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Abstract

We consider the extension problem of a self-consistent family of infinite measures to

a completely additive measure. For probability measures, Kolmogorov's extension

theorem assures that the extension is uniquely possible. Our results are as follows:
(a) For CT-finite measures, we can reduce the problem to the case of probability

measures, so that the extension is uniquely possible. As an application, on an infinite
dimensional vector space we can construct such a measure that is invariant both under
rotations and homotheties with respect to the origin. It is obtained as the limit of n-
dimensional measure:

Also we shall discuss about the Lorentz invariant measure on an infinite dimensional
space.

(b) If measures are not a-finite, under the additional condition (EG) in §6, the
extension is possible but not unique. We shall mention about the largest and the smallest
extension. As an application, we can consider the symbolic representation of a flow
{7f} defined on an infinite measure space X, namely constructing an appropriate product

space VVR and an appropriate measure on IVR, T$ on X is represented by a shift St on
jj/R. w(.)_w(.+t)m

§1 Kolmogorov's extension theorem
§2 Reduction to finite measures
§3 Rotationally invariant measure
§4 (0, oo)-type measures
§5 Lorentz invariant measure
§6 Non a-finite case
§7 er-finite plus essentially infinite case
§8 Symbolic representation of flows

§ 1. Kolmogoro¥9s Extension Theorem

Let Q be a set, and S3 be a a-r'mg of subsets of Q. The pair {£?,
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is called a measurable space.

For a sequence of measurable spaces {QW, 33^)}, we define the

product measurable space {JQ, 33} as follows :

Jc=l

=the (7-ring generated by U p^~ (33(fc)), where /(*) is the
Jc=l

projection Q

Similarly, we shall define the finite product {On, %3n} -

S8n = the cr-ring generated by U
Jc=i

Let \Ln be a a-additive measure defined on ^&n. A sequence of mea-

sures {fjin} is called self-consistent if ^n(^n)=fJLm(Pmh(-^n)) fc>r any ^2>^
ra

and any En^%$n, where pmn is the projection Qm=Qn X jfl QW—>Qn-k=n+i
Such a sequence {jitn} defines a finitely additive measure JLC on Q as follows :

DO

Let pn be the projection Q=Qn X f] &(k}^>&n, then S3 is also the
Jc=n+i

cr-ring generated by f$= U /^(SS^). If £ef5, we have E=pnl(j&n) for
w=l

some ^ and for some En^$dn, and we may put /*(.£) =/xw(.Ziw). This

defines ft uniquely on ^5 because of self-consistency condition of {^n} -

The obtained /x is a finitely additive measure on f^> while cr-additive on

Pnl(^n) for each n.

In this paper, we shall discuss the extendability of //, to a a-additive

measure on S3.

If each JQ^ is the real line Rl and S3^ is the cr-ring of all Borel sets,

(so that Qn=Rn and 33W is the family of all Borel sets of Bn), and if each

fjin is a probability measure, Kolmogorov proved such an extension is

uniquely possible [1].

Bochner generalized the situation from the infinite product of measur-

able spaces to the projective limit of measurable spaces [2]. In Bochner's

formulation, let {Qn, S3W} be a sequence of measurable spaces, and for

m~>n let pmn be a measurable onto mapping from Qm to Qn. We assume
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the condition pmn=pmlcQ pkn for any m>k>n.

Let p,n be a cr-additive measure on 33W. A sequence of measures

{p«n} is called self-consistent if

for any w>» and any

00

Let 13 be a subset of f] Qn such that

r any m>n.

Let pk be the restriction on Q of the projection 77&: f] Qjc—>QJc. Then,

put f$ = L1 ^1(53jfc), and 33 = the cr-ring generated by %. Evidently,

a self-consistent sequence of measures {p,n} defines a finitely additive

measure p on f5-

It is easily seen that Bochner's formulation is applicable to the infinite

product of measurable spaces as a special case.

In Bochner's formulation, the extendability of /z to a a-additive

measure on 33 is in question. If each Qn is a locally compact, a-compact

metric space and 33W is the cr-ring of all Borel sets of Qn, we can prove the

extendability and its uniqueness for a self-consistent family of probability

measures. (Of course, this result can be applied for a special case of

infinite product measurable space).

The obtained {Q, 33} is called the projective limit measurable space

of {£2n, ^8^}j and {Q, 33, p,} is called the projective limit measure space of

\&2n, 33^, p,n}.

Instead of locally compactness and cr-compactness, if we assume that

each Qn is a complete metric space, the extendability and its uniqueness

is proved for a family of probability measures, (for instance, c.f. [3]).

Above results are still valid even if we replace a sequence of measures

by a family of measures indexed by elements of an ordered set.

§ 2. Reduction to Finite Measures

From this section on, we assume that the family of measurable spaces

{Qn, 33^} is such that any self-consistent family of probability meas^lres
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{fin}
 can be extended uniquely to a a-additive measure. For instance, it

is sufficient to suppose that Qn is either a locally compact and a-compact

or a complete metric space and that $8n is the cr-ring of all Borel sets of Qn.

1) Proposition 2.1. For a self-consistent family of finite measures

{p-n}; the extension is imiquely possible.

Proof Put cn
=ljin(®n)<00' From the self-consistency condition,

cn does not depend on n, so we put this common value as c. Then, the

measures fin=—fJLn form a self-consistent family of probability measures,
c

so that {fin} can be extended uniquely to a a-additive measure p.. It is

evident that the a-additive measure cfl is a unique extension of measures

W-

2) Let {fJin} be a self-consistent family of infinite measures. As

defined in § 1, we put f$=U^w1(S3w) and S3—the a-ring generated by
n

g. Then, the family {pn} defines a finitely additive measure \L on g,

as explained in § 1.

Suppose that A£=.% and />c(^)<ooj namely suppose that A=p^l(An),

n and /u,w(^w)<oo> then the measures

GE*) n AAW)
for Ejc^SSjc, ^^Max («, /

form a self-consistent family of finite measures, so that {^^}} can be

extended uniquely to a a-additive measure JJ,(A) on S3.
For A' ID A, it is easily seen that we have

(2.2) ^)(£)=jLt(^/)(Jgn^) for

for
3) Put 330={^eg3; 3^1,^2, - - - eg , /LL(^n)<°°, ^CU^}. In

71=1

this definition, {^4%} can be supposed to be mutually disjoint. We shall
always impose this additional condition on {A n} .

For ^eSBo, we define a a-additive measure /z^) as follows:

(2.3) /*<*>(£)= S ^(^.)(£ n ̂ ) for
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This JJL^ is a cr-additive measure because every term in the right side is so.

Now, we shall remark that the measure p,(^ does not depend on the

choice of {An}. Suppose that Bd U An and Be: U A'n. Then, from the
n n

or-additivity of the measure p(An), we have

Jc=l

but in virtue of (2.2), the right side is equal to

k=l

Thus, the right side of (2.3) is equal to

This assures the independence of p,& from the choice of {An}.

If 5, ,S'e33o and BdB', we have

(2.4) iLW(E)=i*P'\Er\B) for

But even if E[}B^%, there is a question whether the right side of (2.4)

is equal to p(E(^B} or not. We shall discuss this point in 5).

4) If the measures {p,n} can be extended to a cr-additive measure /Z

on §8, we must have from (2.2)

for

So, also for B^^&Q we have

(2.5) RE n ̂ )= s RE n ̂  n ̂ n) = 2

Proposition 2o28 T/ ^eS3o, ^^ extension (if possible) is unique.

Proof From (2.5) we have

(2.6) /Z(j5)=/tW(£) for any
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thus we have /Z=jLt^). (q.e.d.)

The possibility of extension depends on whether //Xfl) is identical with

JJL or not on f5- Namely, the condition:

(2.7) ii.W(E)=p(E) for E^%

is necessary and sufficient for the unique extension of {^n} to a cr-additive

measure. (2.7) means

(2.7)' K^)=SK^n^«) for £GE&
w=l

where {^w} is such that An^$, jj,(An)<oo and Q= U ^w.
w=l

If all An can be chosen in ^^(33m) for fixed w, the condition (2.7)'

is satisfied in virtue of the cr-additivity of fjim. Therefore we have

Theorem 1. If one of measures {^n}j say pn^ *s a-finite, then

can be extended uniquely to a a-additive measure on $8.

For the case where Qn is locally compact and cr-compact, Y. Okabe

proved the above theorem [4], modifying the proof of Kolmogorov's ex-

tension theorem. Here, we have reduced the theorem to the result of

Kolmogorov.

5) In the last part of 3), we remarked that

(2.8)

for

can not be proved. This equality is a necessary condition for the ex-

tendbility of {fjin} as seen in (2.5).

(2.8) is equivalent to

(2.8)' /<£)= S K£ ^An) for E^ % R SB0,»=i
00

where {An} is such that An^%, jji(An)<oo and Ed U An. Therefore,
n=i

it is a generalization of (2.7)' to the case -

Since p is not cr-additive on f$, (though cr-additive on each /mK^w))?

(2.7)' or (2.8)' is not a direct consequence. Up to the present time, we can

not prove it, nor can not give a counter-example.
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Let Qn=N (the set of all positive integers), S3n={{l}, {2}, .... {n} ,

{n+1, n+2, ...}}, pmn be the identity mapping, and jLtw({^})=0 for k<^n}

/*ft({^+l> Tz+2, ...})=oo. Then, we have p,(N*) = oo but |Lt({£})=0 for

any >£, so it gives a counter-example. But for this {.Q ,̂ 35%}, even a family

of probability measures can not always be extended.

It is urgent to give a counter-example (if exists) of (2.7)' for the family

{Qn, %$n} which allows a unique extension for probability measures.

Remark If //,(£)< °o, (2.7)' or (2.8)' is trivially satisfied, because in

both hand side ft can be replaced by p,(E) which is cr-additive. (2.8)' is

equivalent to the following condition :

If £<=gn33o, p(E)=°°, then for any N>Q there exists such F(=%

that satisfies F^E and N<[JL(F}<°°.

§ 3. Rotationally Invariant Measure

In the next three sections we shall give some examples and remarks

on the results in § 2, and we shall continue the general discussions on

extend ability in § 6.

1) Let fjin be a measure on Rn defined as follows:

(3.1) d[in= , .n dx\ . . . dxn

where \x =^lx\-{- ...-\-x\ . On the space Rnj it is the unique (except a

constant factor) measure which is invariant both under rotations and

homotheties with respect to the origin.

Since we have

(3.2) f~ - ^»±i - r-=T%- f
J-(\*'+*^¥ "*l* Jo

\x\n
 r(n+l

the family of measure {cn^n} where
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forms a self-consistent family of a-finite measures.

Therefore, on the infinite product space JR°°, we can define uniquely

a a-finite, cr-additive measure JJL whose projection on Rn is cn^n.

2) R°° is the space of all real sequences, and containes RQ as a

subspace where

(3.4) «£={(*„)£=«-; W,n^N3xn=Q}.

Let (/2) be the space of square-summable real sequences. Evidently

we get RQ cUV^dl?00. Let (X, be the group of orthogonal operators of (/2)

which keep RQ invariant. Identifying U with U~l* , (X, can be regarded

as a transformation group on R°°, the dual space of RQ.

Since the measure pn defined in (3.1) is rotationally invariant, the

family {^npn} defines an CX-invariant measure on f?— U pnl(%$n)> and
n

the extension being unique, the extended a-additive measure must be

Goo-invariant on 33, the smallest cr-ring which containes §.

In the same way, /u, is invariant under homotheties with respect to the

origin, namely

(3.5) /*(£)=/x(A£) for ^e35, A>0.

3) Let H be a real Hilbert space, and L be a locally convex space

which is imbedded densely and nuclearly in H.

Let O^ be the group of orthogonal operators of H which keep L

invariant and act homeomorphically on L. Then, Oz can be regarded

also as a transformation group on L*, the dual space of L. (c.f. [5])

Choosing a CONS (= complete orthonormal system) {en} of H in

Z, R can be imbedded in L and we have

Then, the measure ^ obtained in 1) lies on Z*, namely we have
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and \L is ^-invariant on Z*.

Using the infinite dimensional gaussian measure gc (with variance £2)

on L*y we have

(3.6)

From (3.6) also, we see the invariance of ft both under rotations and homo-

theties. The proof of (3.6) is as follows:

Projection onto Rn gives

\x\

i

so the equality

11 ~Yri

P

1 1 r°°
— ____£ L__ 29%

-^o^ i*r Jo

assures the validity of (3.6).

4) On the space Z,*, any O/,-invariant probability measure is neces-

sarily a superposition of gaussian measures gc> as proved in [5].

Let /A be an O^-invariant cr-finite measure on Z*. Then, there exist

such En that En^^&, ^(E^<oo and U En=L*. If we assume that
n=i

each En can be chosen to be <9/,-invariant, the measure p, is also a super-

position of gaussian measures, namely

(3.7) /*(£)= rgc(E}dm(c} for

because the restriction of p, on En is an <9/,-invariant finite measure so that

it is a superposition of gaussian measures.

Moreover, if \L is invariant under homotheties, the measure m(c) in
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(3.7) must be

(3.8) dm(c)=—dc for some constant a>0.

Therefore, the measure p, obtained in 1) is the unique (except a constant

factor) measure which is invariant both under rotations and homotheties.

§ 4o (0, oo)-type Measures

1) In § 6, we shall prove that any self-consistent family of measures

{p,n} satisfying (2.8)' can be extended to a a-additive measure on $8 and

that the extension is unique on 33o defined in § 2, 3).

If Q^Z^BQ, the extension is not necessarily unique on S3, but there

exists the largest extension £L which is not cr-finite. However, this does not

mean that {fjun} can not be extended to a cr-additive, cr-finite measure,

because some extension may be cr-finite even if i2eJES3o.

We shall explain this in other words. Let JJL be the finitely additive

measure defined by {p,n}. Then, Q $S3o means that Q can not be covered

by a countable union of sets in $ with finite /x-measures. Even if we

assume so, extending p, to a cr-additive measure p, on S3, Q may be covered

by a countable union of sets in S3 with finite /Z-measures.

In 3), 4) and 6) of this section, we shall give examples illustrating this

situation.

2) A measure is called to be (0, °o)-type if the measure of any measur-

able set is 0 or oo. Especially, it is called to be essentially infinite if the

measure of non-empty measurable set is always oo.

For a self-consistent family of (0, oo)-type measures {f^n}, the largest

extension fi is also (0, oo)-type. But the cr-ring S3o, on which the exten-

sion is unique, consists of null-sets only. In other words, the family {fjin}

can determine its extension almost nowhere. In this sense, we must

conclude that to a family of (0, oo)-type measures we can not attribute

any limit measure, (c.f. 5) of this section).

We shall remark that even a family of (0, oo)-type measures can be

extended to a cr-finite measure. See examples in 3), 4) and 6).
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3) Let Z be the set of all integers, and Z°° be the infinite product of

Z. Consider a subset Z$:

(4.1) Zy= {(»*); 3K>0, K^K => «fc=0}.

Remark that ZQ is a countable set.
Regard Z as a measurable space, supposing that every subset is

measurable. Then, we can regard Z°° also as a measurable space, imposing
the structure of the infinite product measurable space of Z. (c.f. § 1).

Now, for a measurable subset E of Z°°, we shall define fl(E) as follows :

(4.2) /*OE) = number of points of E H ZQ .

Evidently, /Z is a cr-additive, cr-finite measure on the measurable space Z°°.

For any fixed element (HI, n%, ...., nm) of Zm, it is easily seen that

Pm(m>nz, ..., »OT)nZo is an infinite set,

so the projection of /Z on Zm is the essentially infinite measure. In other

words, /Z is a cr-finite extension of a family of essentially infinite measures.

4) Let R+ be the set of positive real numbers. For x^ R+, con-

sider the binary expansion x= 2 £#2^ where £&=0 or 1. (Eventually
£=-oo

£%=$ for sufficiently large K). Let <p be the mapping which maps x^R+

to (e#(#)) GE {0, 1}Z. By this mapping, the Lebesgue measure on 1?+

is mapped to a measure jl on {0, 1}Z. (Though <p(x) is not determined
uniquely on a countable subset of R+, <p determines /Z uniquely because the

Lebesgue measure of a countable set is zero).
For any fixed element (ai, a^ ..., am) of {0, l}m and for any set of

m integers {k\, k^ ..., km} , the Lebesgue measure of the set:

is infinite, because this set is a countable union of intervals of same lengths.

Therefore, the projection of fl on a finite product space of {0, 1}
becomes the essentially infinite measure. On the other hand, since the
Lebesgue measure is cr-finite, the measure jl is also cr-finite. So, this gives

another example of a cr-finite extension of a family of essentially infinite
measures.
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5) If we try to construct on R°° an analogue of the Lebesgue measure,

it seems natural to consider the family of ^-dimensional Lebesgue measure.

But unfortunately this family is not self-consistent.

For any finite interval (a, ff) in U1, the two-dimensional set (a, fyxR1

has infinite area. Generally, the inverse of projection maps a set of finite

measure in the lower dimensional space to a set of infinite measure in the

higher dimensional space. (In other words, the ratio of normalizing

constants {cn} is infinity, c.f. (3.3)).

Therefore, Lebesgue measure-like family is the family of (0, °o)-type

measures. Namely, we must consider the following measure p,n on Rn:

') = w if the Lebesgue measure of E >0
(4.3)

)=0 if the Lebesgue measure of E — 0.

This is a result of the request that pn must be the projection of higher

dimensional Lebesgue measure.

However, as remarked in 2), the family of (0, oo)-type measures deter-

mines its limit measure almost nowhere. So we must admit the failure of

our attempt to obtain an °o -dimensional analogue of the Lebesgue measure

by our method.

Remark that on the space I?00, there exists such a measure whose

projection on any one-dimensional space is one-dimensional Lebesgue

measure. For instance, it is sufficient to consider the Lebesgue measure

lying on the diagonal:

More generally, for a family of Lebesgue measure preserving one-to-one

mappings {Tn}, the set:

allows the one-dimensional Lebesgue measure on it.

However, two-dimensional projection of such a measure is not two-

dimensional Lebesgue measure.

6) Finally, we shall construct a a-finite measure p, which is an ex-

tension of {i*«n} defined in (4.3).
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Let Ln=Rn X [0, I]00, namely

(4.4) Ln={(xiJx2, . . .); 0^*A^1 for

On the set Ln, consider the product of ^-dimensional Lebesgue measure
and the uniform probability measures. Denote this measure with mn.

The measure mn can be defined on R°° as follows :

(4.5) Whi(E) — Wn(E H LII) f°r measurable E c. R™.

Evidently, mn is a a-additive, a-finite measure on R°°.

Put

M ]
(4.6) A=S-9jr»*tt.

tt=l ^

/I is a-finite because p,(R°°— U Ln}=0 and for EtiRn we have

*-nx[Q9I\- if

£X[0, I]00 if >fe=»

X[0, !]»-*) x[0,ir if

, 1]")= S Wfc(£x [0, 1]-)
/C — 1

^ Lebesgue measure of jE.

Now, we shall consider the projection of /I on Rn. For a Borel subset
E of Rn, we have

(4.7)

Therefore if the Lebesgue measure of E is zero, we have mk(p

=0 for any k so that /l(j^^1(£1))=0. On the contrary, if the Lebesgue
measure of E is positive, w^.(^1(-£'))==oo for >£>?z so that pL(pnl(Ey)=oo.

Thus, the projection of fL on Rn is just identical with (4.3).

We shall remark that the above /Z is far from translationally invariant
measure, and in this sense it does not qualify as the °o -dimensional Lebesgue

measure.

§ 5. Lorentz Invariant Measure

Considering the projective limit of uniform measures on ^-dimensional
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spheres, we obtain the infinite dimensional gaussian measure which is

unique as the rotationally invariant one. (See [6] and [7]).

Similar discussions for the Lorentz invariant measure are the contents

of this section.

1) Let l(x} = —x\-\-x\-\ ----- \-x\ be the Lorentz metric on Rn+l, and

put

(5.1) //i

(5.2) jya

H\ is a hyperboloid of one sheet, while H\ is a pair of hyperboloids of two

sheets.

Let %n be the ^-dimensional Lorentz group, namely the group of

linear operators on Rn+I which keep l(x) invariant. It acts transitively

on each of H\ and H\.

We shall define the measure jj,n on H\ or H\ as follows :

n = / • . ,

where da is the area element and r(x) = (xQ+x^-\ ----- h •*!)"*• /% is the

unique (except a constant factor) measure which is 8w-invariant and

cr- finite on H\ or H\.

2) For a while, we shall discuss about H\ only. Put

(5-4) 0n = #iU{coB},

where a)n is a fictitious additional point. Putting jLtw({ajw}) = oo> /.t^ is

regarded as a measure on Dw.

For m~>n} we shall define the projection pmn as follows:

= a> if(5.5)

where rB,M=;
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Then, we have for any

r

J r mn<:L

m-l /<*
= 2™-np,n(E) ft

&=w J

Therefore, the family of measures {fnpn} where

(5.6) en==v-^

is self-consistent.

Let the projective limit of Qn be Q. Since each Qn is the union of

H\, the cr-finite part, and {cow}, the essentially infinite part, the family

{cnpn} satisfies the condition (2.8)' and can be extended to a cr-additive

measure on Q. (The proof of this statement will be given in § 7). The

extension is unique on

(5.7) A>= U p«\H\)cQ.
n

We shall denote with JJL this unique cr-additive measure on QQ.

3) Using a similar discussion in [6] or [7], we shall identify JLG with

the measure exp (xfygi on R00, where g^ is the infinite dimensional gaussian

measure with variance 1.

For <*>^p^-(Hlh), let #c
fc

w)(oj) be the ^-th orthogonal coordinate of

pn(<*>), namely

(5.8) pn(a>}=(4"\^ .... ̂ (a)))e^i.

First, we shall prove that for fixed k, an appropriate subsequence of

{V n x*jp (<*>}} converges almost everywhere on QQ. Since ^o^ U U pJ\Ei^),

where E^^iH^ such that U E^~H^ the almost everywhere convergence

on each pj\E^^) implies the same on Do-

Now, we shall prove the restriction of {V n x^(w)} on p~^\E^ con-

verges in Z2-sense, supposing that each Ey is a bounded set. For m>n
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l^j^k, after some calculations we have

f i x
Jp-l.CE.

Since J l(^)/jr[/+-=-J^/l/V / asymptotically, this shows that V n x*f> con-
\ * I

verges in Z2-sense on pj\E^.

Now, put

(5.9) Ar
l.(co)=Um T~n x%\w)

n

(Rigorously, the limit of an appropriate subsequence). Consider the

mapping 0: .Qo^to—>(-Aj;(a>))e R°°. 0 is defined almost everywhere on ,Qo-

Since 4»>=^»VV1-HU=4WYV- lettin&
m— >oo we have

(5.10) *<*>(oO -Xfc(a;)/V=^|(co) + X^^

This shows 0 is one-to-one.

By the mapping 0, the measure /x on QQ is mapped to a measure on

Ji00, which is proved to be 2V TT exp ( Jf J^L. For this purpose, we shall

calculate the characteristic function of exp( —

f exp [» £ afc
^ ^2o fc=0

p
= lim lim lim I

^oo ^oo w-><x>J p

(The detailed calculation is omitted here). This shows exp(—

4) The measure /£=exp(#|)£i can be constructed on a nuclear

extension Z* of a Hilbert space, and can be interpreted as a Lorentz
invariant measure on L*.
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Let H be a real Hilbert space, and L be a locally convex space which

is densely and nuclearly imbedded in H. Let {e$, e\, ...,en, • • • } be a

C.O.N.S. of flying in L.

Consider the following operator J on H:

(5.1])

Let 800 be the Lorentz group of H, namely the group of such linear

operators on H that keep the Lorentz metric <#, Jx) invariant. Let 82:

be a subgroup of 800 which consists of such A that keep L invariant and

act homeomorphically on L. Then, identifying A with /*(A~^)*f*, 8/,

can be regarded as a transformation group on L*t the dual space of L.

(c.f. §3,3)).

Since the gaussian measure g\ can be defined on /,*, the measure

/£ — exp(<(.T, £o)2)<£"i can be considered on L* . This h is 8/,-invariant as

shown below.

Let R be a finite dimensional subspace of L including e®. The

projection of h on L*fRL^.R* is in the form

l 2~(#o—*i— • ' 'exp

which is Lorentz invariant. This shows that h itself is Lorentz invariant,

because the extension to a a-additive measure is unique.

5) Next, we shall discuss on H\.

The measure fin defined in (5.3) is Lorentz invariant on H\.

For m>n> we shall define the projectionpmn: H^-^H^ as follows:

(5.12)

wnere Vinyi^-—-'

Then, we have for any E\I_H\,

/
m— 1 r»o
f]

A'=w J 0

m— 1
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Thus, the ratio of normalization constants cn is infinity (c.f. 2) in the case

of f f n ) , and the family {^n} never becomes self-consistent by a multiplica-

tion of constant factors. Instead, if we consider the family of (0, oo)-type

measures, we can not determine the projective limit measure. This situa-

tion is just the same as the case of Lebesgue measures (c.f. § 4, 5)).

D. Shale and W. F. Stinespring constructed a Lorentz invariant

"integration5 Jon the infinite dimensional hyperboloids of two sheets ([8]).

But it is not a measure in an exact sense, but only a measure-like object.

Its justification will be achieved if we construct the corresponding (in some

sense) cr-additive measure. Unfortunately, our theory turnes out to be

invalid for this purpose.

6) Finally, we shall construct a cr-finite measure whose projection on H\

is (0, oo)-type (c.f. § 4, 6)).

Let Mn be a subset of H\ that satisfies :

(5.13) p,n(pn}n

for any

For instance, it is sufficient to put

(5.14) Mn= {(*o, xi,..., xn}^ H\ ; 0^*w^sinh tn}

where I " coshn~lTdr=I.
Jo

For these {Mn}, we shall put

(5.15) Ln= n p-k\Mk)^Q.
Jc>n

Since the family {^jc}jc^n is self-consistent on Ln, it determines a d-additive

measure mn on Ln. The measure mn can be defined on Q, putting

(5.16) mn(E} = mn(Er\Ln) for EdQ.

Now, consider the following measure p, on Q:

oo I

(5.17) p= 2 -<^mn
n=i z

Similar discussions in § 4, 6) show that fi is cr-finite, and its projection on
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each H\ is (0, oo)-type. Thus, jl is the requested measure. However, (L

is far from Lorentz invariant measure.

§ 6. Non er-finite Case

In this section, we shall return to the general discussion on the ex-

tendability for infinite measures.

1) Let {fJLn} be a self-consistent family of infinite measures defined

on measurable spaces {&n, %$n} which allow a unique extension for

probability measures. Let {Q, 53} be the protective limit measurable

space of {Qn, $8n} .

First, we shall resume the results in § 2, 3)^5). If the family

is extended to a or-additive measure jl on 33, we must have

(2.5) jHE{\ff)=p.W(E) for ^EE^O, JSeESB,

where So and p,^ are defined in §2,3). Especially if

U pnl(%$n\ we must have
n

(2.8) x^n^)=/^>(£),

where ^ is the finitely additive measure on % defined by {^n} •

The condition (2.8) is equivalent to

(2.8)' /<.£)= 2 jLiOEn^n) for
n=l

where {An} is such that An^%, Lji(An)<oo and E d U An. (2.8)' is also
n=i

equivalent to the following condition (EG):

(EG) If £"egn93<b K^)== °°^ then for any N>0 there exists such

that satisfies FdE and N<p,(F)<°o.

Therefore, (2.8) or (2.8)' or (EC) is a necessary condition for the

extendability of

2) From (2.5) we have

(6.1) ftff)=p,W(jB) for £eE<60.

So, the extension (if possible) must be unique on SQ. Especially if
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then we have 330=$8 and the extension is unique on 33. A

special case is the <r-nnite case as stated in Theorem 1 in § 2, 4).
Now, we shall prove that the condition (EC) is sufficient for the ex-

tendability. For this purpose, we shall define /Z by (6.1) on 33o, and on

33— 33o we shall put

(6.2) /*(£) = oo if £e »-3B0.

This ji is cr-additive, because for any sequence {En} of mutually disjoint

measurable sets,

(6.3) KU En) = ̂  KEn)
n n

can be checked as below.

If some .Zi^ejzSSo, then evidently \jEn^^&Q so that the both hand
n

sides of (6.3) are infinity. If each jS^eSSo, then E= \j£n^^&Q and we
n

have

n=l

= 2 /i(£»)(^«)= S ji(En\
n=l n=l

using the definition of /Z, a-additivity of ^E\ and the relation (2.4).

Next, p, is an extension of {^n} • To show this, it is sufficient to

prove jL(E}=iL(E} for E^ g. If E^ g n So, then from the definition (2.3)
of LI^) we have

n-i

So under the condition (2.8)' we have pfE)=ii(E\. If E$=%— S30, we
have fji(E)=oo from the definition of 33o, so that p,(£)=p,(J5)=°om

Since the extension is unique on 93o and we put p. always infinity
outside 33o, this fl is evidently the possible largest extension. Hereafter,

we shall denote with p, this largest extension.

Theorem 2. A self-consistent family {^n} of infinite measures is

extendable to a a -additive measure on 33, if and only if the condition (EC)
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(or equivalent ly the condition (2.8)') is satisfied.

Under the condition (EC), the extension is unique on 33o, It is not

necessarily imique on 33, but there exists the largest extension jl.

Remark that if £?^33o. fL is not ovfinite. If each p,n is (0, oo)-type (or

essentially infinite), then fi is also (0, oo)-type (or essentially infinite).

3) The following condition (FC) is stronger than (EG) :

(FG) If -Eeg, jj,(E) = ooj then for any N>0 there exists such F(=%

that satisfies F^_E and 7V</x(.F)<°o.

Under the condition (FG), we shall construct the smallest extension

g of {pn} .

Put

(6.4) V(E) = sup^>(5) for

Especially if j&eSo we have

First, we shall prove that JJL is a cr-additive measure. Let {En} be a

sequence of mutually disjoint measurable sets. For any

we have B= Uf^fl-Sw), hence

72. 71

so that we have j^(^)^2 ^(E^. Conversely, for any Bn^.En we have~ w ~
, hence

so that we have 2

Next, jit is an extension of {/xw}. Because, if ^e§, /x(J£')<oo, we

have ^e»0 and £(£)==JLL<£>(£) =/<.£). If ^eg, fji(E) = ooj the con-

dition (FC) assures

so that jLt(J5)=oo. Thus we get:

Theorem 3 Under the condition (FC), £^r^ exists the smallest

extension \L.
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Remark that (FC) is also necessary in order that the measure /x defined

in (6.4) is an extension of {jjun}. If ^GEf$, ^(.ZT) — oo implies ^(E}=^,

then there exists £(=5So, B^E such that fi(B^(ff)>2N. Suppose that

U An, An;=% and ^(^n)<oo. Since

s

we have for some k

N< s K^ n ̂ B)=K u (
w=l n=l

Jc
Evidently ^= U (E[}A^) satisfies the request of (FG).

w=l
4) If the condition (FC) is not fulfilled, the smallest extension may or

may not exist. Even if it exists, it takes more complicated expression than

(6.4), but we shall not enter this problem. We shall be contented only

with examples which have no smallest extensions.

In § 4, 3), we considered a measure /z on ZQ whose projection on

Zn is essentially infinite. Since Z$ is a countable set, we can affix a
numerical order to its elements;

Consider the measure fLjc(JS^)=fL(£ — {#&})• For any k, the projection

of pijc on Zn is essentially infinite. In other words, /Z# is an extension of

the family of essentially infinite measures. If the smallest extension would

exist, jLc^/Zfc for any k implies p(ixk}}=0 for any k so that /*=(). Since the

zero measure is not an extension of the family of essentially infinite

measures, this shows the non-existence of the smallest extension.

Similarly, consider a measure p. on J^°° defined in § 4, 6). This fL is

an extension of (0, oo)-type measures on Rn. Put p>ic(E}=p(<E-—Lk),

where L^ is given in (4.4). Then for any k, /Z& is an extension of (0, °o)-

type measures on Rn, but if /LG<J/Z& for any /£, we have [j,=0. Therefore,

in this case also, the smallest extension does not exist. Similar discussions

show that the family of (0, °o)-type measures on /f|(c.f. § 5, 6)) does not

have the smallest extension.
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§ 7. a-finite Plus Essentially Infinite Case

In this section, we shall give a sufficient condition for the extendability

condition (EC), and as an application we shall treat the infinite product of

finite- or countable-point sets. The latter is closely related with the

symbolic representation of flows, as explained in § 8.

1) The following proposition is fundamental in this section.

Proposition 7.1. Let {Qnj %$nj pn} be a self-consistent family of

infinite measures, and suppose that each Qn can be decomposed into the

iinion of G- finite part and essentially infinite part ; namely

(7.1) Hn\^}i is a- finite,

[Ln\Q\ is essentially infinite.

Then, the family of measures {^n} satisfies the extendability condition

(EC) in §6, 1).

Remark Here, we assume that any one-point set belongs to 5&n.

Definition of essentially infiniteness is given in § 4, 2).

Proof. We shall check the condition (EC). Assume that E<= f$ H So

and /x(.Zi) = oo. QLC denotes the finitely additive measure on § defined

by {jun».

From the self-consistency condition of {fjun} , we know that {pn\@n)}

is an increasing sequence. It is easily seen that j5"GE2io is equivalent to

E^- U Pn\®n), namely to
n=l

(7.2) ^ncn
71=1

On the other hand, J5<=$= U P^~(%$m) implies E^p^-^8^ for some
w=l

m, and ^(E}=p,m(pm(E}}. If Edp£(Q%), then pm(E)dQ^ and the

(j-finiteness of p,m on Q^ assures the existence of j^GE^ requested in the

condition (EC).

If ^Ee^SBJ and Etp-£(Q}ti, suppose that x^Enp£(S!fo and
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put xm=pm(x'). Since xm^Q^ we have ^m({^m}) = 00
) therefore from

the self-consistency condition of {/%}, we have ^m+i(p^i,m({xm}y)=^.

If A»+i,w({#m})^^»+i» tnen tne condition (EC) is satisfied for E in

virtue of a-finiteness of /xm+1 on Q^. If p^+i,m(ixm})<£&m+l, choose

a point

Repeat the similar discussion for p^-2,m+i({xm+i})- If it 'ls contained in

®m+2> tne condition (EC) is satisfied for E. If it intersects with i2^2»

choose a point #^+2 as above.

Repeating these procedures, if E does not satisfy (EC), we can get a

sequence xm, xm+l, xm+2, ... such that xn^Q\ and pn+i,n(^n^i)=xn for

ri^>m. Therefore, from the definition of projective limit space (§ 1), the

sequence x' = (xm, xm+l, xm+2tJ ...) belongs to Q.

Since pm(x'}=xm=pm(x)^pm(E) and E^p^-(^m}, we have x'^E.

On the other hand, pn(x'} = xn^Q\ implies x'^p~l(Q^) for any ri^m.

Thus, we get the negation of (7.2), hence E ̂ 33o. In other words, any

3o must satisfy the condition (EC). (q.e.d.)

Remark- In Prop. 7.1, even if some (or all) ^n\Q\ is finite (instead

of cr-finite), the proposition is evidently true.

Corollary. If each Qn consists of finite or countable points, then any

self-consistent family of measures {Qn, 33W, fjin} is extendable.

Because, in this case, Qn can necessarily be decomposed as in Prop. 7.1,

namely:

2) Let /={!, 2, ..., j} be an j-point set, and put Qn=In. Suppose

that $Sn consists of all subsets of Qn. A measure jj,n on S3W is determined

by a family of non-negative numbers {^jfca • • • & „ } where

(7-4) wA ? 1fc a . . . j fc l l
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The self-consistency condition is written as follows:

s
f~7 ^\\ "S"1

We shall assume that

(7.6)
<oo otherwise.

In other words, we assume

?i=flM—{i,i, ...,i}

where Q\ and .Q| are defined in (7.3).

As proved in 1), the family of measures determined by (7.4) with the

condition (7.5) is extendable to a cr-additive measure on {£?, 33}, the

projective limit measurable space of {Qn, ^&n} • The extension is unique

on .00= U fn'L(P'n)' Under the assumption (7.6)', we have

so that the measure ft on Q is determined except the value of^:— /&({!, 1, ...}).

Putting £—00, we get the largest extension pi.

The condition (FC) is fulfilled if and only if

(7.7) lim
%-*°o

under the assumption (7.6)'. If FE^% and />t(/r)<oo} we have

for some m, so that ^(^^lim p,n(Ql£). Therefore if (7.7) does not hold,
n-*°°

the entire space Q does not contain such F^L% that satisfies

Conversely, suppose that E^.% and JLI(£) = OO. If E=p^(E7n^) for some

Em^%5m, then Em[}Q^=^>. Under the assumption (7.6)', this implies

{1, 1, ..., l}e^m, therefore
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On the other hand, the set

belongs to § and we have

Thus, letting ?z— >oos the condition (7.7) assures the condition (FG).

Remark that (7.7) is equivalent to

(7.7)' lim 2' «JWl...jt|l=ool
n-

where 2' means the summation except ki = k%= ...=kn=\.

Now, if (7.7) is fulfilled, the condition (FG) being satisfied, the smallest

extension exists and is given as (6.4). We can easily see that /^({l, 1, • • •} )

=0. Furthermore, we can show that for any £(0^£^°o), putting

we get an extension of measures (7.4).

On the contrary, if (7.7) is not fulfilled, c=oo is the only possible

choice and the extension is unique, because for any extension /Z we must

have

oo=#fl) = #fl— (1, 1, .

Thus, we obtained:

Proposition 7.2. Any self-consistent family of measures (7.4) on

In can be extended to a a-additive measure on {Q, 33} . Under the assump-

tion (7.6), the extension is unique on Q — {I, 1, ...} and

(1) if (7.7) is satis fied} />t,({l, 1, ...}) can be chosen to be any non-negative

value (including infinity], so that there exist continuously many extensions,

(2) if (7.7) is not satisfied, />&({!., I, •••})= °° is the only possible choice

and the extension is unique.

(3) The Prop. 7.2 is kept valid even if Qn is not the product space of
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the same set /.

Actually, Prop. 7.2 covers the following situation: For each n, Qn

consists of finite elements, 33 n consists of all subsets of Qn, and the value

of p,n is not infinity except one element (which is identified as {1, 1, ..., 1}

in the discussions in 2), and the projective limit of which is identified as

{1,1, ...} in Prop. 7.2).

Prop. 7.2 for this situation is proved with slight modifications of the

discussions in 2), and we do not repeat them.

Now, suppose that each Qn consists of countable elements. If Qn= Nn

where A7={1, 2, ...}, the self-consistency condition is written as

(7.5)' S mkiJcz-'knJc—Wfcifcz-'lCn*=1

Even if Qn is not the product space, the self-consistency of {pn} is written

in a similar expression as (7.5)' for the values {m} .

An essential difference to the discussions in 2) appears in the condi-

tion (7.7). If Q\ consists of countable elements, fin(Q^) may be infinite

and the discussion below (7.7) becomes invalid. However, for countable

case also, if we replace (7.7) by

(7.8) lim^nW)-.fi^&)) = °° for any**,

the result is kept valid (though the proof requires some modification). If

Qn=Nn, the condition (7.8) is equivalent to

(7-8)' lim I]' mu...ikm+lkm+t...kn=oo
^°° *« + !,...,*»

where £]' means the summation except km+\ = km^-^ = ...=kn= 1.

Also the Prop. 7.2 is valid even if Qn consists of countable elements,

if we replace the condition (7.7) by (7.8).

4) One more step for the further generalization is as follows :

Let {Qn> ^n, P"n} be a self-consistent family of infinite measures, and

suppose that each Qn can be decomposed into the union of cr-finite part

Q\ and the essentially infinite part Q\. As proved in I), {^n} can be

extended to a cr-additive measure /Z on {Q, S3}, the projective limit measur-

able space of {Qn, ̂ 8n} • Since the extension is unique on QQ= U P^(
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if we determine the value of /Z on Pi Pn\®%)> then the measure fi is
n

determined on Q.

The following results are obtained easily:

Proposition 7.3.

(a) Under the condition

(7.9) lim fiCfcftfli)
?i-»oo

for any m and any

any measure on fl pnl(^n) gives an extension of
n

(b) Under the condition

(7.10) lim rtPn\Qti-pjjKQtt)«*>n-*°°
for some m,

a measure pi! on fl flnl(®n) gives an extension of {^n} on Q if and only if jl'
n

is an extension of essentially infinite measures on {Q\, S3% D £?|} .

If each Q\ consists of one point, the condition (7.9) is just the negation

of (7.10). In this case, the results of Prop. 7.3 are same with those of

Prop. 7.2; namely under (7.9) /!({!, 1, ...}) can be any value and under

(7.10) it must be infinity.

If D| consists of more than one point, there exists the case which

does not satisfy (7.9) nor (7.10). For such cases, the discussions on the

abundance of extensions may be very complicated, and here we shall not

study it.

§ 8. Symbolic Representation of Flows

Let { Jf, S3, p,} be a measure space, and { Tt} be a flow, namely a

one-parameter group of measurable transformations on X. Assume the

existence of finite generators {j5fc}i<d^5, namely assume that {E^} is a

finite partition of X and S3 is generated by

{T*Ek\

For any finite set of /-values (£1, t%, ..., /w), we put
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(8.1) ;4^:::«=K3
r^-)'

Evidently, it fulfills the self-consistency condition:

(8.2) "%%::% = ™$fc::t$

Even if {E%} is a countable (instead of finite) partition of X, the same

relation holds if we replace 2 by 2 •
/c=1 .*.=1

Now suppose that \L is a probability measure on X . Then, i^& |*r/.|frt }

in (8.1) gives a self-consistent family of probability measures on IR
} where

/={!, 2, ..., j} (or if {£*} is countable, 7={1,2, ...}=N).

Let ̂  be the projection of 712 onto /:

Consider the smallest cr-ring SB on 712 which makes all projections pt

measurable. Then, Kolmogorov's extension theorem shows us that the

family {^If1^2.".'.'!^} can be extended to the unique cr-additive measure m

on 33.

Since the mapping 0:

(8.3) 0 : n A

can be extended to a measure-preserving mapping from 33 onto S3, we can

regard <f> as an isomorphism between two measure spaces {X, 33, //,} and

{7 ,̂ S, w}. (However, $ is not one-to-one from 33 onto 33. It is one-

to-one modulo null-set).

From (8.3) we know that by the isomorphism 0, the transformation

Tt on X is mapped to the shift operator St on 7^ :

(8.4) St, : k(f) —^ k(t+to)

Thus we have the following conclusion:

Let {X} 33, p,} be a probability measure space, and { Tt} be a flow on X.

Under the assumption of the existence of finite (or countable] generators of

33, {X, 33, JLC} is measure-isomorphic to {IR, 33, m} and { Tt} is mapped to

the shift operator {St} . This {IR, 33, m, St} is called the symbolic repre-
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sentation of {X, 33, /x, Tt} . By this representation, the diversity of X, 53

and Tt is eliminated, and remains the arbitrariness of measure only. In

other words, the diversity of flows is only the diversity of {m$jj£.\\ty}

which satisfy (8.2).

Evidently, the similar (rather simpler) discussion holds for a discrete

flow {Tn}n=Qf±i)±2i ... . This case (often assuming that T is measure-

preserving) has been studied in detail. Particularly, the studies on the

existence of finite or countable generators are reviewed in [9].

In this paper, we generalized Kolmogorov's result to infinite measures,
so that on an infinite measure space also we can consider the symbolic

representation of flows.

Let {Ejg}i^<s be a finite partition of X. Since p, is infinite, some

fi(jEjc) must be infinity. For simplicity, we assume p,(J5i) = oo and ^(Ejc)
<oo if k=^=\. Furthermore, we assume that transformation Tt keeps the

finiteness of measure, namely

(8.5)

Then, (8.1) shows us that

xo ^(8.6)\ / jg ">n i •I <oo otherwise.

This is just the situation of §7, 2). So this {^i '̂.'.'f^} can be extended to

a d-additive measure m on IM, and we get the symbolic representation

If {Eic}i^jc<™ is a countable partition of X, all ^(E^) may be finite.
Assuming that at most one of E% has infinite measure, we can reduce the

problem to the discussion in § 7, 3).

Thus, on an infinite measure space also, the diversity of flows comes

from only the diversity of {m%$l'.'.'.f£} which satisfy (8.2) and (8.6). (For

countable case, the first line in (8.6) is not necessary).

As mentioned in S 7, the family {m&fe'."*^} does not determine itsO > J I KlK^"Kn >

extension on 33 uniquely. If we assume that the flow is continuous (on the

metric space defined by p(JS, f*)=p,(J£Qfty)y the extension is determined

uniquely if we determine the value
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(8.7) c=m( R

where Q—the set of all rational numbers. If { Îf1!2.".'.'!̂ } satisfies

(7.7)' or (7.8)', c may be any value, but otherwise c must be infinity.

Assume that {Tt} is ergodic. Namely if E is ^-invariant modulo
null-set, E or X-E has zero measure. Under this assumption, c must be

zero, because fl TrE\ is ^-invariant modulo null-set and disjoint with
. re9

Eic(k=^=Y) which is naturally supposed not to be a null set. Thus, an ergodic

flow corresponds to the smallest extension of {wj^2.".'.'j^}.

Even if { 7^} is not ergodic, any ergodic part of it corresponds to the

smallest extension. Similarly, even if $8 has not finite (or countable)

generators, the restriction of the flow {Tt} on 33'(— the smallest cr-ring

generated by {TtEjc}} allows the symbolic representation. These con-

siderations may be useful for the decomposition of {Tt} as the sum of
symbolic representations.

Remark For an infinite measure space also, the existence of finite

generators is assured by the Theorem 2.4 in [9].
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