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A New Class of Knots with Property P

By

Yoko NAKAGAWA*

§1. Introduction

It is known that several classes of knots have property P ([1], [3], [5],
91

In this paper, it will be shown that the special class of knots has
property P.

To show the above, 3-dimensional homology spheres constructed hy
Dehn’s method will be considered and it will be shown that they are not
3-dimensional homotopy spheres.

I am grateful to Prof. R. H. Fox and the referee for helpful comments

and suggestions regarding this work.

A singular disk in the 3-sphere S8 means a map f of an oriented
disk D into S3. For brevity, one may refer to the image D=#£(D) as the
singular disk.

Among the singularities that a singular disk may have perhaps the
simplest is a clasping singularity or just clasp. This consists of two mutually
disjoint slits S and S that are mapped by f topologically onto an arc S
of D. The singular disks to be considered are those that have only simple
clasps. Let us call such a disk an elementary disk. This is a natural
class to consider, since it is known that any singular disk in general position
can be deformed, without moving the boundary, into an elementary disk
[10].

If D is an elementary disk then a regular neighborhood W of D in S3

is a handlebody, and its boundary dW is an orientable surface of some
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genus g, where g is the same as the number of clasps. Let us call D
totally knotted if OW is incompressible* in S3—d.D.

Let 7 be a tame solid torus in S3, and o a simple closed curve con-
tained in d) and not contractible on V. Let ¢ be a homeomorphism
of a torus S1X 002 onto the torus 97 which maps 1xdD?, 151, onto a.
By this homeomorphism ¢ we will get a new 3-dimensional manifold
M=(S3—int ) J S1x D?, identifying x(e S1 X d.D2) with ¢(x).

Let us give ;0 canonical orientation to S3 and M in such a way that M/

and S3 induce the same orientation in S3—intV.

Let 7 and / be a meridian and a longitude of 9} respectively. We
also denote by 7 and / the elements of 71(dV") or m1(S8—int V) represented
by these curves. Let a be a curve on 0V which, when properly oriented,
represents the element #%/* (r,y: integers). Since the manifold A/ will
be the homology sphere, 7 must be +1 or —1. We may assume, changing
the orientation of a if necessary, that a represents the element 7/” (y=£0).

In this paper, let us choose only a that is not a meridian, i.e. o does
not represent the element » of w1(37).

Then the following main result will be proved.

Theorem I. T/e knot type kb whick is equivalent to the boundary
of a totally knotted disk with two daspz'ng“sz’ngularz'tz'es has property P.

Proving this theorem, it is equivalent to prove the following one.

Let M be a homology sphere constructed by the method in the above.

Theorem II. A lomology sphere M is not simply connected if the
knot type k of the corve of V is equivalent to the boundary of a totally
knotted disk with two clasping singularities.

§2. Lemma

A normalized Alexander polynomial means the Alexander poly-

nomial [2] with the smallest positive but no negative powers of each

* g is incompressible in S3—30 means the induced map of natural inclusion of 1(3//) into
m1(8§3—080D) is a monomorphism.
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generator.
By multiplying or diving by some powers of generators, any Alexander

polynomial can be changed to a normalized Alexander polynomial.

To prove theorem II, we need the following lemmas.

Lemma 1. et G be a finitely presented group whickh s isomorphic
to the non-trivial free product Gi* Ga, and the abelianized groups of G1
and Gg be both infinite cyclic groups. If the -th normalized Alexander
polynomial of G is not zero, them it is a product of two ome variable

polynomials.

Proof. Let an miXmi-matrix A; and an mgXng-matrix Ag be
Alexander matrices of G71 and Gg, respectively. Then an Alexander

matrix A of the free product G of G1 and Gs is the (m1-+m2) X (n1+4729)-

A1 O
01 4 > Let g1 and g2 be generators of the Abelianized group
2

Z of Gy and Gy, respectively. For any integer ¢, the #-th polynomials are

matrix (

defined for each G1 and Ga. They are one variable polynomials including
the case that the polynomial, is “1” or “0” after normalization, i.e. the

¢-th polynomial of Gy is 4®)(g1)= Z aigh, and the #-th polynomial of G»
=0
is 40(gg)= Z bigh.

71 73 Let us con51der t-th polynomial of 4. By the
AN(i—E-) m1  definition, this is the g.c.d. of determinants of all

£ ég me  (m1-+mno—1) X (m1+n2—1) submatrices of the matrix
povR A. These submatrices are of the form ( 51 ,—0—)

0 | B/’

wehre B is an (#1—pu) X (#1—p) submatrix of 41, and Bz is an (ma—it+p)
X (ng—1+p) submatrix of 4s. The determinant of this form is the
product of det B; and det Bs. Fixing the number ¢« and u, consider all
the (7z1—p)X (#1—p) submatrices of A1, and the (mo—i+u) X (ma—i1+p)
submatrices of Aa. Let p(g1) be the g.c.d. of determinants of the above
(n1—p) X (m1—p) submatrices of 431. By the definition, p(g1) is the p-th
polynomial of 41, and ¢(g2), similarly defined, is the (:—pu)-th polynomial
of Aa. The product p(g1)-¢(g2) is the g.c.d. of all the determinants of the

form (det B1):(det Bg), since no determinant of any submatrix of 41 can
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have any factor in common with the determinant of any submatrix of 4s.
Since p ranges over 0,1, ..., t, the «-th polynomial of 4 is the g.c.d. of
A0(g1) X AO(gs), AD(g1)-ACD(gy), ..., AN g1)-A¥)(gs), ..., AX(g)
X A0(gs). 1In general 4® is divisible by 4¢+1). So 4O, ..., 4¢=1D) are
divisible by 4. Since g1 and go are different variables, 4®)(g1) and
A (g9) can have no common factor other than a constant, and since G1
and G2 are abelianized to infinite cyclic groups, neither 4®)(g;) nor
A#)(g9) can have any constant factor other than 1. Thus the g.c.d.
of the above products, i.e. the i-th polynomial of A4, is just the product
A=) (g1)- A=) (g3), where ' and "’ are the smallest number among that

the (t-1'")-th and (i-")-th Alexander polynomials of G1 and G2 are non-zero.

Corollary to Lemma 1. Under the same conditions in Lemma 1,

the -th normalized Alexander polynomial of G has non-zero constant term.

Proof. 1Itis almost trivial.

Lemma 2. Let X be an orientable connected 3-manifold with bounda-
ry and the boundary 0X is a closed surface with genus 2. If the homo-
morphism of m(0X) into m(X) induced by the natural inclusion map is

not a monomorphism, then wi(X) is the free product of two non-trivial

groups.

Proof. Since the mapping of m1(0.X) into #1(X) is not a monomor-
phism, there exists a disk D is X whose boundary / is a nontrivial closed
curve on 0.X. By the Loop Theorem [11] and Dehn’s Lemma [7], we can
assume that D is nonsingular and / is a simple closed curve.

Let us assume first that / is homologous to zero on d.X, i.e. that / is
separates 0.X into two surfaces 77 and 7% with common boundary /; 71
and 7% are both surfaces of genus 1.

Let D; and Dg be copies of D in X that have / as common boundary.
Along / sew D1 to 71, and D3 to 75. Then we get two tori. Let M;
be the manifold in X bounded by D;U 73, thus M; is a 3-dimensional
manifold whose boundary is a torus in X (=1, 2). Since the intersection
of M1 and M3 consists of a nonsingular disk D, by the Van Kampen

Theorem, 71(X) is isomorphic to the nontrivial free product 71(M1)*m1(My).
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To complete the proof, it will be shown that / must be homologous to
zero on dX. Suppose, to the contrary, that /, suitably oriented, represents
an element a of 71(0X) that does not lie in the commutator subgroup
[711(8X), m1(8X)]. Then there exists a simple closed curve /" on dX that
intersects / at just one point. Let 8 denote the element of m(6.X) repre-
sented by /' (suitably oriented).

Since a=£1 and B=~41 it follows from a result of Greendlinger [4] that
either aBaf=~1 or a=y™ and B=y" for some element y of 71(dX) and
integers # and 7.

If, in fact, a=7y™, B=9" then, since the intersection number S(a, B)=
S(/J,J) is equal to +1, and S(a, B)=S(™, y")=mnS(y, y), it must be
that m=41 and »=+1. But this means that a=p*1, and hence that /’
can be deformed into / in the complement of /. This contradiction shows
that afafB=£1.

Consequently if /V is a regular neighborhood of / (J /' on 0.X, then its
boundary 0V is not contractible on d.X. Hence 0V separates d.X into two
surfaces V and d.X—N, each of genus 1. As shown in the first part of
this proof it follows that #1(X) must be the free product of two nontrivisl

groups.

Lemma 3. Let X be an orientable connected 3-manifold with
boundary, i: 0X—X an inclusion map and i,: H1(0X)—~>Hi(X) an
induced map. Then the rank of the kernel of i, is exactly half of the
rank of H1(0X).

Proof. Let us consider the following exact sequences:

0 —» Hy(X,dX) — H0X) — Hy(X)
s Hy(X,0X) — H1(0X) -2 Hy(X)
— H\(X,0X) — Ho(dX) —> Ho(X) — 0.

Let 2¢ be the rank of H1(0X), a of Ho(0X), & of H1(X,0X) and ¢ of
Hy(X).

By Poincaré Duality H2(0X) has rank @, Hp(X) has rank 4 and
H3(X,0X) has rank ¢. Also H3(X,dX) has the same rank 1 as Hy(X).

Among the numbers «, 4, ¢, 1 and g, by the exactness, there is an equation
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2¢e=(c—b+a—1)4(c—b+a—1). Moreover from the exactness, the
rank of ker 7, is c—b4+4a—1; this is just half of the rank of H1(dX), i.e.

g=c—b+a—1.

§3. Proof of the Theorem

Proof of the TheoremIl. Let £ be a knot which is equivalent to the
boundary of a totally knotted disk Z with two clasping singularities, I/
a regular neighborhood of 2 and W a regular neighborhood of £ in S3.
The homology sphere (S3-int7”) U SIx D2=(S3-int W) Y (W-int V) U
S1x D?) will be denoted by M, where ¢ is a homeomorphism of 51X802
onto ¢V which maps 1X9D2, 151, onto a, where a is a simple closed
curve on 0V and not a meridian curve of dV.

Since dW is incompressible in S3—£ and S3—intW c S3—£, the map
from m1(0W) into G1=n1(S3—intl¥) is a monomorphism. To show that
m1(M) is not trivial, by the Van Kampen Theorem, it is enough to show
that a map from m1(@W)=m@(W—intV)U S1x D?)) into Ge=m (W —
int/)US1x D2) is a monomorphism. If lgoth maps from w1(dW) into
G1 ang Gs are monomorphisms, then =1(#) is isomorphic to the free
product with amalgamation G1. gw,)Ga.

Let us consider Ge=m1((W—int V) U S1x D?). Let W be a handlebody
with two handles, which may be knott?ed or linked in S3. To calculate
G, it is enough to consider a handlebody W' in standard position in S3;
thus there is an autohomeomorphism of S3 which maps W onto W', whose
two handles are neither knotted nor linked with each other. By this map-
ping, V' is mapped onto V'C W’ and a is mapped onto a’'CdV’. The
simple closed curve a’ is not a meridian of dV".

Let us construct another homeomorphism of #’ onto a handlebody
W' as follows: take two meridian cells in W’, m1 and ma. Cut W' along
these meridian cells and turn the exposed faces a suitable number of times,
to untwist 7', and sew back together again. Then we get a new solid
torus V"' in W". By this homeomorphism, o’ is mapped onto o'’ on V",
The curve o’ is not a meridian curve of d7*".  With the appropriate orien-

tation o'’ represents an element of m(@V"") of the form m/*, where m
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Fig. 1

is represented by a meridian, and / by a longitude of 9V". Since a”
is not a meridian, v is a non-zero integer. Then the manifold (W'—intV")
U S1XD? is homeomorphic to the manifold (W"—intV") U StxD?,
where ¢’ is a homeomorphism of S1Xx 902 onto V"' that mags 1xo0D2,
1= 51, onto o".

Thus the manifold (W—int?) U S1x D2 is seen to be homeomorphic,
by the composition of above maps, to the manifold (W' —intV"") L}/S 1xD2.

Let us assume that the map from 71(@ W) into m1((W—int V) 6 S1x D?)
is not a monomorphism. Since (W—int})US1X D2 is homgomorphic
to (W'—intV"") L}IS1><D2 it is equivalent tg assume that the map of
m1(@(W'" —int V")sa U S1x D)) y=m(dW'"") into (W' —intV"") U S1x D?)
is not a monomori)hism. i

By lemma 2, there exist manifolds A3 and Ms such that M1 U Mo
=(W"—intl"") LJ,Sl X D2, MiN Ms=nonsingular disk, and both the
boundaries 8M1¢and 0M> are tori; then w1(M1 U Mz) is isomorphic to the
nontrivial free product wi(M1)*m(M3). By lemma 3, since M; is a
3-manifold whose boundary is a torus, A1(#M1) and H1(M3) are not tivial.
Since m(M1U M) [[m1(M1 U Ms), wi1(M1U M3)] is ZX Z, both H1(M1) and
H1(My) are infinite cyclic groups. So by Cor. to lemma 1, the ¢-th poly-
nomial of the free product w1(M1)*m1(Ms) must have non-zero constant
term.

Let us calculate the polynomial of the group mi((W'—intl"") J
S1x D?). To complete the proof it is enough to consider four different
cases; that are depending on the order of the inverse images of slits along

knot and the intersection number S(%, £) at the end of slit.
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Fig. 2

Take the first case.

To consider the group mi((W'' —int V")LIJISlxDz) for this case is
equivalent considering the fundamental group of the complement of the
graph in Fig. 2 with more relations corresponding to a homeomorphism
¢" of S1x0.D2 onto 9" that maps 1 X902, 1=S1, onto o representing
an element of w1(@ V") of the form m/“(v=40), where m is represented by a
meridian, and / by a longitude of 3V,

Let a, x, m, » and s be the gener-
ators. From Fig. 3 we will get relations:
Dmasm=amanamamanama
Namanama=manamananm
N mExXSM=XRIMINIAREIMINZE
D xREIMXNRI=ARIMIRIMEN
Let 7/ be a longitude of @V"'; then / is
denoted by
I=g.dmanamdggama

XA Emxn-x-nxmh

Corresponding to the map ¢'’, we need one more relation: m/*=1, i.e.
m(W" —intV"") Q’SlxDz)z{a, x, m, n, s, I
1 ﬁzsoasm:dﬂ‘zaﬁdmaﬁzandma
Namanama=manamanam
DN MXSM=XNREMXRIXAIMENZX
Nxnzimxni=nimxnZmzxn
S) miv=1
6) l=manamamanimxnzxnimi}.
Since abelianized group of mi((W' —int V")L’J'SlxDz) is ZX Z, whose

generators are represented by 2 and x, the each entry of the Alexander
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matrix is a polynomial with two variables at most. By the free calculus,

the Alexander matrix 4 is equivalent to the following one:

0 0 —14a 1—a a O
00 —1 1 00
4 0 0 0 0 » O
00 1 -1 00
00 1 0 0 v
0 0 at+x—4 a+x 0 1
00 0 a 0
0 0 0 x 0
~|0 0 0 0 0
00 1 0 v
0 0 atz—4+atx 0 1

0 0 1 v
0 0 atr—Atatx 1)’

Then we get the second polynomial,

49 (a, x)=(4v+ 1)ax—v(x+a)—v(ax?+a?x).

For the other three cases, we get similarly:

m (W' —intV"") L_,J’51 X D)=

{a, x, m, n, s, [:
masm=amanamaimahnama

amanama=imanamatndarm

ml¥ =1
l=manamamaXmxinxnin}
0 0 —14+a 1—a 0 a
0 0 —1 1 00
e 0 0 —14x 1—x 0 «
0 0 —1 1 00
0 0 1 0 v O
00 g7 a—x 1 0
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00 1 v
0 0 a—%+a—=x 1)'
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Then, 4@(a, x)=v(ax2—a?x)+ax+v(a—x).

m (W' —int V"YU S1x D)= {a, x, n, m, s, I:
sol/

{¥a%

S

N[o

S O O O O O O

0
0
0
0
0
0
0
0

x—ax —1+4a 0 —1
0 0 0 —1
x —1 0 0
ax —a 0 0
1 0 v 0
z—3 aitazx—z+1 1 0

xSmsxaxsSmsx=nsan
NMARESHRINAR=—WMS XS N
nxsnmnsin=san
Ssaxsmskxas=mnmsa
ml*=1

l=nsEnsanasmasmunmsaxsmd}.

1 u)
x—3+a+a—1+x 1)

Then 4@ (a, x)=v(a?x+ax?)+(1—4v)ax+v(x+a).

m(W"—intV'"YUSIX D2)={a, x, m, n, s, [:
so/l

masm—anamananamanna
MEXSM=nxX”
ITnx=nanamananimxina

X
m
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00 0 a
00 1—x —14+x 0 x

A~ 00 —Z x 0 0
00 —1 1 00
0 0 1 0 v O
0 0 —ag+i—14+x 1l—a 0
00 1

N[o 0 —ati—atx 1)'

Then 4@ (a, x)=v(a?x—ax?)+ax-+v(x—a).

In every case, the second normalized polynomial 4(®) can not have

a constant term.

This is a contradiction, i.e. the first assumption is not true. Then

the inclusion map from =1 (@W") into m (W' —intV"") J S1 xD?) is a
goll

monomorphism.

(11

(21
[31]

[4]
[5]
6]
(71
[81]
[9l]

(10]
(1]

This completes the proof.
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