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Korteweg-de Vries Equation;
Asymptotic Behavior of Solutions

By
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§ 1. Introduction

In [9] and [10], we have studied the initial value problem for the

Korteweg-de Vries (KdV) equation

(1.1) ut—6uux+uxxx=0

by the inverse scattering method. In this paper we study the asymptotic

behavior of the solutions as t— >zh°°-

Consider the Schrodinger equation

(1.2)

over ( — oo } oo ) with the potential u(x) satisfying

(1.3)

(throughout the paper integration is taken over ( — oo, oo) unless otherwise

indicated).

If Im £2^0, there exist unique solution f±(xt £), of (1.2), called the

Jost solutions, which behave like exp(db/£#) as x-^-^oo. They are analytic

in £, Im£>0. If £=£ is real, f*, the complex conjugate of /+, also satisfies

(1.2) and the Wronskian [/+,/+] is equal to 2z£. Therefore we have

(1.4)
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(1-5) b(£)=(2i^[f-J$.

By (1.4), a(£) is the boundary value of the function a(£) which is

analytic in Im £>0. The zeros of a(£) in Im £>0 are purely imaginary

(because the Jost solutions are linearly dependent and therefore square

integrable at such £) and simple. Their number is finite and we denote

them by ii\\, ..., i-r]N.

Function r(f)=b(f)a(f)~l is called the reflection coefficient and the

positive numbers Cj defined by

l=J

are called the normalization coefficients. The collection { (̂|), %•, Cj\ is

called the scattering data.

If u(x) has rapidly decreasing derivatives, then r(£) has also rapidly

decreasing derivatives. Following Gardner, Greene, Kruskal and Miura

(GGKM) [3], put

(1.6) r(f, 0

(1.7) 'y(0 =

Then by the solvability of the inverse scattering problem, for each t there

exists a smooth potential u(x> f] having {r(j;y f), rjj, Cj(f)} as its scattering

data ([2], [10]). The function u(x, f) satisfies the KdV equation ([7],

[9], [10]).

Let us(x, f) be the potential whose scattering data is {0, ̂ -, ^-}, the

reflectionless part of u(x, t). The main result of this paper is formulated as

Theorem 1.1. Let s>0 be arbitrarily fixed. As t—>±oo

sup \u(x, f)—us(x, f)\ —> 0.
±x>±et

Although the proof of Theorem 1.1 is independent of the fact that

u(x, f) satisfies (1.1), its interpretation is given in terms of particular

solutions of (1.1) as follows.

The KdV equation is know to have travelling wave solutions of sppeed
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u(x, f)=s(x—ct—8\ c],

Each of such solutions is called a solitary wave or soliton on account of its

shape.

A significant role which reflectionless solutions us(x, f) play in the

theory of the KdV equation has been recognized by GGKM [3]. For

JV= 1, us(x,t} coincide with soliton solutions. In [3], several important

observations have been made concerning the structure of the reflectionless

solutions and in which sense the general solution of (1.1) is approximated

by its reflectionless part.

The structure of reflectionless solutions is elementary and has been

discussed by several authors. In particular the following asymptotic

property of the reflectionless solutions has been established (see [8] for a

proof).

Proposition 1.2. Assume that ?7i<^2< • • • <^N and put

Then

N

3=1 y

as /—>=J=oo uniformly in x.

Combination of Theorem 1.1 with Proposition 1.2 leads to

Theorem 1.3. As t—>±_°°

N
sup \u(x, t}— S s(x—4ff/jt—&f; 4i$)| —> 0.

After the present work is completed, Shabat [7] has been published

where a similar problem is discussed. The method employed in [7] is

different from that of this paper.

In § 2 we describe preliminary materials from inverse scattering theory

which concern the Marchenko equation and the Gelfand-Levitan equation.

Then Theorem 1.1 is proved in § 3.
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§ 2. Integra! Equations of the Inverse Problem,,

Most of the results formulated in this section are known. See also

[1], [6] for generalities on the inverse scattering problem, in particular on

the Marchenko equation and its solution.

For a function Q, in Ll(a, oo) for any a, define the integral operator

Qx by

as an operator in Ll(Q, oo). By the Frechet-Kolmogorov theorem [11,

p. 275], QX is completely continuous.

Let r(f) be a square-integrable continuous function which satisfies

r(£)l<l for ^0, r*(£)=r(— £). Let 171,...,^ be mutually different

positive numbers and £i, ...,0V be any positive numbers. Denote by

s= {r(£), 7]<j, ^;/=l, ...j N} the given data of the inverse problem. Put

(2.1) Q(x)=2 2 Cj exp (-27?^)+77-1 fr(f) exp (2^)^.

By the argument in [2, p. 158-159], we have

Lemma 2.1. If Q defined by (2.1) is bounded integrable in (a, oo)

for any a} then

(a) the operator I-\-Qx has bounded inverse }

(b) (I-{-Qx)~
l is continuous in % and bounded as x-*oo in the

operator norm (topology).

Under the same assumption on Q as in Lemma 2.1, there exists a

unique solution B(x, y), integrable in yy of the Marchnko equation

(2.2) B(x,

The kernel B is estimated as

and
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where C(x) denotes a non-increasing function and

a(x)= sup \£)(y)\.

The differentiability of the kernel B is based on

Lemma 2.2. Suppose that Q defined by (2.1) is absolutely continuous

and Q, Qr are in L\a, oo) for any a. Let $x be a vector in Ll(Qj oo)

depending differentiably on x and let ipx be a solution of the operator

equation

Then (px is differentiate in x and

(2.3) (Px+^x^x=^x

holds.

Proof. For the difference coefficient

<px,h=&~l(y>x+h—y>

we have the equation

The right hand side converges to tyx — Q'x<p as A->0. By Lemma 2.1 (a),

(pX}h converges as h— >0 and the limit <px satisfies (2.3) as asserted. Q.E.D.

This lemma leads to the differentiability of B in the ordinary sense

with respect to x and to the estimates

Differentiating (2.2) with respect to y, the same estimates hold for the

y-derivative.

Put

(2.4) /(*, £)=exp(*£*)(l + r£(X,y~)^p(2^y~)dy\
\ J 0 /
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and

(2.5) u(x)=-(3ldx)B(x, 0).

If r(|)=0, then/(#, £) defined by (2.4) takes a simpler form (see [5]).

In fact put

***(*) = ^T1 CXP (2rt}'^83 k + (^ +7?*)"1

(S^fc is Kroncker's delta). As the matrix (&$%) is nonsingular we denote

by hj(x} the solution of the system of linear algebraic equations

N
S a^(x}h^(x} = — \.

k=l

Then

(2.6) /(*, £)
=i

holds.

Denoting by (^^) the matrix which is inverse to (<%•#), we have obvious

expressions

(2.7) *,(*)= -S
A? — 1

(2.8) AJ(*) = - 2 S
K — 1

In the following we consider the data with the properties that Q

is twice differentiate and D, 42', Q" are in Ll(a, oo) for any <^. Then ^

is twice differentiable with its derivatives integrable in y in (0, oo). The

function / is twice differentiable and

holds.

Rewrite (2.4) as

noo

(2.9) f(x, £) = exp (z £#) + I A(xyy)ex.p(jf(
J x

(2.10) A(x,y)=f<
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By an analogous argument to that given by Gasimov [4, Lemma 3.5.2],

it is easy to show

Lemma 2.3. Put

(2.11) A-(x,y)=2-iQ(2-\x+y»+2-i [~ A(y,a)Q(2-i(x+zftdz, oc<y.
J y

Then

(2.12) exp (*£*)=/(*, 0+ f°°A-(x, y)f(y> Qdy
J X

holds.

Combining (2.9) and (2.12) we get an equality

(2.13) A(x,y)+A-(x,y) + fVA(x, *)A-(
J X

Put

We derive an inversion formula which reproduces <p from <p/ and

Define the operators A±by

(A+9)(x} = r A(y,
<J —oo

(A _<?)(#) = f °° A -(x, y)<p(y}dy.
J X

Lemma 2.4. Suppose that <p is 0 for x<a} is in Llr\L2 and is

absolutely continuous with derivative also in Z,1 f! ̂ 2- Then <Pf(f) is

integrable.

Proof. By the estimates for the kernel B and its derivatives,

and (A+<p)f are bounded integrable functions. As <p/ is the Fourier

transform of (I-{-A+)<p, (l+^2)T^/(^) is square integrable. By Schwarz'

inequality <pf is integrable. Q.E.D.
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Theorem 2.5 (Inversion formula). If <p satisfies the condition of

Lemma 2.4, then we have

(2.14) p(*)=(27r)-i J [f(x,-

N
+ S

y=i

j?A0 right hand side converging absolutely.

Proof. The absolute convergence of the right hand side is a con-

sequence of Lemma 2.4.

By (2.11) and the Marchenko equation, we have

+ {
J y

Substitution of Q by (2.1) then yields

— S

Take a function 0 in class C1 with compact support. Denoting by

, ) the inner product for Z2( — oo, oo) and putting

we have

-(2^-1 r^C^CfiKO^- S
J j=1

The inner product term in the last expression for / being equal to <y>, ̂ >

by (2.13), the assertion follows by the arbitrariness of i/r. Q.E.D.

Next also consider given data ^° along with s and put the superfix °

to quantities associated with s°. Lemma 2.3 now makes it possible to
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define the transformation kernel K between f(x, £) and f°(x, £) in the

following sense.

Put

(2.15) K(x, y}=A(x, y)+A°_(x, j/)+ (** A(x,
J X

Then

f(x, £)=/"(*, 0+ r K(X,y)j\
J X

holds. The difference of u and u° is reproduced by

(2.16) u(x)-u\x}=-d\dx K(x, x).

We have also

(2.17) /"(*, Q=f(x, 0+ ^ K-(X, y)f(y, §dy
J X

with the kernel K- defined in an obvious way.

Theorem 2.6. If r and r° are supposed to be integrable in addition

to the assumptions already made on s and s0, the Gelfand-Levitan equation

for the kernel K holds :

(2.18) K(x, y}+Q(x, y}+ t
J

F(X, ^ = (2^)

Proof. We follow [1, § 8] where an analogous derivation is given.

For a function <p in class C2 with compact support, we have

with
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Supposing that the support of <p is contained in [a, &\ and applying the

inversion formula for the data s to 9+i/f, we have

*-)-i f

N

k=l k / *

Put (2.17) into this relation and again use the inversion formula for the

data s°. Rearranging the terms, we get (2.18) by the arbitrariness of <p.

Q.E.D.

§ 3. Proof of Theorem 1.1

Let a potential u(x) be given and {r(g\ rjj, c^} be its scattering data.

Consider the data s ( f ) = { r ( f ^ t \ i f ) ^ c ^ f ) } depending parametrically on

A K£» 0 and ^(0 determined by (1.6) and (1.7).

Lemma 3.1. Ifu(x) is six times differentiate with rapidly decreas-

ing derivatives, then r(g) is C°° and |V^(£) (i=0J L 2) are bounded.

Proof. As the detailed proof has been given in [10], we only indicate

the outline. The Jost solutions are represented as

the kernels B± satisfying certain integral equations (see [2, p. 142]. Inser-

tion of the expressions into (1.4), (1.5) leads to

)-l) = - J

= J #00 exp (

jT and 77" being integrable functions expressed by B± and their derivatives.

The analytical properties of a, b and then r are deduced from the above

formulas. Q.E.D.

We can now apply the Gelfand-Levitan equation (2.18) to data s(f)
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and s°(£)= {0, rjj, c$(f)}. We understand that the additional parameter/

appearing in the quantities in (2.18) indicate that they correspond to data

^CO-

Putting B(x,y; f)=2K(x, x+2y; f), we rewrite (2.18) as

(3.1) B(x,y; £)+2F(x, x+2y; f)+2 f°° F(x+2z, x+2y; t}B(x, z; f)dz=Q,
*J 0

F(x,y; £)= (2^-i r(£, f)f°(x, f ; f}f(y, |;

For an integrable function £", we study certain asymptotic properties

of the integral

(3.2) G(x, 0=

in {x~>et, />0}, £>0 being fixed arbitrarily.

Lemma 3.2. If g(ff) is bounded and absolutely continuous with the

bounded derivative, then tG(x, f] is bounded in {#>sA />0}. If moreover

the second derivative of g(f) exists and is bounded, t*G(x} f) is also bounded.

Proof. Integration by part leads to

G(x, £)=* J [^

so that tG(x, /) is bounded. Again integrating by parts, we obtain the

second assertion. Q.E.D.

Lemma 3.3. Suppose that g(t;}^ is bounded integrable and £"'
are bounded. Then x^G(x, f) is bounded in {x>zts

Proof. Performing integration by parts twice, we have

By Lemma 3.2 the assertion is proved. Q.E.D.

Next we consider the quantities introduced in relation to (2.6).
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Lemma 3.4. k^(xf f) and h'^x, f] are bounded.

Proof. We have

N
det(0flb(#, *)) = S a(£i' •-' *N) .[I exp{ej27ty(#— 4rjjO}

where the sum is taken over all possible choice of B—0 or 1. By the same

argument as is given in [3, Lemma 2], a(ep ..., £^)>0. So we have

By (2.7) and (2.8), the lemma follows. Q.E.D.

After these preparations, we proceed to the study of the Gelfand-

Levitan equation.

Lemma 3.5o Let H ( x J y J 2 \ f ) denote one of F(x+2z, x+2y; f),

(d/dx)F(x+2z, x+2y; f) and (d/3y)F(x+2z, x+2y; f). Then

f f ( x , y , z\ f) is bounded in

Proof. Using (2.6), we can write H into the form

N
H(x,y, z\yf)= S afay*

with bounded coefficients ay- and functions £$(£) satisfying the conditions

of Lemma 3.2. Q.E.D.

r*oo r»oo

Lemma 3.6* I \£(x, y; t)\dy and I | d/dx B(x, y; i] \ dy are
i / u c /O

bounded in Dat£— {(x> f); x>a, x>et, ^>0} for certain a.

Proof. Define

r*oo

Fx,t<p(y)= I F(x+2z,x-r2y;f)(p(*)d**j o

as an operator on Ll(0, oo). By the previous lemma we can take a>0 so

large that || TX)t\\<2^~§ in Da^ Solving (3.1) in L\0, oo) by iteration,
we have
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in Dai£. Again by the previous lemma the first assertion follows.

Applying the same argument to

(3.3) (d/dx)£(x9y} 0+2 f " ' F(x+2z, x+2y, t}(dfix}B(x, z\t}dz
<j o

=^-2(dldx-\-d!dy}F(x, x+2y; S)

—2 r°°(d/dx+d/dy)F(x+2z, x+2y; f)B(x, 2; f)dz,
<J 0

the second assertion follows. O.E.D.

Now we conclude that by (3.3), Lemmas 3.4 and 3.5 that supx>et}y^Q

\dldxjB(x,y] f)\ tends to zero as t—>oom Putting y=Q, we have proved the

part of Theorem 1.1 which concerns the limit for t— >co. The other part

can be handled similarly.
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