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On Resolutions of Cyclic Quotient Singularities

By

Akira FUJIKI

Introduction

Let G be a finite cyclic group with a fixed generator g, acting on
a complex affine m-space C"=C"(z,,..., z,,) by the formula;

(1) g: (219"'3 Zm)__) (eﬁ1217"" eﬁmzm),

where n,p, 1<i<m, are integers satisfying 0=<p,<n and efi=
exp(2n\/—1p;/n). Then the quotient space X =C"/G has the natural
structure of a normal affine algebraic variety such that the quotient
map 7: C™—>X is a morphism of algebraic varieties [10] [13]. We
call this X a cyclic quotient singularity and denote it often by N, , ..
according to the particular expression of the generator g as above.

Now the main purpose of this paper is to show the existence of
certain natural ways of resolution of these cyclic quotient singularities,
which have some good properties. (For the precise statement, see Theo-
rem 1.) Such resolutions were first constructed by Hirzebruch in [3]
when m=2 and then, by Ueno [12], when m=3, p,=1 and p,=p;
in (1). On the other hand, the author recently learned that Mumford
has found the equivariant resolutions of toroidal singularities, which
contain cyclic quotient singularities as special cases [6]. However, our
method is different from his and is connected more closely with the
above expression of g. So it may be of some interest to compare the
resolutions obtained here with those in [6].

In §1 we prove Theorem 1 and then, in §2 we apply this theorem
to obtain resolutions of the general isolated quotient singularities and
the isolated singularity with C* action in the case where the dimension
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of the spaces is 3. This is done by methods similar to those used in
[1] for the former and in [8] for the latter respectively in the 2-dimen-
sional cases. The unpleasant restriction on the dimension comes from
the fact that we cannot prove the statement corresponding to Lemma
7 in higher dimensional cases.

In this paper the variety means an irreducible algebraic variety de-
fined over € in the sense of FAC. Further we adopt the following
notational conventions; for positive integers n,,..., n,, (ny,..., n;) denotes
the greatest common divisor of them. If T is an automorphism of C™
defined by T(zy,..., z,) =(T121;..., TmZm) With 7;€C¥, then we abbreviate
it to T=(ty,...,1,). Moreover for 0=Zp<n, el=exp(2n/ —1p/n).
Nupirom=Cm[{g} if g=(el,..., ehm) in the above notation. We also use
the notation N, ,, in 1.4.2,

In concluding the introduction, the author wishes to express his
hearty thanks to Prof. S. Nakano and Dr. K. Ueno for their kind en-
couragement during the preparation of this paper.

to express N, i 4

§1. Resolutions of Cyclic Quotient Singularities

1.1. Let the notations be the same as in the introduction, except
that in the sequel we assume (n, py,..., p,)=1 in the expression (1) of
g. In this section we study the singular locus S of X. For this purpose,
let F be the fixed point set of G in €™, namely, the set of those points
whose stabilizers are nontrivial with respect to the action of G. This
F, with reduced structure, is in general a subvariety of C™. But to
describe F more closely, we put in general, for any nonempty subset
M={m,,...,m}<c{l,..., m}, HM)={(z,)eC™; z,,=2z,,=--=0} and call
it a coordinate subspace of C™ defined by M. Then we have

Lemma 1. Let F(i) be the fixed point set of g* for 1<i<n. Then
each F(i) coincides with some coordinate subspace H(M) of C™ Con-
versely, a coordinate subspace H(M) of C™ coincides with F(i) for
some i if and only if the following condition is satisfied; if we put
d=d(M)=(n, pj,»-.., Pj,._.)» then djf(n,p,) for any t, where M=
{my,....,my} and {ji,..., ju-y} is the complementary set of M in {1,...,
m}.
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Proof. Suppose gi=(el’, .., efmi) has t=t(i) 1's as its component,
say, on the iy,..., i-th places. Then a point z=(zy, .., z,) is fixed by
gt if and only if z;=0 for any j#i, |<a=<t. Thus if we take M to
be the complementary set of {i,,..., i}, then F(i)=H(M) and the first
assertion is proved. Next, for the given M, let n,=n/d(M). Then n,
is easily seen to be the least integer u for which g# has 1 on the i-th
component for every i« M. Thus we have only to show that HM)=
F(n,) if and only if the above condition holds. But H(M)=F(n,) is
equivalent to the fact that for any jeM, the j-th component of g”t

:f"l #1, where n;=
nf(n, p;) and p;=p;/(n, p;). Then, since (n}, p;)=1, this in turn is
equivalent to the fact that n’fn;, namely, (n/d)/(n/(n, p;))=(n, p;)/d is

not an integer for je M. This proves the second assertion. Q.E.D.

is different from 1, or equivalently, (ef/)" =e

In particular, if (un, p)=1 for some t, hyperplane z,=0 contains
every F(i).

Now let G(i) be the stabilizer of the coordinate hyperplane H{i},
i=l,...,m, g(i) a generator of G(i) and G, be the subgroup of G gener-
ated by {G(i)};=y,..m- Each g(i) has the form (1,...,e,,.,1) with e,
on the i-th component and njn. From this, we see that C™(z)/Gyx
Cm™(w) and in fact the quotient map hy: C™(z)->C™(w) is defined by
(W)=ho(z)=(z],..., zm). Further the quotient group G=G/G, acts
naturally on C™(w) by g=(efi",..., efm") so that X =C™(w)/G, where
g is the natural image of g in G. Then G has no element whose fixed
point set is a coordinate hyperplane of C™(w). For otherwise, there
exists an element gke G, the fixed point set of which is, say, H{l1} of
C™(w). Then this has the form gk=(e, 1,.,1) and we infer from this
that g* has the form (ef!%, e!2,..., el») and hence g*g(2)~*z...g(m) 'm=
(ehtk, 1,..., N e G(1), g€ G,. This implies gk=e, the unit element of G,
which is a contradiction. Now we say that a cyclic group acting on C™
as above is small, if it has no element whose fixed point set coincides
with some coordinate hyperplane (c.f. [9]). Thus we have shown that
in the expression X =C™"/G of the cyclic quotient singularities, we may
always take G to be small.

The following lemma is a special case of the fundamental result
of Prill [9, Theorem 2].
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=C™|/G and
»,, =C"|G', with G and G’ small, are isomorphic if and only

Lemma 2. Two cyclic quotient singularities N, , .

if n=n’, and there exist a permutation t of {l,.., m} and an integer
k, 0<k<m, such that (k, n)=1 and p;k=p;;, mod n.

In fact, Prill has proved more precisely that €™/G and C™/G’ are
analytically isomorphic as germs of analytic spaces at n(0) and 7'(0)
respectively, if and only if G and G’ are conjugate in GL(m, C), where
n and 7' are quotient maps.

From this we get the following.

Corollary. If G is small, then the singular locus S of X coincides
with n(F), where F is the fixed point set of G.

Proof. 1t is clear that S=n(F). So let PBen(F) and take a point
QeF such that n(Q)=9P. Then there exists a neighborhood U of
Q in C™ such that if Gg is the stabilizer of Q, then U is Gy invariant
and the quotient U/Gg is analytically isomorphic to some neighborhood
V of B. On the other hand, as we have already seen, the fixed point
set of ggn, a generator of Gg, is some coordinate subspace H(M) of C™.
After a suitable renumbering of coordinates if necessary, we may assume
that M={1,..., k}, where dimH(M)=m—k and that g acts on C*
by go=(e5l,..., e5x), where s; are some integers. Let Q'=(0, z')e
C*/Gg xC™* be the image of Q by the quotient map C"—C*/Gg x
C™ % composed with the above isomorphism. Then (U/Gg, n(RQ)) and
(C*|Gg x Cm %, Q") must be analytically isomorphic as germs of analy-
tic spaces. Then if V is nonsingular, we conclude that C*/Gg xC™*
and hence C*/Gg is nonsingular. But since it is easy to see that Gg,
considered naturally as a subgroup of GL(k, C), is small, we have

G ={e} by the lemma. This contradicts the assumption that QeF.
Q.E.D.

Remark 1. By Lemma 1 we have in particular

a) G is small if and only if (n, py,..., Pi,.-., Pm) =1 for every i, where
p, means that p; is omitted, and

b) if G is small, then dim S=0 if and only if (n, p;)=1 for every i,
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In fact, a) and the sufficiency of the condition in b) are immediate.
So suppose dimS=0, and (n, p)>1 for some i. Let {ji,...,j,} be the
subset of {lI,.,m} consisting of those elements for which (n, p;) is
divisible by (n, p;) for every o, 1=<a=<k, and let M be the complementary
set of {j,...,Jk} in {1,...,m}. Then by Lemma 1, H(M) coincides with
F(i) for some i. But since F(i)={0} by the assumption, M must coincide
with {l,..., m}. This is a contradiction because i¢ M.

1.2. The next procedure is the key step in the course of our
resolution of X. Namely, we propose to show the following

Lemma 3. Suppose X=N,, . ,. is a cyclic quotient singularity
and assume that the group G is small. Then there exist a variety
X, a finite affine open covering U={U,...,U;} of X, for an integer
I, 1Z1<m, and a proper birational morphism f: X,—X such that for
each i there are isomorphisms @;: Uing'i,q‘, _____ 0t where the integers

pi and q. are determined by the following formula:

[pi:pl/d, with d=(p1, . ’pm)’

(2) qi=p;, mod p; if a#i, and 0= q% < p;,

‘ qi+n=0 mod p;.

Proof. The construction we have in mind when p,>0 for every i
is roughly as follows; first, we take an abelian covering h: C"(t)—
C™(z) with the covering transformation group H and then, define an
action of G on C™(t) compatible with h so that X =C"({)/G®H. Next
we perform a monoidal transformation o: W, — C™(t) at the origin and
observe that the actions of G and H extend naturally onto W,. Finally,
we put X, =W,/G®H and define f to be the morphism induced by o.
Then we see that this X, and f have the desired properties.

Now we shall see these more closely. First we consider the case
where p;>0 for each i. Then the abelian covering h: C"(t) > C"(z)
is defined by

h(tla--'a tm)=(tllila~-'7 tglm)'

The covering transformation group H of h is isomorphic to the direct
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sum G, ®---®G,,, where G; is the cyclic group of order p;, a generator
g; of which acts on C™(t) by g;=(1,...,e,,...,1) with e, on the i-th
place. Moreover, we define the action of g on C"(t) by

g=(e,-.., e,).

Then it is easy to see that this is compatible with h, namely, the equality
g-h=h-g holds. Now let o: W, —C™(t) be the monoidal transformation
at the origin. Then W, has the natural structure of a line bundle over
a projective (m—1)-space P" ! with homogeneous coordinates (¢;:---:
¢n). Indeed, if we define V,={(¢)eP™!; & #0}, then W, is expressed
as W0=CJ(Vi><C), where (p, {)eV;xC and (q,{;))eV;xC are identified
if and olr_llly if p=q and {;=(/¢;)¢{;. Then the map o has the following
form on each W?=V,;xC;

t;=(&;/E)G; if j#i
(€)]

ti={;.

Note that W is isomorphic to €™ with the coordinates (&,/&,..., &n/&:
(). By (3) we see that the actions of g and g;, i=1,..., m, extend onto
W, as follows; on W?,

Jgj:(l,..., 1, e, 1,.., 1) with e, on the j-th place, if j#i
lg=(13'-~5 13 en)

giz(e;ils”'s e;,ls ep.‘)‘

Then, as in 1.1 if we set W}=W?/(¥,- with éi=G®G1® ------ OG,®--
®G,,, then Wl!=Cm(wil,..., wil) and if we identify W} with C™(wi!) by
this isomorphism, then the quotient map is defined by

pii (C1/Ciseres Eml i L) — ((E1/EDP,..., LEse oy (EfEDP™)

with {# on the i-th place. Moreover the action of G; induced on W}
takes the form;

—_ - n -
g:=(e;?,..., ep,...s €57™) .

However, G; may not be small with respect to the action on W}. In
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fact, by Remark la), G; is not small if and only if d=(p,..., p)>1,
since G is small. In any case we put W;=W}/{g¢}. Then again as in
1.1, W,=C"(wi,..., wi), the quotient map p;: W} —W, is defined by

ﬁi(will"--s wtinl "__(wilma"'a (wél)d,”.’ wlinl)a
and the induced action of G,=G,/{g¢} has the form

§i=(e"""”",...,e;;’l,...,e;,i"';"),

where p}=p;/d, §; is the natural image of g; in G, and G; is small.
Now we set X, =W,/G®H and U,=n(W?), 1<i<m, where n: Wy—X,
is the quotient map. Then by the above description we have U;=
W;/G;, and hence U={U,,..., U,}] makes a finitc affine opcn covering of
X, such that each member U,; is isomorphic to a cyclic quotient singu-
larity N,,:,q; ,,,,, a, of order p;. Here the integers ¢. are dcfined by
(2), taking g;! as a generator of G, Finally, if we recall that X=
C™(z))G@®H, and that the action of G and H on W, and X commute
with o, then we see that ¢ induces a birational morphism f: X;—X.

Next, we consider the case when p,=0 for some i. After a suitable
permutation of w; we may assume that p,,,=---=p,=0 and p;>0 for
i<l for some [>0. Then g=(eh,...,el, 1,...,1) and X is naturally
isomorphic to (C'/G)xC™ !, where the action of G on C'! is defined
by g=(ei,...,ef). Put Y=C!/G. Then we may apply the above
considerations to Y instead of to X. Suppose Y,, 8={V,,..., V}}, and
g: Y,—>Y correspond in the above consideration to X,, U, and f: X,—»X
respectively. Then we put X, =YxC™ ! U={U;; U;=V;xC,1ZiZ1},
and f=gxid: X,—> X, where id is the identity map of C™ ! Cor-
respondingly, we get the groups G; and the isomorphisms ¢;: U;
Nyiarvam With ;=0 for i=Il+1. The relations in (2) are obvious,
anci hence the proof of the lemma is completed.

Now we summarize in the following lemma the properties of the
covering U, and the morphism f, thus obtained.

Lemma 4. i) If we denote by mn;: WU, 1=ZiZl, the quotient
maps, then W;;=n; (U;nU,) is an open subset of W, defined by wi#O0.
ii) The multivalued map n;;=n7'n;: n;'(U;nU)-> a7 (U;nU)) is de-
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fined by
{ wh=wiOe)TE i de 0 #
wi=wi(w])"'"s,

where (wi)i/P* denotes any pi-th root of wi.
iii) The multivalued map mng=n"'‘n;: W,>C"(z) is defined by

[ =W if ket
— iy\pi/n .,
z;=(w})

iv) Let T be the automorphism of X induced by an automorphism
T of €C™(z) of the form T =(ty,...,T,), then T extends uniquely onto
X so that it leaves each U, invariant and T|U; is induced by the
automorphism T, of W,=C™(w') of the form

Ti=(‘[1‘ci_pl/l7i,_'_, t;’/m,__’ Tm‘fi_p"'“") .

v) Let F, be the fixed point set of g, So=n(Fy), and S;=f"*(Sy),
then n;yY(U; N S,) is defined by wi=0 in W,

The proofs are all straightforward and we omit them. We only
note that the construction of X,; and f; depends crucially on the choice
of a generator g of G as in (1), or equivalently, on the choice of an

isomorphism ¢: X = N, pm (s€€ an example in 1.4).

LX) 2 PRPH

1.3. For resolutions of the cyclic quotient singularities, we have
to deal with a little more general situation. So let X be a variety and
suppose there exists a finite affine open covering U={U,,..., U} of X
such that there exists for each i an isomorphism ¢;: U;~ N,,ipgn__,pys:),
where each N ptd =C"(u%,..., ul)/G; is a cyclic quotient singularity
defined in the introduction. In this case we call n; the order of U,.
We denote such X and U simply by the pair (X, U). Hence, when we
speak of a pair (X, U), it is supposed that we are given a variety X
and a finite affine open covering U of X such that to each U; there
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are assoicated an m-dimensional affine space €™ with the coordinate
system (ui,..., u}), a cyclic group G; with a fixed generator g, and an

(1) (1)
action of G; of the form g,=(¢’! ,..., e‘;:;" ) on C™ together with an iso-

morphism ¢@;: U;C™/G;. Now let (X, ) be a pair. We say that U;elU
is adjacent to U;el if n7'(U;nU)) is defined by the equation uj #0

for some k=k(i, j). Note that in this case U; is also adjacent to U,

Definition 1. A pair (X, W) as above is said to be admissible
if the following three conditions are satisfied:

(®) Any two members U; and U; of U can be connected by a
finite sequence of adjacent ones, namely, there exists a finite sequence
Uy,...,U; with U, el such that U,=U,;, U,=U; and U,_; is adjacent
to U, for O<t=d.

(B) Suppose U; is adjacent to U; and n7*(U;nU;) (resp. n;'(U;c
U)) is defined by ui#0 (resp. uj.#0) in C€"(u’) (resp. in C™(u)),
where m;: C"—U,; (resp. n;: C"—>U;) is the quotient map p;: C"—
C"|G; (resp. p;: C"—C™/G;) composed with the isomorphism ¢!
(resp. ¢7'). Then the multivalued map m;;=n;'n;: 77 (U;nUj) -7y }(U;
nU;) has the following form;

u;"=(u{)—n_,/n,
ul=(u))*®ul, if sk,

where n;=ordU;, n;=ordU;, a(s), 1<s<m, s#k, are certain rational
numbers, and finally =: {1,..., k,..., m}>{1,..., I,..., m} is some bijective
map.

(y) The groups G; are all small.

Remark 2. a) For any point PeC™u') =n;y'(m(P)) consists of at
most n; distinct points. From this, we see that the denominators of a(s)
do not exceed n; in their irreducible expressions.

b) Let U; and U; be as in (B) and if =m;; has the form stated in
(B), then so does m; as is seen by solving the equation with respect
to u’.

Now let (X, U) and (Y, B) be admissible pairs and f: X > Y be
a proper birational morphism. We say that f is compatible with the
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coverings W and B if for any V,eB, U, ={U;eU|U, = f(V,)} makes
an affine open covering of f~'(V,). Then the pair (f~'(V,), U,) with
groups G;, coordinates {u’}, and isomorphisms ¢;: U;=C™(u?)/G; induced
by those of the original U; is admissible. We denote this also by
A (U 9))%

Definition 2. Suppose (X, ), (Y, W), and f are as above. We
say that f is admissible as a morphism of admissible pairs (X, ) and
(Y, B) if f satisfies the following two conditions:

(¢) f is compatible with the coverings U and ‘B.

(B) Suppose f(U)<V,, then the multivalued map =;'fn;: C™(u')—
C™(v*) takes the following form;

vi=(ui)PHD e (u))?0 . 1Ss<m,

where b(i, s) are positive and rational numbers. Moreover an automor-
phism T of X is said to be admissible if T(U)=U; for every U;el
and T|U; is induced by an automorphism 7T; of Cm(u’) of the form
T.=(ty,..., Tw), T;€C*, where U, = C"(u')/G,.

For example, let X=C™/G be a cyclic quotient singularity. Then
(X, {X}) can be trivially regarded as an admissible pair. Next let X,
U, and f: X, > X be as in Lemma 3. Then, by Lemma 4 (X, N)
and f are admissible, and any admissible automorphism of X extends
uniquely to that of (X, ).

On the other hand, if X is nonsingular in an admissible pair (X, ),
then since G; are small, we must have n;=1 and U; are isomorphic to
C™(u'). Then the multivalued maps 7;; in (f) are nothing but the trandi-
tion functions with respect to this covering. Rewriting these, we have

up=(uf)!
u§= (u{)a(s)u;'r(s), s # k s

where a(s) are now integers.

Now recall that a resolution of a variety X is a pair (X, f) consist-
ing of a variety X and a proper birational morphism f: X¥—X such
that f is isomorphic outside f~!(S), S being the singular locus of X.
Then we are able to state our main theorem.
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Theorem 1. Suppose (X, W) is an admissible pair. Then there
exists a resolution (X,f) of X and a finite affine open covering u
of X such that the following conditions are satisfied;

1) (X, W) is admissible,

2) f is admissible as a morphism of admissible pairs (X, 1)
and (X, ),

3) any admissible automorphism T of U, extends uniquely to that
of f71((U;, {U})), and

4) f~4S)nU, is defined by uf,..a5,=0 in U,=xCm(@*) for some
ki,..., k,, if it is not empty.

From 4) we derive easily the following.

Corollary. Let E=f"1(S). Then E has only normal crossings in
X and every irreducible component E; of E is nonsingular and rational.
Further E; is covered by finite affine open subsets, each of which is
isomorphic to C™ 1,

Proof of Theorem 1. First we consider the set @ of maps ¢: N—
N U {0} such that @(N)#0 and ¢(n)=0 for all but a finite number of
n’s, where N is the set of natural numbers. We shall introduce an order
on the set @ in the following manner. Let ¢,, ¢,€® and n, be the
largest integer for which ¢ (ng)#@,(ny). Then we define ¢,<¢, by
the inequality ¢,(ng)<@,(ny). By this, @ becomes a totally ordered set
with a minimal element ¢, which is defined by ¢,(1)=1 and ¢@y(n)=0
for n=2. We associate then to each admissible pair (X, ) an element
of &, which we denote simply by ¢y since no confusion may arise, by
ex(n)=#{U;e; ordU;=n} for ne N, where ¥ means the number of
elements of the corresponding set. Then by the above remark we may
try to prove the theorem by induction on ¢x. If @y=¢, or more
generally, if @y(n)=0 for n=2, then it is sufficient to define (X, W)=
(X, W) and f=idy, the identity map of X, because then X is non-
singular. Thus we may assume that @y(n)=1 for some n=2 and that
the theorem has already been proved for admissible pairs (Y, B) for
which ¢y <oy.

We define an integer I(i) for each U, by I(i))=#{p{"; p{’#0, 1<

E
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k<m}, where U, is isomorphic to N,,“pﬁ.) PO by the isomorphism ¢;.

Clearly this is equal to the codimension of the fixed point set of G,
and hence does not depend on the particular choice of the generator.
Set I=max[(i) and take and fix one U; eU for which I=I(i5). Next,
let Fy bé the fixed point set of g9, Sio=m;o(Fo) and S, the closure of
S;o in X, where m,,: C"—>U,, is the quotient map. Then our purpose
is to construct an admissible pair (X;,,) and a birational morphism
fi: X{— X, such that f; is admissible for (X, U,) and (X, "), that
fi is isomorphic outside f7!(S,), and that @y, <¢@x. For this, first we
construct for each U; an admissible pair (W, B;) and a birational mor-
phism y;: W;-»U,; admissible for (W, B,) and (U,;, {U;}), such that y,
is isomorphic outside Y;!(SonU,;,. And then we show that these W,
and f; are patched together and form the desired variety X, and the
morphism f;.

First, put W;=U,, V;={U;}, and y;=idy, if U;n Sy=¢.

Suppose then U;ell is such that U;nSgy#¢, then, since F,=
77 1(Sy) is coordinate subspace in C™(u') of codimension I, we may as-

sume that F; is defined by the equations u} =---=u{=0 in €™(u’). Then
g; must be of the form g,.=(eﬁf”,...,ef:;("”) with p{?#0 for 1k<l,
but then by the maximality of I, we have p{?=0 for k>I, namely,
gi=(e" e e 1 1),

Now suppose further that U; is adjacent to U; and U;nS#d¢.
Then if #n7'(U;nU)) is defined by uj#0 in C™(u'), then we must have
k>1, for otherwise F; would be contained in the hyperplane ui=0 and
hence SonU;n U;=¢, which contradicts the assumption. Thus we may
assume that k=m renumbering the coordinate if necessary. Considering
analogously with U;, we may also assume that F;=n7(S,) (resp. n;*(U;
nU,) is defined by uf=--=uf{=0 (resp. u},#0) in C,(u/) and g;=

) )
(e’ ..., e’ ,1,..,1) on Cm(ui). Then we get the multivalued map

nj nj

n;; in he following form;

ij
ub=ul(ui)>  if k#i

ub,= (uh)~"ilmi,
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Assertion 1. 1) For the given generator g; of G; we can take a
generator g; of G; so that ny=n; and p®=p\? for all o.

iiy The multivalued map m;; above has in fact the following form;
ul = uj(ul)™ if k#iand k<!
4 {u};=u§{(u{;,)“k, with a, integers if k>1
t up=(up) "1

Proof. Let G; act on C!(u’,..., ul) by g=(e';l(‘i),..., e:’igi)). Then cor-
responding to the decomposition C™(u®)=C'(u},..., u}) x C" (ul,,...,,ul),
we have an isomorphism C™"/G;~ C'/G;xC™ " such that the quotient
map p;: C™—C™/G; corresponds to the product of pj: C'—C!/G; and
the identity map of €™ L Identify €m/G; with C!'/G;xC™ ! by this
isomorphism. Then we have the commutative diagram

Cl x &m—1
~
4
~ \4
CG, xCm ! —— U.

@,

Proceeding analogously with U;, we have the similar diagram for j.
Thus we get pil ;' @ p;=n;''n; on n7'(U;nU;). From this, we
obtain the following commutative diagram

C' Gy x (€™ — (ul,=0}) 22, C!/G; x (€' — {u},=0})

@ @,

Cm—l_ {u:nzo} < Tiy Cm-—l_ {u;;=0} ,

where ¢;;=¢;07'|05ly,nv,)» ®; and @; are the projections to the second
factors and 7;; is the multivalued map defined by wu}=uj(uj)*, 1+1<
k<m-—1, and ui =(ui)~"/". But since @;; is an isomorphism, so must
be 7;;. In particular it is single-valued. Hence, we conclude that n;=
n; and a,, l+1<k<m-—1, are all integers. This proves ii). On the
other hand, the linear isomorphism @;;(P): C'—»C' defined by ui=
uj(if)*, I=zk=1, for each fixed point P =(iil,y,..., ii}) € C" ! —{uj =0},
induces the isomorphism ¢;;|®7'(P): C'/G;=C'|G;. Hence, by @;(P)"!,
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G; must be mapped isomorphically onto G; by Lemma 2, since both G;
and G; are small. But g; is mapped to g}=(eﬁ(f",...,e‘;§_”) by the

definition of @;;(p), so we may take this to be the generator of Gj;.
Q.E.D.

Now fix once and for all a generator g; €G;,. Then by the admis-
sibility of (X, W) and by the above assertion, we can successively define
a distinguished generator g; of G; for every i for which U;nS,#¢,
with the following properties; if U; is adjacent to Uj;, and is related to
U; by the multivalued map w;; as above after a suitable renumbering of
coordinates depending on i and j, then n;=n; (=n;) and p{’=p{",
1<k=l. We leave the precise argument to the reader. But for the
proof it makes no difference if we change the generator g; to gi. So
we assume that this change has already been done, and we denote the
new generators also by the same letters g;. Then by Lemma 4 3)
and 5), we see that ; is isomorphic outside ¥;(Son U)).

We define now for each U; U;nSy#¢, W, B;={V4,..., Vi} and
V;: Wi» U, as those constructed in Lemma 3, taking U;=X, G;=G and
SO on.

The next step is to show

Assertion 2. The birational map ,;=y;"y; gives an isomorphism
of Y71 (U;nU;) and Y7 (U;nU)).

Proof. 1If either U;nSo=¢ or U;nS=¢, then this is obvious, be-
cause then both ;! and y7! are isomorphic on U;nU;. So we assume
that U;nU;nSo#¢ (note that this is equivalent to U;nSo#¢ and U;n
So#¢). If we show that i;; is holomorphic at each point of ¥71(U;n
U;) as a map of analytic spaces, then by Z.M.T., we see that this is a
morphism of varieties, and since this holds also for y;;, we get that y;;
is an isomorphism. To prove that i;; is holomorphic, we go back to
the situation and the notations given in the proof of the Assertion 1.
There, we defined for each point P=(iii,y,..., 4})e C™'—{ui =0},
the linear map @;;(P): C'—>C'. But if we take a simply connected
subdomain D in €™ !'—{u) =0} and choose a suitable branch for each
(ij)°, the same formula with @;(P) defines the isomorphism @;/(D):
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C! > C! depending holomorphically on D: Further this fits into the
following commutative diagram;

— P D T
C! x ,;(D) — PuDIXTiy 1y p

|

C'G;xit; (D) «—*"—C'|G; x D

l l

7,;(D) D.

From this we infer readily that y;; is holomorphic on ¥7!(D) by the
definition of ;. Q.E.D.

Now we define X, to be the union X, = 'Ql W,, where if U, is ad-
jacent to Uj, then (w)eW; and (w))eW; arelidentiﬁed if and only if
wW)ey ' (U;nU;) (resp. (w)ey3'(U;nU)) and ¢ ;(w)=(w’/). Then de-
fine f;: X;—»X by the condition that f;|W;=y, It is easy to see that
by the definition, X, becomes a variety and f; a morphism of varieties.

Moreover we shall prove

Assertion 3. The pair (X, W,) is admissible, where W, is the
union of the ocverings B,.

Proof. First we fix U; and U; which are mutually adjacent and
make some preliminary considerations. We distinguish three cases; 1)
neither U; nor U; intersects with S,, 2) either U; or U; intersects with
Sy but not both, and 3) both U; and U; intersects with S,.

In case 1), since W, (resp. W))=U; (resp. U;) by construction, W,
is adjacent to W, and the corresponding multivalued map satisfies the
condition (f).

Next we consider the case 3). We may assume that 7;; is given by
(4). Then W, (resp. W;) is covered by [ affine open subsets Vjy,...,V;
(resp. Vji,..., V) and the multivalued map n7'ym: Cm(v')—Cm(u'),
1<s<1, has the form;
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ub= (Vi)

(3) ul = (Vis)bryis for 1k<!and k#s
ul =vis for m=2k=I1+1,

where =;: C™(v*) >V, is the quotient map, and b, are certain rational
numbers. Here we write down also the inverse to the above map for

convenience.

r U§S= (ug)ni/"is

(6) 1 vis=ul(ul)~"ibr/nis for 1<k=</ and k#s
Lu;'f=u;" for mzkz=zI+1.

These follow from Lemma 4. From this, it is easy to see that ¥V and
V;s are adjacent to each other, and no other two V; and V. are ad-
jacent. Moreover since ;=77 n;=(n;m,) " (n;n;) (7 Y;m;), using
(4) and (5) we infer that this has the following form;

’ . Mhias
is — Js Js
Dg "(Um) Mis Vg

(7) . . Misax—asnhibi
o=l e ol k#s

=04

Hence the condition () is satisfied for V;; and V.

Finally, we deal with the case 2), say, when U;nS,#¢. The
alternative case can be treated analogously. Then if #n7'(U;nU;) is
defined by wui#0, then 1=s=<l. For, otherwise, U;Nn Syo#¢. Hence
we may assume that the multivalued map =;; has the form uj=(uj)*uj
for k#s and ui=(ui)™/". Then we see readily that V,, is the only ele-
ment which is adjacent to W; and that nj'm;=(nj'n)(n;y;n;,) takes the
following form;

J’u;"=(v§s)ﬂﬁ%mvis, k+#s
(8 l

ui= (o} eins.
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This gives the condition (f) for W; and V.

Using these results we shall now prove the condition (a) for (X,
U,). So suppose V¢ is adjacent to V%. Then, by the admissibility of
(X, W), there exists a finite sequence U,,..., U, such that Uy=U,;, U,=
U;, and U, is adjacent to U,,, for 0=Su=<t—1. Then, by the previous
considerations, there exist for each successive pair (U, Ugiq), 05k<t,
Vaay € By and Vpy, e B, ., such that V,,, is adjacent to Vjy. But by
virtue of Lemma 4 V., is adjacent to V). Hence, V,, Vy0y Vicoy:os
Voe-1) Vs is the sequence of adjacent members of U;, which connects
V, and V. This proves ().

Next, in order to see the condition (f), again by the previous con-
sideration, we have only to show that if V, is adjacent to V, and if
V,e®B; and V;eB;, then U; is adjacent to U;. But this is easy to check
by virtue of Lemma 4, iii).

Finally, the groups G; are small by construction. This is (y), thus
completing the proof of the assertion.

In order to apply the induction hypothesis to the admissible pair
(X, U,), we have to see that @y, <@y. But by construction we see
that for any V,e®; if U;n Sy#¢, then ord V,<ord U; and if U;nS,=¢,
ord V,=ord U;, where ord ¥, (resp. ord U;) denotes the order of V, (resp.
of U;). Hence ¢y, <oy.

Hence by the induction hypothesis there exist a resolution (X, f,)
of X, and a finite affine open covering U of X satisfying the properties
stated in the theorem. Hence 2), f, is admissible as a morphism of
admissible pairs (X, ) and (X,, Y,), 3), any admissible automorphism
of (X,, U,) extends uniquely onto that of (X, ), and 4), f3!(S,) nU,
is defined by #@,...d5,=0 for some ki,...,k, if it is not empty, where
S, is the singular locus of X,. Set f=f,-f;, then since f; is isomorphic
outside f1!(S,) and S,<S, we see that (X, f) gives a resolution of X.
We show that these (X, f) and (X, ) satisfy the requirement of the
theorem. For this, we have to check the conditions 2), 3) and 4)
of the theorem. Note first that f; is admissible since so is each ;
by Lemma 4, 3). Then it is clear that f is admissible as a composition
of two admissible morphisms f; and f,. This checks 2). Next, let T

be an admissible automorphism of U; then by Lemma 4 this extends
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uniquely onto an admissible automorphism of (W, ;) and this in turn
has the unique extension to an admissible automorphism f~1((U, {U;}))
by 3),. This is 3). Finally we deal with 4). Note first that f~1(S)=
XS U f7Y(f1[So)), where f1![So] is the proper transform of S,
in X,. By virtue of 4), above it is enough to see that f3!(f7'[So]) N
U, is defined by the equation #f,iif,...d5, =0 on U, if it is not empty.
But this follows from 5) of Lemma 4 and the admissibility of f. This
completes the proof of the theorem.

Remark 3. a) From our construction the resolution map f is seen
to be naturally decomposed into f=f,... f;, such that f;: X;»X; ,1Si=
d, are proper birational morphisms with X,=X and X,=X whose excep-
tional loci E; are irreducible. Moreover if we put s(i)=dimfy(E;), then
the function s(i) is nondecreasing for 1<i<d. Further if s(i) is constant
for a<i<b and if we put f,...f(E)=E:, then these Ei, a<i<bh, are
disjoint. Hence we have f;f;,,=f;+f; for a<i, i+1<b in an obvious

sense. For example let X=N be a cyclic quotient singularity.

BB yeees D
Then s(i)=0 for all i if and only if n, py,..., p,, are all relatively prime
as follows from Lemma 4 and Remark 1b).

b) In constructing a resolution of an admissible pair (X, U) accord-
ing to the inductive method described in the proof of the theorem, we
have a finite number of choices in taking generators of G;, or taking
isomorphism ¢;: U,-;N,,l_,p(l.-) ,,,,, p at each step. In general different
choices of generators lead to different resolutions, as was indicated in the
remark at the end of 1.2 (see an example in 1.4).

¢) We say a resolution f: X—X is special if in each step fi: X;—
X;_, of the resolution, the isomorphisms ¢;: U,-;N,,hpgn ,,,,,
so that p{?=1 for some k. If X=N
i, then a special resolution of X exists as follows from Lemma 3. For

p are taken
m

mpirnpg and (p, n)=1 for some

the motivation for this definition, we refer to Remark 6 after Proposi-
tion 1 in the next section.

1.4. By way of illustration we apply the above method when m=2,
and next, examine the case when m=3.

141, Let X=C?/G be the cyclic quotient singularity of dimension 2,
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If the group G is small, then it is easy to see that there exists a unique
generator g€ G such that g=(e,, €?) with 0<p<n and (p, n)=1 with
respect to the coordinate (z,, z,) of €2. Then taking g as a generator
of G we construct X,, W={U,, U,} and f: X;—»X as in 1.2. Then by
Lemma 3 U,;~C?(uy, vy) and U,=N,,,,, where p; is defined by the
following formula; 0L p,<p, n=b,p—p,, b;=2. Next applying the

same process to U,=N we have a variety X, with an affine open

Ps1,p1?
covering {U,, U,y, U,,} such that U, 2C?(uy v,) and U= Ny o5,

where this time p, is defined by 0<p,<p;, p=b,p,—p,;. b,=2. Then
using 2) and 3) of Lemma 4 the transition functions between U,; and
U,, are calculated as follows;

uy=(uz)"10,
vy =(u,z)" .

Continueing analogously we are finally led to the minimal resolution f:
XX of X first constructed by Hirzebruch in [3] (see also [12]): De-
fine positive iategers 4,, u, 0=k<s+1, and b,, 1=<k=<s by the formula;

Ao=n Ay=p A =blu— -1, 022, 0S4 <4 4=1 I3, =0
N
Po=0 sy =1 sy =byt—p -,

Then X is covered by s+1 copies W, 0<k<s, of complex affine place
C? with the coordinate (u*, v¥) and the transition functions between W, _,
and W, are given by the following formula;

up=1[v,_
{ O =V 1)P*Up_ 4. k=1,...,s.
The rational map T: C%(z,, z,)—» X is given by
(10) T: (24, 25) — (2hkz3"s, z7tev 1800 1) € W, .
Further if we define nonsingular subvarieties 6,, 1<k<s, on X by

usx=0 on W,

Us-k+1=0 on VVs—k+1a
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k
then f is isomorphic outside =\U#6, 0, P! and the selfintersection
i=1

number 0,-0,=—b,. Hence in particular there are no exceptional curves
of the first kind in f~'(B), where P is the singular point of X. But
if we make no normalization of the generator as above, then the resolu-
tion is in general not minimal. For instance, let X=C?/G and G={g}
with g acting on €2 by g=(e3, e4). Further let f: X >X be the resolu-
tion of X obtained in the theorem and let Pe X the singular point of
X. Then f~1(B) consists of nonsingular rational curves C;, C,, and
C, with intersection numbers (C,)2=-3, (C,)?=—-1, (C,)*=—4, C,-C,
=1, C,:C3=1 and C,-C;=0.

1.4.2. So we may consider some kind of normalizations also in the
higher dimensional cases, and expect a certain minimality condition for
the resolutions. But in the following we shall restrict ourselves half for
simplicity to the case when m=dim X =3, and assume that (n, p;)=1.
In this case we can take the canonical generator g€ G by the condition
that g=(e,, %, el), where 0<p, gq<n and (n, p, q)=1. Here we have
assumed that the group G is small (c.f. Remark 1). Then we often
write X =N, ,, instead of X=N,, ..

Now suppose X,, U, ={U, U,, U3} and f;:X;—X are as in
Lemma 3. Then since gi=gq}=1, we have the canonical isomorphisms

U xC3U,=N, and Us;=N

sP2pP3 q:49293°

where p,, ps;, ¢, and g5 are determined by the following formulas;
(11) p,+n=0 modp, p;=q modp and O0=Zp,;<p
g,=p modq g;+n=0 modgq and 0=g¢g;<q.

By Lemma 4 the transition functions m;; and the rational map X,—
C3(z) are given respectively by

wi=(w}3)"1/" wi=(w})"1/e [W%=W?(W%)‘”"

(12) | wi=wi(wi)"/» wi=w3(w3)"/?

wi=wi(wi)=Ur Lwi=wi(wi)ma wi=(w3)"r
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i zy=(wi)t/n [z =wi(w})!/" ‘I zy=wi(w3)!/"
(13) zy=wi(wlhyp/n z,=(w})r/" ] zy=wi(w3)pn
1 zy=wi(w})an 1 zy=wi(w3)/n zy=(w})e/m.

From this we see that we can define the canonical way of resolution
for such X. To state this precisely, we shall consider some preliminary
cases. So suppose X=N,,,xC and hy:N,, ,>N,,,
resolution. Let h=ho><ia’c:Nn,l,pxCaN,,,l,pxC be the resolution of
X obtained as the product of h, and the identity of €. Then we say
that the resolution h of X is minimal. Next suppose (X, ) with U=
{U,, U,} is an admissible pair. Assume that U,=C3(u’, v}, w))/{g;} and
gi=(e, €, 1), i=1,2. Obviously each U,; is isomorphic to N, ,xC.
Then the minimal resolutions of U; coincides on the intersection U, n U,
and gives a resolution f: X—»X of X. We call this the minimal resolu-

tion of X. Further in this case if the transition functions between U,

is the minimal

n.1,p

and U, are given by the formula
{u"=u"(wf)‘“
v =pd(wi)az
Lwi=(wi)™!

with a; some rational numbers, then X is covered by 2s copies vi, 1<
k<s,i=1,2, of €3 with the coordinates (ui, vi, wi) such that the transi-
tion functions between them are given by the following formula;

W=k u=udOegnee
(14) Ui =(U;.(_1)b"u;€_1 UI% =U’%(wi)—ﬂllk+1+ﬂz“k+1
{wf‘=w,‘;_1 wi=(uw?)"!,

where b, and /,, p, are defined by (9). This can be proved easily if
one uses (10). Note that the minimal resolution is unique.

Now suppose X=N,_,, as before and f: X—>X is one of the resolu-
tions obtained in the theorem. Decompose f into f=f,...f; as in the
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Remark 3 a). Let E; be the exceptional locus of f;: X;—»X; , and set
D;=f(E;). D; is either a single point or isomorphic to a projective line.
We may assume that D; is a point for i<b and is a line if i>b (cf.
Remark 3 a)). Each X; has a natural affine open covering U; such
that (X, ;) is an admissible pair. If D; is a point, then there exists
a unique member UY-Dell,_, such that D;e UY~1 and f|f7f (USV):
frUU%D)- UG~ is the map which replaces UY~1) by three affine open
sets U, UY, and U'Y according to the method of 1.2. We say that
fi---fi, 1SiZb, is canonically defined if inductively 1) f;...f;_, is canoni-
cally defined and 2) f|f71(U%~1") is with respect to the isomorphisms
UL'II) = C3, UE,"Z‘ = N,,;uz);p;zz)q;iz) and U;i) = N";IA)’pgzis)q;i:i)

prescribed in Lemma 3 as explained above for suitable integers n'¥,
pi), qt).  Next, consider the admissible pair (X,, ;). The singular
locus of X, is the disjoint union of nonsingular curves C; i=1,..., 1,
each isomorphic to a projective line. For each C; there exists a unique
pair (U, U§) of the members of U, such that (UL U, {UP,
Ug'}) is an admissible pair of the type considered before. So we may
speak of the minimal resolution of X along each C;,. Then

Definition 3. We say that the resolution f is canonical, or f is
the canonical resolution of X, if i) f,.---.f, is canonically defined and

i) fy1...f; defines the minimal resolution of each C,.

The canonical resolution is one of the special resolutions defined in
Remark 3 ¢).
To describe the minimality condition, we make the following defini-

tion after Moishezon.

Definition 4. Suppose X is a complex manifold of dimension 3 and
S is a connected submanifold of X of codimension 1. Let Ngjx be
the normal bundle of S in X. We say that S is the exceptional surface
of the first kind, if either S is isomorphic to P2 and Nz —Hp:,
or S is isomorphic to a P' bundle over a manifold of dimension 1 and
Nsx|p= —Hp, where H is the hyperplane bundle of the corresponding
projective space, and F is the general fiber of the fibering of S.
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Remark 4. 1f an exceptional surface of the first kind S is compact
and rational, then either S= P2 or S=ZX,, the Hirzebruch surface of
degree m. X, is a P! bundle over P! obtained by adding an oo-
section to a line bundle of degree —m on P!. We call the O-section
of this line bundle also the O-section of X2,. In particular, X;=P! x
P! and it has two different fiberings of P' associated to the projec-
tions to the first and to the second factors. Conversely, it is known
that X, is the only one among X, which has two structures of P!
bundles.

Now let f: X— X be the canonical resolution of X=N, . Let S
be the singular locus of X, O=f"1(S) and 0,,...,0,. be the irreducible
components of 6. Let f=f,....,f, be the decomposition of f as in
Remark 3. Suppose some 0,~Z%, and is the proper transform of the
exceptional locus of f;: X;—X;_,. Then either of its fiberings u: 6,— P!
is said to be incompatible with f if f,...,d«0,) is a curve C, and f,...,
f4 sends each fiber of u onto C,. Then we can prove

Proposition 1. Suppose f: X—X is the canonical resolution of X =
N
surfaces of the first kind except when 0,=X, und Ny ;x| r=—Hp, where
F is the general fiber of the fibering of 0, incompatible with f.

wpq and S, 0 and 0; are as above. Then none of 0, are exceptional

Proof. Let f=f,,..,f; be the decomposition of f as in Remark 3
and E; the exceptional locus of f;: X;—X;_,. Let E; be the proper trans-
form of E, in X. We have to show that E;, are not the exceptional
surface of the first kind unless it comes under the above exceptional
case. Set D;=f(F;,). First we consider the case when dimD;=0. Then
E; is isomorphic to a projective plane divided by a cyclic group. Indeed,
by Lemma 3 and 5) of Lemma 4 we see that E; is covered by 3 affine
open subsets Vi, V,, V3, each isomorphic to €2, N, ; ,,, and N, . ;
respectively, where we assumed that there exists U,e Ut~ with the ca-
nonical isomorphism with N, .. such that D;el, and where p3 and
q5 are determined from p’ and g’ by the formula corresponding to (11).
But since E; are nonsingular by the theorem, the induced map E,—E;
gives the resolution of the singularity of E,, Now since X, (resp.
P2) have 2 (resp. 1) as the second betti number, from this, we can
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readily infer that E, is isomorphic to neither of them unless in the
following three cases; i) (p3, 45)=(0, 0), ii) (p3, g2)=(1, 0) (iii) (p3, g3) =
(0, 1). But i) is equivalent to p=gq ii) to p=1 and iii) to g=1. These

cases are dealt with in the following two lemmas.

Lemma 5. (Ueno [12]) Suppose f: X—X is the canonical resolu-
tion of X=N,,,, Then X is covered by 2s+1 copies V,, 1<k<s,
i=1,2, and V,, of €3 with the coordinates (ul, vi, wi) and (u°, v°, w°)
respectively and they are connected by the system of transition functions

as follows;

J uj = (V)" {u’% =ug(wi) uy ="
(15) lv?} = tj—; (Vj—1)" vk =vF(wi)rer vy =0v0(u®)h
Wi =wi_1 I wi =)™ 1 wi=w(u°)"",

where A, u, and b, are given by (9).

Proof. Set h=f,,,f;: X—»>X, and W,=h"Y(U) for i=1,2,3.
Then h|y,yw, defines the minimal resolution of U, U U,;. Hence W, U W,
are covered by 2s copies Vi, 1<k<s, i=1,2 of C3 with the coordinates
(ul, vi, wi) and the transition functions among them are given by (14),

namely,
ul =(vi_{)1 Ju’i =u,%(w,%)'“;‘+"“;‘)/”
] vf = (vi_1)Puf_, bl = p2 (2) e 1R /P
{w,‘;=w£_1 {Wﬁ=(wf)—1

where 4}, u, b, are determined by the euclidian algorithm of (9)
putting this time A,=p and A,=p,. In fact, in this case we can take
a,=—1/p and a,=n/p in (14), as is seen from (12). But if A, and
U, are the integers defined by (9) from »n and p, then we can show

inductively the following relations;
AMe=er1s bp=brr; (0sk=s-1), Aer 1+ =Py (K21).

Hence we have obtained the first two relations. The last one is easily
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deduced from (12), (13) and (8). Q.E.D.

Lemma 6. Suppose f: X—X and f': X'->X be the two canonical
resolutions of X, according to the isomorphisms X=N, . and Xz
N,.1, respectively, where p and p' are related by pp’=1modn. Then
there exists an isomorphism h: X—X' such that f'h=f.

Proof. We shall only indicate the method of proof and leave the
explicit computations to the readers. It suffices to prove that X' is
covered by 2s+1 copies of €3 and that the transition functions between
them are given by (15). Decompose f into f=f;---f; as in Remark 3.
We prove the lemma by induction on d. In fact, in this case we have
U;2U,=C3 and U;=N,, ,, by (11). Thus we may apply the
induction hypothesis to the canonical resolution h: h=1(U;)— U,, where
h=fy fl(fa--- f2)"1(U3). Hence if we set W;=h"1(Uj), then W; is

~

isomorphic to the canonical resolution N

piprpr OF Npoopupe, where p”
is defined by the formula p”"p’=1 (modp’) and 0=Zp”"<p’. Then we
have to show that Np,:pnpu is isomorphic to Z\;Jll ViuV, in the nota-
tion of Lemma 5. But this corresponds to the fact that if n/p=
b,_1/b,_1/b5_---_1]/b,, b;=2, is the expansion of n/p into the continued
fraction, then that of p'/p” is given by p'[/p"=b,_1/by_---_1/b,_,.
This can be derived from n/p’=b,_1/b,_,_---_1/b,. Now it remains
to see that the transition functions with respect to V{ and U,. But
these can be calculated using (12) and (8) to coincide with the last

relations of (15). Q.E.D.

Now we define nonsingular subvarieties 0, 1<k<s, of X by the
following formula;

0,: u°=0in V,, vi=0 in Vi, v3=0 in V?
ui_y=0 in Vi_, i=2,3 and k=2,.,s.

0,:
v, =0 in Vi

Then f“(P)=Ls/ 0, where P is the singular point of X and 6, is the
k=1

proper transform of the exceptional locus of f,, when we decompose
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f into f=f;---f; as usual. Note on the other hand that if f'=f.--f}
is the decomposition of f’, then 6, is the proper transform the ex-
ceptional locus of f,_,. Roughly speaking, f and f’ are the resolutions
of X from the opposite sides. Now from Lemma 5 we can see im-
mediately

Corollary to Lemma 6 [12]. i) 0, =P? and N, ,z=—bH. ii)
O, k=2,--, s, is isomorphic to X,. If F is the general fibering of
ek, then Noklxlpg_ka.

For the precise proof we refer the reader to Lemma 4.3-4.6 of
[12]. We only note that since u,=u,=2 for k=2, we conclude that
0,22, 2%, for any k. Hence in particular there exists no exceptional
surface of the first kind at all among 6,.

Now we continue the proof of the proposition. By virtue of the
above results we may assume now that dimD;=1. Then E; coincides
with an irreducible component of (fy--f)”'(C;) for some C; Set
ft=f,f;. Then f*E;: E;~C; gives the natural structure of a P' bunddle
on E;. Then by [14] we see that Ng g¢|r=—bH, with b2, where
F is the general fiber of f?|E, Thus E;, can possibly be an excep-
tional surface of the first kind only along the incompatible fibering of
E,. This proves the proposition.

Remark 5. If n, p, q satisfy the following condition, then in the
canonical resolution f: X—X, the exceptional case of the proposition

occurs:

Set (p, 9)=d and define integers p;, q;, n?, n4, 0<i<s+1 0Zj<t<+1,
by the formulas;

q=bop+pi, 0=p,<p, p=coq+4:, 0549, <q
Pi-1=biPi—Pi+1> 0=Pi+1<P» 4j-1¢;9;—9j+1> 0=59;41<4;
Po=p, Ps=d, ps+1=0  qo=4, g, =d, 4, =0
n=dyp—nf, 0=nf<p n=eyq—ni, 0=ni<q

nf_,=d;p;+nf, 0=nf<p, ni_y=e;q;+n%, 0=n,<gq;.
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Then d,=n%%,, =n%, is the integer defined by d,-++n=0(modd) and
0<d,<d. Now let p;=p;/d, g’ =q;/d and set

P =1/popi+-+1|piipss Q' =1]qoq+ - +1/qi-14;
Ny=n{|popi+-+nl|pio1pis Ny=nl/qoqh+--+nllqi-1q;.

Moreover let A, py, 1=Sk=b, be defined by the algorithm of (9) put-
ting Ao=d and A,=d; there. Now our condition is stated as follows;
there exists k, 1<k<bh, such that

P'+Q’_1/p/ql=#k and N}:+N;+1/p'q'=2k.

Remark 6. Lemma 6 and Proposition 1 would certainly be true
for any special resolution.

As an example of the explicit resolutions we take X =C3/G, where
G={g} and g acts on C3 by g=(es, e, e2). Then according to whether
we take g, g%, or g3 as a generator of G, we have the isomorphisms
X=Ns,53, X=Ns5.5,, and X=N;.,, respectively. Let f: X-Xx, 1<
i<3, be the corresponding canonical resolutions of X. Then f;!(p)=
0 look as in the following figure, where P is the singular point of X.

N5;24
Ns5.23

9(2)
(1)

0,: rational 0, =%, Ng,z,|p=—3Hy

0,=P? Ny, 2,2 —2H

0,22, Noz, |lr=—2Hp 0,: rational

0,=P? Np, g, =—2H 9:=%, No,z,lr= —2Hp
0,=P? Ny, x,=—2H

Os=2, Noyz,lr=—2Hg
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Ng.34 0,: rational
QZ’EPZ NGZ/X3E’_3H
°3)
052, N, 2, r=—2Hp
Q @4 64%23 N(,‘/XSIF;—ZHF
63 9521‘)2 N95/73§—2H
€1

§2. Resolutions of General Isolated Quotient Singularities and
Isolated Singularities with C*-action of Dimension 3

21. Let X be a complex space of dimension 3 and B be a point
of X. Suppose there exists a neighborhood U of P in X such that
U is siomorphic to Dx Y, where D is a unit disc {t; 0<Z(t|<1} and Y
is some neighborhood of the singular point £ of the cyclic quotient
singularity N,,, Let ¢: U=DxY be the isomorphism, and h: Y-v
be the minimal resolution of Y. Then f=(¢) '(idpxh): Dx Y-U
defines a resolution of U. Now let U’ be another neighborhood of
P with an isomorphism ¢': U'=Dx Y’ and let f'; Dx Y'» U’ be the
resolution obtained analogously using the minimal resolution h': ¥'—
Y’ of Y’, where Y’ is again some neighborhood of the singular point
Q" of a cyclic quotient singularity N,., ,. Then we have necessarily

that n=n’" and p=p'".

Lemma 7. The above f and f' coincide on UNU’', or more pre-
cisely, there exists an isomorphism y: f~L({UNU)Y=f~"YUNU’) such
that f'y=f.

Proof. First, recall that a quotient singularity is ratinoal [1, Satz
1.7]. Then, by [7, Chap.I], [11, Theorem 1] any of its resolutions is
obtained by succession of a finite number of quadratic transformations.
Namely, let Y, be a quotient singularity and hy: Y,—Y, a resolution.

1) This is in fact the consequence of the following lemma 7, which makes no use of
this fact, together with the uniqueness of the minimal resolution of a normal singu-
larity of a surface and the rigidity of quotient singularities [1].
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Then h, can be written as hy=h$... hY, where h?:Z,—-Z,_,1Z5i=d,
is the moniodal transformation with center the singular locus S; of
Z, with its reduced structure and Z,=Y, and Z;=Y, In fact, Z; are
all normal and S; consists only of finite number of points [7, Prop. 8.1],
[11, Prop. 1.2]. Now we define a resolution fy: U"— U" of U'=UnU’
inductively as a succession of monoidal transformations with nonsingular
center as follows; first let f¢: U;,—»>U"” be the moniodal transformation
with center the singular locus S” of U” (S” coincides with U’ n ¢(D X
Q) and hence is non-singular). Assume now that f?: U,»U,_,, 1Zi<s,
have already be defined. Then we define f%;: U;,,—»U, as a monoidal
transformation with center the singular locus of U,. Then by the defini-
tion of fy, f? is naturally isomorphic to both f;=idpxh;: DxZ;—D x
Z,_, and fi=idpxh;:DxZ;—->DxZ}_,, where h=h,...h; with h;:
Z—Z,_, (resp.h’'=hjy...hy with hj: Z;—>Z;_;) is the decomposition of
h (resp.h’) into the quadratic transformations as above. Hence we see
that d=d’, fO=f9.. f{ gives a resolution of UnU’, and finally both
f and f* coincide with f© on UnU’. This completes the proof.

We call the resolution obtained in the lemma the minimal resolution
of X at P. Moreover, suppose X, is a complex space of dimX,=3
and each point P, € X, admits a neighborhood U, which is isomorphic
to DxY, with Y, a neighborhood of the singular point of some cyclic
quotient singularity. Then a resolution f: X, —X, is said to be minimal

if it gives the minimal resolution at each singular point of X,.

2.2, Let GSGL(3, €C) be a finite subgroup. Then G acts naturally
on €3 and the quotient space X=C?3/G has the natural structure of
a normal affine algebraic variety [10, Prop. 18]. Let S be the singular
locus of X. In this section we shall prove

Theorem 2. Suppose X has only an isolated singularity at the
point B, corresponding to the origin. Then there exists a resolution
f: XX of X with the following propoerties; if we denote by 0,,..., 0,
the irreducible components of 0=f"1(S), then

1) 0 has only normal crossings in X,

2) each 0; is a nonsingular raitonal surface,

3) 6;n0;,i+#j, is isomprohic to P! if it is not empty, and
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4) 0;n0;n0,, i#j#k#i consists of a single point if it is not
empty.

Proof. We follow after the proof of Satz 2.11 of [1]. We may
assume that G is small, namely, no elements of G have 1 as its eigen-
values with multiplicity exactly 2 [9. Def.2]. Let 6: W—C3 be the
monoidal transformation at the origin. Then E=¢"1(0) is isomorphic
to €3—{0}/C*, and hence to P2, where C* acts naturally on C3.
Further W has the natural structure of a line bundle over P2. Let
w: W—P? be the projection. The action of G exetnds naturally onto
W so that it leaves E invariant. In more detail, let ge G be an arbi-
trary element. There exists a linear change of coordinate of €3 such
that with respect to this new coordinate g has the diagonal form with
eigenvalues a, b and ¢ in this order. Let (w,, w,, w;) be this new co-
ordinate. We may also consider (w;: w,: w3) as a homogeneous coor-
dinate of ExP2. Now set V;={w'#0; (w)eP?}. Then as usual W
is described as the union W=§J(V,-><C), where (p, {)eV;xC is identi-
fied with (q,{)eV,xC if and only if Li=wwl. Set U;=V;xC.
Then U; is naturally isomorphic to €3 and the extended action of g on
W is given with respect to this coordinate of U; by

g=(bla, c/a, a) on U,, =(a/b, c/b, b) on U,, and
=(a/c, bjc, ¢) on Uj,.

From this, we infer that the fixed point sets on W of the elements of
G are classified according to the eigenvalues of the elements as follows;
if the eigenvalues of an element geG are as a set (i) {l,a, a}, (i)
{1, a, b}, (i) {a,a, a}, (iv) (a,a, b} or (v) {a, b,c}, then the fixed
point set of g is (i) union of a fiber of w and a line in E, (ii) union
of a fiber and a point on E, (iii) E, (iv) uion of a line and a point on
E, or (v) three distinct points in E, respectively, where a, b and ¢ are
roots of unity which are mutually distinct and different from 1. Now
let X,=W/G, n,: WX, the quotient map, and f;: X;—~X be the mor-
phism induced by o. Note that f; is isomorphic outisde f71(8°) so that
the singular locus S; of X is contained in f7!(P°). From this, we
infer that no elements of G can fix a fiber of w. Thus the classes (i)
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and (ii) above are empty. Now let e E be an arbitray point, and
Gy be the stabilizer of P. We show that Gy is cyclic. For this, we
fix an open neighborhood U of P in E such that o }(U) is Gy in-
variant. Such a U exists because G acts fiber-preservingly on w: W— P2,
Moreover, taking U sufficiently small we may assume that W|U is trivial
i.e. there exists an isomorphism ¢y : W|U=UxC. Identify W|U with
U x C by this isomorphism. Let { be the coordinate of €. Then the
action of an element g of Gy on the (-component is of the following
form (=h(u);, where h is a regular function on U. But since g has
a finite order, h(u) is a root of unity and is a constant a(g). Now de-
fine a map u: Gg— C* by u(g)=a(g), then it is clear that u is a homo-
morphism of the groups. It is easy to see that this a(g) is independent
of the trivialization ¢, and coincides with the corresponding eigenvalue
of g. Hence by the above classification of the elements of G, u defines
an isomorphism of Gy with a subgroup of C*. Thus Gy is cyclic.
Now taking a generator g of G and a covering of W by 3 open subsets
U,, U, and U; corresponding to g as in the beginning of the proof,
we see that X, is isomorphic at =,(B) as a germ of a variety to a cyclic
quotient singularity. Hence by Theorem 1 there exist a neighborhood
V of Q=n,(®) in X, (in the usual topology), and a resolution (7, f ®)
of ¥ satifsying the properties stated in the Theorem. Moreover by the
consideration in 1.4 f is minimal on V—RQ. Finally, we take a finite
number of points Q,...,Q; of X;, neighborhoods U; of £; in X,,
and resolutions f;: U,—»U,, such that U, cover the singular locus of
X,. Then by Lemma 7 we can see that these f; coincide on the inter-
sections, and thus patch together to give a resolution f,: X— X, of X,.
Then f=f,-f,: X > X is the desired resolution. In fact, since any ir-
reducible component of S, is either isomorphic to P! or a point, we
deduce that each 0; is nonsingular and rational except the proper trans-
form, say 6;, of f7!(PB°) in X. But the latter is obtained by resolving
the singularity of f7!(%°), which in turn is a projective plane E divided
by G, considering G as a subgroup of PGL(3, C). Hence by the
theorem of Castelnuovo (See e.g. Savarevié, Alg. Surfaces Steklov
Institute of Math. 1965), f1'(B,) and thus 6, is rational. The other
statements can be treated analogously and we do not repeat it,
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Remark 7. The above proof shows that also in the higher dimensional
cases the stabilizer Gy at each point PeE is cyclic if X has only
an isolated singularity. But if we allow X to have the singularity of
positive dimensions, then the map p above has necessarily a kernel and

Gy is in general not cyclic.

2.3. Suppose X is a normal affine algebraic variety embedded in
C"(z4,..., z,) and there exists a C* action u on C" which leaves X
invariant of the form;

wt, (z4, ., 2,))=(t1zy,..., tinz,), teC*,

where ¢; are positive integers satisfying (q,.... ¢,) =1 [cf. 8]. This means
in particular that the action is effective. We assume further that X is
not contained in any linear subspace of €". Noe suppose that X has
an isolated singularity at the origin. We call such a variety X an isolat-
ed singularity with C* action. For such an X we have the canonical
way of inserting a ‘O-section’ at the singular point, due to Orlik and
Wagreich [8, 1.2]. More precisely, let X'=X-—{0}, Z=X'[/C*, =:
X'—Z be the projection and I"'= X' xZ be the graph of n’. It is known
that Z is a projective variety [8].

Let I' be the closure of I in XxZ and f,: = X (respn: [ = Z)
be induced by the natural projection p,: XxZ— X (respp,: X xZ—>Z)
to the first (resp. to the second) factor. We have then the canonical
section i: Z— I defined by i(Z)=(0, z)e X xZ. In the sequel we identify
Z with i(Z). Then we show

Lemma 8. I has only the cyclic quotient singularities: For each
point Wel, I' is isomorphisc as a germ of an analytic space at P

to a cyclic quotient singularity.

Proof. We consider I' and Z as analytic spaces. First, by the
fundamental result of Holmann [5], for each point Pel’ there exists
a neighborhood Ug of P in I’ and a 1-codimensional closed submanifold
Ay of Uy such that (i) both Uy and Ay are Gy invariant and (ii) #'|4g
induces an isomorphism between Ag/Gy and some neighborhood Vg
of P=n'(P), where Gg is as usual the stabilizer of P (refer [2] for
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the arguments). Now we fix a point PeZ and then a point Pe
n~1(PB) and take Ug, Ay and Vg as above. Let Y=n'"'(Vg). Define
a holomorphic retraction r: Y—n'"1(®B), as follows; let Qe Y be any
point. Then there exists a 1e C* such that u(t, Q)€ Ay. Then we define
r(Q)=u(t, P). This is easily seen to be independent of the choice of
such a t, and the map is well-defined. Note that n'~!(B) is naturally
isomorphic to C*/Gy. Then we set ¥=Yx i C* the fiber product
of Y and C* over n'"!(P)=C*/Gy, where C*—C*/Gy, which we
denote by «, is the natural projection. Then there exists an isomorphism
p: Y- C*x Ay and the following diagram is commutative;

Y - V= C*x Ay

v

C*|G «— C*

where v and p are natural projections and p, the projections to the
first factor. Indeed, ¢ is explicitly defined by @~ !(t, a)=(t, u(t, a)),
with teC* and aeAy.

Further, the natural actions of Gy on Y and C€C*xAg commute
with ¢ and thus Y=Y/Gy is isomorphic to (C*x Ag)/Gg. On the other
hand Gy acts naturally on €x A4y and C, extending those on C*XxAg
and C* respectively. From this we infer that =™ !(Vg)=(C xAy)/Gy
with respect to this action of Gy on CxAg. This proves the lemma,
since Gy is cyclic.

Remark 8. Acutually, we have the following commutative diagram
extending the above one;

11 (V) 2 Cx dg

St

C«—— C

such that the map v is equavariant, where C* acts on €x A4y in a
natural manner.

Combining Lemma 7 and Lemma 8 with Theorem | we have
the following theorem when dimension X =3.
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Theorem 3. Suppose X is an isolated singularity with C* action
and dim X =3. Then there exists an equivariant resolution f: X—X
of X with the following properites; if we denote by 6, .,0,, the ir-
reducible components of O=f"1(B) with B, the singular point of
X, then

1) 6 has only normal crossings in X.

2) each 0; is a nonsingular ruled surfce (i.e. it is birationally
equivalent to the product of a nonsingular curve C and projective line
P) except one, say 0, which is the proper transform of i(Z). 0,
also is nonsingular.

3) 0;,n0;,i#j is a nonsingular curve.

We only note that the equivariance can be deduced from the above
remark.

It may be conjectured that the same kind of resolution could be
obtained also in higher dimensional cases.

As an example we shall examine the resolutions of Brieskorn va-
rieties. Let X, be a hypersurface in C* defined by the equation

2§ + 252+ 2%+ 244 =0,

where a; are integers =2. Put a=I[l.c.d. of a; and g;=a/a,. Then the
map h: C*(t)—> C*(z) with f(t,, ty, t3, t4)=(29, 52,153, t4*) defines an
abelian covering X,; of X, in €4(t). JIn fact X, is defined by

(16) 1915+ 15+ 14 =

Let f: L-»X, be the monoidal transformation at the origin. L had
naturally the structure of a line bundle over a nonsingular surface S
defined by (16), considering this time (t;:t,;t3:t,) as a homogeneous
coordinates of P3. The action of G extends onto L and the diagram

M

(___ﬂ_.__
Vo
(—-——_

N —-

commutes and compatible with the natural C* action on both L and
I', where I' and Z are as above. Now let H; and [;; be the hyperplanes
and lines in P? defined by t;=0, and f,=t;=0 respectively. Then



Cycric QUOTIENT SINGULARITIES 327

C;=H;n X is a nonsingular curve and I;; N X consists of n distinct points
PiD,..., B, Hence we identified X with the O-section of L. Then
it is readily seen that I' has a singular point at v(P{¥), isomorphic
as germs of anayltic spaces to the cyclic quotient singularity €3/{g;;},
where g;; acts on C? by

gij=(ec.» €clis €l
where ¢,;=(qy, q;) and i, j, k, | are all distinct.

Here are some examples:

1) (a,ay)=1,i#j. Then g;;=(e,q,,, ;%" e;%**). In this case
Z is a projective plane [2] and v(C;) form 4 lines in general position.
Then using Lemma 3 we could resolve the singularity of I’ rather
easily. Note that then the irreducible components 6; are all rational.

2) a;=a,=b and az=a,=c. Put (b,c)=d, b'=b/d and c'=c/d.
In this case I' has b singular points each isomorphic to N, 5, and
¢ singular points each isomorphic to N, ., where b} and c¢; are
determined by the following formula; 0=<b} <c, b7 +b'=0(c) 0=c¢}<c’,
¢y +¢'=0 (modb’). The resolution of each singular point is obtained
according to Lemma 3.

3) a;=b,a,=a3=a,=c. Let d, b’ and ¢’ be as above. I has
the singular locus along the curve w(C;), of the type N, ;. Let
fi: X—I the minimal resolution of I, 0, the proper transform of Z
in X and 0,,..., 0, be the irreducible components of f7!(v(c,)) such that
0,n0,=C+#¢. Then 0, is isomorphic to the cyclic covering of P2
of degree d, with branch locus C defined by z§+z§+2z$=0, considering
(z,: z3: z,) as the homogeneous coordinates of P2. Thus 6, is isomor-
phic to P? if d=1 and isomorphic to P'xP! if d=2. 6, i=1, are
isomorphic to the P! bundles over C. Further we can see that the
normal bundle Ny 5z of 0, in X is given by

Nogz=—(c'p'+1)/b'c'[C]

with 0=Zp'<b’ and —(c'p'+1)=0 modbdb’ (cf. [4]). From this, we
infer that 6, is the exceptional surface of the first kind if and only
if either
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I=1 and c¢|b—1, or ¢=2 and b=2m is even.

In the latter case we have a birational morphism h: X—X, such that

X, is nonsingular, A is isomorphic outside 6 and C,=A(0) is isomorphic

to P! and the normal bundle N x, of C, in X, is isomorphic to

(—2H¢,)®1¢,, where H., and 1., denotes the hyperplane bundle of

C, and the trivial bundle respectively.
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