im-

mediately

Corollary to Lemma 6 [12]. i) 0 t ^P 2 and N0l/x ^ -b^E. ii)

Ok9k=29-~,s, is isomorphic to 1^. If F is the general fibering of

9k9 then Nek/x\Fc*-bkH.

For the precise proof we refer the reader to Lemma 4.3-4.6 of

[12]. We only note that since ^^^2^2 for /c^2, we conclude that

9k£20, £%! for any k. Hence in particular there exists no exceptional

surface of the first kind at all among 9k.

Now we continue the proof of the proposition. By virtue of the

above results we may assume now that dim 1^ = 1. Then Et coincides

with an irreducible component of (fb'~fd)~l(Cj) f°r some C,. Set
fb=fb-"fd. Then fb\Et: E^Cj gives the natural structure of a F1 bunddle

on Et. Then by [14] we see that NEi/^\F^—bHF with b^2, where

F is the general fiber of fp\Et. Thus Et can possibly be an excep-

tional surface of the first kind only along the incompatible fibering of

Et. This proves the proposition.

Remark 5. If «, p, q satisfy the following condition, then in the

canonical resolution /: X-+X9 the exceptional case of the proposition

occurs :

Set (p,q)=d and define integers pi9 qp nf, nq
j9 Og /^s+1 O ^ j ' g f ^

by the formulas;

Po=P> Ps=d, P s+i=0 q0=q, qt=d9

n=d0p-np
l9 Q^np

l<p n=e0q-nq
l9
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Then rf, =n^+l =n?+1 is the integer defined by dl + H = 0 (mod J) and

O^d^d. Now let Pi=pi/d, qlj = qjld and set

P' = 1 /p'oM + ... + l Ipi_lp'g9 Q' = 1 /r/'o^ + - + 1 lq',_iq\

Moreover let /Lfc, nk, 1 ^ k ̂  b, be defined by the algorithm of (9) put-

ting )^=d and 1!=^! there. Now our condition is stated as follows;

there exists /<, l^k^b, such that

'-llp'q'=Vk and

Remark 6. Lemma 6 and Proposition 1 would certainly be true

for any special resolution.

As an example of the explicit resolutions we take X = C3/G, where

G = {g} and g acts on C3 by g=(e5, e\, e\). Then according to whether

we take g, g2, or #3 as a generator of G, we have the isomorphisms

X = N5.2t3, X^N5.2A, and X^N5.3A respectively. Let ft: X-+X, 1 ;g

fg3, be the corresponding canonical resolutions of X. Then fol(p) =

0 ( i ) look as in the following figure, where P is the singular point of X.

N5;23

N 5;24

0t: rational

02SP2 N0l/Sl&-2H

63^I2 N9ilSl\F^:-2Hf 62: rational

04=P2 Nt4/XlSZ-2H ()^I2
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N5 .3 4 0{ : rational

F = —

§2. Resolutions of General Isolated Quotient Singularities and

Isolated Singularities with C*-action of Dimension 3

2.1. Let X be a complex space of dimension 3 and ^ be a point

of X. Suppose there exists a neighborhood U of ty in X such that

U is siomorphic to D x 7, where D is a unit disc { f ; 0 ^ | f | < l } and Y

is some neighborhood of the singular point Q of the cyclic quotient

singularity Nnjmp. Let q>: U^DxY be the isomorphism, and h: Y-+Y

be the minimal resolution of 7. Then f=((p)~l(idDx h): D x Y-+U

defines a resolution of U. Now let U' be another neighborhood of

^ with an isomorphism <p' : U'^DxY' and let f';DxY'->U' be the

resolution obtained analogously using the minimal resolution h': ?'->

Y' of 7', where Y' is again some neighborhood of the singular point

£}' of a cyclic quotient singularity A f f l , f l > p , . Then we have necessarily

that n = w ' and p = pn\

Lemma 7. 77? e above f and f coincide on U fl £/', or

cisely, there exists an isomorphism \l/\ f~l(U n U')=f'~1(U n C/')

Proof. First, recall that a quotient singularity is ratinoal [1, Satz

1.7]. Then, by [7, Chap. I], [11, Theorem 1] any of its resolutions is

obtained by succession of a finite number of quadratic transformations.

Namely, let 70 be a quotient singularity and h0: TQ-^O a resolution.

1) This is in fact the consequence of the following lemma 7, which makes no use of
this fact, together with the uniqueness of the minimal resolution of a normal singU'
larity of a surface and the rigidity of quotient singularities [1].
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Then h0 can be written as /70 = /?2 . . . / ? ? , where /??: Z,— > Z f _ l 9 1 g /g r f ,

is the moniodal transformation with center the singular locus St- of

Zr with its reduced structure and Z0 = Y0 and Zd=Y0 . In fact, Zt are

all normal and S{ consists only of finite number of points [7, Prop. 8.1],

[11, Prop. 1.2]. Now we define a resolution /0: U"-+U" of U" = UnU'

inductively as a succession of monoidal transformations with nonsingular

center as follows; first let /?: U1-^U" be the moniodal transformation

with center the singular locus S" of U" (S" coincides with V n <p(D x

£}) and hence is non-singular). Assume now that /?: 17,— >l / f c _ 1 , 1^/^s,

have already be defined. Then we define /°+1: l/s+1->L7s as a monoidal

transformation with center the singular locus of Us. Then by the defini-

tion of /0, /? is naturally isomorphic to both /f = idDx ht: D xZ f — »D x

Z z _ 1 ? and f'l=idDxh'i: DxZ'i-+DxZ'i-l9 where h=hd...hl with / z f :

Zj->Z;_! (resp. hr=hf
d>... h\ with h^: Z'i->Z'i-l) is the decomposition of

/? (resp. /?') into the quadratic transformations as above. Hence we see

that d = d'J°=f°d..f°l gives a resolution of U n U', and finally both

/ and /' coincide with /° on U n £/'. This completes the proof.

We call the resolution obtained in the lemma the minimal resolution

of X at ^p. Moreover, suppose Xl is a complex space of d\mX1=3

and each point <^leXl admits a neighborhood 17 ', which is isomorphic

to D x 7 j with F, a neighborhood of the singular point of some cyclic

quotient singularity. Then a resolution /: Xl->Xl is said to be minimal

if it gives the minimal resolution at each singular point of X,.

2.29 Let GgGL(3, C) be a finite subgroup. Then G acts naturally

on C3 and the quotient space X = C2/G has the natural structure of

a normal affine algebraic variety [10, Prop. 18]. Let S be the singular

locus of X. In this section we shall prove

Theorem 2. Suppose X has only an isolated singularity at the

point ^P0 corresponding to the origin. Then there exists a resolution

f: X-+X of X with the following propoertiesi if we denote by 0 l 5 . . . ,0 s

the irreducible components of 9=f~l(S), then

1) 0 has only normal crossings in X,

2) each 9t is a nonsingular raitonal surface,

3) 9 i f t O j 9 i ^ j 9 is isomprohic to F1 // it is not empty, and
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4) 9t n Oj n Ok, i^j^k^i consists of a single point if it is not

empty.

Proof. We follow after the proof of Satz 2.11 of [1]. We may

assume that G is small, namely, no elements of G have 1 as its eigen-

values with multiplicity exactly 2 [9. Def . 2]. Let a: W-*C3 be the

monoidal transformation at the origin. Then £ = cr~1(0) is isomorphic

to €3-{0}/C*, and hence to F2, where €* acts naturally on C3.

Further W has the natural structure of a line bundle over F2. Let

or. W-+P2 be the projection. The action of G exetnds naturally onto

W so that it leaves E invariant. In more detail, let g e G be an arbi-

trary element. There exists a linear change of coordinate of C3 such

that with respect to this new coordinate g has the diagonal form with

eigenvalues a, b and c in this order. Let (w l 9 w2, w3) be this new co-

ordinate. We may also consider (w 1 :w 2 :w 3 ) as a homogeneous coor-

dinate of E^P2. Now set Ff = {w'VO; (vv)eF2}. Then as usual W
3

is described as the union W= \J (Vt x C), where (p, Q e Vt x C is identi-

fied with (g, C,.) e Vj x C if and only if £/ = v^./w/,. Set C7, = 7,xC.

Then £7f is naturally isomorphic to C3 and the extended action of g on

W is given with respect to this coordinate of Ut by

g=(b/a, c/a, a) on I7l9 =(a/b, c/b, b) on 17 2, and

=(a/c, b/c, c) on £/3.

From this, we infer that the fixed point sets on W of the elements of

G are classified according to the eigenvalues of the elements as follows ;

if the eigenvalues of an element ^eG are as a set (i) {!,«,«}, (ii)

{1, a, b}, (iii) {a, a, a}, (iv) (a, a, b} or (v) {a, 5, c}, then the fixed

point set of g is (i) union of a fiber of co and a line in E, (ii) union

of a fiber and a point on E, (iii) £, (iv) uion of a line and a point on

E, or (v) three distinct points in E, respectively, where a, b and c are

roots of unity which are mutually distinct and different from 1. Now

let X1=W/G,n1: W-^X1 the quotient map, and /1:X1->X be the mor-

phism induced by a. Note that /x is isomorphic outisde /iH^P0) so that

the singular locus S1 of X is contained in /T1(^P°). From this, we

infer that no elements of G can fix a fiber of CD. Thus the classes (i)
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and (ii) above are empty. Now let ^3e£ be an arbitray point, and

G<p be the stabilizer of ^3. We show that G% is cyclic. For this, we

fix an open neighborhood U of <p in E such that co"1^) is G? in-

variant. Such a U exists because G acts fiber-preservingly on w: W-+P2.

Moreover, taking U sufficiently small we may assume that W\U is trivial

i.e. there exists an isomorphism (pv: W\U^U xC. Identify W\U with

17 x C by this isomorphism. Let £ be the coordinate of C. Then the

action of an element g of G^ on the ^-component is of the following

form £ = /?(iOC5 where /? is a regular function on V. But since g has
a finite order, h(u) is a root of unity and is a constant a(g). Now de-

fine a map ^: G^-»C* by n(g) = a(g), then it is clear that /* is a homo-

morphism of the groups. It is easy to see that this a(g) is independent

of the trivialization (pv and coincides with the corresponding eigenvalue

of g. Hence by the above classification of the elements of G, \JL defines

an isomorphism of G^ with a subgroup of C*. Thus G^ is cyclic.

Now taking a generator g of G and a covering of W by 3 open subsets

C/JL, C/2 and L/3 corresponding to g as in the beginning of the proof,

we see that Xl is isomorphic at nffl) as a germ of a variety to a cyclic

quotient singularity. Hence by Theorem 1 there exist a neighborhood

V of Q = 7C1(^J) in Xl (in the usual topology), and a resolution (F,/«p)

of F satifsying the properties stated in the Theorem. Moreover by the

consideration in 1.4 / is minimal on V— Q. Finally, we take a finite

number of points Q19...,QS of Ar
1? neighborhoods l/f of G^ in Xl9

and resolutions />. [7£->[/£, such that l/f cover the singular locus of

X^. Then by Lemma 7 we can see that these ft coincide on the inter-

sections, and thus patch together to give a resolution fz:X->Xl of X^.

Then f=f1-f2:X-*X is the desired resolution. In fact, since any ir-

reducible component of Sl is either isomorphic to P1 or a point, we

deduce that each 0t is nonsingular and rational except the proper trans-

form, say Oi, of /VOP0) in X. But the latter is obtained by resolving

the singularity of ./VOP0)* which in turn is a projective plane E divided

by G, considering G as a subgroup of PGL(3, C). Hence by the
>••

theorem of Castelnuovo (See e.g. Savarevic, Alg. Surfaces Steklov

Institute of Math. 1965), /iH^Po) and tnus °i is rational. The other
statements can be treated analogously and we do not repeat it,
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Remark 7. The above proof shows that also in the higher dimensional

cases the stabilizer G% at each point ^Pe£ is cyclic if X has only

an isolated singularity. But if we allow X to have the singularity of

positive dimensions, then the map ILL above has necessarily a kernel and

G<$ is in general not cyclic.

2.3. Suppose X is a normal affine algebraic variety embedded in

Cn(z !,..., zj and there exists a C* action \JL on C" which leaves X

invariant of the form;

where qt are positive integers satisfying (g1? . . . , </„) = ! [cf. 8]. This means

in particular that the action is effective. We assume further that X is

not contained in any linear subspace of Cn. Noe suppose that X has

an isolated singularity at the origin. We call such a variety X an isolat-

ed singularity with C* action. For such an X we have the canonical

way of inserting a '0-section' at the singular point, due to Orlik and

Wagreich [8, 1.2]. More precisely, let X'=X-{0], Z=X'/C*, nf:

X'-*Z be the projection and F'^X'xZ be the graph of n'. It is known

that Z is a projective variety [8].

Let r be the closure of F' in XxZ and /^i F-^X (respTi: T-+Z)

be induced by the natural projection p±'.XxZ-*X (resp p2 '. X x Z -> Z)

to the first (resp. to the second) factor. We have then the canonical

section i:Z-*F defined by z(Z)=(0, z)eXxZ. In the sequel we identify

Z with z(Z). Then we show

Lemma 8. F has only the cyclic quotient singularities: For each

point ^eT, F is isomorphisc as a germ of an analytic space at ^3

to a cyclic quotient singularity.

Proof. We consider F and Z as analytic spaces. First, by the

fundamental result of Holmann [5], for each point ^3eF' there exists

a neighborhood U% of $ in F' and a 1-codimensional closed submanifold

A% of U^ such that (i) both U% and A^ are G^ invariant and (ii) n'\A%

induces an isomorphism between ^4^/G^ and some neighborhood V%

of ?p = 7t'OPX where G^ is as usual the stabilizer of ^ (refer [2] for
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the arguments). Now we fix a point ^3 e Z and then a point s^3 e

n~l(^) and take U%9 A^ and V^ as above. Let Y=n'~l(V^). Define

a holomorphic retraction r: Y-^n'~l(^), as follows; let QeY be any

point. Then there exists a I E € * such that ^(t,G)eA^. Then we define

r(Q)=[JL(t, ^P)- This is easily seen to be independent of the choice of

such a t, and the map is well-defined. Note that n f ~ l ( ^ ) is naturally

isomorphic to C*/G^. Then we set Y=Yxc*/G €*, the fiber product

of Y and C* over nf'1(^) = C*IG^ where C*-»C*/G?, which we

denote by a, is the natural projection. Then there exists an isomorphism

<p: Y-+C*xA% and the following diagram is commutative;

where v and p are natural projections and p± the projections to the

first factor. Indeed, (p is explicitly defined by <p~l(t, d)~(t, ]j.(t, a)),

with teC* and aeA^.

Further, the natural actions of G^ on Y and C*xA^ commute

with (p and thus Y= Y/G^ is isomorphic to (C*xA^)IG^. On the other

hand G^ acts naturally on CxA% and C, extending those on €*x^

and C* respectively. From this we infer that n~l(V%) = (C xA^)/G^

with respect to this action of G^ on C x ̂ . This proves the lemma,

since G^ is cyclic.

Remark 8. Acutually, we have the following commutative diagram

extending the above one;

such that the map v is equavariant, where C* acts on C x ̂  in a

natural manner.

Combining Lemma 7 and Lemma 8 with Theorem 1 we have

the following theorem when dimension X = 3.
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Theorem 3. Suppose X is an isolated singularity with C* action

and dimX = 3. Then there exists an equivariant resolution f: X-+X

of X with the following properties; if we denote by 90, . ,0b, the ir-

reducible components of 9 = f ~ i ( t y ) with tyQ the singular point of

X, then

1) 9 has only normal crossings in X.

2) each 9t is a nonsingular ruled surfce (i.e. it is birationally

equivalent to the product of a nonsingular curve C and projective line

P1) except one, say 00, which is the proper transform of i(Z). 90

also is nonsingular.

3) 9tn9j,i^j is a nonsingular curve.

We only note that the equivariance can be deduced from the above

remark.

It may be conjectured that the same kind of resolution could be

obtained also in higher dimensional cases.

As an example we shall examine the resolutions of Brieskorn va-

rieties. Let Xa be a hypersurface in C4 defined by the equation

where at are integers ^2. Put a = l.c.d. of at and q—a/a^ Then the

map ft: C4(f)-» C4(z) with /(^, f2, f3, t4) = (t\^ t\\ t\\ tl<) defines an

abelian covering X± of Xa in C4(0- JH fact X± is defined by

(16) /!+r5 + ̂  + f J=0

Let /: L^>X! be the monoidal transformation at the origin. L had

naturally the structure of a line bundle over a nonsingular surface S

defined by (16), considering this time (ti : t2l t3: t4) as a homogeneous

coordinates of F3. The action of G extends onto L and the diagram

commutes and compatible with the natural C* action on both L and

F, where F and Z are as above. Now let Ht and lu be the hyperplanes

and lines in F2 defined by ^=0? and f — f — O respectively. Then
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is a nonsingular curve and ltj n X consists of n distinct points

Hence we identified X with the 0-section of L. Then

it is readily seen that F has a singular point at v^P^), isomorphic

as germs of anayltic spaces to the cyclic quotient singularity €3/{00-},

where gtj acts on C3 by

/ —q . —q \

where ckl=(qk9 qt) and /, j, fe, / are all distinct.

Here are some examples:

1) (ai9aj)=i9i^j. Then gtj=(eaiaj9 e-***\ e~f^). In this case
Z is a project!ve plane [2] and v(C£) form 4 lines in general position.

Then using Lemma 3 we could resolve the singularity of F rather

easily. Note that then the irreducible components 9t are all rational.

2) al=a2 — b and a3=a4 = c. Put (b, c)=d9 b' = b/d and c'=c/d.

In this case F has b singular points each isomorphic to N^.^^ and

c singular points each isomorphic to N^.^^^ where b\ and c\ are

determined by the following formula; 0 ̂  b\ < c', b\ + b' = Q(c) Q^c\ < c',

ci+c' = 0 (modb'). The resolution of each singular point is obtained

according to Lemma 5.

3) al =b, a2=a3=a4 = c. Let d9 b' and c' be as above. F has

the singular locus along the curve v(C^9 of the type N b ' . C l ^ . Let

fv\ X-+F the minimal resolution of F9 00 the proper transform of Z

in X and 9l9...99s be the irreducible components of /iKH^i)) sucn that
00r\91=C^4>. Then 90 is isomorphic to the cyclic covering of P2

of degree d, with branch locus C defined by z§ + z§ + z5.=0, considering

(z2: z3: z4) as the homogeneous coordinates of P2. Thus 90 is isomor-

phic to P2 if d = l and isomorphic to P1xP1 if d=2. 9i9 i^l, are

isomorphic to the P1 bundles over C. Further we can see that the

normal bundle N0oi^ of 90 in X is given by

with 0^p'<b' and -(cy + l) = 0 modb' (cf. [4]). From this, we

infer that 00 is the exceptional surface of the first kind if and only

if either
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/ = ! and c\b — 1, or c=2 and b=2m is even.

In the latter case we have a birational morphism h: X^X0 such that

X0 is nonsingular, h is isomorphic outside 9 and C0=h(9) is isomorphic

to P1 and the normal bundle NCo/Xo of C0 in X0 is isomorphic to

( —2//C o)©lC o , where HCo and lCo denotes the hyperplane bundle of

C0 and the trivial bundle respectively.
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