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A New Class of Knots with Property P

By

Yoko NAKAGAWA*

§ 1. Introduction

It is known that several classes of knots have property P ([1], [3], [5],

[9]).
In this paper, it will be shown that the special class of knots has

property P.

To show the above, 3-dimensional homology spheres constructed by

Dehn's method will be considered and it will be shown that they are not
3-dimensional homotopy spheres.

I am grateful to Prof. R. H. Fox and the referee for helpful comments
and suggestions regarding this work.

A singular disk in the 3-sphere 53 means a map / of an oriented
disk D into 53. For brevity, one may refer to the image D=f(D) as the

singular disk.

Among the singularities that a singular disk may have perhaps the
simplest is a clasping singularity or just clasp. This consists of two mutually

disjoint slits S and ,S that are mapped by / topologically onto an arc 5

of D. The singular disks to be considered are those that have only simple
clasps. Let us call such a disk an elementary disk. This is a natural
class to consider, since it is known that any singular disk in general position
can be deformed, without moving the boundary, into an elementary disk
[10].

If D is an elementary disk then a regular neighborhood W of D in S3

is a handlebody, and its boundary dW is an orientable surface of some
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genus g, where g is the same as the number of clasps. Let us call D

totally knotted if dW is incompressible* in S3—dD.

Let V be a tame solid torus in »S3, and a a simple closed curve con-

tained in SV and not contractible on dV. Let <p be a homeomorphism

of a torus SlxdU2 onto the torus 3F which maps lx3Z)2, 1.GES1, onto a.

By this homeomorphism p we will get a new 3-dimensional manifold

M=(S*—mt F) U Sl X D*, identifying x(^Sl X dD2) with p(#).
p

Let us give a canonical orientation to S3 and M in such a way that M

and ,S3 induce the same orientation in vS3—mtV.

Let w and / be a meridian and a longitude of 9 V respectively. We

also denote by m and / the elements of 771(8 F) or 7ri(5%3—int F) represented

by these curves. Let a be a curve on 9 V which, when properly oriented,

represents the element mrlv (r, y: integers). Since the manifold M will

be the homology sphere, r must be -1-1 or —1. We may assume, changing

the orientation of a if necessary, that a represents the element mlv (y^O).

In this paper, let us choose only a that is not a meridian, i.e. a does

not represent the element m of 771(8 f7).

Then the following main result will be proved.

Theorem I. The knot type k which is equivalent to the boundary

of a totally knotted disk with two clasping singularities has property P.

Proving this theorem, it is equivalent to prove the following one.

Let M be a homology sphere constructed by the method in the above.

Theorem II. A homology sphere M is not simply connected if the

knot type k of the core of V is eqidvalent to the boundary of a totally

knotted disk with two clasping singularities.

§ 2c Lemma

A normalized Alexander polynomial means the Alexander poly-

nomial [2] with the smallest positive but no negative powers of each

SW is incompressible in S3—d£> means the induced map of natural inclusion of
Tri(Ss—3D) is a monomorphism.
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generator.

By multiplying or diving by some powers of generators, any Alexander

polynomial can be changed to a normalized Alexander polynomial.

To prove theorem II, we need the following lemmas.

Lemma 1. Let G be a finitely presented group which is isomorphic

to the non-trivial free product G\ * G%} and the abelianized groups of G\

and G%be both infinite cyclic groups. If the i-th normalized Alexander

polynomial of G is not zero, then it is a product of two one variable

polynomials.

Proof. Let an wiX^i-matrix A\ and an m% X /^-matrix A 2, be

Alexander matrices of G\ and G%, respectively. Then an Alexander

matrix A of the free product G of G\ and G% is the (^1+^2) X(^i+^2)-
Mi 0 \

matrix ) . Let g\ and g% be generators of the Abelianized group
\ 0 A%l

Z of G\ and G%, respectively. For any integer £, the Mh polynomials are

defined for each G\ and G%. They are one variable polynomials including

the case that the polynomial, is "1" or "0" after normalization, i.e. the

zf-th polynomial of G\ is ^^(gi) = 2 &igi> and the /-th polynomial of G%
i^o

is J<'>(ft)=S*tfS.
^o

n\ n% Let us consider t-th polynomial of A . By the

A

0

0 \ mi definition, this is the g.c.d. of determinants of all

A2 I ?^2 (ni-\-H2 — 0 X (»i+«2—0 submatrices of the matrix
i f ) A

A. These submatrices are of the form ' —
0 I .

wehre B\ is an (n\—\L} X (n\—IJL) submatrix of AI, and B% is an (n%—

X (n2—I+/A) submatrix of A%. The determinant of this form is the

product of det B\ and det B^. Fixing the number i and JJL, consider all

the (HI—fJi)X(ni—//,) submatrices of A\, and the (n%—i+/^)X(«2—t+j^)

submatrices of A^. Let^(^i) be the g.c.d. of determinants of the above

(HI—fi)X(ni—/x) submatrices of A\. By the definition, p(gi) is the /x-th

polynomial of AI, and ^(^2), similarly defined, is the (t—jit)-th polynomial

of A%. The product p(gi)-q(g%) is the g.c.d. of all the determinants of the

form (detB\)*(detB%)} since no determinant of any submatrix of AI can
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have any factor in common with the determinant of any submatrix of A 2-

Since /z ranges over 0, 1, ..., t, the t-th polynomial of A is the g.c.d. of

. In general J<*> is divisible by JC+D. So <d<°>, ..., JC-D are

divisible by AW. Since g\ and ^2 are different variables, AM(gi) and

Ate')(g2) can have no common factor other than a constant, and since G\

and (r2 are abelianized to infinite cyclic groups, neither A^(gi) nor

A(t*')(g2) can have any constant factor other than 1. Thus the g.c.d.

of the above products, i.e. the i-th polynomial of A, is just the product

A(c~f")(gi)-A(c~f/)(g2), where i and t" are the smallest number among that
the (t-t")-th and (t-i')-th Alexander polynomials of G\ and G% are non-zero.

Corollary to Lemma 1. Under the same conditions in Lemma 1,

the i-th normalized Alexander polynomial of G has non-zero constant term,

Proof. It is almost trivial.

Lemma 2. Let X be an orientable connected ^-manifold with bounda-

ry and the boundary SX is a closed surface with genus 2. If the homo-

morphism of 7ri(SX) into rn\(X^} induced by the natural inclusion map is

not a monomorphism, then ir\(X^ is the free product of two non-trivial

groups.

Proof. Since the mapping of 7ri(3JQ into Tri(JST) is not a monomor-

phism, there exists a disk D is X whose boundary/ is a nontrivial closed

curve on 3JT. By the Loop Theorem [11] and Dehn's Lemma [7], we can

assume that D is nonsingular and / is a simple closed curve.

Let us assume first that / is homologous to zero on dX, i.e. that / is

separates dX into two surfaces T\ and TZ with common boundary J\ T\

and 7^2 are both surfaces of genus 1.

Let DI and D% be copies of D in X that have/ as common boundary.

Along / sew D\ to TI, and D% to 7V Then we get two tori. Let MI

be the manifold in X bounded by D$ \J 7i, thus MI is a 3-dimensional

manifold whose boundary is a torus in X(t = l, 2). Since the intersection

of M\ and M% consists of a nonsingular disk D, by the Van Kampen

Theorem, Tri(JT) is isomorphic to the nontrivial free product
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To complete the proof, it will be shown that / must be homologous to

zero on 3X. Suppose, to the contrary, that /, suitably oriented, represents

an element a of 7ri(3X) that does not lie in the commutator subgroup

\TT\($X\ Tri(3X)]. Then there exists a simple closed curve/' on 3X that

intersects / at just one point. Let /3 denote the element of 7ri(3Jf ) repre-

sented by /' (suitably oriented) .

Since a^l and jS^l it follows from a result of Greendlinger [4] that

either aj3aj8^=l or a=ym and fi=yn for some element y of 7ri(3JT) and

integers m and n.

If, in fact, a=ym, j$=yn then, since the intersection number S(a, jS) =

5(7,7') is equal to ±1, and 5(a, fi} = S(ym, yn} = mnS(y, y), it must be

that m=±lL and #= ±1. But this means that a=/3±l, and hence that J'

can be deformed into 7 in the complement of 7 This contradiction shows

that ajSajS^L

Consequently if TV is a regular neighborhood of 7u7' on 3- ,̂ then its

boundary 3^ is not contractible on 3X. Hence 3N separates dX into two

surfaces N and SX — TV, each of genus 1. As shown in the first part of

this proof it follows that vr\(X} must be the free product of two nontrivisl

groups.

Lemma 3. Let X be an orientable connected ^-manifold with

boundary, i:3X—*X an inclusion map and i*\ Hi(3X^—>Hi(X) an

induced map. Then the rank of the kernel of i* is exactly half of the

rank of

Proof. Let us consider the following exact sequences:

0 — > ffs(X, 3X) —

—> ff2(X, 3X) —

, 3X) —> HQ(3X] — > HQ(X} —+ 0.

Let 2g be the rank of #i(SJf)> a of H$(dX\ b of &i(Xy 3X} and c of

By Poincare Duality H<$X} has rank a, H%(X} has rank b and

H*(X, ajf) has rank ^. Also H*(X, 3JT) has the same rank 1 as H*(X).

Among the numbers a, b, c, 1 and g, by the exactness, there is an equation
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2g=(c—bJ
ra—\}-\-(c—bJ

ra—lL). Moreover from the exactness, the

rank of ker i* is c — b-\-a — 1; this is just half of the rank of Hi(dX), i.e.

g=c — b-\-a — 1.

§ 3. Proof of the Theorem

Proof of the TheoremIL Let k be a knot which is equivalent to the

boundary of a totally knotted disk E with two clasping singularities, V

a regular neighborhood of k and W a regular neighborhood of E in S3.

The homology sphere (S3-int V) U S1 X .£>2=(S3-int W) U ((W-int F) U
p 9

Sl X Z>2) will be denoted by M, where <p is a homeomorphism of Sl X 9/?2

onto 9 V which maps IxS-Z?2, l^vS1, onto a, where a is a simple closed

curve on SV and not a meridian curve of SV.

Since 9£F is incompressible in S*—k and S3— intJPFc S3— k, the map

from 7Ti(5W) into Gi=7ri(S^ — intPF) is a monomorphism. To show that

is not trivial, by the Van Kampen Theorem, it is enough to show

that a map from 7Ti(3PF)=7ri(a((PF-intF) U^X^2)) into G2=7Ti((W—
<P

int F) U S^ X Z?2) is a monomorphism. If both maps from 7ri(3£F) into
p

Ci and GZ are monomorphisms, then 7ri(J/) is isomorphic to the free

product with amalgamation Ci jc^wfiz -

Let us consider G%=iTi((W—mt F) U 51 X Z)2). Let fF be a handlebody
y

with two handles, which may be knotted or linked in Ss. To calculate

£2, it is enough to consider a handlebody W1 in standard position in S3;

thus there is an autohomeomorphism of S^ which maps W onto W, whose

two handles are neither knotted nor linked with each other. By this map-

ping, V is mapped onto V dW and a is mapped onto a /c3F /. The

simple closed curve a! is not a meridian of dV .

Let us construct another homeomorphism of W onto a handlebody

W" as follows: take two meridian cells in W, mi and m%. Cut W along

these meridian cells and turn the exposed faces a suitable number of times,

to untwist V y and sew back together again. Then we get a new solid

torus V" in W" . By this homeomorphism, a' is mapped onto a" on dV".

The curve a" is not a meridian curve of 3 F". With the appropriate orien-

tation a" represents an element of 7ri(3F") of the form mlv, where m
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W

Fig. 1

is represented by a meridian, and / by a longitude of dV" . Since a"

is not a meridian, v is a non-zero integer. Then the manifold (W1 — intF')
]JS1XD2 is homeomorphic to the manifold (W — intF") U
<p> <p"

where ip" is a homeomorphism of SlXdD2 onto 9F" that maps

leS1, onto a".

Thus the manifold (W — int V} U Sl X /?2 is seen to be homeomorphic,
9

by the composition of above maps, to the manifold (W"—mt F") U Sl xD2.
$"

Let us assume that the map from 7ri(dW) into iri(( W— int F) U Sl X £>2)
(p

is not a monomorphism. Since (W — int V) U Sl X D^ is homeomorphic
9

to (W— int F") U S1 X £>2 it is equivalent to assume that the map of

7ri(9(^''-intF'';f U S^-xD^=7n(SW"} into 7n((W" -intV"} U

is not a monomorphism.

By lemma 2, there exist manifolds MI and M% such that J/i U M%

= (W— int F") U S1 X £>2, Afin^/2=nonsingular disk, and both the
P"

boundaries dMi and 3J/2 are tori ; then Tr\(M\ U M%) is isomorphic to the

nontrivial free product iri(Mi)*TTi(Jlf2). By lemma 3, since J/$ is a

3-manifold whose boundary is a torus, H\(M\) and H\(M<£) are not tivial.

Since 771(̂ 1 U M^\\7f^(M^ U Afe), 7ri(J/i U ̂ 2)] is Zx Z, both ffi(Mi) and

H\(M£) are infinite cyclic groups. So by Cor. to lemma 1, the t-th poly-

nomial of the free product 7ri(J/t)*7ri(J/2) must have non-zero constant

term.

Let us calculate the polynomial of the group 7ri((JV" — intF")U
v"

Slxl}2'\ To complete the proof it is enough to consider four different

cases ; that are depending on the order of the inverse images of slits along

knot and the intersection number S(k, E} at the end of slit.
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-v^
Fig. 2

Take the first case.

To consider the group -n\((W" — int V"} U S1 X Z>2) for this case is

equivalent considering the fundamental group of the complement of the

graph in Fig. 2 with more relations corresponding to a homeomorphism

(p" of SlxdD2 onto dV" that maps IxdD2, l^S1, onto a" representing

an element of 771(8 V"} of the form mlv(v=^ty, where m is represented by a

meridian, and / by a longitude of dV".

Let a, x, m, n and s be the gener-

ators. From Fig. 3 we will get relations:

1) masm = ainanamamanama

3) mxsm = xnxmxnxnxmxnx

Let / be a longitude of dV"\ then / is

denoted by
s /=^-^ m a n a m fi-fi-a m a

Flg' 3 x« x m x n-x-n x m*.

Corresponding to the map ^>", we need one more relation: mZ" = l, i.e.

7ri((»^ lf-intOU51X/?a)^{^ x} m, n, s, /:
_<p"

1) masm = amanamamanama

2) ainanama = manamanam

3) W A T J W ^ A T W ^ m ^ ^ ^ ^ ^ ^ A : ^ ^

4) xnxmxnx = nxmxnxmxn

5) w/^ = l

6) l—manamamanxinxnxnx m*\.

Since abelianized group of iri((W"—intF") U^xZ)2) is ZxZ, whose
p'/

generators are represented by a and ^r, the each entry of the Alexander
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matrix is a polynomial with two variables at most. By the free calculus,

the Alexander matrix A is equivalent to the following one:

O 0 -l+a l-a a Q

0 0 - 1 1 0 0

0 0 0 0 * 0

0 0 1 - 1 0 0

00 1 0 0 v

\0 0 a+x—4* a-\-x 0 I/

/ G O 0 a 0 \

00 0 x 0
0 0 0 0 0

0 0 1 O P

\0 0 a+x—4+a+x 0 1

0 0 1 i /

0 0 d+x-^+a+x I

Then we get the second polynomial,

For the other three cases, we get similarly:

{a, x} m, n, s} l\

m a s m = a in a n a m a in a n a m a

amanama — manamanam

mxsm = xmxnxmxinxnxmx

x m x n x m x = m x n x m x n x m

A

I = m a n a m a m a x m x in x n x m}.

/O 0 —1+* \—a 0 a\

0 0 - 1 1 0 0

0 0 —1+# \—x 0 x

0 0 - 1 1 0 0

00 1 0 v 0

\0 0 a—n a—x 1 O/
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0 0 1 i ; \

0 0 a—x+a-x I)'

Then, AW(a, x) = v(ax*—a*x)+ax+v(a—x').

iri((W"—mtV")\jSlxD*)=ia, x, n, »», j, /:
9"'_
xsmsxaxsmsx = nsa,

0 nxsnmnsxn=sanasmnmsanas

l=nsxnsanasmasmnmsaxs

/O 0 x-ax —I+a 0 ~l\

0 0 0 0 0 — 1

0 0 * - 1 0 0

Q 0 a x — a 0 0

0 0 1 0 y 0

0 0 x—3 ax+ax—x+l 1 0

0 0 1 y ^

0 0 x-3+a+a—l+x I}'

Then AW(a, x)=v(a*x+ax^+(l—4>v)ax+v(x+a).

TTI(( W"—'m\. V"} U Sl X Z?2)= {^ ^ w, », s, /:

masm = anamananamana

rn _^ m x s ih = n x n
^\

xnx=nanamananxmxna

Xnamanan

amanama = xmxnanamana

X n x m x

l=xnanamananxa/maxmx

X n a n a m}.
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/O 0 0 0 0 a\

0 0 1—x —1+x 0 x

00 -x x 0 0

0 0 - 1 1 0 0

0 0 1 0 * 0

0 0 —a+x—l+x l-a 1 O/

0 0 1 y

0 0 —a+x—a+x I

Then A^(ay x)=u(a2x—ax2]-\-ax~\-v(x—a).

In every case, the second normalized polynomial AW can not have

a constant term.

This is a contradiction, i.e. the first assumption is not true. Then

the inclusion map from 7ri(3fF") into 7ri((W"—intF") U Sl x£>2) is a

monomorphism.

This completes the proof.
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