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Abstract

We consider the extension problem of a self-consistent family of infinite measures to
a completely additive measure. For probability measures, Kolmogorov’s extension
theorem assures that the extension is uniquely possible. Our results are as follows:

(a) For o-finite measures, we can reduce the problem to the case of probability
measures, so that the extension is uniquely possible. As an application, on an infinite
dimensional vector space we can construct such a measure that is invariant both under
rotations and homotheties with respect to the origin. It is obtained as the limit of »-
dimensional measure:

dx1dxs -+ dxy

IR

Also we shall discuss about the Lorentz invariant measure on an infinite dimensional
space.

(b) If measures are not o-finite, under the additional condition (EC) in §6, the
extension is possible but not unique. We shall mention about the largest and the smallest
extension. As an application, we can consider the symbolic representation of a flow
{73} defined on an infinite measure space X, namely constructing an appropriate product
space WR and an appropriate measure on I”R, 7} on X is represented by a shift .Sy on
IR aw(s) — w(-+1).

§1 Kolmogorov’s extension theorem

§2 Reduction to finite measures

§3 Rotationally invariant measure

§4 (0, oo)-type measures

§5 Lorentz invariant measure

§6 Non o-finite case

§7 o-finite plus essentially infinite case

§8 Symbolic representation of flows

§ 1. Kolmogorov’s Extension Theorem

Let £ be a set, and B be a o-ring of subsets of 2. The pair {Q, B}
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is called a measurable space.
For a sequence of measurable spaces {2®), B®} we define the

product measurable space {2, B} as follows:
Q=] Q@
k=1

B=the o-ring generated by U p®YB®), where p® is the
k=1

projection 2 — Q®),

Similarly, we shall define the finite product {4, By}.
n
Qu= ] Q®
k=1
n
B, =the o-ring generated by U p(’“)'l(%(k))_
x=1

Let py be a o-additive measure defined on B,. A sequence of mea-

sures {un} is called self-consistent if pu(Ep)=pm(pmn(Ern) for any m>n

m
and any E£,EB,, where pmy is the projection 2p=80, X [[ 2® -0,
F=n+1

Such a sequence {u,} defines a finitely additive measure u on £ as follows:

Let pn be the projection 2=£, X ﬁ Q® 0, then B is also the
E=n+1

o-ring generated by F= nglpgl(%n). If EEF, we have E=pr}(E,) for
some z and for some E,&%B,, and we may put u(E)=uu(Ey,). This
defines p uniquely on § because of self-consistency condition of {u,}.
The obtained u is a finitely additive measure on &, while o-additive on
Put(By) for each ».

In this paper, we shall discuss the extendability of u to a c-additive
measure on B.

If each 2 is the real line R! and B®*) is the o-ring of all Borel sets,
(so that 2,=R" and B, is the family of all Borel sets of R®), and if each
pn is a probability measure, Kolmogorov proved such an extension is
uniquely possible [1].

Bochner generalized the situation from the infinite product of measur-
able spaces to the projective limit of measurable spaces [2]. In Bochner’s
formulation, let {2,, B,} be a sequence of measurable spaces, and for

m>nlet pmy be a measurable onto mapping from 2y to £2,. We assume
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the condition pmp=pmi° pxn for any m>r>n.
Let py be a o-additive measure on B, A sequence of measures

{un} is called self-consistent if
pnlE p)=pm(pmn( Eqx)) for any m>n and any E,EB,.

Let 2 be a subset of [] £, such that
n=1
(w1, w3, ..., Wy, ... ) E2 & wp=pmn(wm) for any m>n.

Let py be the restriction on £ of the projection m: ﬁ Qp—>8%. Then,
put F= U $7%1(B;), and B=the o-ring generatedkbly %. Evidently,
a self—coflsilstent sequence of measures {u,} defines a finitely additive
measure p on .

It is easily seen that Bochner’s formulation is applicable to the infinite
product of measurable spaces as a special case.

In Bochner’s formulation, the extendability of p to a o-additive
measure on B is in question. If each £, is a locally compact, o-compact
metric space and By, is the o-ring of all Borel sets of £2,, we can prove the
extendability and its uniqueness for a self-consistent family of probability
measures. (Of course, this result can be applied for a special case of
infinite product measurable space).

The obtained {£2, B} is called the projective limit measurable space
of {82y, By}, and {Q, B, u} is called the projective limit measure space of
{82y, B, pnt-

Instead of locally compactness and o-compactness, if we assume that
each £, is a complete metric space, the extendability and its uniqueness
is proved for a family of probability measures. (for instance, c.f. [3]).

Above results are still valid even if we replace a sequence of measures

by a family of measures indexed by elements of an ordered set.

§2. Reduction to Finite Measures

From this section on, we assume that the family of measurable spaces

{8y, By} is such that any self-consistent family of probability measures
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{un} can be extended uniquely to a o-additive measure. For instance, it
is sufficient to suppose that £, is either a locally compact and o-compact

or a complete metric space and that B, is the o-ring of all Borel sets of .

1) Proposition 2.1. For a self-consistent family of finite measures

{n}, the extension is uniquely possible.

Proof Put cp=pn(§2p)<<co. From the self-consistency condition,
¢ does not depend on 7z, so we put this common value as ¢. Then, the
measures fiy,= % un form a self-consistent family of probability measures,
so that {@,} can be extended uniquely to a c-additive measure g. It is
evident that the o-additive measure ¢ji is a unique extension of measures
{pn}.

2) Let {un} be a self-consistent family of infinite measures. As
defined in §1, we put F=U p5'(B,) and B=the o-ring generated by
$.  Then, the family {u,} ndeﬁnes a finitely additive measure p on ,
as explained in § 1.

Suppose that 4 and u(4)<oo, namely suppose that 4=p,(4,),
AneBy and pp(Ady)<<oo, then the measures

2.1) BEO(E )= b D E ) 0 Pin(A )
for Eps®By, m=Max (n, k)

form a self-consistent family of finite measures, so that {u{®} can be
extended uniquely to a o-additive measure u(4) on B.

For A'D A, it is easily seen that we have
(2.2) p(E)=p 4N ENA) for EcB
=u(ENA) for Eg.

3) Put Bo={BEDB; 141, As, ... €F, pldg)<oo, BC C]’lA,,}. In
n=
this definition, {A4,} can be supposed to be mutually disjoint. We shall
always impose this additional condition on {4,}.

For B=%By, we define a o-additive measure u®) as follows:

2.3) pB(E)= 3 pN(ENB) for EED.
n=1
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This u® is a o-additive measure because every term in the right side is so.
Now, we shall remark that the measure u® does not depend on the

choice of {4,}. Suppose that BC U A, and BC U Ay. Then, from the
n n

o-additivity of the measure u#), we have
pEN(EN By= X wHn (£ BN AY),
k=1

but in virtue of (2.2), the right side is equal to

o
Ok

WD(E N B Ay 0 A)= 52 k1 40(E ) B),
Thus, the right side of (2.3) is equal to

3 p k04 (E N B).
1k=1

Ms

3
n

This assures the independence of u®) from the choice of {4y,}.

If B, BBe®Bp and BCB’, we have
2.4) pB(E)=pBNENB) for EcB.

But even if £ B, there is a question whether the right side of (2.4)
is equal to w(Z N B) or not. We shall discuss this point in 5).

4) If the measures {us} can be extended to a o-additive measure g
on B, we must have from (2.2)

B(E () )= ()
for E=B, AP, pld)<oo.

So, also for B=By we have

2.5) KENB)y= 3 KEN BN An)= 3 p4)(EN B)
= n=
=pE)E).

Proposition 2.2. [f Q&Bo, the extension (if possible) is unique.
Proof From (2.5) we have

(2.6) ME)y=p@(E) for any E&9B,
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thus we have g=pu@. (q.e.d.)
The possibility of extension depends on whether u(? is identical with

wornoton . Namely, the condition:
2.7 pO(E)=u(E) for EcH

is necessary and sufficient for the unique extension of {u,} to a o-additive

measure. (2.7) means
Q.7 W(E)= n%l,u(E NAd, for EeS,

where {4y} is such that 4,€F, u(Ad,)<oc and Q2= G Ap.
n=1

If all A, can be chosen in ppt(B,,) for fixed 7, the condition (2.7)

is satisfied in virtue of the o-additivity of um. Therefore we have

Theorem 1. [f one of measures {un}, say pn,, is o-finite, then {un}
can be extended uniquely to a c-additive measure on B.

For the case where £, is locally compact and o-compact, Y. Okabe
proved the above theorem [4], modifying the proof of Kolmogorov’s ex-
tension theorem. Here, we have reduced the theorem to the result of

Kolmogorov.

5) In the last part of 3), we remarked that

@8) WO E)—(E 1 B)
for E=®B, BBy, ENBSH

can not be proved. This equality is a necessary condition for the ex-
tendbility of {u} as seen in (2.5).
(2.8) is equivalent to

2.8y WE)= 3 WENA) for ESF0Bo,

where {45} is such that 4,&, u(dr)<oo and EC G Apn. Therefore,
it is a generalization of (2.7)’ to the case £2¢=9B. n-l

Since u is not g-additive on , (though o-additive on each p;(B,,)),
(2.7)" or (2.8)' is not a direct consequence. Up to the present time, we can

not prove it, nor can not give a counter-example.
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Let 2,=N (the set of all positive integers), Bp={{1}, {2}, ..., {»},
{n+1, 742, ...}}, pmn be the identity mapping, and p,({£})=0 for £<n,
pn({n+1, n4+2, ...})=oco. Then, we have u(N)=oco but u({£})=0 for
any £, so it gives a counter-example. But for this {Q,, B}, even a family
of probability measures can not always be extended.

It is urgent to give a counter-example (if exists) of (2.7)" for the family

{84, By} which allows a unique extension for probability measures.

Remark If u(E)<<co, (2.7)" or (2.8)' is trivially satisfied, because in
both hand side p can be replaced by u® which is g-additive. (2.8)' is
equivalent to the following condition:

If E€FNBo, p(E)=0o0, then for any N>0 there exists such FEF
that satisfies #C E and N<<pu(F)<<oo.

§ 3. Rotationally Invariant Measure

In the next three sections we shall give some examples and remarks
on the results in §2, and we shall continue the general discussions on
extendability in §6.

1) Let uy be a measure on R” defined as follows:
1

where |x|=Yx-+...+x%. On the space R®, it is the unique (except a
constant factor) measure which is invariant both under rotations and
homotheties with respect to the origin.

Since we have

it dx 2 %
\ n+1 — n—1
(3.2) I T |7 cosn-16a6
7
w13
T xm n+1\’
("5

the family of measure {cyun} Where
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2

e

3.3) = F(ﬁ>

forms a self-consistent family of o-finite measures.
Therefore, on the infinite product space R®, we can define uniquely

a o-finite, o-additive measure u whose projection on R? is cppy.

2) R~ is the space of all real sequences, and containes Ry as a

subspace where
(3.4) R;={xn)ER" N, n=N > 1,=0},

Let (/2) be the space of square-summable real sequences. Evidently
we get Rgc(/2)c R*. Let O, be the group of orthogonal operators of (/%)
which keep Ry invariant. Identifying U with U~1*, O, can be regarded
as a transformation group on R*, the dual space of Ry.

Since the measure u, defined in (3.1) is rotationally invariant, the
family {cppn} defines an O-invariant measure on F= U pz(B,), and
the extension being unique, the extended c-additive menasure must be
O.-invariant on B, the smallest o-ring which containes §.

In the same way, p is invariant under homotheties with respect to the

origin, namely
3.5) wE)=pQE) for E&B, A>0.

3) Let A be a real Hilbert space, and L be a locally convex space
which is imbedded densely and nuclearly in 4.

Let Oz be the group of orthogonal operators of A which keep L
invariant and act homeomorphically on Z. Then, Oz can be regarded
also as a transformation group on L*, the dual space of Z. (c.f. [5])

Choosing a CONS (=complete orthonormal system) {e,} of A in

L, R§ can be imbedded in Z and we have
oCLcH~H*CL*CR"™.
Then, the measure u obtained in 1) lies on L*, namely we have

W(R=—L¥)=0,
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and p is Oz-invariant on L*.
Using the infinite dimensional gaussian measure g (with variance ¢2)

on L*, we have

(3.6) wE)= [ Z B

From (3.6) also, we see the invariance of u both under rotations and homo-
theties. The proof of (3.6) is as follows:

Projection onto R” gives

m > Cn#n:[“;”l‘ﬁ_‘dxl ‘e dx'n

ge —*_——1— ex ——;—j-c—l—z— dxy ... dx
2myn7zgn P 75 "

so the equality
1 e 2 |x|2
(2m)ns2 fo el exp[—— 2c2 ]dc
_ 1 1 ® o -1 52
_WWIO 2s™ exp( 7)a’s

”
_F(i) 1 _ ca

T gn/2 |x|® - PR

assures the validity of (3.6).

4) On the space L*, any Og-invariant probability measure is neces-
sarily a superposition of gaussian measures g¢, as proved in [5].

Let p be an Og-invariant o-finite measure on L*. Then, there exist
such £, that E,&%B, u(Ey)<oco and E En,=L* 1If we assume that
each £y, can be chosen to be OL-invariar?t_,lthe measure p is also a super-
position of gaussian measures, namely

3.7) W(E)= f Owgc(E)a,’m(c) for VEES®,

because the restriction of p on £ is an Oz-invariant finite measure so that
it is a superposition of gaussian measures.

Moreover, if u is invariant under homotheties, the measure 7(c) in
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(3.7) must be
(3.8) dm(c):% dc for some constant a>0.

Therefore, the measure p obtained in 1) is the unique (except a constant

factor) measure which is invariant both under rotations and homotheties.

§4. (0, co)-type Measures

1) In § 6, we shall prove that any self-consistent family of measures
{pn} satisfying (2.8)" can be extended to a g-additive measure on B and
that the extension is unique on By defined in § 2, 3).

If Qd=2By, the extension is not necessarily unique on 3B, but there
exists the largest extension g which is not o-finite. However, this does not
mean that {u,} can not be extended to a o-additive, o-finite measure,
because some extension may be o-finite even if 2€=By.

We shall explain this in other words. Let u be the finitely additive
measure defined by {u,}. Then, 2 B means that £ can not be covered
by a countable union of sets in & with finite u-measures. Even if we
assume so, extending u to a o-additive measure i on B, 2 may be covered
by a countable union of sets in B with finite @i-measures.

In 3), 4) and 6) of this section, we shall give examples illustrating this

situation.

2) A measure is called to be (0, o)-type if the measure of any measur-
able set is 0 or co. Especially, it is called to be essentially infinite if the
measure of non-empty measurable set is always oo.

For a self-consistent family of (0, oo)-type measures {u}, the largest
extension & is also (0, co)-type. But the o-ring By, on which the exten-
sion is unique, consists of null-sets only. In other words, the family {ux}
can determine its extension almost nowhere. In this sense, we must
conclude that to a family of (0, oo)-type measures we can not attribute
any limit measure. (c.f. 5) of this section).

We shall remark that even a family of (0, oo)-type measures can be

extended to a o-finite measure. See examples in 3), 4) and 6).
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3) Let Z be the set of all integers, and Z= be the infinite product of
£. Consider a subset Z§:

4.1) Z3={(ny); 3K>0, k=K = n;=0}.

Remark that Z§ is a countable set.

Regard Z as a measurable space, supposing that every subset is
measurable. Then, we can regard Z> also as a measurable space, imposing
the structure of the infinite product measurable space of Z. (c.f. § 1).

Now, for a measurable subset £ of Z%, we shall define g(£) as follows:

(4.2) A(E)=number of points of ENZj.

Evidently, @ is a o-additive, o-finite measure on the measurable space Z>.

For any fixed element (71, ng, ..., 7y) of Z™, it is easily seen that
Pmic(n1, 2, ..., my) N ZG is an infinite set,

so the projection of i on Z™ is the essentially infinite measure. In other

words, f is a o-finite extension of a family of essentially infinite measures.

4) Let Rt be the set of positive real numbers. For x= R*, con-
sider the binary expansion x= i‘. ex2® where =0 or 1. (Eventually
ex=0 for sufficiently large %). L_é?;o be the mapping which maps xR+
to (ex(x))={0, 1}2. By this mapping, the Lebesgue measure on R,
is mapped to a measure g on {0, 1}2  (Though ¢(x) is not determined
uniquely on a countable subset of R*, ¢ determines @ uniquely because the
Lebesgue measure of a countable set is zero).

For any fixed element (a1, ag, ..., ap) of {0,1}™ and for any set of

m integers {£1, k2, ..., £m}, the Lebesgue measure of the set:
Aay,as, ..., am ki, ks, ..., kn=FE RS ep(x)=0;. 1< j<m}

is infinite, because this set is a countable union of intervals of same lengths.

Therefore, the projection of f on a finite product space of {0, 1}
becomes the essentially infinite measure. On the other hand, since the
Lebesgue measure is o-finite, the measure & is also o-finite. ~So, this gives
another example of a o-finite extension of a family of essentially infinite

measures.
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5) If we try to construct on R* an analogue of the Lebesgue measure,
it seems natural to consider the family of #-dimensional Lebesgue measure.
But unfortunately this family is not self-consistent.

For any finite interval (a, 4) in R, the two-dimensional set (a, 6) X R!
has infinite area. Generally, the inverse of projection maps a set of finite
measure in the lower dimensional space to a set of infinite measure in the
higher dimensional space. (In other words, the ratio of normalizing
constants {¢,} is infinity. c.f. (3.3)).

Therefore, Lebesgue measure-like family is the family of (0, oo)-type
measures. Namely, we must consider the following measure uy, on R”:

un(E)=-oc 1if the Lebesgue measure of £ >0
.3 un(£)=0 if the Lebesgue measure of £ =0.
This is a result of the request that u, must be the projection of higher
dimensional Lebesgue measure.

However, as remarked in 2), the family of (0, co)-type measures deter-
mines its limit measure almost nowhere. So we must admit the failure of
our attempt to obtain an co-dimensional analogue of the Lebesgue measure
by our method.

Remark that on the space R>, there exists such a measure whose
projection on any one-dimensional space is one-dimensional Lebesgue
measure. For instance, it is sufficient to consider the Lebesgue measure

lying on the diagonal:
d={(x, x,...); r= R} CR~.

More generally, for a family of Lebesgue measure preserving one-to-one

mappings {7}, the set:
din=A(x1, %2, ...); #a="Tnx, zER} CR”

allows the one-dimensional Lebesgue measure on it.
However, two-dimensional projection of such a measure is not two-

dimensional Lebesgue measure.

6) TFinally, we shall construct a o-finite measure g which is an ex-
tension of {uy} defined in (4.3).
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Let Lp=R"X][0,1]*, namely
4.4) Ly=A(x1, x2, ...); 0=xp<1 for A>n}CR>.

On the set L,, consider the product of #-dimensional Lebesgue measure
and the uniform probability measures. Denote this measure with 2.

The measure 72, can be defined on R* as follows:
4.5) min(E)=mu(EN Ly) for measurable £ R>.

Evidently, 2y is a o-additive, o-finite measure on R™.

Put
ol
(4.6) e on M-
n=1

@ is o-finite because @(R*— U L4)=0 and for £C R” we have
n

HEXIO )= 5 e m(EX [0, 11

< Lebesgue measure of £.

Now, we shall consider the projection of @ on R*. For a Borel subset
E of R®, we have

EXRE-"x[0,1] if £>n
@7 pRME)NLy={ EX[0,1]° if k=n
EN(REX[O, 1% %) x [0, 1]~ if A<ln.

Therefore if the Lebesgue measure of £ is zero, we have m,(pz}(£))
=0 for any 4 so that a(pz'(£))=0. On the contrary, if the Lebesgue
measure of £ is positive, m,(pn (E))=0c0 for £>n so that a(pz'(E))=-coc.
Thus, the projection of g on R” is just identical with (4.3).

We shall remark that the above g is far {rom translationally invariant
measure, and in this sense it does not qualify as the co-dimensional Lebesgue

measure.

§5. Lorentz Invariant Measure

Considering the projective limit of uniform measures on #-dimensional
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spheres, we obtain the infinite dimensional gaussian measure which is
unique as the rotationally invariant one. (See [6] and [7]).
Similar discussions for the Lorentz invariant measure are the contents

of this section.

1) Let /(x)=—a3+x3+---+x% be the Lorentz metric on R*+1, and

put
(G.1) Hi={x& R"1; [(x)=1}
(5.2 H%={x& R"1; J(x)=—1}.

H7 is a hyperboloid of one sheet, while /% is a pair of hyperboloids of two
sheets.

Let £, be the z-dimensional Lorentz group, namely the group of
linear operators on R"*1 which keep /(x) invariant. It acts transitively
on each of A} and H2.

We shall define the measure u,, on A% or A% as follows:

where do is the area element and 7’(x)=(x%+x%+---+x%)%. Wy is the
unique (except a constant factor) measure which is ®,-invariant and

o-finite on A} or H2.

2) For a while, we shall discuss about A% only. Put
(5-4) Qu=H7}, U {wg},

where wy is a fictitious additional point. Putting pp({wp})=0c0, uy is
regarded as a measure on £,

For m>n, we shall define the projection gy as follows:

Pmn(wm)zwn
(5'5> Pmn(xo, X1y eney xm)zwn if 7’?%21
Pma(¥0, ¥1, ..., Xm)

(g, 1y oy ) NT—rBom © HY if 72 <1,

where 72,,=x5,1-+ -+,
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Then, we have for any £cC H}
1 , ol
i O EN = EYX [, (A—r3sa) T diay..im,
"mn<1

m—1 p =~
=2m—"u,(E) [] f 2 cost 846
k=nJ 0

m—-n
i)

Therefore, the family of measures {¢puyn} where
n
(5.6) P r(ﬁ_l)

is self-consistent.

Let the projective limit of £2, be £. Since each £, is the union of
H}, the o-finite part, and {wy}, the essentially infinite part, the family
{cnpn} satisfies the condition (2.8)" and can be extended to a c-additive
measure on £. (The proof of this statement will be given in § 7). The

extension is unique on
(5.7) Qo= pat(HR)C L.

We shall denote with u this unique o-additive measure on £o.

3) Using a similar discussion in [6] or [7], we shall identify u with
the measure exp (¥8)g; on R®, where g; is the infinite dimensional gaussian
measure with variance 1.

For w& ppl(H%), let x™(w) be the 4-th orthogonal coordinate of
pa(w), namely

(5.8) Pa(@)=0P(w), ..., x5 (w))E HE,.

First, we shall prove that for fixed £, an appropriate subsequence of
{Vn {®(w)} converges almost everywhere on y. Since Qo= U U P7HE ),
where E;;C H} such that LiJ E;;=H]}, the almost everywherej cénvergence
on each p;7Y(E;;) implies the same on £q.

Now, we shall prove the restriction of {¥# x{(w)} on 7Y (Ey ) con-

verges in L2-sense, supposing that each £j; is a bounded set. For m=n
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=j=#, after some calculations we have

(M), (n) 2/
f _ Xp X (Cmbm)
P (Ey ) K

T n+2> P( 77z+1>
_ G2 J+1 ( 2 2
‘fEi,."'g) despi) X g F(n—2i—3) r( mgz)'

Since l"(t)/I’(t+ —é—)Nll\/T asymptotically, this shows that ¥z x{® con-
verges in L2-sense on p;Y(E;;)-
Now, put
(5.9) X (w)=1lim ¥ 7 2{"(w)
n

(Rigorously, the limit of an appropriate subsequence). Consider the

mapping @: 2y Dw— (Xp(w))e R*. P is defined almost everywhere on §2q.

Since x%”)zx%m)/‘/l—rfnn =x(,cm)/‘/——x§)m)2+x(lm)2+ o 22 letting

m— oo we have

(5.10) 2§ (@) = X y()/V— X§w)+ X3 @) +...+ Xi(w) .

This shows @ is one-to-one.
By the mapping @, the measure u on £y is mapped to a measure on
R=, which is proved to be 2V7 exp(X3)g;. For this purpose, we shall

calculate the characteristic function of exp(—X3)pu.

[/, expli £ arXiw)— X)) du(w)

Ly

K
=lim lim lim | | exp[iVn 3 apxi®—nxi?d(cppun)
j—oo f—00 Moo Z)n]. 1:,7) k=0

_ 1 X
=27 ex {—* az].
p 2k§0 k
(The detailed calculation is omitted here). This shows exp(—X3)u
:2‘/‘7;—g1.
4) The measure /z=exp(xd)g1 can be constructed on a nuclear
extension L* of a Hilbert space, and can be interpreted as a Lorentz

invariant measure on L¥*.
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Let A be a real Hilbert space, and L be a locally convex space which
is densely and nuclearly imbedded in /. Let {eo,e1,...,¢p, ...} be a
C.O.N.S. of A lying in L.

Consider the following operator / on /:

(.11 {f€0=~——eo

]e;v-——-ek (/621)

Let &, be the Lorentz group of /A, namely the group of such linear
operators on /A that keep the Lorentz metric {x, /x) invariant. Let £z
be a subgroup of &, which consists of such A4 that keep L invariant and
act homeomorphically on L. Then, identifying A4 with /*(4A-1)*/* &,
can be regarded as a transformation group on L*, the dual space of L.
(c.f. §3,3)).

Since the gaussian measure g; can be defined on L*, the measure
h=exp({x, eo)?)g1 can be considered on L*. This 4 is ¥-invariant as
shown below.

Let R be a finite dimensional subspace of L including ¢g. The

projection of 4 on L*/RL~R* is in the form

exp{ %‘(x%——x%— . .—x%)}dxoa’xl. . dxy,

[

which is Lorentz invariant. This shows that /4 itself is Lorentz invariant,

because the extension to a o-additive measure is unique.

5) Next, we shall discuss on 3.
The measure u, defined in (5.3) is Lorentz invariant on /3.

For m>>n, we shall define the projection ppy,: H2,—> H?% as follows:

(5.12) Pmn(Fgy X1o s X)) =(Zgy X1 - xn)/\/] —I—r?,;,,T

where 7Z,=x%,1-F...+ 2.

Then, we have for any £cC H?%,

ponl i E))=pun( E) X f A+12n)"T drmst...dxm

m—1 oo
=2"""u,(E)X ] f cosh® zd¢
k=nJ 0
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Thus, the ratio of normalization constants ¢y is infinity (c.f. 2) in the case
of H%), and the family {u,} never becomes self-consistent by a multiplica-
tion of constant factors. Instead, if we consider the family of (0, oo)-type
measures, we can not determine the projective limit measure. This situa-
tion is just the same as the case of Lebesgue measures (c.f. § 4, 5)).

D. Shale and W. F. Stinespring constructed a Lorentz invariant
“integration’’on the infinite dimensional hyperboloids of two sheets ([8]).
But it is not a measure in an exact sense, but only a measure-like object.
Its justification will be achieved if we construct the corresponding (in some
sense) o-additive measure. Unfortunately, our theory turnes out to be

invalid for this purpose.

6) Finally, we shall construct a o-finite measure whose projection on A%
is (0, oo)-type (c.f. §4, 6)).
Let M, be a subset of A% that satisfies:

(5.13) pn(puin-1(E) N Mp)=pn-1(E)
forany ECH% ;.

For instance, it is sufficient to put
(5.14) Mp={(x0, x1, ..., xp)E H%; 0<x,<sinh #,}
where f Ot” cosh?~lrdr=1.
For these {M,}, we shall put
(5.15) L,,:kgnpil(Mk)c.Q.

Since the family {uz}g=n is self-consistent on Ly, it determines a c-additive

measure 7y on Ly. The measure m, can be defined on £, putting
(5.16) mu(E)=mp(ENLy) for EcCQ.
Now, consider the following measure @ on Q:

Similar discussions in § 4, 6) show that j is o-finite, and its projection on
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each /A% is (0, oo)-type. Thus, f is the requested measure. However,

is far from Lorentz invariant measure.

§6. Non o-finite Case
In this section, we shall return to the general discussion on the ex-
tendability for infinite measures.

1) Let {up} be a self-consistent family of infinite measures defined

on measurable spaces {£2,, B,} which allow a unique extension for

probability measures. Let {2, ®B} be the projective limit measurable
space of {Qy, By}.
First, we shall resume the results in § 2, 3)~~5). If the family {un}

is extended to a o-additive measure i on B, we must have
(2.5) MENB)=u®B(E) for Be®By, E=,

where By and p®) are defined in §2,3). Especially if ENB=F=
U pat(By), we must have
"

2.8) WE N B)=p®)(E),

where p is the finitely additive measure on & defined by {uy}.
The condition (2.8) is equivalent to

2.8)' W(E)= ily(Eﬂ Ay for E=FNBo,
n=

where {4y} is such that ApEF, p(Ay)<oo and E chIAn. (2.8)' is also
equivalent to the following condition (EG):

(EQC) If EeFNDBo, w(E)=-co, then for any N>0 there exists such
FE that satisfies FCE and N<u(F)<oo.

Therefore, (2.8) or (2.8)" or (EQ) is a necessary condition for the
extendability of {us}.

2) From (2.5) we have
(6.1) @ B)=p®B(B) for B=By.

So, the extension (if possible) must be unique on By. Especially if
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Re=PBy, then we have Bp=LB and the extension is unique on B. A
special case is the o-finite case as stated in Theorem 1 in § 2, 4).

Now, we shall prove that the condition (EC) is sufficient for the ex-
tendability. For this purpose, we shall define & by (6.1) on By, and on
B—Bp we shall put

(6.2) f(E)=oo if EcB—By.

This f is o-additive, because for any sequence {£,} of mutually disjoint

measurable sets,
(6-3> ﬁ(LhJ' En>:% ﬁ(En)

can be checked as below.
If some E,&Bo, then evidently U En&EBg so that the both hand
n
sides of (6.3) are infinity. If each £,=B, then E= | E,=Bp and we
n
have

E)=p®(E)= X, p®)(Ey)

n=1
= 3 pE(Ey)= 3 @(Eq),
n=1 n=1

using the definition of @, o-additivity of u®), and the relation (2.4).

Next, g is an extension of {un}. To show this, it is sufficient to
prove i(E)=u(E) for E€F. If E€FN By, then from the definition (2.3)
of p® we have

HE)=p®(E)= T pta(E)= T, p(dn E).

So under the condition (2.8)" we have g(&£)=w(&). If E€F—Bo, we
have pu(E)=-oco from the definition of By, so that g(E)=u(E)=rco.

Since the extension is unique on By and we put g always infinity
outside By, this g is evidently the possible largest extension. Hereafter,

we shall denote with g this largest extension.

Theorem 2. A self-consistent family {un} of infinite measures is
extendable to a o-additive measure on B, if and only if the condition (EC)
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(or equivalently the condition (2.8)") is satisfied.

Under the condition (EC), the extension is unique on By, It is not
necessarily unique on B, but there exists the largest extension j.

Remark that if 2€=By. & is not o-finite. If each p4 is (0, co)-type (or
essentially infinite), then & is also (0, co)-type (or essentially infinite).

3) The following condition (FC) is stronger than (EG):

(FC) If EEF, w(E)=co, then for any N>0 there exists such F<F
that satisfies FCE and N<u(F)<<oo.

Under the condition (FG), we shall construct the smallest extension
p of {un}.

Put

(6.4) w(E)= sup p®(B) for E&B.
~ BcE
Be®,

Especially if Z& B9 we have u(E)=u®(E).
First, we shall prove that u is a o-additive measure. Let {£n} be a
sequence of mutually disjoint measurable sets. For any BC E=UZ,
n

we have B= (BN E,), hence
n
P,(B)(B):Z /.L(B)(Bﬂ Eﬂ>:E ”(BnEn)(Bﬂ En)gz E,(E,n)
n n n

so that we have pu(E)<<>: u(£,). Conversely, for any B,C £, we have
K = [

UBy,C E, hence

"

%: uBa)(By)= zn: pUEN(By)=pntEa( U Br)=p(E)

so that we have X u(Ep)=u(E).
= L K
Next, p is an extension of {uy}. Because, if Ec B, w(E)<oo, we
have £&Bp and p(E)=pEV(E)=wE). If E=F, w(E)=oo, the con-
dition (FQ) assures
WE Zp O F)=p(F)>N
so that u(£)=o0. Thus we get:

Theorem 3 Under the condition (FC), there exists the smallest

extension .
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Remark that (FQ) is also necessary in order that the measure u defined
in (6.4) is an extension of {ux}. If E&, w(£)=occ implies u(£)=oo,
then there exists BBy, BCE such that u®(B)>2N. Suppose that
BCquJ An, An=F and u(An)<<oo. Since

pO(B)= 3w B)< 3 p(E)= ¥ u(E N Au),
n=1 n=1

n=1

we have for some £
k k
N< X w(EN An>=,uv< U (ED An))
n=1 n=1

3
Evidently F= | (£ N Ay) satisfies the request of (FQ).
n=1

4) If the condition (FC) is not fulfilled, the smallest extension may or
may not exist. Even if it exists, it takes more complicated expression than
(6.4), but we shall not enter this problem. We shall be contented only
with examples which have no smallest extensions.

In §4, 3), we considered a measure g on Zj whose projection on
Z"™ is essentially infinite. Since ZF is a countable set, we can affix a

numerical order to its elements;
Zy=A{x1, x2, x3, ...}.

Consider the measure gg(E)=jg(E—{xg}). For any £, the projection
of iy on Z" is essentially infinite. In other words, g is an extension of
the family of essentially infinite measures. If the smallest extension would
exist, u=Zfig for any % implies p({xg})=0 for any £ so that u=0. Since the
zero measure is not an extension of the family of essentially infinite
measures, this shows the non-existence of the smallest extension.

Similarly, consider a measure @ on R* defined in §4, 6). This g is
an extension of (0, co)-type measures on R". Put gp(E)=p(E—Ly),
where Ly is given in (4.4). Then for any £, fix is an extension of (0, c0)-
type measures on R”, but if u=ljy for any £, we have u=0. Therefore,
in this case also, the smallest extension does not exist. Similar discussions
show that the family of (0, co)-type measures on H2(c.f. § 5, 6)) does not

have the smallest extension.
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§7. o-finite Plus Essentially Infinite Case

In this section, we shall give a sufficient condition for the extendability

condition (EC), and as an application we shall treat the infinite product of
finite- or countable-point sets. The latter is closely related with the

symbolic representation of flows, as explained in § 8.
1) The following proposition is fundamental in this section.

Proposition 7.1. Let {2, By, pn}t be a self-consistent family of
infinite measures, and suppose that each 82y can be decomposed into the

union of o-finite part and essentially infinite part, namely

Q,=02Lu0% Q2LeB,, 2293,
(7.1) pn | 2L is o-finite,

Un | R% is essentially infinite.

Then, the family of measures {un} satisfies the extendability condition
(EC) in §6, 1).

Remark Here, we assume that any one-point set belongs to By.

Definition of essentially infiniteness is given in § 4, 2).

Proof. We shall check the condition (EC). Assume that £=FN By
and p(E)=oco. (u denotes the finitely additive measure on ¥ defined
by {pn}).

From the self-consistency condition of {u,}, we know that {;1(QL)}
is an increasing sequence. It is easily seen that £=%Byp is equivalent to

Ec U Pnt(2}), namely to
n=1
(7.2) EN(N 2250 =4,

On the other hand, & §= U Pmk(By,) implies E< p1(B,) for some
m, and u(E)=pp(pm(E)). If mzlc Prk(RL), then p,(E)C QL and the
o-finiteness of u, on Q% assures the existence of & F requested in the
condition (EG).

If E€ p,1(B,) and ET pt(R2L), suppose that x& £ N p71(22) and
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put %,=7pm(x). Since x,& 22, we have p,({*,})=occ, therefore from

the self-consistency condition of {u,}, we have py, (w1, m({Zm}))=0c°.
If prdti1,m({xm}) CRL, 1, then the condition (EC) is satisfied for £ in

virtue of o-finiteness of p,,q on 2% 1. If pply ({2} E 2y, choose

a point
xm+1epﬁ£1,m({xm}> N 'sznJrl'

Repeat the similar discussion for pplte mi1({*me1}). If it is contained in
QL 5, the condition (EQ) is satisfied for £. If it intersects with Q% _,,
choose a point x4 as above.

Repeating these procedures, if £ does not satisfy (EC), we can get a
SeqUeNce Xy, ¥mi1s ¥misr --- such that x,E92% and g, 4(*tp.1)=2%, for
n=m. Therefore, from the definition of projective limit space (§ 1), the
sequence x'=(%p, Xp11, Xmig --.) belongs to £.

Since pu(x)=%p=pu(%)E pn(E) and EE p;1(B,,), we have x'E E.
On the other hand, p,(x)=x,&022 implies x'< p;(Q2) for any n=m.
Thus, we get the negation of (7.2), hence £&By. In other words, any
E= N WBo must satisfy the condition (EC). (q.e.d.)

Remark. In Prop. 7.1, even if some (or all) u, |Q% is finite (instead

of o-finite), the proposition is evidently true.

Corollary. If each 82, consists of finite or countable points, then any
self-consistent family of measures {824, By, un} is extendable.
Because, in this case, £, can necessarily be decomposed as in Prop. 7.1,

namely:

1 e - oo
7.3) {Qn—{x€9n, pa(ix})<oo},

Q2 ={x=Q,; p({x})=00}.

2) Let /={1,2, ..., s} be an s-point set, and put £2,=7%. Suppose
that By, consists of all subsets of £2,. A measure u, on B, is determined

by a family of non-negative numbers {my,p,... x,} where

(74) M ky--- k,,zllvn({/él, kg, vy kn})
lgél) 'é2) [REY) éngf
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The self-consistency condition is written as follows:

s
(75) kgl kg k=M kyky - Ky

We shall assume that

=oco if Ai=ka=..=hky=
(76} Illklh...]‘;”[ = ! ? vt

oo otherwise.
In other words, we assume

Ql=0,—1,1,..,1}

(7.6)' {g%zu;L”un

where 2L and 22 are defined in (7.3).

As proved in 1), the family of measures determined by (7.4) with the
condition (7.5) is extendable to a o-additive measure on {£2, B}, the
projective limit measurable space of {2, B,}. The extension is unique
on Qy= Lri' 221(€2%).  Under the assumption (7.6)’, we have

2o=0—{1,1, ...},

so that the measure u on £ is determined except the value of c=p({1,1,...}).
Putting ¢=o0, we get the largest extension f.
The condition (FQC) is fulfilled if and only if

&) lim o ()= o0
N—o0

under the assumption (7.6)". If F=F and u(F)<oo, we have £ C p, (L2},
for some 2, so that u(F)<lim p,(R2%). Therefore if (7.7) does not hold,
N—oo

the entire space £2 does not contain such #&§ that satisfies

lim ., (28) <p(F)<oo.
n—o0

Conversely, suppose that £&F and p(E)=co. If E=p,l(E,) for some
En,=8, then £, NR%+4¢. Under the assumption (7.6)’, this implies
{1,1, ..., 1} = Ey, therefore

EopM{L 1, ..., 1)
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On the other hand, the set

belongs to § and we have

1n(820) — an(S0) = () < pn(25) < 0.
Thus, letting #z—>oo, the condition (7.7) assures the condition (FG).
Remark that (7.7) is equivalent to

(77)’ lim Z' Mgk kg™ 9,
n—>o Ky ks, ... ky

where X' means the summation except Ai=ks=...=4k,=1.
Now, if (7.7) is fulfilled, the condition (FC) being satisfied, the smallest
extension exists and is given as (6.4). We can easily see that p({1, 1, ...})

=0. Furthermore, we can show that for any ¢(0=c<o0), putting

c=u({L, 1, ..})

we get an extension of measures (7.4).
On the contrary, if (7.7) is not fulfilled, c=co is the only possible
choice and the extension is unique, because for any extension i we must

have

co = =(2—{1,1, . D+A{L 1, .}
—lim (@) + (L L, ).

Thus, we obtained:

Proposition 7.2. Awny self-consistent family of measures (1.4) on
1™ can be extended to a o-additive measure on {2, B}. Under the assump-
tion (1.6), the extension is unique on 2—A{1,1, ...} and
) i (1.7) is satisfied, u({1,1, ...}) can be chosen to be any non-negative
value (including infinity), so that theve exist continuously many extensions,
(2) o (1.7) is not satisfred, u({1,1, ...})=co is the only possible choice

and the extension is unique.

(3) The Prop. 7.2 is kept valid even if £, is not the product space of
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the same set /.

Actually, Prop. 7.2 covers the following situation: For each n, £y,
consists of finite elements, B, consists of all subsets of £2,, and the value
of g is not infinity except one element (which is identified as {1, 1, ..., 1}
in the discussions in 2), and the projective limit of which is identified as
{1, 1, ...} in Prop. 7.2).

Prop. 7.2 for this situation is proved with slight modifications of the
discussions in 2), and we do not repeat them.

Now, suppose that each 2, consists of countable elements. If £2,=N"

where N={1, 2, ...}, the self-consistency condition is written as
(75)' kgl MEyky - bk Ky Ky

Even if £, is not the product space, the self-consistency of {u} is written
in a similar expression as (7.5)" for the values {m}.

An essential difference to the discussions in 2) appears in the condi-
tion (7.7). If QL consists of countable elements, (L) may be infinite
and the discussion below (7.7) becomes invalid. However, for countable

case also, if we replace (7.7) by

(7.8) lim w(pr}(@%) — prk(@h)=co for any m,
F dad

the result is kept valid (though the proof requires some modification). If
£,=N7, the condition (7.8) is equivalent to

(7.8 lim > P11 1y Fome g+ Fon = °

M= Kpyiy,.Bn

where Y’ means the summation except &pi1=~Fpro=...=kp=1.
Also the Prop. 7.2 is valid even if £, consists of countable elements,
if we replace the condition (7.7) by (7.8).

4) One more step for the further generalization is as follows:

Let {2y, By, pn} be a self-consistent family of infinite measures, and
suppose that each £, can be decomposed into the union of o-finite part
QL and the essentially infinite part 2%. As proved in 1), {us} can be
extended to a o-additive measure g on {2, B}, the projective limit measur-

able space of {£2y, B,}. Since the extension is unique on 2,= U p,(£2}),
n
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if we determine the value of @ on M p,1(22), then the measure i is
n

determined on £.

The following results are obtained easily:

Proposition 7.3.
(@) Under the condition

7.9) lim (7" (28) N (L )=

for any m and any x,< 2%,

any measure on N\ pp-(R%) gives an extension of {pn}.
- n

(b) Under the condition

(7.10) lim u(pn (928) — pmt(825,)) < oo

Sfor some m,

a measure i’ on N pX(R2) gives an extension of {un} on Q if and only if i’
is an extemsion oy} essentially infinite measures on {Q%, 8, N 22}.

If each 92 consists of one point, the condition (7.9) is just the negation
of (7.10). In this case, the results of Prop. 7.3 are same with those of
Prop. 7.2; namely under (7.9) a({1,1,...}) can be any value and under
(7.10) it must be infinity.

If Q2 consists of more than one point, there exists the case which
does not satisfy (7.9) nor (7.10). For such cases, the discussions on the
abundance of extensions may be very complicated, and here we shall not

study it.

§8. Symbolic Representation of Flows

Let {X, B, u} be a measure space, and {73} be a flow, namely a
one-parameter group of measurable transformations on X. Assume the
existence of finite generators {Zg}i<r<s, Namely assume that {£z} is a

finite partition of X and % is generated by
{7TiEy; t=R, 1<k<s}.

For any finite set of #values (#1, %, ..., #4), we put
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8.1 mpge »’—p,( m Tt,Ek,>, 1<k<s

LEvidently, it fulfills the self-consistency condition:
S

8.2) m,gt;,g;;;;,tggzk;lmgl,g;:::,?;‘,z for any ¢

Even if {E}} is a countable (instead of finite) partition of X, the same
relation holds il we replace SZ by i .

Now suppose that pis a ;t)babi,fiz'(; measure on X. Then, {m},f:t: t")}
in (8.1) gives a self-consistent family of probability measures on /&, where
I={1,2, ..., s} (or if {Ey} is countable, /={1, 2, ...} =N).

Let p¢ be the projection of /F onto /:

pr, 0 (RS IR —> kit T

Consider the smallest o-ring B on /B which makes all projections p;
measurable. Then, Kolmogorov’s extension theorem shows us that the
family {mfifz "t} can be extended to the unique o-additive measure
on B.

Since the mapping P:

n - 1
(8.3) o : jglp;jl({/éj})e% — ]-'21 Ty,Er,eB

can be extended to a measure-preserving mapping from B onto B, we can
regard @ as an isomorphism between two measure spaces {X, B, u} and
{/R, B, m}. (However, @ is not one-to-one from B onto B. It is one-
to-one modulo null-set).

From (8.3) we know that by the isomorphism @, the transformation

7T on X is mapped to the shift operator S; on /%:
(8.4) St, 1 A — A(t420)

Thus we have the following conclusion:

Let {X,B, u} be a probability measure space, and {1} be a flow on X.
Under the assumption of the existence of finite (or countable) genevators of
B, {X, B, u} is measure-isomorphic to {I%, B, m} and {1} is mapped to
the shift operator {St}y. This {/%, B, 12, S;} is called the symbolic repre-
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sentation of {X, B, u, 73}. By this representation, the diversity of X, B
and 7% is eliminated, and remains the arbitrariness of measure only. In
other words, the diversity of flows is only the diversity of {m,(fl‘,g:jj:,tc’;)}
which satisfy (8.2).

Evidently, the similar (rather simpler) discussion holds for a discrete
flow {7™}p—0,11,+2,.... This case (often assuming that 7" is measure-
preserving) has been studied in detail. Particularly, the studies on the
existence of finite or countable generators are reviewed in [9].

In this paper, we generalized Kolmogorov’s result to infinite measures,
so that on an infinite measure space also we can consider the symbolic
representation of flows.

Let {Ex}1<k<s be a finite partition of X. Since u is infinite, some
w(Er) must be infinity. For simplicity, we assume u(£1)=cc and u(£j)
< oo if ks£1. Furthermore, we assume that transformation 73 keeps the

finiteness of measure, namely
@®5) WE)<co > W(TiE)<oo.

Then, (8.1) shows us that

®6) gl

1KoKy

< oo otherwise.

This is just the situation of §7,2). So this {mf4 i’} can be extended to
a o-additive measure #z on /E, and we get the symbolic representation
of {X, B, u, T3}.

If {Er}1<k<. 1s a countable partition of X, all u(£y) may be finite.
Assuming that at most one of £y has infinite measure, we can reduce the
problem to the discussion in § 7, 3).

Thus, on an infinite measure space also, the diversity of flows comes
from only the diversity of {m,(ci%:jjj,"c';)} which satisfy (8.2) and (8.6). (For
countable case, the first line in (8.6) is not necessarv).

As mentioned in §7, the family {m{#§. %)} does not determine its
extension on B uniquely. If we assume that the flow is continuous (on the
metric space defined by p(E, F)=u(EOF)), the extension is determined

uniquely if we determine the value
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8.7 c= m(rgop;l( {1

where (=the set of all rational numbers. If {771,‘0"1’,2.':1;{;)} satisfies
(7.7 or (7.8)', ¢ may be any value, but otherwise ¢ must be infinity.

Assume that {73} is ergodic. Namely if £ is 7j-invariant modulo
null-set, £ or X-£ has zero measure. Under this assumption, ¢ must be

zero, because (1 73 E1 is 7y-invariant modulo null-set and disjoint with
Ep(k£1) Whicr}fiQs naturally supposed not to be a null set. Thus, an ergodic
flow corresponds to the smallest extension of {m,(ctl‘,é:fjj,tc',‘l)}.

Even if {73} is not ergodic, any ergodic part of it corresponds to the
smallest extension. Similarly, even if B has not finite (or countable)
generators, the restriction of the flow {73} on B’'(=the smallest o-ring
generated by {7;Ey}) allows the symbolic representation. These con-
siderations may be useful for the decomposition of {73} as the sum of

symbolic representations.

Remark For an infinite measure space also, the existence of finite
generators is assured by the Theorem 2.4 in [9].
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