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Non-linear Schrodinger Equation and Modified
Korteweg-de Vries Equation; Construction of

Solutions in Terms of Scattering Data.

By

Shunichi TANAKA*

In [16], we have constructed the general solutions of the initial value

problem for the Korteweg-de Vries (KdV) equation in terms of the

scattering data of a Schrodinger operator. The purpose of the present

paper is to extend the construction to the non-linear Schrodinger equation

(0.1)

and to the the modified KdV equation

(0.2) vt+6v*vx+vxxx=0.

Gardner, Greene, Kruskal and Miura (GGKM) [4] have discovered

that the solution of the KdV equation can be described in terms of the

scattering data of one-dimensional Scrodinger operator. They also

proposed that the formalism of inverse scattering theory gives a certain

explicit realization of solutions. If the reflection coefficient identically

vanishes, the fundamental integral equation of the inverse problem reduces

to linear algebraic equations and the potential is expressed in closed form

in terms of exponentials. GGKM have also recognized that solutions of

the KdV equation associated with reflectionless potentials play an im-

portant role in the study of asymptotic behavior of general solutions. See

[13] for detailed discussion of reflectionless solutions of the KdV equatino.

An analogue of the GGKM theory for (0.1) has been initiated by

Zakharov and Shabat [19]. They found that solutions of (0.1) are de-
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scribed in terms of scattering data of the operator

(0.3) Z.

with a complex potential u. Subsequently Wadati [17] and the present

author [14] have associated (0.2) also with the operator Lu. In [19] some

part of scattering theory of Lu has been described on formal basis. In

particular a part of reflectionless potentials and solutions associated with

them are constructed.

Scattering theory for Lu is more complicated than that of the one-

dimensional Schrodinger operator given in Faddeev [3] in several points.

To explain them let a (£) denote the wronskian of the right and left Jost

solutions (See §§ 1 and 2 for detail). #(£) is defined and continuous for

Im£^0, analytic in Im£>0 and tend to 1 as | £ | — >oo. In the case of the

Schrodinger operator, a(£) does not vanish on the real line, the number of

its zeros are finite and all zeros are simple. These do not necessarily hold
in our case.

In Shabat [10], [11], where scattering theory of Lu is discussed, potent-

ials whose a(j£) has no zeros in Im^^O are considered in deriving the

fundamental integral equation and consequently in solving the inverse

problem. This assumption excludes all reflectionless potentials and is

inconvenient for the study of equations (0.1) and (0.2).

We relax the condition and only assume that <&(£) has no zeros on the

real line. The number of its zeros are finite in consequence. Even under

this simplifying assumption, the theory is rather complicated by the fact

that a(£) has multiple zeros. The complication due to the presence of

multiple zeros already occurs for the Schrodinger equation with a complex

potential (Blashchak [2]).

In § 1 properties of the Jost solutions of Lu are discussed. Then in

§2 scattering data are defined and their properties are described. In § 3

we derive the fundamental integral equations. §§4 and 5 concern the

inverse problem. In § 4 the solvability of the fundamental equation is

discussed. Then in § 5 the inverse problem is formulated and solved.

In deriving the above results, methods developed for Schrodinger
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equations ([1], [8] for radial equations; [3] for one-dimensional equations;

[2] for equations with complex potentials) have been used in modified form.

The following two sections concern the construction of solutions of

(0.1) (§ 6) and (0.2) (§ 7) in terms of scattering data of Lu. Several

preliminary results have been published before in [14], [15].

Throughout the paper integrations are taken over ( — oo, oo) unless

explicitly indicated. For a complex number c, c* denotes its complex

conjugate.

§ 1. Jost Solutions and Their Properties

For a complex-valued measurable function ^, consider the operator

Lu defined by (0.3) on the infinite interval ( — oo, oo).

For a two-dimensional vector y=t(yi,y2), put

and

\y\=max.(\yi\9

If y=y(x) is a solution of

(1-1) Lvy=&, t

then

holds.

If y(x] and z(x) are solutions of (1.1), then the wronskian

is constant.

Put

A*. 0=*(l,0)exp (-

^(^0=*(0,l)exp(iO

They are solutions of (1.1) for u=0.
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To obtain solutions with prescribed behavior as x— ̂ ^oo, put the

expression

into (1.1). Then we have

(1.2) a/(^) = -«*(^i

fi'(x) = u(x$z(x) exp (ziffx) .

We assume that the potential u is integrable and put

fd

^ Jx

Theorem 1.1. There exist unique solutions \fi± of (1.1) for Im£j>0

such that

as #->:£: oo. ^± we analytic in £ in the upper half plane.

Proof. By (1.2) we have the integral equations for ^±:

/^±o

— I
J ic

f «J a;

These integral equations can be solved by successive approximation

leading to the existence of the solutions and their estimates. Q.E.D.

The solutions */r± will be called the Jost solutions.

We have also

Lemma 1.2. There exist unique solutions e±(xf £) of (1.1) far Im £>0

suck that

S)—*l*±(x> £)}-"**0, x—> it00-

These solutions are analytic in £•

Proof. In this case we solve (1.2) by the requirement that a(#)—0
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and j8(#)— >1 as x-+oo. Then we have the integral equations for e — e+\

poo

ei(x9 0— exp(— *£*)= — u(y^e2(
fj X

Cx

**(x, 0 = — I u*(y)*l(y> 0 exp (*'£(J a

Putting

e(x, £)=ex.p(—i£x)A(

these are turned into integral equations for h which can be solved by

successive approximation provided cr+(#)<l. It is easy to show that

h-\l, 0)->0 as x-+oo. Q.E.D.

Put

(1-3) <A±(*} 0=exp(±/^)A±(^, 0-

Assuming the integral representations

(1.4+) *+(*, ̂ =«(0, 1)+
U

(X, 0=*(1, 0)+ f°
J -c

we put these into the integral equations for the Jost solutions. Then we

have

nx+y
(1.5) B+i(x,y)+ I ' u(z)£+2(*,x+y—z)dz=—u(x+y)9

«y 2/

(1.6) 5+a(*,y)- r~»*
J a;

and

5-i(^,.y)- f* «(
ty °o

r^
•#-2(#,jy)+ u*(z)B-i(z, x-\-y— z)dz=— u*(x+y).J x+y

The potential ^ is reproduced by

*(*) = -£+!(*, 0)=-^a(*, 0).
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Let u be bounded integrable and put

\u(y) \.

Then the integral equations for the kernels B± just obtained can be solved

by succesisve approximation and the solutions are estimated as

ft .7) ! B±(x, y) \^m±(x+y} exp (<r±(*))

(see [10, pp. 167-168]).

Now we study how additional smoothness of u improves that of B=B+.

Lemma 1.3. Suppose that u is n-times differ entiable with integrable

derivatives. Then JBtf'W = df+kJ8/dxfdJS exist for j^k<Ln and the estimate

i=0

where

hold.

Proof. By (1.6), B% is diiferentiable and

(1.8) B*Jx, y)=-u*(x)Bi(x, y}

holds. By (1.5) B\ is differentiable with respect to x and estimate for Bx

follows. Results for B^^ follow by induction onj using (1.5) and (1.8).

By (1.5) B\ is diiferentiable with respect to y and

(1.9) Blx(x, y)-Bly(x, y)=u(x)B*(x, y}

holds. B%y exists by (1.6) and the estimate for By follows.

For general £(3'® the assertion follows from double induction on

j+k and k. Q.E.D.

If 772±(ib^)G: Ll(a, oo), we can define ifs± by (1.3) and (1.4). iff± coincide

with the Jost solutions. So we have.

Theorem 1.4. Suppose that u is bounded and m±(^x) are in Ll(aj oo)
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for some a. Then there exist kernels B± estimated as (1 . 7) and Jos t solutions

are represented as (1.3), (1.4).

§ 2. Scattering Data and Their Properties

Now let t, = t; be real. Then

As 0+ and $j_ are linearly independent solutions of (1.1) for £=£, we can
expand 0_ uniquely as

(2.1) 0-

Similarly

(2.2) ^+

We have

(2.3) atf)=[0-,

and

(2.4) fld)=-

Putting (2.2) into (2.1) and using the relations (2.4), we have

Putting (1.3), (1.4) into (2.3), we have

(2.5) a(0 = 1 + f"
*J U

where

(2.6)

and
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where

-*(x, y)

(we have extended B±(x,y) as 0 for ±jx<0).

Putting x=Q, for example, we have the estimates:

±y>0,

and

-F and 77 are bounded integrable functions.

There are other expressions for F and U which are sometimes more

convenient.

Considering the limit for x— >oo in (2.1) and comparing the coefficients

of exp(i^^)i we have the integral representations

) = l+J

Putting (1.3), (1.4) into these expressions and performing a formal

change of the order of integrations, we obtain the expressions:

(2.7) TI(y] = —u(y)— [~ u*(x)B-\(x,y--x)dx,
J y

(2.8) r(y)=J uWB-2(x, -y}dx.

For functions defined by (2.7) and (2.8) we have the estimates

(2.9)

and

(2.10)

Thus we have
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Lemma 2.1. If u satisfies the assumption of Theorem 1.4 and

(\.-\-\x^]u is integrable, then expressions (2.7) and (2.8) hold.

Lemma 2.2. Let 11 be in S, the space of C°°-functions which are

rapidly decreasing together with all derivatives. Then U is in S. F is

C°° and rapidly decreasing as x—>oo together with all derivatives.

Proof. By repeated differentiation of (2.7), (2.8) and by Lemma 1.3,

we obtain similar estimates to (2.9) and (2.10) for each derivative. Q.E.D.

Let £o be a zero of order m of a(£) in the upper half plane. Because

i/r+ are linearly dependent at C^^o, they are square integrable by their

asymptotic property.

Theorem 2.3. There exists a chain of complex numbers c+— {^J, . . . ,

^ra-ll (^0^0) such that

(2.11) /!-Vty-(*, £o)A#'= 2 /iI-^

Proof. Let e+(xy f) be the solution of (1.1) defined in Lemma 1.2.

Noting that [i/j+, e+] = — 1 ,we expand ijj- as

/O 1 O\ / fY\ I l fY\fz . iz ) w—:==ic( 4)04- "T" ̂ C4)^+

where c(£) = \e~t-, i/j~] is analytic in the upper half plane.

Comparing the j-th coefficient of the Taylor expansion of (2.12) at

^^^o, we have (2.11) where

^=^!-V^0)/rff. Q.E.D.

Obviously the chain of complex numbers c~= {<:$, ..., ^_1} is uniquely

determined such that

• 4 0 0 ir ^ 0 0 1

(2.13) 4 4 0- ° ^ ^o 0- 0

>.+ -+ --r -- -- --L ^m-i cm-2 ^0 ^f»—1 ^m-2 ^0 -1

The chains c"11 are called the normalization chains associated with the zero
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£o of «(£).

We now assume that

(2.14) a®=£0

for any real £. As the integral representation (2.5) holds with the inte-

grable kernel F, a(^)—>I as |£| — >oo. By this property and (2.14), a(£)

has only a finite number of zeros in the upper half plane. We denote them

by £; (/==!, . . . j -W) and their multiplicity by m(j}. Denote by c^ the

chain associated with the zero ^ by Theorem 2.3.

Put

are called the reflection coefficients. The collections

are called the scattering data of the operator Lu or the potential u.

An extension of the Wiener-Levy theorem [6, Lemma 1.2] gives

Lemma 2.4. Let a(£) be defined by

o),

and let a(g)=£Q for any real £. Let ^(j=.\, .„., TV") be the zeors of order

m(f) of a(£) in the upper half plane. Then a(£) has the representation

(2.15) a(£)= ff (f-^/C

where T\ is in

Putting £=f in (2.15), we have

(2.16) log \a(g) |= Re f °° A(/) exp (2f
t/ 0

§ 3. Derivation of the Fundamental Integral Equations

In this section we derive integral equations which connect the kernels

B± with the scattering data.
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As the coefficient b(g) is the Fourier transform of a bounded Ll-

function, it is a bounded Z2-function and tends to zero as £—^^oo. So

r±(f) are also bounded Z2-functions and tend to zero as ^—^i00- Put

as L2- Fourier transforms.

Now on the identity

«-i(0*-(*, ©-'(1, 0)=

multiply by Tr"1 exp (2z£y) and integrate over ( — oo, oo). By the convolu-
tion theorem, the right-hand side gives

(3.1) B±(x,y)+\ 1+ f™ F+(x+y+z-)£+(x, z)dz.
L F+(x+y) J .'0

By Jordan's lemma [12, § 60], we have

(3.2) TT-I J {«-!(«*-(*, f;-'(l, 0)}exp (2i

=2* E
J=l

where ^^o) is the residue of

at a zero ^o of ^(f).
Next we express #(£,$) in terms of the kernel B+. We have

where

By the relation (2.11),

m-l
(3.3) *(£„)= S /i!

Put
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m-l
(3.4) f±(x)

/±(#) are of the form

f±(x) =

where p±(x) are polynomials of order ^ — 1.

t,$) is now expressed as

= - (20-4 ° . J+(if+(x+y) J

Coming back to the derivation of integral equations for the kernels

B±, let f±$(x) be functions defined by (3.4) at the zeros £y of a(£). Put

Putting (3.5) into the equality (3.1) = (3.2), we have

noo r 0

Analogously

(3.6-) BL(x, y)+ f° QJ(x+y+z)B-(x, zy*+ =0
J -oo

holds.

These analogues of the Marchenko equation are first introduced

in [19] under the assumption that all zeros of a(£) are simple.

§ 4o Solvability of the Fundamental Integral Equations

In this section we discuss the solvability of (3.6) as an integral equation

for B+.
Given a function Q(x) belonging to Ll(a, oo) for any a, we define the

integral operator Qx by
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as an operator on L\Q, oo). Qx is a completely continuous operator (see

[1, pp. 70-72]).

We consider the solvability of

(4.1) <p*+Qx<p=t

which is a slight generalization of (3.6+).

Eliminating i/ji or fa we have

(4.2)

(4,3)

If one of these equations is solved, the other component can be determined

from the original equation (4.1).

Lemma 4.1. Suppose Q(x) is bounded integrable in (a, oo) for any

a. Then

(a) the operator (I-{-Q^Qx} has bounded inverse,

(b) (/4-i3^i2ic)~1 is continuous in x and bounded as x— > oo in the operator
norm (topology),

(c) the system (4.1) is uniquly solvable for any iff and the estimate

holds for the solution. C(x\ denotes a certain non-increasing function.

Proof. Suppose <p is a solution of

(4.4)

in Ll(Q, oo). By the properties of Q and (4.4), the boundedness of <p follows.

So (p belongs to L2. In Z,2 the operator Q% is equal to (£?#)*, the adjoint

of QXj and therefore <p should be zero. By the complete continuity of Qx,
the assertion (a) follows.

In the operator norm Qx is continuous in x and tends to zero as

#— >oo. The assertion (b) follows, (c) is obtained by applying (b) to (4.2)

and (4.3). Q.E.D.

Let r(|) be a square-integrable function. Let £1, ..., £/y denote points
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in the upper half plane. For each j, let m(f) be natural numbers and
pj(x] be polynomials of order m(j) — 1. Put

Put

and

Q(x)=F(x)+ £/,(*).

Put

<7,(*) = f°
J X

if the right hand side exists.

By Lemma 4.1, we get

Theorem 4.2. IfQ(x) is bounded integrable in (a, ̂ }for any a, there

exists a unique solution B(x> y}} integrable in y, of

(4.5) B*(x, y)+J™n(X+y+z)B(X,Wz+[ ® ]=0.

The estimates

(4.6)

and

(4.7)

hold.

Returning to the general situation, we obtain

Lemma 4.3. Suppose that Q is absolutely continuous and Q, Q' are

in L\a, oo) for any a. Let ijjx be differ entiable in x and let <px be the

solution of (4.1)/0r i/j=ifjx i.e.

(4.8)
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Then tpx is differentiable in x and

(4.9) <

holds.

Proof. For the difference coefficient

we have the equation

(4.10) tfxth+QxVx,h=$xth —

The right hand side converges to

as ^->0. Eliminating each component of <px,h from (4.10) and applying

Lemma 4.1 (a), we conclude that (px^ converges to <px. Q.E.D.

Under the same assumption on Q, B defined by (4.5) is differentiable

in y and the estimates

and

(4.11)

hold. A similar result for the ^-derivative can be obtained by Lemma

4.3. In fact B(x,y) is differentiable in x in the Z1 sense and the estimate

0

holds. Then it is easy to see that the derivative

x) r
\) o

exists in the ordinary sense and we can change the order of integration

and differentiation. Bx also satisfies the inequality (4.11).
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Put

, 1)+

Then iff is differentiable in x by the results just described.

Theorem 4.4. If Q is absolutely continuous and Q, Q' are in

} 00} for any a, then iff defined above satisfies

for

Proof. Put

C\(x, y) = — ff2x(x> y)—u*(x}Bi(x, y),

C%(x, y}=Bix(x, y)—Biy(x, y}—u(x)B^(x, y).

Then by direct calculation we have

So C=Q follows. Once C=0 is established, the assertion follows by

straightfoward calculation. Q.E.D.

By induction based on Lemma 4.3, we have

Lemma 4.5. Suppose that QW, j<^n exist and belong to Ll(a, oo)

for any a. Then B^^ (xfy}tj-^-k^M9 exist and the estimates

and

hold.
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§ 5. Solution of the Inverse Problem

Let r(i~) be a square integrable continuous function. Assume that

there exists <z(£) which has the properties assumed in Lemma 2.4 and is

related to r(g) by

By (2.15), r\(f) in Lemma 2.4 is uniquely determined by this relation.

Put r + £ = r > and

Define F±(x) by the formula

(5.1) F±(X)=TT-I ±(£) ex

Assume that F±(x) are absolutely integrable and -F±(dz^)> ^±(i^) are

in Z,1^, oo ) for any a.

In the later sections, we will be concerned in the case where r(£) is in

5. Then log(l + K£)l2) is also in 5. So (2.16) determines Ji(^) as the

restriction to (0, oo) of an element in S. a(£) defined by (2.15) has the

required properties. r± are in S and so are F±.

To each zero £y of order m(j} of a(£), we associate the chains of complex

numbers

each connected by the relation (2.13).

Define f±j(x) by the formulas (3.4) and put

(5.2) fl±(*)=^±(*)+S£i/y<>:).

Consider the fundamental integral equations (3.6) and let J2±(*<,y)

be their solutions. Define A±(x, Q by (1.4) and then tfr±(x, Q by (1.3). Put

u+(x)=-B+i(x, 0) u-(x) = -&L2(x, 0).

Then, by Theorem 4.6, i/j± satisfy (1.1) with u=u± respectively. For B±,

the estimates formulated in Theorem 4.2 hold.
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We show that under certain additional conditions u±(x) coincide.

It follows immediately, once the relation

(5.3) *(£-¥-(*» £=$-(*»

is established.

To show that (5.3) holds, put

g(X, §=h\(

and

Then by the fundamental equation, we have

G(X, ,)= - S

for j/>0.

^(AT, |) which are defined for real £ can be analytically continued to the

upper half plane. To show this we need

Lemma 5.1. Put

f(x) =p(x) exp (2#

0

where p(x) is a polynomial of order m — 1. Then we have, for

(5.4) I"

where each component of p(x,y) is defined for x-\-y>0 and is a polynomial

of order m — 1 in y.

Proof. f(x) is written as a Fourier transform :

ex
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where q(l~) is a polynomial of order m in (£— ̂ o)"1 without constant term.

Then for x-\-y>0, the left hand side of (5.4) is equal to

(*, 0 exp (»£

(£=&>)•

The last term can be written as asserted. Q.E.D.

We have further

(5.5) p(x,y)

where q(x, £) is a polynomial of order m in (^ — Co)"1 without constant term.

Denote by qj(x> f) the functions connected with f+j(x) by the above
construction.

Put

Then, for #+7, >">0, we have

(5.6) Vi(*, ^ exp (2*6'Xf =0.

So gi(x, £) has analytical continuation as a holmorphic function into the
upper half plane. g(x, |) has analytical continuation as a meromorphic

function into the upper half plane. Its poles are exhausted by £1, ...,, £#.

Cj are poles of order m(f).

Denote by Rj the residue of

at £y, i.e. the residue of

at Cy. It is expressed as
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By (5.4) and (5.5), we have, for x-\-y, y>0,

0 1

By the definition of/j, we have

(5.7) jRj=

where

Put

(5.8) A(*, 0=«(0?(*. 0

and

(5.9) 0(Ar>0=A(

Then i/f(^, ^) is holomorphic in the upper half plane. Rj is also equal to

the residue of

at ^ and is therefore expressed as

(5.10) Jtt=(m-l) \-\dldCF-iaj(£r

Comparison of (5.7), (5.10) and an elementary argument lead to

(5.11) k !-

— 1.

Theorem 5.2. /,<?/ r(|) = O(^~1)^ l-^zb00. ^^^ ^/Jo tet the conditions

formulated in the beginning of this section be satisfied. Then h(x> Q

defined by (5.8) is represented as

(5.12) A(*. Q=«(l, 0)+ f° C(*,
J —oo
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C(x,y) being square integrable in y. C(x,y) (;r>0) is the solution of the

fundamental equation

ro r£LOH-y)i
C(x,y)+l Q-(x+v+*)C(x,*)<t*+\ \ =0.

j -oo L 0 j

Proof. As By(x,y) is integrable in y, %g\(x, £) is bounded. By (5.6),
We can apply the Phragmen-Lindelof type argument (see [9, Problem 325])

and conclude that, for ;r>0, t>g\(x, £) is bounded in Im£2^;0. So h(x^ £) —

*(1,0)->0 uniformly as \£\->°o, Im£^0. By Jordan's lemma [12, §60],

f {h(x, 0-'(1, 0)}exp(2^Xf =0,

holds. The first assertion follows.

By direct calculation, it is easy to show that

Taking into account (5.11) and repeating the argument of § 3, the second

assertion follows. Q.E.D.

As the Z2-solution of the fundamental equation is uniquely determined

(see the proof of Lemma 4.2),

.e.

So we have (5.3) for .r>0 and therefore u±(x) coincide for
By the estimate (4.7), we finally have

Theorem 5.3. In addition to the assumption in the previous theorem,

we assume that m±(^x] are in L\a, oo). Then

are the scattering data of an (uniquely determined) integrable potential

which satisfies the assumptions of Theorem 1.4.

Application of Lemma 4.5 leads to
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Corollary 5.4. If r+(f)=r(^) belongs to Sf then the potential belongs

to S.

§ 6. Non-linear Schrodinger Equation

We now turn to the construction of solutions for (0.1) in terms of

scattering data of Lu.

Put

Then the operator

is the multiplication by the matrix valued function:

^U.l^) L_ WJ — WJ ! ffc_1 . ^ , ., ,9 ^ p.

So for u=u(f)=u(x, f), (0.1) and the operator evolution equation

(6.2) dLujdt=i[Bu, Lu]

are equivalent.

This relation is found in [15] and is different from the original relation

between Lu and (0.1) first given in [19]. A similar relation for the KdV

equation has been found by Lax [7].

We now describe a procedure to determine the time variation of the

Jost solutions and scattering data of LU(t) on a formal basis. Relations

found here will be used later to construct solutions.

Differentiating Lu^±=^+ with respect to t, we have

(6.3)

If (6.2) holds, (6.3) can be written as

Taking into account the asymptotic behavior and uniqueness of the Jost
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solutions, we obtain

(6.4) d^±ldt-iBu^±=^-im±.

We proceed to the determination of the time variation of the scattering

data. Differentiating the relation (2.1) with respect to t and eliminating

cfy±\dt by (6.4), we obtain an identity

So we have

a(f , *)=*(£ 0), &(€, *)=*(£ 0) exp (2*^)-

#(£, 0 is independent of £ and so are its zeros fi, ..., £^ in the upper half

plane.
Differentiating (6.4) with respect to £, we get

(6.5) d^\dt-iBu^

where ^r(*)=fl?*0/^*. Then differentiate (2.11) in # and eliminate

</$?>/«# by (6.5). We have

04-i-A<T2^_2_^f *>=0

From these relations, by induction on ^, we obtain the system of differential

equations for c^(f)\

(6.6) dc±\dt= ±(2^o4+4^o4-i+2^4-2)» 0^/fe<^-l.

Next we consider the properties of differential equations (6.6). If

these differential equations are satisfied, then /± defined by (3.4) satisfy

It is easy to show by induction that the solution c^(f) are polynomials of

order k in t multiplied by
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Lemma 6.1. If the relation (2.13) for c^(f) is satisfied at t=Q, then

it is satisfied for all t.

Proof. The (V,/) element of the product on the left hand side of (2.13)

is expressed as

m— i
S.4i-i-*(*>i-/(0-

K j

Their t-derivatives are seen to vanish by (6.6). Q.E.D.

Now we come to the construction of the solutions. Suppose u(x)

is an element of S. Then the coefficients #(£), 6(£) and the scattering data

{r±(£), £j, cf} of Lu are determined. a(£) is assumed to satisfy our basic

assumption (2.14). Let cf(f) be the chain of complex numbers obtained

as the solution of (6.6) for the initial conditions cf. Put #(£, £)=a(£) and

let/_y(£) be defined by the chain Cf(f) according to the formula (3.4) at the

zero £== of a£. Put

As r±(f) are in S, so are r±(£, f) in |.

By Corollary 5.4, we have

Theorem 6.2, The collection

{r±(f , 0, £,, Cf (

2> /A^ scattering data of u(x, f) belonging to S for each t.

If we prove that one of the relations (6.4) holds with the differenti-

ability of u(xt f) in /, then u(x, f) is a solution of (0.1). In fact put (6.4)

into (6.3). Then

(dLu\dt-i\Bu, LU]W±=Q

follows. By (6.1), u(Xj f) is a solution of (0.1). So we prove the equation

(6.4+) for i/r+. We omit the suffix + in later discussion.

(6.4+) is equivalent to dkjdt=ig, A=A+(x, £; /), where g=g(x, £; f) is

written as
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\ n !!L U U

«* or
Put

and

The differential equation

(6.8)

holds as jF and /y satisfy the equation of the same form.

Let B=B+(x,y\ f) be the solution of the fundamental equation:

rQ(x+y+*\ KB(x, *\ /x-ar+l" n/ , N 1=0.
Jo i^(x+y, f) J

The parameter t will be omitted later for notational convenience.

By an argument analogous to Lemma 4.3 and the paragraph that
follows, B is differentiate in t. The equation

(6.9)

where

2~ltQxx(x+y) J

hold by (6.8). Using the relations (1.8), (1.9) and integrating by part, we
have the following integral representation for g defined by (6.7):

g(X, £; 0=
0

where
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, y)

By direct calculation we have

(6.10) C\x, y)+ Q(x+y+*)C(x, z)dz—iD(x, y)=0.i/ o

Comparing (6.9) and (6.10), we get

because the homogeneous equation associated with the fundamental equa-

tion has only the trivial solution. The relation (6.4) has been established.

Thus we have proved

Theorem 6.30 The function u(x, t) in the previous theorem satisfies

(0.1).

§ 7, The Modified KdV Equation

In this section we indicate how the real solution for the modified KdV

equation (0.2) can be constructed.

Put

Then by direct calculation (0.2) is equivalent to

(7.1) dL&\dt= [A Vy Liv] .

So it is necessary to find in terms of scattering data the condition

that potential is purely-imaginary. Suppose that u is purely imaginary.

Then the Jost solution have the symmetry property

(*. 0).
Then by (2.3),



NON-LlNEAR SCHRODINGER EQUATION 355

So the reflection coefficients satisfy

(7.2) r±(-f)=-4(£>.

Concerning the zeros £y (l^S/^J-Af) of a(£), there exists a permutation CT of

order 2 of {1, ..., A^} (we can change the numbering of the zeros so that

a(2/— 1)=2/, (7(2;) =2;— 1, j^^f; <;)=/, j>2M for certain integer JI/,

such that

(7-3)

and

(7.4)

hold. The chain associated with the zero £; should satisfy

(7-5) 4c,>.*=(-l)*+1^.* 0^te£m(f)-I.

In fact, (7.5+) follows from

;*(-£*)=-<£
in the notation of Theorem 2.3.

Lemma 7.1. If the basic assumption (2.14) is satisfied, conditions

(7.2+), (7.3), (7.4) and (7.5+) are necessary and sufficient conditions for

the potential to be purely imaginary valued.

Proof. Necessity has been already shown. Suppose these conditions

are satisfied. Then we have

So by the uniqueness of the solution of the fundamental equation

B*+i(*,y')=(-l)*B+i(X,y-) 1=1,2

follow. Therefore the potential is purely imaginary valued. Q.E.D.

As the remaining argument is completely analogous to that of § 6,

we only indicate how the formulas should be modified.

If v=v(£) = v(xj f) is a solution of (0.2) i.e. (7.1), then the Jost solutions
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should satisfy

(7.6) d$±\dt-B^±= ±4i£V±.

So we have

a(£, 0=«(C, 0), b(^ £)=%£, 0) exp (8tf»0,

and therefore

(6.6) is replaced by

(7.6) is equivalent to dh\dt=g, h=h^, where g=g(x, £; 0 is written as

+6J" V Wx "jO'CA+AaO+Sl . VVx Wxx \h.
L ivx —z'2 J L ivxx —2wx -J

We have the integral representation for g:

CF("K / * /i — I C ("Y *\g\x> t, i) — i u\x,y
J 0

where

The remaining part of argument is completely analogous to that of § 6.
Our solutions contain all reflectionless solutions of (0.2). Previously

a part of reflectionless solutions (#(£) with simple zeros) have been studied

(Hirota [5], Tanaka [14], [15] and Wadati [17], [18]).
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