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Lower Bounds of Growth Order of Solutions
of Schrodinger Equations with

Homogeneous Potentials
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Juil U CHI YAM A*

§ 1. Introduction

In this paper we shall study the asymptotic behavior as \x\ tends to

co of a solution u(x) of the following equation

(1.1) —Au(x)+g(x)u(x)=Xu(x) for xf=QdJRn,

where A is a positive constant and A is the Laplacian. There are many

articles investigating this problem for the two-particle Schrodinger opera-

tor. In these cases the authors usually assume that q(x) tends to 0 as

\x\ tends to co. However, here we turn our attention to the many-

particle Schrodinger operator, and so we assume that the potential q(x)

is a homogeneous function of x of degree — 2y. For example, the poten-

tial of the Schrodinger operator of an atom (or ion) consisting of a nucleus

with charge -\-Z and m electrons given by

m 7 1
(1.2) *(*) = - S— + S

2

where rfc=^ \x^-i\2, r\*-= S \x%k-i— x$j-i\2, is a homogeneous function*-
1=0 1=0

of x^R%m of degree — 1. This example shows us obviously that such a

potential is not expected to decay uniformly at infinity, and also that the

singular points of q(x) spread out to infinity.

On this problem Weidmann [8] showed the fact that if Q=Rn,
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^J^- and u(x)^jFf2(Rn), then u(x) must identically vanish in

Later on Weidmann [9] also showed the fact that if Q=Rn, 0<y<l and

u(x}^H*(Rn\ then «(#)=0 in Rn. These results mean that the Schro-

dinger operator H= — A-\-q(x] in L%(Rn) has no positive eigenvalues.

However, his treatment has two characteristics; the first one is that the
problem is considered in the whole space Rn, and the second one is that

although he showed u(x)^H2(Rn*) for a not identically vanishing solution

u(x) of (1.1), he did not deduce it as a result of the growth estimates or

lower bounds, as x tends to oo, of a not identically vanishing solution

u(x) itself of (1.1). However, we remark that if we study in detail the

first paper [8] of Weidmann (by applying the method used in our paper,

for example), his method leads us to the result that for any not identically

vanishing solution u(x}^H*ioC(R-n} of (1.1)

(1.3) liminf jR*r-i f \u(x)\*dx~>®, in case 0<y<4~,
^->oo J \X\^jR Z

and

(1.4) lim inf (log J?)-1 f \u(x)\*dx>Q, incase y=4--
^->oo J \X\<R &

On the other hand Agmon ([1] and [2]) considered the equation (1.1)

in ExQ={x£=Rn \x\^>R$}. He showed without detailed proof that if

Q=ERO and -^-<^y<^l, then any self adjoint realization of — A-\-q(x) in

Lz(ER^) has no positive eigenvalues. His treatment is more general than

Weidmann's ([8] and [9]) in the point that the domain Q in which the equa-

tion (1.1) is satisfied is -£#„, but more stringent restriction is given on y.

Here, however, we remark that Agmon [2] also deals with the case that

q(x) has no homogeneity. It seems to us that both Weidmann [8], [9]

and Agmon [1],, [2] showed only that Jf= — A-\-q(x) has no positive eigen-

values, but they did not give explicitly the lower bounds, as \x\ tends to

oo, for not identically vanishing solutions u(x] of (1.1).

Now we restrict ourselves to investigating the asymptotic behavior,

as \x\ tends to oo, of the solution u(x) of (1.1) considered in E^ or Rn.

As a result, we shall have the fact that H= — A-\-q(x] has no positive
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eigenvalues. If Q—Eg^ in (1.1), we can weaken the above mentioned

condition on y given by Agmon [1] and [2] to the condition

(see Theorem 2.1). And if Q=Rn, we can have estimates stronger than

(1.3) and (1.4). We have

(1.5) lim inf jRr-i P | u(x)
R-+™ J RQ<i\X\<R

in case Q=Rn and 0<o/<l or in case Q=E^Q and ^-<Cy<Cl5 and

(1.6) lim inf (log tf)-1 f
7?->- J J?

in case Q=Rn or EJ?Q and y=l. Our method depends mainly on Ikebe-

Uchiyama [5], which may be said to be a compromise between Kato [6]

and Roze [7], and partly on Agmon [3]. One point which should be

noted in our treatment is way that in the course of our calculations we get

rid of the influence of the singularities of the potential q(x) spread out to

infinity, in a way similar to the ones given by Weidmann [8] and Agmon

[1], [2].

§ 20 Notations and Summary

Here we shall list the notation which will be used freely in the sequel

(most of them have been the same ones used in Ikebe-Uchiyama [5]):

x=(xij ..., Xyi) is a position vector in 1?^ where n>3\

x =r} for

s<\x\<r} for

for r>0;

for



428 JUN UCHIYAMA

for /=(/!, ...,/«)€=*» and

£2 denotes the class of square integrable functions, and thus

Lz(Ej?^) is all L% functions over E^\

H2 denotes the class of L% functions with distribution derivatives in

L% up to the second order inclusive;

L2jioc and H\OG denote the class of locally L% and ff2 functions,

respectively ;

Cm denotes the class of m-times continuously differentiate functions ;

Qp(Rn} denotes the class of functions f(x) satisfying the "Stummel

condition": if ^+M>4. sup | - — -^1^ A , — ̂ y<T + °°> or if
XGR*J \x-vtei I x— y |w~4+^

-x— y |w

,<^4ij sup I l/(y)l2^<C + 00-
X^R* J \x-y\^l

Now we shall state the conditions to be imposed on the potential q(x]

of the differential operator appearing on the left side of (1.1).

Assumption 1. The potential q(x) is real valued and satisfies the

following inequality :

(2.1) \x\<^Dq> x^><L(—2y)q(x) for x^Q> where y is some constant.

Here we remark that {Dq, x) coincides with — — r-q(x).
d\x\

Assumption 2. For q(x)} we have q(x^^Q^(Rn} for some constant

Assumption 3- The unique continuation property holds.

Remark 2.1. If q(x) is a homogeneous function of x of degree — 2y,

then (2.1) is satisfied.

By a solution u of equation (1.1) is meant an H\oc, hence Z2joc,

function which satisfies (1.1) in the distribution sense in the domain Q in
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Our aim is to prove the following theorems which restrict the asymp-

totic behavior of a non-trivial solution of (1.1).

Theorem 2.1. If Q in (1.1) contains Ej?Q as an interior, and if u is

a not identically vanishing solution of (1.1) in Q with a positive eigen-

value, A>0, then we have

(2.2) liminf^r-i |«(*)|V*>0, when
6

and

(2.3) lim inf (log J?)-1 f | u(x) |2<akr>0, when y = ] .
/?-»«« N J £0<L\X\^£

Corollary. If Q satisfies the condition mentioned in the above

theorem, and if ^<^y<^\.} then a solution u(x) of (1.1) in Q with A>0

ivhich also belongs to L%(Q) "must identically vanish in Q.

Remark 2.2. This corollary shows the fact that any selfadjoint

realization in L%(Q} of the Schrodinger operator appearing on the left side

of (1.1) has no positive eigenvalues.

Theorem 2.2. If Q=Rn in (1.1), and if u is a not identically

vanishing solution of (1.1) in Rn with a positive eigenvalue, A^>0, then

we have

(2.4) lim inf Rr-i f | u(x) |2^>o, when 0<y<l,
^->oo J \x\^R

and

(2.5) lim inf (log R)"1 f \u(x) |2^>0, when y=l.

Corollary. If Q=Rn in (1.1), and if 0<y5jl, then a solution u(x]

of (1.1) in Rn with A^>0 ^vhich also belongs to L^(W^) must identically

vanish in Rn.

This corollary shows that Schrodinger operator investigated by us

has the same property as the one mentioned in Remark 2.2.

We shall prove Theorem 2.1 in § 3 and Theorem 2.2 in § 4. In § 3



430 JUN UCHIYAMA

we follow the procedures used in Ikebe-Uchiyama [5].

Finally we remark that even in the case where the potential q(x] has

the form ^(*)=^o(^) + ^i(^) + ^2(#), where go(x) satisfies the assumptions

stated above, and both q\(x] and qz(x) are the potentials for the two-

particle system, namely q\(x) and qt(x) satisfy the conditions that q\(x)

= 0(— -), __y2(a:) = (7(— — J, and q<&(x) = oQ) as \x\ tends to °o} it would
\ I -^ ! / O\X\ \\X\j

be possible to obtain a result which is similar to Theorem 2.1 mentioned

above and which corresponds to Theorem 2.3 in Agmon [1]. We did not

enter into this problem, however.

§ 3. Proof of Theorem 2.1

Let u be a solution of (1.1):

(3.1) —AuJr$(x)u=Xu in Q.

By the reality of q(x] assumed in Assumption 1, we can admit u(x) to be

a real valued function. If we introduce the function v(x) by

(3.2) v(x} = \xr*~u(x),

then the following result readily follows from (3.1).

Lemma 3.1. v(x) satisfies the equation

(3.3) -Av^^^^Dv, *>+(?O)+?O)-A>(*)=0

in Q, where

(3.4) )̂=^fc3!.

What we want, in fact, to do for the present is to multiply (3.3) with

2\x\a(Dv, *> — k\x a~lv and integrate over Bsrc:Q. We will be led to

Definition 3.2 by collecting the resulting surface integrals, and the

mentioned integration (by parts) over Bsr will be carried out in the proof

of Lemma 3.3.
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Definition 3020 Let a and k be real constants. We put for

satisfying

(3.5) F(r, a; k}= f \
J Sr[

(oi-\-n — 2) k
±—{— J-

2 x

Lemma 303o We have

(3.6) F(r, a; K) — F(st a; k}= f
J

,, where B

Proof. By Lemma 3.1 we have for

f (-Zl&+-^l1-<Z?z;J
^ Bsr ( \x\

Applying the integration by parts, and then gathering the resulting surface

integrals in the left-hand side and the volume integrals in the right-hand,

we obtain the assertion. O.E.D.

Lemma 3o4B Let ao^l+y — n. If O^y^l^ then we have for any

^j>0 satisfying B

(3.7) ^(r,a

Proof. By Lemma 3.3 and Assumption I we have
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(3.8) F(r, a0 ; y) — F(s, a0 ; y)

^ f |"2(l-
J ^?-L

According to Dv^^i^Dv, #>2 and O^yi^l, we have the statement.

Q.E.D.

In the sequel of this section, we assume that the conditions given in

Theorem 2.1 hold, namely that QnJ5j?Q and

(3.9) g-<y^L

Our next task is to estimate from below the functional F(r, ao ; y) itself

when v[u\ is a non-trivial solution of (3.3) [(3.1)]. To this end we further

introduce the function wm(x) for a real constant m and a real -valued

function /(*) (= C*(R^ oo) by

(3.10) u>m(x)=emfWv(x).

The equation fulfiled by wm(x) can be easily derived from (3.3) and (3.10),

that is, we have

Lemma 3.5. In Ej?Q wm(x) satisfies the equation

(3.11) -

We shall multiply (3.10) with 2\x a(Dwm, x) — k\x\a~lv(x) and

integrate by parts over Bsr, which will be an essential part of the proof

of Lemma 3.8. The resulting surface integrals plus an additional surface

integral form the following functional.

Definition 3.6. Let m> a, fl and k be real constants, and let f(£),

, be a real-valued C3 function. We put for
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(3.12) F(r,a,p,m;&;f(ry)

= f \2<Dwm, xy*-\Dwm\*—-^(
J Sr\_ \X\

q(&-q(& + m*f*—mf"-\x\?~*

Here we remark a relation between F(r, a , f $ , m \ k \ f } and F(rt a; K).

Lemma 3.7. We have for r>R®

(3.13) F(r, a,p,m; k]f}=e^mf^\F(r, a; k}+ f {2mf(Dv, x^v
[_ J Sr

Proof. By (3.5), (3.10) and (3.12), we have easily the assertion. Q.E.D.

Lemma 3.8. We have for r>s>R$

(3.14) F(r, a, j8, m;A;f)-F(s, a, j8, m;k\f)

= f
J Bsr\

, X)

'-\x\mf "

Proof. We first note the following identity which follows by inte-

gration by parts:

(3.15) 2f (Dw,x>w\x\?dx= f M2|*|^S- f
\) Bsr *J Sr *J *
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— (tt+jS— 1) f \W\*\X\^d%.
J Bsr

By Lemma 3.5 and (3.15) with w=wm we have for R®<is<.r

f \-
J Bsr [

-2f (Dwm> xywm\x\?dx-(n+p-l} f
<J Bsr <J Bsr

+ f \wm\*\x\?dS- f \wmp\x\PJS=0.
J Sr J Ss

Now we perform integration by parts as in the proof of Lemma 3.3, and we

have the assertion. Q.E.D.

Let 77 be a constant to satisfy

(3.16)

We put

(3-17)

(3.18)

and

(3.19) /W=r«.

Lemma 3«,9o There exist some R\>R® and some mo>0 such that

for any r>s^R\ and for any m^m^ we have

(3.20) F(r, ao, ao—§, m\y\ re^)^>F(s, ao, ao—§, m\y\ ̂ £),

where ao is given in Lemma 3.4.

Proof. We put in Lemma 3.8 a=ao—1—n-\-y, /3=ao—S and/(r)—r£.

Then by the inequality

wm\2

yA
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and by Assumption 1 we have

F(r, o-o, a0— 8, m\y\ re}—F(s, a0, a0— §, m\ y; SB)

BS

By (3.16), (3.17) and (3.18), we have

(3.21) £>0,

(3.22) e>l-y,

(3.23) S>0,

and

(3.24)

Now let mo=—. — r- and choose RI sufficiently large. Then we have the

assertion easily. Q.E.D.

Lenima 3olH9 Assume that the solution u (and hence v) is not

identically equal to 0 in Q. Then there exists some sequence {n}z=l,2,---

such that J?i<^ri<^r2<^...<^ri<^ri^i<^..., limr^=oo

(3.25) f
^r

Proof. If we assume that the above statement is false, then there

exists some ro^Ri such that I \v\2:dS=() for any r^>r®. Then we have
J Sr

v(x) and hence u(x) must vanish identically in ETo which by Assumption 3

leads to u(x)=0 in Q. This is a contradiction. Q.E.D.
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Lemma 3.11. Let R%=r\, where r\ is given in Lemma 3.10. Then
there exists some constant m\^m^ such that

(3.26) F(R*, a0, a0— 8, wi; y; ^2)

Proof. By Lemma 3.7 we have

(3.27) F(R* oo, ao-8, w ; y; ̂ !)-s2^^2, a0; y)

+ f \2m*&R\<t-V | z; |2 +
J sR2[

Now in the right hand side of (3.27) the coefficient of e2mJ is a quadratic
form in m, in which the coefficient of m2 is positive. Then we have the
assertion. Q.E.D.

Lemma 3.12. Let R% and m\ be as in Lemma 3.11. Then we have

F(r, a0, a0— 8, m\\ y; re)>0 for r^R%.

Proof. Since RZ^L R\, the assertion is an immediate consequence of
Lemmas 3.9 and 3.11. Q.E.D.

Lemma 3.13, Either Case I or Case II and only one of them holds,
where
Case /: There exists some sequence {n'}z=i>2»... such that

f (Dv,
J 5r7/

and
Case II\ There exists some R^^R^ such that

/
(Dv,x)vdS>Q for any

5r

Proof. Obvious. Q.E.D.
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Lemma 3.14. If Case I in Lemma 3.13 holds, then there exists some

such that

Proof. We have by Lemma 3.12.

(3.28) F(rv, oo, 00-8, mi; y; r,',)>0 (/=!, 2, ...)

Moreover by Lemma 3.7, we have

(3.29) F(rv, a0 ; y) = e-*«^i>F(rv, ao, a0 - S, mi ; y ;

_r«.+e-i f 2mie(£>v,
J 5r^/

-2wfeVf/-ayf,« f |»
J 5r//

Here we remark that

(3.30) 2s-2<-S.

In fact by (3.16), (3.17) and (3.18) we have

Now by (3.30) we can choose /o large enough to satisfy

Putting j?4 = r^, we have the statement of Lemma 3.14. Q.E.D.

Lemma 3.15. If Case I in Lemma 3.13 holds •, £A0# /A^r^ exists the

limit (oo permitted) of F(r, ao; y) <3;̂  r— >oo and its value is positive.

Proof. By Lemmas 3.4 and 3.14 we have

(3.31) ^(r,a0;y)^^(^45a0;y)>0 for

Moreover Lemma 3.4 tells that F(r> ao; y) is a monotone increasing func-

tion of r. These imply that the assertion holds. Q.E.D.
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Here we insert a property of the solution u(x) of the equation (3.1)
which holds under an assumption less restrictive than the one assumed in
Theorem 2.1. Then we apply the following result to the proofs of

Theorems 2.1 and 2.2.

Lemma 3.16. If q(x) in (3.1) satisfies Assumption 2, and if QuE^

then there exists some constant C>0 such that for any r^>s

have

(3.32) f \Du\*dx^C\ u\*dx.
J BST <J Bs-i, r+i

Proof. Let £sr(^)eC2(0, oo) satisfy the following conditions: Of^£sr(/)

^1 for ̂ e(0, oo), fgr(*)=0 for ^EE(0, s—l) and *e(r+l, oo), fsr(0=l for

*^(j, r), and |£ir(0l^ci> l£i'r(0l^ci for *e(0i °°) where Ci is a constant
independent of s and r. Then by integration by parts and by (3.1) we

have

(3.33) f (lsr(\x\y)*{2\Du*+2(q(x-)-X)\u\*}dx
*J -Bs-i, r+i

= f gr (2 1 Z?« |a+2J«.«X*= f
«/ BS-I, r+i *J BS-I, r+i

= f
^ -Bs-i, r+i

= f (2£;a
r

J ^s-i, r+i \

On the other hand for the potential q(x) satisfying Assumption 2, Ikebe-
Kato [4] proves the fact that for any s>0 there exists some constant C£ =

C(e)>0 such that for any <p(x)f=H*(Rn}

(3.34) f | q(x) \ I <p(x) \*dx ^e f D9(x} \*dx+ C£ f \ <p
<J R <J R <J R

In the above put (p(x) = E,sr(x)u(x)^H2(Rn^. Then we have

(3.35) f I q(x) 1 1 tsru \*dx^e f \ D(^sru) \*dx
d BS-I, r+i J BS-I, r+i

+ C, f ! £,fu \zdx^2£ f gr | Du \zdx
J BS-I, r+i J Bs-i, r+i
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+ f (W?r + C£r~)\U\*dx.
J BS-I, r+i

Therefore by (3.33) and (3.35), we have

(3.36) (l-2e) f t*r\Du\*dx
<J -Bs-i, r+i

r
<^ \^ j

J J3s-i, r+i

1*1
> r

J BS-I, r+i

If 0<e<--, we have

r Du\*d%^ r
i/ -5sr a^ £s-l, r-ri

where C= - {A+C£ + (2£+l)C|+C1+(^—l)C1^Q1}, which shows that
i — 2,B

Lemma 3.16 holds. Q.E.D.

Having prepared all the necessary tools for proving Theorem 2.1,

we now proceed to the

Proof of Theorem 2.1. In the sequel, let us regard Ci (2=2, 3., ...)

as positive constants independent of s and r satisfying r>s>R§, where

ER^Q. Firstly we assume that Case I in Lemma 3.13 holds. By v(x)
n-i

= x 2 u(x) and by Definition 3.2, we have

(3.37) F(r, a0; y}=rr f \2<Du, ̂ >2- Du\*+ ^n~~l~"^ -(Du, x)u
J sr\_ \x\

where ao=l+y — n given in Lemma 3.4. By Lemma 3.15, there exist

some C-2>0 and some R$>R$ such that for any r>R$ we have

(3.38) f
J Sr I X\
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Z I AT

This shows

(3.39) f [\Du\*+\u\*+\f(x)\\u\*\dS^Cir-r for any
*) S r

Multiply both sides of (3.39) by £ir(|#|)2, which was defined in the proof of

Lemma 3.16, and integrate with respect to r from s— I to r-f-1, where

R$-\-2<s<r. Then we have

(3.40) f
«/ BS-I, r+i

when_
1 — y

when y=l.

In a fashion similar to the proof of Lemma 3.16, using Lemma 3.16, we

can estimate the left side of (3.40) as follows:

(3.41) (left side of (3.40))<C4 f \\Du\*-\-\u\*\dx
J BS-I, r+i [ )

<cAc f u\*dx+ f \u\*dx\<C5 f
[ J BS-Z, f+2 J Bs-i, r+i J J Bs-2, r+s

Thus we have

r—sl~7\ when -=-
(3.42) CB f |«!aflfe^

J Bs-zt r+z

l-y^

Cs(logr—log/), when y—1.

Therefore we have the assertion of Theorem 2.1.

Secondly we assume that Case II in Lemma 3.13 holds. We then

have

(3.43) -4~(f \u\*dS\=-4-( f
dr\J sr I dr \J sr

for any r>R%. This shows that I \u\2dS is a monotone increasing func-
*/ Sr

tion of r in (^3, cxj). Since ^(A;) is not identically null in Q and the

unique continuation property holds, there exist some Ro^R^ and some
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Ce>0 such that for any r>R§

(3.44) f \u\^S^C6>
J Sr

where CQ= I i^|2^/vS>0. Thus we have
J 5/?6

(3.45) liminf^"1 f
^->oo J KQ~^\

Also in this case, noting y>0, we have the assertion of Theorem 2.1.

O.E.D.

Proof of Corollary to Theorem 2.1. Obvious from Theorem 2.1.

Q.E.D.

§ 4. Proof of Theorem 2.2

Hereafter we shall consider the equation

(4.1) —Au(x)+g(x)u(x)=Xu(x)

in the whole space Rn where n^3. In this section we assume that con-

ditions in Theorem 2.2 holds. The main purpose of this section is to prove

(4.2) ^(r,a0;y)>0

for some r under the restriction 0<y<Jl weaker than the one -^-<y<Jl
D

which is assumed in § 3. Now we shall start with proving the following

Lemma.

Lemma 4.1. There exists some sequence {si} ^=1,2, • • • such that lim si=0

and

(4.3) lim ^(j|,a0;y)=0.

Proof. Let p(x)^.QIJL(Rn^ for some ft>0. By Ikebe-Kato [4] there

exists some constant £T>0 such that for any (p(x]^.H^(Wv} and *fi(x)
n we have
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(4.4) f ix*M*)lv*^cf (i
J Rn J Rn (

and

(4.5) f IX*) 1 1 ft*) |a<fe^C f
J 12M J J2

Then we have for « (#

(4.6) f
J i

and

(4.7) f IX*) 1 1 diu(x) \*doc< + oo
J \x\^l

for 2 = 1,2, . . . , ? z . These show

(4.8) l i m i n f j f \p(x)u(x)\*dS=Q
s-*0 ^ -S1*

and

(4.9) lim inf s f \p(x) \ \ 3iu(x) [ V5-0.
s -* o «/ S«

Noting that Ix^^Q^R1^} and (\q(x)\\x?-%)±^Qp(Rn) for any s>0,

where q(x) satisfies Assumption 2, we have by (4.8) and (4.9)

(4.10) liminfj£-i f \q(%}\\
s -* o J »SS

=liminfjf
5 -> 0 ^ ^

(4.11) lim inf ̂ -2 f j«(^)|2flf5=iiminf j f |^|2e
5-*Q ^^5 S-*Q J Ss

and

(4.12) liminf.rHr f \Du(x)\^S=liminfsf \x\*
S->0 «^ 5, 5-»Q J Ss

In (4.10), (4.11) and (4.12), we put e=-£-. Then by y>0, we have y>s— ^-.
Zi Zi

Then (4.10), (4.11), (4.12) and (3.37) show the assertion. Q.E.D.
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Lemma 4.2. There exists some ro>0 such that

(4.13)

Proof. In (3.8) we put s= si, and let / tend to oo , then by Lemma 4.1

we have

,^;y}= f
J Br

where Br— {x \x\<r}. Noting that u(x] is a not identically vanishing

function, we have the assertion. Q.E.D.

Lemma 4.3. We have

lim-F(r, ao; y)>0.

Proof. By Lemma 3.4, F(r. ao; y) is a monotone increasing function

of r in (0, oo ). Then Lemma 4.2 leads us to the assertion. Q.E.D.

Now we shall prove Theorem 2.2.

Proof of Theorem 2.2. Noting Lemma 4.3, by a method similar to

the first part of the proof of Theorem 2.1, we have the assertion. Q.E.D.

Proof of Corollary to Theorem 2.2. Obvious from Theorem 2.2.

Q.E.D.
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