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Singular Supports of Solutions of Partial
Differential Equations in a Slab Domain
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Kimimasa NlSHlWADA*

§ 1. Introduction

In [6], F. John proved that for a differential operator, non-solvability

to the non-characteristic Canchy problem for any initial data with compact

support is equivalent to rather stringent non-hyperbolicity.1* In the pre-

sent paper, we shall study an analogous question where we shall be interest-

ed not in the support but in the singular support of solution. To state

more precisely, let D denote the imaginary gradient — z(«— , • • • , « — ] and
\dx\ o

be a differential operator with constant coefficients obtained from

a polynomial P(f) of n variables £=(£i, ..., £n). Our main result is the

following

Theorem 1. Assume that the polynomial P(f) has the form

(1.1)

with a=^=0j and that the zeros of the polynomial have the property ;

(1.2) Im £i->oo when f ->oo in Rn~l and P(£i, f )=0.

Under these assumptions, if the equation

P(D}u=f,

in a slab domain Q={x^Rn] c\<x\<.c$ , admits a solution

^vith bounded singular support for a given /EEC°°({2), then we have that

Communicated by S. Matsuura, February 26, 1974.
* Graduate School, Kyoto University, Kyoto.
1) Cf. Matsuura [8] for the extension to general systems.
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The proof of Theorem 1 will be given in section 2. In section 3, we
shall state and prove an analogous theorem for Gevrey classes. In section

4 we shall consider partial converses of these theorems by constructing

suitable fundamental solutions, inspired by an idea due to Kashiwara

[7].
The author wishes to express his gratitude to Professor Shigetake

Matsuura for suggesting the present problem and for his helps.

§ 2. Proof of Theorem 1

We shall first consider to what extent the regularity of solutions u

can be deduced from the condition (1.1).

Lemma 1. A polynomial P(f) can be written in the form (1.1) if
and only if there exist positive constants e, p> C with 0<p^l such that

(2.1) I

for all multi-indices a=(ai, a') and £e.F, where T={^Rn\ |f

Proof. Suppose that P has the form />(£)= 0f[(
ai<l

for li^O. If p=inf((/-ai)/|a/|, 1), the infimum being taken over all a
with aa 7^0, and if e>0 is sufficiently small, then we have

which proves the estimate (2.1). Conversely if the highest order tern of

P(f) with respect to £ i is dependent on the other variables, there exists a

multi-index a^O such that PW(£) has the same order with respect to

|i as P(f) and such that the term is independent of the other variables.

Thus \P(a)(£)IP(£)\ does not converge to zero when £1— >oo and £' bounded,
which proves the lemma.

Lemma 2. Assume that there is a subset FdRn and a constant
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such that

(2.2) \P^\§\P(&\^CQ+\^-v«\ fer.

If P(D)u— f^C°°(U} where U is an open subset in Rn, it follows that for

every ^GE CQ ( £7) /A<?r£ £#£r/ constants C N, such that

Proof. Let us consider a solution #(#, £) of the equation

(2.3)

where tP(U]=P(—U) is the formal adjoint of P. If we set z/(#, g) =

w(x, ^)fP(ff) when £^r, Leibniz formula gives

a/

Hence (2.3) is equivalent to the equation

(2.4) w—R(g, D}w=<p, £EE F,

where R(g, D}=— £ (Pa&£>a/a\P(^. Suggested by the formal solu-
oo Otf\j

tion w= 2 -^?(f j -Dy°<p to (2.4), we consider the following approximate solu-
o

tions

N
WN=l

The same calculation gives

Then it follows that

/\ r*
(pu(j;)= I

(2.5)
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Since the order of distributions (Da(p)u is independent of a, using (2.2)

we can estimate the first term on the right-hand side of (2.5) by

with some constants C N and M. The second term also decreases rapidly

in Ffor WN/£^ CQ and every derivative D%(WN(X, £)//*(£)) is bounded when

The proof is now complete.

Proof of Theorem 1 . Since the preceding lemmas show that for each

C0°(£?) (pu($~\ is rapidly decreasing when |£' <Ol£il^» our aim now is

to prove the same fact also when |£'|^e|fil^. In doing so we assume

in what follows without loss of generality that Q={x; — 2<^i<^2}, a=

1 in (1.1) and that bounded is supp u as well as sing supp u. Moreover

we can assume that u^C® when — !<J;rL<^l. In fact, if we take a test

function </)(xi)^C^(( — 2, 2)) which is equal to 1 in a neighborhood of the

interval — , 4 and if we rePlaceX^) bY P(D}(l~A}k and u by (1

Ay~k$u in the statement of the theorem, then to prove the theorem is equ-
3 3

ivalent to do it in this case at least when — — o-<C^i<C-rt-i and tne ^act tnat

when k is large assures the claim. The partial Fourier

transforms of u and /,

are then analytic functions of £' for fixed x\. Since P(D}u=f, it follows

that

(2.6) P(Dl9 O«i(^i. O=/i(^ii O. -l^^i^L

We shall now prove that there exist constants C, C ̂  and M which

are independent of x\, — l<^xi<^I, such that

(2.7)

(2.8)
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To do so we choose a function (f)^C^((— 2, 2)) such that </)=I when

— l^J#i<^l and set v=<f>u. Thus we have when — l<^

Since v^£'(£2), we obtain for some constants

Moreover Lemma 1 and 2 give that when |£' <Ol

KOl^cxn-ifir", ^=1,2,

Applying these estimates to (2.9) we obtain

(2

Since the second integral in (2.10) is absolutely convergent when

(2.7) follows with other constants C and M. (2.8) also follows similary.

Now decomposing the ordinary differential equation (2.6), we obtain

where (TI(^')I • • • » ^(f ) are the roots of the polynomial P(£i, |;) of fi, which

satisfy the following estimates with positive constants d, ^2> Si and §2

(2.11) Cilf I^Imc7t(Ol^l«(Ol^C2lf las ^=1,2, ... /,

when I' is large. For the first inequality follows from the hypothesis (1.2)

(see Lemma 2.1 in Appendix in Hormander [4]) and the last from the

usual estimate of the roots of a polynomial by its coefficients. Now we

introduce the functions Wfc(xi, £'), 0<^<£/, by the equations

(2.12) (^i-cr/mO^+i^i, f )-^*(*i, f ), 0^k^/-l,

where WQ(XI, ^=fi(xi, f) and w\(x\, g')=ui(xi, g ). In view of (2.7)

and (2.11) it follows that there are constants C and M such that
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(2.13) \w*(xi, f)|^C(l+|f I)",

Solving the equation when &=Q in (2.2), we have

a/i(*i, f)=^"*'l(f"*l)wi(/> f ')-/ f'
J a?!

where — l5£#i, /fgll. If we restrict the range of #1 to the interval

— ~rr> ~o~ ' we can a^waYs choose t so that Im a\(£'}(t — x\)= — -=-
[_ 2 2 J ^
|Im ori(f')|. Thus we have

(2.14) | «/i(*i, O!^ l ^ i ( ^ i ± i Ol^"IImffll/2+ sup

In view of (2.8), (2.11) and (2.13), this means that there exist constants

CN such that

^=1,2,..., - ^ X 1 .

Repeating the same arguments to the rest equations in (2.12), we obtain

finally

(2.15) \ul(Xl,^\^CN(l+ 1 fi)-^, #=1,2,...,

when x\ is in a neiborhood of 0. Since this condition, however, plays no
essential role, we may assume that (2.15) is valid also when — \<Lx\<i
1. Since in the region defined by the inequality, |£/|I>£

with a constant C, for each <p^C^(R'} such that supp ^c f— 1,1] we have
according to (2.15)

i?>«(£)i = i r°° K*I)«I(*I> o«"^ifi a^ii
(2.16) J ~~

<2Cff sup \<P\-CPffQ.+\t\)-Pff, N=l, 2, ...,

when \£'\^£\£i\p. Adding the result obtained from the lemmas we

conclude that u^C00 under the condition, — l<^i<Cl> which we can of
course remove. The proof of the theorem is complete.
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Examples. The hypoelliptic operators satisfy both the conditions

(1.1) and (1.2), although the theorem in this case is a consequence of the

well known regularity theorem. On the other hand, the polynomial

^(£1, £2, &)= £i+£i+£i£i+£i> clearly satisfying the conditions, is not
hypoelliptic. In fact the highest order term with respect to £2 is depend-

ent on £3.

§ 3. Gevrey case

We shall consider here the case when in Theorem 1 / will belong to

a Gevrey class which will be introduced as follows.

Definition 1. Let Q be an open set in Rn. We denote by

o<Q.» the set of functions f in C°° (£?) such that for every compact set

K dQ there is a constant C for which the inequality

(3.1) \D*f(x}\^C(C\d$*vP. x^K,

is valid for every multi-index a. We slao set F^=FP^CQ and define

the notation FP sing supp u for a distribution u in Q as the smallest

subset outside whicn ti^F?.

The definition above is a special case of Definition 4.4.2. in Hormander

[4]. The following lemma is an easy consequence of (3.1).

Lemma 3. When p<l, u^3)'(Q} belongs to FP(Q} if and only if

for each <p^F^ there exists a constant C which is independent of N such

that

(3.2) IKSl^CXCAW + lfl)-^, N=\,2 .....

or equivalently that

(3.3) 1 (̂1)1 (̂00 (̂1+11!)-̂ , ^=1,2,...,

which follows from (3.2) replacing N by Nip.

Proof. If u^Ff)(Q}) we have for each <pt=F^(Q') and each multi-

index a
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f
J slslippy

which means from (3.1) when |a|<J7V that

Conversely let u^£D'(Q) satisfy the condition (3.2). If we note that for

every compact set K ci2 we can shoose a function y^P^(Q} such that

(p=l near K (see e.g. Lemma 5.7.1. in [4]), we have for such <p

*EE K.

If we choose JV=nJrIJr\a\ in (3.3), we obtain the estimate,

(3.4) \D«u(x)\^C(C(\a\+n+iy)(M+*+U'P,

If we note that when (N+K}k/N<2 and N^

(3.5)

(3.4) implies that (3.1) is valid with another constant when x^K> which

complete the proof.

Now we shall have instead of Theorem 1 the following

Theorem 2. Let the notations and the hypotheses be as in Theorem

1 . In addition suppose the following conditions ;

(0 |Im fil^Clf'l*', 0<C, when P(£i, f')=0

(zV) P 2 sing supp u is bounded in Q.

then if 0<S=min(Si, 82, Sa)<<l it follows that u^Fpd(Q} where p is the

number introduced in Lemma 1.

The verification of the present theorem is a routine repetition of that

of Theorem 1 except for some estimates concerning with Lemma 3. At

first Lemma 2 will be replaced by the following

Lemma 4. Besides the hypotheses in Lemma 2 if f^T**(U} it

follows that for each ^EH-To1, pi=min(p, po),
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(3.6) \^(^C(CN^(l+\t\r^, N=l,2 ..... £er.

Proof. Although the proof will be carried on parallel to that of

Lemma 2, we must define WN more carefully, that is, we set

(3.7) WN= 2 (-l)*^"!)®.../^*)^
'

where ra = deg P. Thus we have

=<P- 2' C-l)*(
'

where £]' means a partial summation in the range noted below. Since
each term in the summation 2' is bounded by C (C N)W (I + \gty-p W-™)

and the number of the terms in S' does not exceed AN with a constant
y^ independent of N, the summation 2' can be estimated when £GE.T

by C(CAO^(l + |f |)-^-OT), ^V=l, 2, ..., with C independent of N. If we
note that the coefficient of each term in WN\P(£) is bounded when £&F

and that the number of its terms does not exceed AN \ using (2.5) and (3.5)

we obtain (3.6).

Proof of Theorem 2. We may of course assume that S =81=82 =83.
We shall first replace (2.8) by

(3.8) !/!(*!, n^C(CNf(l + \e\^9 N=l, 2, ...,

following the hypothesis that f^Fd (13). When we utilize the estimate

(2.14) we note the elementary fact such that for any positive constants

e, M there is a constant C independent of N such that

(3.9) (l+r)Mexp(-£T5)^C(C^V)/vr(l + r)-w, r>0, ^=1,2,...,

obtained by calculating the value TO which makes the left-hand side of (3.9)
maximum. Then we have instead of (2.15)

-w, ^=1, 2, ...,

Thus in view of (2.16) we have proved Theorem 2.
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§ 4. Fundamental Solutions with Singular Supports
in a Proper Gone

In this section we shall show roughly speaking that if contrary to the

condition (1.2) of Theorem 1 imaginary parts of some roots are bounded

when £'e Rn~l while those of the other roots go to infinity, we can con-

struct a solution which has actually a bounded singular support in Q.

Theorem 3. When 0 </><!., there exists a fundamental sohition

E^3)'(Q} of P(D} suck that F? sing supp E is contained in a %-proper

cone, that is} in a cone contained in {x\<.x, $»0} U {0} if and only if

for some positive constants e, TO, t§ and a neighborhood U of $

(4.1) P(£+**n)=£0, -e|fl'<*<-*o, Hl^To,

when 77 £E U.

Proof. Assume that such a solution E exists. Choosing a function

^eE/^o such that ifj=\ near the origin, we have

(4.2) P(DV(x)=%x)+g(x)

where f=$E and g=P(D} (($-l}E}. Since f,gE^<S'(Rn), taking the

Fourier-Laplace transforms of (4.2), we have

(4.3) ^(0/(£)=l+<?(£), £eC».

we now note that I110 sing suppler'10 sing supp E and does not intersect

a neighborhood of the origin, which makes it possible to choose a compact

neighborhood K of F? sing supp g and a neighborhood U of -9 such that

h(— 17) < const. <0 when 77^ [7, where h(£) is the support function of

K\ A(f)=sup <*, f>.
&^K

Writing that g=gl+g2 where g-^ff, supp g^K and g^^^ we

have in view of the Paley- Wiener theorem and the proof of Lemma 5.7.2.

in Hormander [4]

(4.4)
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for some positive constants C, A, B and M. Since (4.3) implies that when

o r I l * f o l l o w s that

or O^log(2^) +A |fy| — B\t;\P

when P(£-\-itrj)=Q and £, 17 and £>0 are real. Replacing the constants

suitably we have P(f-\-i^rf)=^=Q if

(4.5) -e\£\P<t<-Ci-C2 log(l + |f| + j/|).

when T^GE C/ and | is large. From the Tarski-Seidenberg theorem we can

eliminate the logarithmic term in (4.5) (see the proof of Lemma 2.1 of

Appendix in [4] ), which proves (4.1).

Conversely assume that (4.1) is valid. We now define a distribution

E—ECQ by the identity

with ^o<^i<£T0. This means of course the distribution;

The convergence of the integral follows from the Paley- Wiener theorem.

Note that P(D} ETQ — S is real analytic and moreover entire holomorphic

in Gn. Hence, by Ehrenpreis theorem there exists an analytic function /

such that P(D) (J5To+f}=S. What we have to do is thus to show that

FP sing supp ETQ is contained in a -S-proper cone. In doing so, let

H=R+U and F be its dual cone, namely

r={*; <*, O ^0 for all fe H}

which is a $-proper cone. For a given #0$!^ let us choose a so small

neighborhood V of XQ that Vr\F=^> and that there is a vector 77 e £/

such that with

(4.6) <^, T?> <-^<0, ^e F.
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We shall now estimate P-E(£), g<=Rn, for each ^eTg(F). In doing so

we may assume that U is connected, by shrinking it if necessary.

Stokes' formula now gives

where yi is a compact chain in Cn. If we note that with positive con-

stants C, B and a introduced in (4.6),

(4.7) |p(£_f + ̂ )|^cexp(-5|f-f |P-<w)

when £, £' and s are real, another application of Stokes' formula gives with

Tl>0

(4.8)

where y(£/) = e|£ / |Pi7/2 and 72 another compact chain. Using (4.7) the

first term on the right-hand side of (4.8) can be easily estimated by a con-

stant times exp( — B\£\P\ To do the second term, observe that

which follows also from the Tarski-Seidenberg theorem. Furthermore

we have

^C exp(-

where all the constants are positive and we have used the inequality: max

(If—f I1", If lO^O^lW+Of !^/2). Thus the second term can be estimated
also by a constant times exp(—-C2|£|P), which means in view of (3.9) and

Lemma 3 that E^F? in F, in other words that FP sing supp EdP. The
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proof of Theorem 3 is now complete.

When we need not consider the Gevrey class we have in like manner

the following theorem, already studied in somewhat different forms by

Shirota [9] and Hormander [5].

Theorem 4. There exists a fundamental solution E of P(D} such

that sing supp E is contained in a ^-proper cone if and only if there

exist positive constants s} TO, /o and p and a neighborhood U of $ such that

(4.9) Xf +'fy)=^0, -e|£|'<*<-/0, Ifl^ro, when ^e U.

HP satisfies (4.9) and in addition is not hypoelliptic then we have a

fundamental solution E of P(D} whose singular support is contained in a

^-proper cone and not equal to the origin. Thus choosing a slab Q={x\

a< O, $> <b} suitably we have E<=£)'(Q} such that P(D}Es=C°°(Q}

and sing supp E is bounded and actually exists. The requirement,

??e U, in (4.9) however makes it slightly difficult to obtain examples which

satisfy the condition (4.9). But when P is homogeneous, the condition

becomes much simpler.

Proposition 1. When P is a homogeneous polynomial, the condition

(4.9) is equivalent to the following \ there exists a constant e>0 such that

(4.10) P(£+^)^0 if

Proof. We first show the equivalence of (4.9) to the following;

(4.11) P(g+ihj)=£Q if 0<*<e|£i 7?e U

for £>0 and a neighborhood U of -9. To do so assume that (4.9) is valid

for some p which may be chosen equal to 1 by the homogeneity of P. Since

P(g + *tri) = TmP(T-l£ + tT-l*q), ^(f+l/T^O if _eT-l|f|<T-l/<-*0,

which implies — e|f |<*< 0 by letting r->0. Since that (4.11) implies (4.9)

is trivial, our claim is now verified. In order to prove that (4.10) means

(4.11) we introduce the localization P% of P at £e JR%\0, following Atiyah-

Bott-Garding [2] and Andersson [1], which is defined as the coefficient of

the lowest order term in r when we develop P(£-]-T£) around
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P(g+T£)=TPPt(£)+terms of higher order in r

where p is called the multiplicity of P at £. If P satisfies (4.10) and P^

, has a root SQ with Im^ov^O, in view of the identity

)=Pe9(£+sff)+Q(\T\), Pfa+rg+rsty also has a root

si near SQ, in particular with Im si=^=0, for sufficiently small r>0,

which contradicts the condition (4.10). It thus follows that />$0(f +j-fil)=£0

when i;£^Rn and Im^^O, which means that Pg0 is hyperbolic with

respect to -9. Now that /*(£-}-•) is locally hyperbolic following the termi°

nology of Garding [3], we have (4.11) from Main Lemma in [3]. However,

for the convenience of the reader, we shall here copy the proof from

[3]. We consider the function

where |f0| = l, U=(T, f), p the multiplicity of P at £o and rj belongs to a

compact convex neighborhood K of -9 where P$0 does not vanish. Since

/(O, /, 0, rf) = tv P$£rf)> we have when j, t, u are small

(4.12) /(j, /, «, jf)=-PM ft (^+A^(^, «, ij))^(jf /, «, iy)

where AI, ..., Xp, F are continuous and jp(0, 0, 0, 17) = ! Because the

hyperbolicity of Pg0 implies that P^(s&-}-trf)=^=Q when 0<Im(j+/) and

because of (4.10), we have Im Xjc(s, 0, 7?)>0 and ImA^,^, 7^)^=0 when

Im ^>0 and real u, s, t are small. Thus we have Im A&(.?, u, rf)^0 when

Im s^>0 and real u, s, t are small. Putting j=0 in (4.12), we obtain with

0<Im

when rj^K and real r, |/|, | are small. Moving £o with |^ol = li we have

(4.11) by the compactness of the sphere.

Examples. All the polynomials written in products of hypoelliptic

and hyperbolic polynomials satisfy the condition (4.9). P(£i, £2, Is)

—If— If— £3 which is irreducible and neither hyperbolic nor hypoelliptic

satisfies the condition (4.9) when $=(1, 0, ..., 0) in view of Proposition 1.
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