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On the Blowing Down of Analytic Spaces

By

Akira FUJIKI

Introduction

Let X be a complex space and 4 be a subspace of X. Suppose there
exists a proper surjective morphism f: 4—A’', where 4’ is another complex
space. We say that X can be blown down along £, if the following con-
ditions are satisfied; there exists a complex space X’ containing 4" as a
subspace, and a proper surjective morphism f': X—X' such that i)
F (A =A" and f'|4 coincides with £, and ii) f gives an isomorphism of
X—A and X’—A4’'. In this case we say that (X, /') is the blowing down of
X along f. Now given a triple (X, 4, f) as above, the problem of finding
conditions for blowing down X along f has been investigated by many
people from various points of view [1] [3] [7] [8] [13] [17] [18] [19] [21]
[22] [23] [26].

In this paper we give one sufficient condition for blowing down X
under the assumption that A4 is an effective Cartier divisor on X (Theorem
2). This theorem has been proved by Artin [1] in the category of algebraic
spaces. But our method here is a direct generalization of that of [23],
and uses a cohomology vanishing theorem for weakly 1-complete complex
spaces, which generalizes a similar theojem of Nakano [24]. (Theorem
N’in §1). Then in §2, we treat the local version of the problem and obtain
Theorem 1, the proof of which is the main part of this paper. Next in §3,
we patch together the local blowing downs and obtain a global one. Geo-
metrically, the condition of the theorem says that the normal bundle of
A in X, when restricted to each fiber of f, is sufficiently negative. In §3

we also show by an example that this ‘sufficient’ negativity condition is
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not superfluous, contrary to a conjecture of Markoe and Rossi [21].
The author expresses his hearty thanks to Professor H. Hironaka
for valuable suggestions and to Professor S. Nakano for constant en-

couragement and for leading him to this subject.

§1. Vanishing Theorem on Weakly 1-Complete Complex Spaces

In this paper complex spaces are not necessarily reduced and have
the countable topology. We refer [14] for the conventions and notations
about complex spaces, for example; if 4 is a subspace of a complex space
X, then A4, denotes the u-th neighborhood of 4 in X.

Let V" be an analytic subspace of a domain D in some CV. A (-
function ¢ on V' is by definition the restriction on ¥ of some C=-function
¢ defined on some neighborhood W of ¥ in D. Let R be reals. Then
a R-valued C*-function ¢ on V is said to be strictly plurisubharmonic
(resp. plurisubharmonic) on V, if there exists a ¢ as above so that it is
strictly plurisubharmonic (resp. plurisubharmonic) on W. In this case we
often write briefly as ¢ is s. psh. (resp. psh.) on V.

Now let X be a complex space and L be a holomorphic line bundle on
X. Suppose L is defined by the system of transition functions { fag} with
respect to some open covering U={U,} of X. A metric on L with
respect to this covering is given by the system of positive C*-functions

h={/%s}, each defined on Uy, such that /g/h,=|fspl? on UxN Us.

Definition 1. A line bundle Z on X is said to be positive (resp.
semipositive) if for a suitable choice of {f,p} and U={U,} as above,
there exists a metric {4,} with respect to I such that —log 4, is strictly

plurisubharmonic (resp. plurisubharmonic) on U, for every a.

Definition 2 [24]. A complex space X is said to be weakly 1-complete,
if there exists a real valued C*-function ¥ on X which is plurisubharmonic
and has the property that there exists a co& R J {co} such that ¥ defines
a proper C=-map X—(—o0, ¢9). We call ¥ an exhaustion function of X,
and ¢o the upper bound of ¥.

Hence in particular X,=¥"1((—o0, ¢)) is relatively compact in X

if c<<cp. Butfor the given X, exhaustion functions are not unique. Hence
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from now on, when we write X, for a weakly 1-complete complex space
X, we understand that c<<¢p and X,={x X; Po(x)<¢} for a suitable
exhaustion function ¥y with the upper bound ¢¢ on X.

The following theorem is proved by Nakano [24].

Theorem N. Swppose X is a weakly 1-complete complex manifold,
E s a vector bundle on X, and L is a posiiive line bundle on X. Then for
every ¢ R, there exists a positive integer no such that HW(X. OFE)QO
(LBMYQO(FN)=0 for i=1, n=n9 and for cvery semipositive line bundle
Fon X.

In fact, this is a direct consequence of Theorem 2 of [24].

On the other hand, this result can be extended to the following more

general situation, using the method of bimeromorphic descent.

Theorem N'V. Suppose X is a weakly 1-complete complex space and
S is a coherent analytic sheaf on X. Let L be a positive line bundle on X.
Then for every ¢ R, there exists a positive integer no such that HY(X,,
SROLENQO(F)=0 for i=1, n=no and for every semipositive line
bundle F on X.

Before proceeding to the proof we recall some known results and make
preliminary considerations about them.
a) Suppose X is a complex space and VY is a subspace of X X P™, the
direct product of X and a complex projective space P™ of dimension .
Let S be a coherent analytic sheaf on ¥. Then by a theorem of Grauert
and Remmert, for any relatively compact subdomain D of X, there exists
a positive integer #o=7(S, D) such that Rif, (S p3Opm(#))=0 on D for
=1 and n=no, where R, denotes the /-th direct image of sheaves, g} is
induced by the projection to the second factor and O(%) is the 7-th tensor
product of the fundamental sheaf O(1) of P™.
b) [14] Suppose X is a complex space and J is the coherent sheaf of ideals
on X. Let f: Y—X be the monoidal transformation with center J and
set J=f"1(YJ). Then for every point P X, there exists a neighborhood
U =P such that f1(U) is realized as a closed subspace of U XP™ for

1) The author learned the formulation of this theorem and the idea of its proof from Prof.
Hironaka.
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some projective space P™, such that f|f~1(U) is induced by the projection
to the first factor and that $=p30(1), where p2 and O(1) are as in a) [14].

Now let Sp be a coherent analytic sheaf on ¥ and let D be a relatively
compact subdomain of X. Then by virtue of a), Leray spectral sequence
for the map f|f~1(D) gives the following; there exists an integer 79>0

such that for every =9 we have an isomorphism
HD, f*(SoQIQNLo)=H¥(f1D), Si®I "R f*O(Lv)) i=1,

where L is any line bundle on D. Here we note the projection formula
F o SI®I"® F*OLo))=1*(So® IMHRO(Lo).

c) Now we write down some exact sequences needed in the sequel. We
use the notations in b) and assume further that X is reduced and A4 is
nowhere dense in X, where A is the subspace of X corresponding to JJ.
Let S be a coherent analytic sheaf on X. Then we have an exact sequence

of Oy-modules

0> Ty IIRF*S—> F*S—> f*SROy/ I —>0,

with some torsion sheaf Jy, which is obtained by tensoring /*& with the

exact sequence
0— J*— Oy —> Oy/J" —>0.

Let M be the image of ;. Then by taking direct images, we get two exact

sequences of Ox-modules
@® 0— T — fHI*"QS*S)— fuM—> To—>0
@) 0——>f*j4-—>f*f*5~—+53——>0

where &3, Y9, and Y3 are torsion sheaves. In fact, these sheaves have
supports all contained in A. On the other hand, the natural map ap:

S—f . f*S gives the following exact sequence

0T >S5 L FFS—T"—50

for some torsion sheaves 4’ and "', whose supports are contained in A.
Next assume that § is torsion-free so that &’ vanishes. Let A be the
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sheaf of annihilators of '/, and L’ be a line bundle on X. Let ¢ be a
nonzero section of O(L")® A on an open set U. Then we have the follow-

ing exact sequence

@) 00— Ti—r £, f*S—> SROL")—> Ts—0

on U, where a is defined to be the multiplication by ¢, and <4 and Y5
are torsion sheaves.

d) For simplicity we use the following terminology. A sheaf of Ox-
modules § on a complex space X is said to be cohomologically g-trivial,
or simply, to be g-trivial for an integer ¢==0, if #4(X, §)=0for7=¢. Then
the following fact is easy to see; let

0—>51—>52——>S3———> 6’4——>0

be an exact sequence of sheaves of @x-modules. Then if Sy, Sg and Sy
are g-trivial, then so is Ss.

e) Suppose X is reduced and irreducible and § is a coherent analytic
sheaf on X. Let 71={x= X ;S is not free at x} and 7a=the singular
locus of X. Then we set 7=77U 72. This is a nowhere dense analytic
subset of X. In this situation we can find a coherent sheaf of ideals J of
Ox whose support coincides with 7, i.e. Supp(Ox/Y)= 7, and which has
the following properties; if we let /: ¥—X be the monoidal transformation
with center J, then i) ¥ is nonsingular and ii) we have an exact sequence
of @y-modules;

0— Jg— f*S—> Oy(E)—> 0,

where Y is a torsion part of /*S§ and £ is some vector bundle on ¥V
[25]. Then tensoring this with an invertible sheaf 42 f*Ox(LE™")
QOy(F), we get an exact sequence

(4 0— TeQK — f*SRK — Oy(E)RQRHK— 0,

where we put K=Kmao(F)=F"Qf*Ox(LE™"RXCOy(F), and where
I=fYY), L (resp. F)is a line bundle on X (resp. V), and »,x are integers.
f) We say that a line bundle Z on a complex space X is cohomologically

positive on a subdomain D of X, if for any coherent analytic sheaf S on X,
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there exists an integer #0>0 such that A4 D,SQO(L¥™)=0 for every
m=mygy and :=1.

Lemma 1. Swuppose X is a complex space, L is a line bundle on X
and Q is a relatively compact subdomain of X. Then L is cohomologically
positive on Q if and only if it is cohomologically positive on each irreducible
component of Qreda, Qrea being the underlying veduced subspace of Q.

Proof is quite analogous to that of [11, Proposition 4.1, 4.2], if we note

the following; since Q is relatively compact, we have i) Q has only a finite
number of irreducible components, and ii) there exists an integer 7>0
such that JI™=0 on the whole Q, where Jl is the ideal sheaf of Qreg.
g) Finally we make the following remark about the behavior of the
weakly-1-completeness under holomorphic maps. Suppose X and V are
complex spaces and f: Y—X is a morphism. If X is weakly 1-complete
with an exhaustion function ¥, then ¥ becomes naturally a weakly 1-
complete complex space with an exhaustion function f*¥, provided that
for any ¢(>co), /7YX is relatively compact. In this case we always
take as an exhaustion function of ¥ the pullback of that of X unless
otherwise stated. In particular any closed subspace 7" of a weakly
1-complete complex space X is naturally weakly 1-complete.

Now we come to the proof of the theorem.

Proof of Theorem N'. Let ¥ be an exhaustion function of X with
upper bound ¢p. (Def. 2.) Fix a real number ¢>¢o. We denote the
restriction of S on X by &g Then the proof is by induction on s=dim
Supp(Se), where in general Supp(*) denotes the support of *. Now if s
=0, then the theorem is trivially true. Thus we assume that s>0. First
by Lemma 1 we may assume that X is irreducible and reduced. Next,
since H¥( X, LRS)=H¥(Supp(Se), LRS) for any locally free sheaf L
on X, by induction we may take X.=Supp(S¢). Moreover we may
assume & is torsion free. For if 7°(S) denotes the torsion part of S,
then dim Supp(7'(S))<dim X,=dim X and $/7°(S) is torsion free, so

that by the exact sequence

0—7(S)— S—S/T(S)—0
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and by induction we easily get the assertion.

Now we take f: Y—X as in e) with respect to the coherent analytic
sheaf §. Then by h), ¥ is naturally weakly 1-complete and Ye=/"1(X¢).
To apply Theorem N on V¢, we need the following

Lemma 2. For any relatively compact subdomain D of X, there
exists a positive integer mo such that JQ f* L™ is positive on YD) for
every m=my, where | is the line bundle corresponding to the invertible
sheaf 4.

Admitting the lemma for a while we continue the proof of the theorem.
Take and fix /=R with ¢9>d>c. Then by the lemma there exists a
positive integer mzo such that /& f*(L®™) is positive on Ya(=7F"1(Xg))
for every m=myo. Take and fix such an  for the rest of the proof. Now
by h) Y4 is weakly l-complete. Hence by Theorem /V, there exists an
integer #1>0 such that O(E)Q(I™R f*O(LE™)RQO(F) is 1-trivial on
Y for every n=#; and for any semipositive line bundle # on V3.  Write
K n(F)=I"Q f*O(LEmMQO(F) as in €). Then, since J is torsion in
e) and Ye=Supp(Jely,) is weakly l-complete by h), by induction we
obtain an integer 72>0 such that L@ Km, o(F) is 1-trivial for n==#9 and
for any semipositive line bundle # on Y4 Hence by (4) we see im-
meadiately that /*SQHKm,a(F) is l-trivial on Y, for n=max(n1, #2).
Now assume that / has the form F=f*(L®¥QF) for a £#=0 and for a
semipositive line bundle 7 on Xg. This is semipositive as it is the pull-
back of a semipositive line bundle on Xg4. Then by b) we get an integer
7n3>0 such that:

(A) Fo*SQImQ0(LEmrtEQF) is 1-trivial for z=max(ny, 7s, 13) on
Xe.

For such an # we consider exact sequences (1)—=(3) in ¢). For (3)
we need

Assertion. Let A be as in c) i.e. the annihilator of I"'. Then

there exists an integer s>0 such that O(L®%)Q A has a nonzero section
b oon Xe.

Proof. In view of Theorem /A, the arguments similar to those in [18]
enable us to get Ho(Vqy, O(J®*Q f*L%%#))=£~0 for a sufficiently large £,
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where ¢ is an integer with ¢=mg (c.f. Lemma 3 and [24, §3]). Take a
Po(z£0)E HO (Vq4, O(J®*Q f* L2%)). By the natural isomorphism A% Xg,
F s JEQO(LERN=HO( Vg4, O(L®:Q f* L®*)) we may regard g as a section
of O(L®¥*)Q f.d* on X4q. Then since X, is relatively compact in Xg,
we have by the Nullstellensatz an integer />0 such that =0} X.= H°
(Xe, O(L®*)RJE). On the other hand, since Supp (Ox/A)=|4l, Ik
A on Xy for sufficiently large 4, where |A4| denotes the underlying topo-
logical space of 4. Thus we may assume Y(z£0)= HO(X,, O(L2H*)RA)
for the £ above. This completes the proof.

Thus if we put U=X,, L'=L%®3, and ¢=4 in the end of ¢), then we
obtain an exact sequence (3), where X, L®, and ¢ are as above.
Then since L&™ is positive and I3, 7=1, ..., 5, are torsion sheaves, again
by induction we can find an integer 74>0 such that: (B) L;QO(LE™"Q) F})
is l-trivial on X, for every #=#n4, and for any semipositive line bundle
Fy on X4 Now consider the exact sequences (1)’—(3)" obtained by
tensoring the sequences (1)~(3) with O(L®™P+kQF). Since LEFQF is
obviously semipositive for £2=0, by (A) and (B), the cohomology exact
sequences for (1)’-(3)" together with a remark in d) shows readily that
SQO (LEmrtk+sQF) is 1-trivial on X, (for #=maxn; and £=0).
Finally we can find an #¢>0 such that every »'=ny c;ljligge written in the
form »' =mn-+ £+ for the fixed # and s and for some ngrll:tx n; and A=
0. Thus the theorem is proved. e

It remains to prove Lemma 2.

Proof of Lemma 2. First we make a general remark concerning a
metric on a line bundle. Given a holomorphic line bundle Z on a com-
plex space X, let @={¢py, ..., ¢:} be a finite set of differentiable sections of
L which is base point free, namely, for any x& X, ¢;(x)50 for some 2.
Suppose L is defined by the system of transition functions {f,g} with
respect to the covering U={U,} of X, and ¢; are expressed as a system
of differentiable functions {¢s, o} each defined on U,, such that ¢; o=
Sappi,p on UgN\ Up. Then if we put /za=1/iéol(pialz, ko are positive
C*=-functions defined on U, and satisfies the relation /4g/k.=|fqap> on
U,NUpg. Thus these 4, gives a metric on L. We use this remark in
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constructing a metric on the line bundle /. Let Ax (resp. Ay) be the
sheaf of germs of differentiable functions on X (resp. ¥). Since X is
paracompact and D is relatively compact, there exists a finite set @p of
elements of H%X, AxQ0yf+(O(/)) which generates each stalk of Ax®&
f+CO(J) on the closure D of D (c.f. [15]). Then it is easily seen that this
@y in turn gives a set @ of elements of H° (¥, Ay®e,0(/)) which are
holomorphic along each fiber of f and which has no base points on f1
(D). Hence by the above remark, we have a metric % on / over f~1(D),
which has the additional property that, when restricted to each fiber of f
it coincides with the restriction of the standard metric of the hyperplane
bundle of the projective space, where a fiber /1 (P), P= X, is regarded
as a subspace of a projective space as in b). So if ~Z={4,} with respect
to a suitable covering W={U,} of D, then in particular —log 4, is strictly
plurisubharmonic with respect to the local coordinates of fibers of f in U,.
More precisely, let B={V,} be a finite covering of the closure D of D
such that /~1(V,) is embedded in I, XP® (c.f. b). Then we can take a
covering U={U,} of f~Y(D) with the following properties; 1) U is a
refinement of the covering f~1(B) so that each U, is embedded as a
subspace of V', XG,, where I (resp. G,) is the subdomain of V() (resp.
P™) and G, has the coordinate system (w¢), 2) /4, is the restriction of a

R-valued C=-function %, on V), XG, which is holomorphic with respect
92log A,
ow§ 0mf
respect to the coordinate system (w§) is positive definite at every point of

to the coordinates (w¢), and 3) the hessian —

of —log %, with

Vi XGq. Then, since L is positive on X and D is compact, there exists
an integer mq such that J® f*(L™) is positive for m=mg on D (c.f. [22,
Chap II, Lemma 4] ). Q.E.D.

This lemma could be regarded as a direct generalization of [18,

Theorem 8] together with its proof to the general projective morphisms.

Remark. The above method of bimeromorphic descent can be
applied (with slight modifications), for instance to deduce the finiteness
theorem of cohomology on compact complex spaces with coefficients in
coherent analytic sheaves from that on compact complex manifolds with

coefficients in locally free sheaves.
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Now a line bundle Z on a complex space X is said to be ample on a
subdomain D of X, if there exists an integer #0>0 such that for any
m=my, we can find a finite number of elements ¢y, ..., p; of H(D, O(L®™))
which embedds D as a locally closed subspace of a projective space P?
such that @*(O(1))=0(L®™), where @®: DC, P* is the associated map.

Lemma 3. Swuppose X is a weakly 1-complete complex space and L
is a line bundle on X. Then the following four conditions are equivalent
Jfor every c=R.

1) L is ample on X..

2) For any coherent analytic sheaf S on X, theve exists an integer
m1 such that for every m=mi1 SQO(LE™) is generated on X¢ by a finite
number of elements of HOX . SQO(LE™)).

3) L is cohomologically positive on Xe.

4) L is positive on X.

The equivalence of 1)-3) can be proved quite analogously to [11, Theorem
3.1]. That 4)—3) follows from Theorem A’. Finally, if Z is ample on
Xe, then L®™ is positive on X for all sufficient large , since it can be
regarded as the restriction on X, of a hyperplane bundle of the ambient
projective space. From this we conclude that Z is positive on X. Hence

1)—>4).

§2. Local Blowing Down

Let X be a complex space. Assume that X is holomorphically
convex. Then it is known by the theory of Remmert quotients that X
admits a proper surjective morphism F: X—X' with X’ a stein space.
(See [28] for the nonreduced case). On the other hand, by the theory
of embedding a stein space into a number space ([27] for the nonreduced
case), there exists a proper morphism 7: X'C,CV of X’ into some complex
number space CV. Let (#, ..., #£x) be the coordinates of CV and put g=
7-F. Then we define a R-valued C*-function ¥ on X as the pullback by

N N

g of the function X |42 on CV; W=g*(X |#/?). Clearly ¥ is plurisub-
i=1 i=1

harmonic and defines a proper map ¥: X—R. Hence X is weakly 1-

complete with an exhaustion function ¥. From now on, when we are given



BLowING DOWN OF ANALYTIC SPACES 483

a holomorphically convex space X, we regard it as a weakly 1-complete
complex space by choosing and fixing once and for all the maps / and
J, and defining an exhaustion function ¥ as above. In particular we use
freely the notations such as X¢, c& R, for a holomorphically convex space
X.

Now in general a subspace 4 of complex space X is said to be an
effective cartier divisor, if at each point of X the ideal sheaf 4 of 4 in X
is generated by a single element which is not a zero divisor. In this

section we shall prove

Theorem 1. Suppose X is a complex space and A is an effective cartier
divisor on X. Let L=[A] be the corresponding line bundle. We assume
the following conditions:

1) A is holomorphically convex.

2) The restriction L4* of L* onto A is positive, where L* is the
dual line bundle of L.V

3) HYA, O(L*))=0 for every pu>0.

Then for every c= R there exists a neighborhood U of A¢ in X with
UNA=Ac such that Ug admits a proper morphism h: Uc—>Cl whick
is isomorphic outside Ae.

For the proof we need the following two lemmas.

Lemma 4. Suppose X is a complex space and A is an effective cartier
divisor on X. Let L=[A] be the corresponding line bundle. We assume
the jfollowing conditions,

1) A is weakly l-complete, and

2)  the restriction L of L* onto A is positive.

Then for every c=R there exists a neighborhood Wi of Ae in X with
Wen A=A which has the following properties;

1) L* is positive on Wh.

il) There exists a plurisubharmonic function ¥ on W, whick is

strictly plurisubharmonic on W,—A,.

Lemma 5. Under the notations and assumptions of Theorem 1,

1) Here the restriction means the analytic restriction. Thus LZ:i*L*, 7: ACG X being the
inclusion.
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there exists for every c=R an arbitrary small neighborhood Ug of Ae
in X with UsN A=A, whick is weakly 1-complete.

We first prove the theorem using these lemmas.

Proof of the theorem. Take and fix an arbitrary ¢ R and choose
c1, c2= R such that c<<c1<<¢9. Then by Lemma 4 there exists a neighbor-
hood V' of A¢, in X such that L* is positive on V. Then by Lemma 5
we can find a neighborhood W of A, in X which is weakly 1l-complete
and is contained in V7. Then by Lemma 3, since L* is positive on W,
we infer that for any relativelv compact subdomain Q of W, there exists
an integer 7>0, and a finite number of elements ¢, ..., Y= H W,
O(L*®™)) such that i) the associated map @=(Po: ...: ¥) of X into
a projective space P” gives a biholomorphic embedding of Q onto a locally
closed analytic subspace of P” and that ii) @*(O(1))=0(L*®*™) on Q.
In particular ¢; generate each stalk of 2Z*®™ on Q. Now we take and fix
@ which containes the closure of A, in X. In view of the natural iso-
morphism ¢: O(L*®)=9"  defined locally by the multiplication of the
m-~th power of the local equation of 4 in X, we may regard ¢; as elements
of AW, J%). We denote these by @; in distinction from ¢;. Then
@i define a holomorphic map @: Q—C?+1 by ®(x)=(@o(¥), ..., Pu(x)).
Then ¢; generating each stalk is easily seen to be equivalent to the fact
that @1(0)=Q N A (set theoretically). In particular if we put p=

n
Y @il3, then =£0 for any € Q—QNA.
1=0
Now take some Wy for a weakly l-complete W which contains Q.

By the vanishing theorem there exists an integer 721 >0 such that A1(I¥/g,

J7)=0. Hence by virtue of the exact sequences
0— I — Ox—> Ox| I —> 0,

we get a surjective map p: HY(Wa, Ouw)y—HY AN Wa, Ow/I%s). On

the other hand, from the exact sequences
0—> OLY)— Ox|IH11— Ox| 95— 0  u=1,2, ...
and from 3) of the theorem, it follows that pu: H%A4,0x/I45 )—H(A,

O.)) is surjective for every u>0. Thus we can find for any f& H%A4, O 4)
an element f& H%(Wg, Ow) such that f| QN A=fIQN A.
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Now let /4, z=1, ..., N, be the elements of H9(4, O,4) which define
a proper holomorphic map F: A—CYV into some number space C¥=C¥
(£) so that 4,= {L | fil2<<c} (see the beginning of this section). Then by
the above, there ex1st elements fie HOYWg, Ow) which extends f;/QNA.
Let 7: Q—C% be the map defined by these f;. Then we get finally the

following commutative diagram
4
Q 7 P" x C"t1l x OV

P23
’ \CnJ-l X Cl\"
where g=® X OXF, h=DP X F, and P23 is the projection to the second and
the third factors. Note that by the definition of @ and &, g factors through
g 0—Y and j: YO P® xC?1xCV, where Y is the monoidal transform
of C*1 xC¥ with center D=0XC%, and J is the inclusion. Explicitly,
Y is a submanifold of P® XC"+1x C¥ defined by the system of equations
& zi=2 &, 04, j<n, where (&) (resp. (21)) is the homogeneous coordi-
nates of P” (resp. the coordinates of C"*1). Further o=pasly coincides
with the monoidal transformation with center D. Thus we have 4=
og'. Let B=o"1 (D). Then BN g(Q)=g(AN Q). Indeed, as noted
above, x& 4 if and only if ®(x)=0. Hence A(x)< D if and only if x& A4.
This gives the above relation on account of Z=gg’. Since o is isomorphic
outside B and g is an embedding, we infer from this that % is isomorphic
outside AN Q. Now define a subdomain Q. of Q by Q.p={xr=(Q;
i) <e, f= Z |7i2<<6}, &, 6>0. Then it is easily checked that for
every 6, with c>b>0 Q. is relatively compact in @ if we take ¢ sufficient-
ly small. From this we infer readily that the restricted map 4|Qc,¢:
Q., c——»D XD, is proper for ¢ sufficiently small, where D.= {|z;]<<¢} and
De=A{ Z] 418 <<c}. Put Ug=Q., Then, since D.XD,; is stein and
hence z:an be embedded into some number space C?, it is clear that this
U, has the desired properties of the theorem. Q.E.D.

We now give the proofs of Lemma 4 and 5.

Proof of Lemma 4. First we choose and fix an arbitrary ¢= R.

Since 4 is weakly 1-complete and L% is positive, we may apply the vanish-
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ing theorem to the pair (4, L%). Thus for any Z& R, L%, is cohomological-
ly positive. Then by Lemma 1 for every v>0 L3, ,=L1},  also is co-
homologically positive on Ag,,, where Ag,, is the v-th neighborhood
of Aq in a suitable neighborhood U of A4 in X. Now we take and fix
first Z& R such that @>¢ and then v=>2 so large that H1(A4q4, O(L*P"))
=0 for every u=y. For these 4 and v, by Lemma 3 there exists a
positive integer m=m(d,v) and a finite number of elements ¢g, ...,
o= HY(Aag,,, OLEM), such that the associated map Po: Ag,,—F?
of Ag,, into a projective space P? gives a biholomorphic embedding of
Ag,, onto a locally closed analytic subset B, of P! and further that there
exists an isomorphism of line bundles y,: @y(H)~L% on A, ,, where
A v=Ag A and H is the hyperplane bundle on P? For simplicity,
from now on, we suppress the suffix & so that for example we write A4,
and L, instead of Ag,, and Lg,, respectively.

Now our next purpose is to extend these ¢; first to the sections ¢§*
of H%A,, O(L¥®™)) for sufficiently large p, and then extend these ¢§*
to the C*-sections @; of L*®".  For the first step we observe the following

exact sequence of cohomology

> HO(d , O(LIE") —> HO(A 1, OCLIZD)
— HY(A, I IFROALE)

which comes from the exact sequence of Ox-modules
0—> I4 /I QO(L*®™) — O x| IR O(L*®™)
—> Ox/| I5,RQ0(L*®") — 0
Then since HY(A4, I4]|I45Q0(L*® )= HY(A, O(L¥"*))=0 by the

choice of v, a, is surjective for every u=v. Hence we can extend ¢;
successively to the elements ¢{*> of H %A ,, O(L3®™)) for arbitrary large
u. Next we fix one such p, which is to be determined in the sequel, and

consider the following commutative diagram of exact sequences

0—> @U<L*®<m+#)> - 0U<L*®m) — @A”(L*@") —0

! l

00— u4U(L=|<®(m+/‘)) N JU(L*@") N JA,,(L*@'”) —0

where A(*) denotes the sheaf of germs of differentiable sections of cor-
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responding line bundles, and the vertical arrows map holomorphic sections
into C=-sections. Since U is paracompact and therefore Ay(L*®"+)
is fine, we see that Z YU, AL*®"+*))=0 [15]. Hence we have a sur-
jective map a: HOU, AL®")N)—>HO(A,, ALRP™). Now let B,: HO
(U, O(L*®™)— HOU, AL*®™)) be induced by B and let §{’=p.(3").
Take for each ¢{*> an element §;= H U, A(L*®™)) such that ¢{’=a
(@i). These @; are the desired elements.

Using these @; we define a C*-map @: U—P? of U into a projective
space P! as usual. It is clear that ®|4,=®y. Further, since v=2
and @y is biholomorphic on Ag, ,, we can find a neighborhood V" of 4, .,
in X such that @ defines a C*-embedding of 7 onto a locally closed C*-
subspace of P?, and that there exists an C*-isomorphism y: ®*(H )=~
L*®" on U which induces the biholomorphic isomorphism y, when re-
stricted to A,. Let (§: ...: ;) be the homogeneous coordinates of
Pt TO={£,0} and V,=0YV®). Then by the above isomorphism
we may assume the following situation; Z*®" is defined by the system of
transition functions {f,g} with respect to the covering {V 4} of V, such
that fap=P*({p/€x) on VN V. Moreover the sections ¢; are given
by the system of C*-functions {®; o}, each defined on V', by & .=
D*(&4/€,). Now put aazé [gbialz:@*(_é l€i/é412). Then l/a, define a
metric of Z which is the f):lollback by 60 of the natural metric of the
hyperplane bundle of P!. Hence for (i) it is sufficient to show that log a,
is strictly plurisubharmonic at each point of V' N 4.

For this, take an arbitrary point x& 4, and let y=®(x). We may
assume that y& V{®. Then we have the following local situation; i)
there exists a neighborhood U of x in X and an isomorphism 7: U>~B
S DCC of U onto an analytic subset B of a domain D in C? such that
(x)=0. 1ii) @|U extends to a C*-embedding &’ of D into Vy which is
naturally isomorphic to C?. iii) If we denote @ by (#41)-ple of C*-
functions (g, ..., ¢3) such that ¢jlp=@i'r1, then ¢; have the form
;=P +0PF ¢, where o and f’ (resp. ¢) are holomorphic functions
(resp. C*=-functions) on D, and f’|p is a local equation of 7(4) in B. To
see ii) and iii), first we take U so small that there exists a local equation

f of A4 on U. Then by construction $;0 can be written as &;0=@"
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+@@f#, where @ (resp. ${¥) are holomorphic (resp. C=-) functions on
U such that @ give a biholomorphic embedding of U, into a
locally closed analytic subspace of V§®. Then we have only to extend
pP-r=1 and fr1 (resp. $®-71) to holomorphic (resp. C*-) functions
oV and f’ (resp. ¢f) on D. Hence our task is now reduced to show
2loga,
owt o@w?

the coordinates (w®) of C! is positive definite at the origin. But this

t
that hessian of the function log @q, .= X lp;(?, with respect to
=0

follows easily from u=2. (See the proof of Lemma 6 below, putting
4#=0 there.)

Next we shall show ii). First recall the isomorphism Ox(L*)~JY4
and the C=-isomorphisms y,: Opo(L*®")~Op, (which is analytic on
ValApe). In view of these isomorphisms, we infer readily that there
exists a system of C'"-functions { f,}, each defined on V,, with the following
property; i) for every point P& I/, we can find a neighborhood U p of P
in X such that f,|y, can be written in the form f,ly,=Apfp, where fp
is a local equation of 4 in Up, and Ap is a non-vanishing C*~-function
on Up which is holomorphic when restricted to 4,N Up, and ii) f3'/
f'=0*(p/€x) on VoN Vs Then we can define a R-valued C=-function
¥ globally defined on W4 by ¥=|f,2™( Zt} |$ial?) on V4. We contend
that this ¥ satisfies the properties ii) of tf;e() lemma. For this, again fix
a point x& A, and go back to the local situation described above. Then,
by the same argument as above we can take U such that it has further
properties that ¥-r—1 is the restriction of the function ¥p on D of the
form lPD=I)\D]"|2"”(Zn} lp;12), where Ap is a C>-function on D written as
Ap=AD) 4 f'£7(2) Witi’l_l)\(l) (resp. A®) holomorphic (resp. C~) on D. Now
we have to show this is plurisubharmonic on a suitable neighborhood
U’ of the locus 4’ of /=0 in D, and strictly plurisubharmonic on U'—A4’,
(if we take p sufficiently large). But this follows from the following lemma
by the definition of Ap. Q.E.D.

Lemma 6. Swuppose o, 1<<i<n, and f are holomorphic functions
and O, 1<<i<n, are C=-functions on a domain D of C'=C¥z1, ...,

n
z1) whick contains the origin. Assume that Y |pP\2 are strictly pluri-
i=1
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subharmonic at the origin. Then there exists a neighborhood U of 0
K

in D such that the function ¥=|f12¢ 3 oV +f P2 is plurisubharmonic
=1

(resp. strictly plurisubharmonic) on U (resp. on U—{f=0}) if we take

v sufficiently large, where k is a positive integer.

Proof. First in general, let g1, ..., g¢ be holomorphic functions
£

defined at the origin of C% and set G= X |gyl2. Then G is obviously
=1

plurisubharmonic in a certain neighborhood of the origin. Let Z(G)o
be the hessian of G with respect to the coordinate system (z;) at the origin.
Then it is easy to see that the number s of positive eigenvalues of 7 (G)o
equals to the dimension 7 of the natural image of the set {g;—gi(0)}
in m2/m?2, where 7 is the maximal ideal at the origin. In fact note that
H(G)o=H(G")o, where G'zé} lgil? and gi;=g; mod m2. In particular
for any nonvanishing holom(;;pl)hic function %, 4G has the same number
of positive eigenvalues as that of G.

Now our function ¥ can be expanded in the form;
a -
Y=|f|2k igl QPR [ F12E{ fro" 20"+ f120""}

where ¢’ and ¢'"" are €' functions, and @'’ denotes the complex conjugate
of ¢"'. Here the first term is clearly plurisubharmonic on D and strictly
plurisubharmonic on U—{f=0} for some neighborhood U of the origin
by the above remark. To get the same conclusion about ¥, recall from
the elementary matrix theory that an hermitian matrix is positive definite
(resp. positive semidefinite) if and only if all its principal minors are
positive (resp. non-negative). Now define a map u: DC CHi(wy, ...,
wi) by (21, ..., 21 )=>(21, ..., 21, f(2)), and let D’ be the biholomorphic
image of D by n. Let A be the zero of f and u(4)=A’. Then 4" is de-
find on D’ by the equation w41|0'=0. Further let (" (resp. ¢?) be
the holomorphic (resp. C=-) extension of @{-u~l (resp. ¢®-u~1) onto
some neighborhood U’ of the origin of C1. But since 2’ is nonsin-

n
gular, we can take ¢’ such that 33 |{P’2 is strictly plurisubharmonic on
i=1

M
U’'. Now put ’P':!le[ZkZ!go%l”—{—w'zﬂ e2’2.  This is clearly the
i=1

extension of ¥-u™! onto U’. It suffices to prove that this ¥’ is pluri-
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subharmonic (resp. strictly plurisubharmonic) on a small neighborhood
U"” of O (resp. on U'"—A"). Let 4 be any principal minor of the hessian
of Y,=lwis1/2¥ i 1’12 and 4" be that of W' —¥(;, corresponding to
4. We see A>i6 on U'—A’ by the above remark. We show that
A=A4" if |wi4q] is sufficiently small and strict inequality holds if w;11540.
In fact this follows from the Lojasiewicz inequality [20], but here we
prove this, by using the real monoidal transformation according to
Hironaka. Let wj;1=w1-+vY—1ws, where w; and ws are the real and
imaginary parts of w1 respectively. And let 4= 3 a;,;,wi1wh(resp. 4'=
Y a;,, wh wh) be the taylor series expansion (resp. the expansion to
sufficiently high order) with respect to w; and wa. Define a real analytic
submanifold M of C?+1x PYR) by the equation niwg=mngwi, where
PL(R) is the real projective line and {39 : 1) is the real homogeneous
coordinate of PI(R). Let p be induced by the projection to the first factor
and B=p Y w;:1=0). C1x PLYR) is covered by two open subsets ¥;
= {n==0} ,Wy=C'"1 X R(ni/n;) j#i. Set My=W; VM. Then M;=C'
X R¥(wqimjling) ji and B is a real hypersurface defined by w;=0 in
M ;. Here the isomorphisms are all real analytic. Now set D=p~1(D)
and plD=pp. Take an arbitrary point 2 on p~1(0). We may assume
that P=M;. Then p*(d) and p*(4’) are written in the form p*(d)=
wf A1 and p*(d)=wh 4y respectively, where 41(P)>0 and 4s/B#0
because p*(4’) does not vanish outside B. But the above exponent &
can be made arbitrarily large if we take v large enough. From this and
the properness of the map p we infer readily that if we take v suffic-
iently large, then on a suitable neighborhood & of p~1(0) in M we have
p*(d)=p*(4") and the strict inequality holds on &—AZN . But this in
turn gives the desired inequalities on a suitable neighborhood U7 of the
origin of C*1. Hence we see that 4=4" on U; and 4>4" on Ui—
UinNA4'. Since 4 was arbitrary, the lemma holds for sufficiently large
v. Q.E.D.

Remark. For the assertion i) of Lemma 4, the fact that 4 is an
effective Cartier divisor is irrelevant. A may be any weakly l-complete

subspace. A similar problem was considered in [8, Prop. 8.1] when 4



DLOWING DOWN OF ANALYTIC SPACES 491

is projective.

Proof of Lemma 5. Let fi....,fn be elements of H9(A4, O ,4) which
defines a proper morphism #: 4—CV of A into a complex n-space GV
such that Ag={re 4; g, fi(x)2<d} for any /= R. Now fix an arbitrary
c=R* and taked= R Slll_cil that #>2¢. Then as in the proof of the theorem
there exists a neighborhood Uy of A4 in X on which we can find holo-
morphic functions Fi. ..., fa such that fil4,=fil4,. On the other hand,
by Lemma 4, there exists a neighborhood V of 44 in X on which we can
find a plurisubharmonic function ¥1 which is strictly psh. on V'— 17 N 4q.
Moreover by the proof of the lemma we may assume that 'I’l(x) 0, z& V,
if and only if x& 4. Now put W=V Uy and ¥a= Z Ile2 We shall
show that for any &'<{d the subset W, 4 of W defined by Wea={x& W,
Yi<e and Wo<<d'} is relatively compact in W, if we take e sufficiently
small. Assume the contrary. Then there exists a sequence {en}n=1,2...
of positive reals which tends to 0 and there associated for each ¢4 a sequence
{xG"} 4=1,9... of points of W, such that Wo(x")<d' and ¥i(2{")<e,
for every a and that x\” tends to the boundary of W in X if a—>co.
Take the diagonal sequence {x},”’}. Since we may assume that W is re-
latively compact in .Y, we can choose a subsequence from {x{} which
converges to a point xp on 9, the boundary of W in X. Then by the
choice of {x%}, Wi(x0)=0 and hence xo=A4. Moreover ¥a(xp)<d .
Thus x¢ is the interior point of W, contradicting the assumption.

Now let W{=2¢/e ¥, and Y=Y+ ¥,, where ¢ is chosen for d'=
2¢. Then the subset We={¥(x)<c} of W is relatively compact and
Wen A=A, From this we see readilv that W, is weakly l-complete
with an exhaustion function ¥ (with upper bound ¢). Further if we take
e small, then W, is arbitrarily small. This completes the proof of the
Lemma.

We can also prove the Theorem using Lemmas 4 and 5, by a modi-

fication of the method of Grauert [6]. In fact we can prove

Lemma 7. Swuppose X is a weakly 1-complete complex space with
an exhaustion function ¥, and A is an effective Cartier divisor on X.

Let L=[A] be the corresponding line bundle. Now assume that L* is
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positive on X, and let xo be a point on 80X, for some cER such that ¥
is strictly plurisubharmonic at xy and xoE A. Then there exist a holo-

morphic function g on X¢ such that xlirr; g(xpn)=00.
n—Zo
rzneXe

Proof. By [7, Satz 1.4], there exist a neighborhood U of xp in X
and an effective cartier divisor B’ of U which is stein, and such that B’
NX.=A{x0}. Take ¢'’>c sufficiently near to ¢ so that B=B'1 X is the
analytic subset of X, and that A N B=¢. Put F=[B] the corresponding

line bundle and consider the exact sequence
0—> O(L*®") — O(L*®" R F) —> Op(F) —> 0
From this, we obtain a cohomology exact sequence

0
— HY Xy, O(L*®*"QF ) —> HY(B, Op(F)
— HY( X, O(L¥®")) —> .

If we take m sufficiently large, then by the vanishing theorem N’ we have
HY Xy, O(L*®")=0, and hence the map p is surjective. Since B is
stein, we can find an element s& A% B, Og(F)) such that sg540. Let
5 be an element of (X, O(L*®*"QF)) which lifts s. By virtue of the
natural isomorphism O(L*®")=JY7, 5 can be regarded as an element
3 of HY( Xy, O(FYQRQIY). Then clearly, this ¥ gives a meromorphic
function ¢’ on X which has a pole on B and is holomorphic outside B.
But since B N Xe=1{x0}, g=g'| X, is the desired function. Q.E.D.

As a Corollary we have

Corollary. Swuppose X and A are as in Theorem 1, cxcept that we
replace the condition 1) by the following weaker condition 1).

1Y X s weakly 1-complete.
Then for any ce= R there exists a relatively compact meighborhood W,
of A¢ tn X such that for every point xo=0W,—0olV,N A there exists an
element gos= HO(We, Ow,) suck that lim gy (x)=oo.

ZT-%o

zreWe
If we further assume that 4 is holomorphically convex, then we can
find also for the point x1 on dW,(1 4 an element gz, with the similar
property. Thus under the assumptions of Theorem 1, we can find for any

¢= R, a holomorphically convex neighborhood U, of 4, in X such that
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Ue.N A=A, and that 3¥, a plurisubharmonic function on U, which is
strictly plurisubharmonic on U,—A,. Let f¢: Us~>U, be the Remmert
quotient of U,. Then f, is isomorphic outside A4.. In fact, if dim
Fe(»)>0 for some y= Up—fo(4,), then ¥ must be constant on fgt
(¥), and this contradicts with the fact that ¥ is strictly plurisubharmonic
on Us—A, {(cf. [26, Lemma 3.2]). But then since the fibre of f; is
connected and £, Ope=0qy¢, f¢ is isomorphic outside 4,. This will prove
the theorem.

An example of the pair X and A satisfying the conditions 1)’, 2), 3)
but not 1), was constructed in [5].

In the following remark, we shall discuss the case that 4 X is not

a cartier divisor in Theorem 1.

Remark 1. Suppose 4 is a subspace of a complex space X, which
is holomorphically convex. Perform a monoidal transformation o: X—>X
with center 4 and put A=0"1(4). Then 4 is an effective cartier divisor
on X. In this situation if the pair (X, 4) satisfies the conditions 1)-3)
of Theorem 1 and if X is normal, then the conclusion of the theorem
holds also for the pair (X, 4), namely, for any c= R there exists a neighbor-
hood U, of A¢in X which admits a proper morphism /4: U,—~C™ into some
number space C™, which is isomorphic outside 4,. In fact, first we apply
the Theorem to the pair (X, 4) to obtain for any ¢= R a neighborhood
Ue of Apin X and a finite number of elements fi, ..., fac H%Te, Ope)
such that the map F: ,~C™ defined by them is proper and isomorphic
outside A,. Here we may take A, and A, so as to A,=0"1(A4,). Now
the normality of X implies 0,(05)=0Ox and hence the natural inclusion
HYU;, Ox)cHYU,, Of), Us=0(U,), is an isomorphism. Thus we
may consider #; as elements of Z9U,, Ox), (which will then be denoted
by fi), and the map F factors through o] Ue: U—~U, and F: U,~C?,
where F is defined by f;. These U, and F are the desired ones.

But unfortunately I could find no nice conditions for the pair (X,

A) to satisfy the requirements of the Theorem, for instance, in terms of the
normal cone Cx, 4=Specan (©IM/IM1) of 4 in X [16, IT]. (But c.f. §3).
m=0

Here we only note the following fact in this connection; there exists a
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proper morphism oo: Cg, ;=N ;,3=[A] s—C x,.4, which is isomorphic to
the monoidal transformation with center the vertex (=4) of the cone Cx, 4
(cf.[9,1(8.7.7)]). Letz: ACGCx, 4 be the inclusion of 4 as the vertex
of Cx,4and p: Cx, 4—A the natural projection. Consider for example
the following condition (*) for the normal cone Cx, 4;

(*) there exists a strictly plurisubharmonic function ¥ on Cx, 4—2(A)
such that p|C%, ,: C%, ,—A is proper, where C%, ={P=Cy, 4; P(P)<d}.
Then by the above remark, Cx, 4 satisfies the condition (*)if and only if
Cz, g satisfies the corresponding one, (if X is normal). If 4 is compact,
then it is well-known that, (*) for Cg ;=N 7,5 is equivalent to the fact
that the line bundle NV*;, 5 is positive in the sense of Definition 1 [7], [9],
and hence in particular (*) for Cx, 4 implies the condition (2) of Theorem
1. Thus we get the following result corresponding to Satz 3.8 of [7];
Suppose X and A4 are as above. If 4 is compact and Cx, 4 satisfies the
condition (*), then 4 is exceptional in X in the sense of [7]. But I don’t
know whether the analogous fact holds or not, if we assume only that A4

is holomorphically convex.

§3. Globalization

Now we come back to the original problem of finding the sufficient
condition for the blowing-down as stated in the introduction.
3.1. Suppose X, 4, and f: A—>A' are as in the introduction. First

we introduce a coherent analytic subsheaf S=Sx, 4, of Ox as follows;

Sz:=0x ¢ if xe£A, and

@ =) O.x,y), with y=f(x), if xE4,

where 7: Ox,s—>0 4,4 is the restriction map and /(04 ) is the image of
F*(Ou) in O4. By definition, we have the exact sequence of O x-modules

0—>S— O0x —> O 4/f YO 4)—> 0.

Thus S is coherent. The motivation for this is

Proposition 1. Assume that a blowing-down (X', f') of X along f
exists. Then there exists a blowing-down (X, f) of X along f satisfying
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the following equivalent conditions,

1) For any blowing down (X", f'") of X along f, there exists a unique
morphism h: X—>X"" such that h-f=F".

2)  The relation f4(Sx,4,1)=0x% holds.
Hence in particular (X, f) is unique except for isomorphisms. We call
this (X, 7), the universal (or Remmert) blowing down of X along /. But
we do not prove this proposition here, because the method of the proof
is essentially contained in the proof of the next Theorem. Now we show

the following theorem by patching together the local blowing downs
obtained in Theorem 1.

Theorem 2. Swuppose X is a complex space, A an effective cartier
divisor on X and f: A—A' a proper surjective morphism of A onto another
complex space A'. Let L=[A] be the corresponding line bundle and

La=L\4, the restriction on A. Now assume the following conditions;
1y L% is f-ample [10].
2) R (L*¥¥)=0 for every pu>0.

Then there exists a blowing down (X', ') of X along f such that fiSx, a4,
= @X’ .

Remark. We say that a line bundle 7 on 4 is f-positive, if for any
point @' A’ there exists a neighborhood Uy of ¢’ in A’ such that # is
positive on f1(Uy) in the sense of Definition 1. Then as follows from

Lemma 3, (1) is equivalent to saying that L% is f-positive.

Proof. Let a’e A’ be any point, U'=U"4 a stein neighborhood of
@ in A', and U=f"1(U’). But in the following, we replace U’ by a
smaller neighborhood, if necessary, without a particular mention of it.
Taking U’ sufficiently small, we may assume that L% is positive on U
by virtue of the above Remark. On the other hand, by the Leray spectral
sequence for the map fly: U—U’ and by the condition 2), we have
HYU, O(L*"))=0 for any u>0. Now let I/ be the open neighborhood
of U in X such that VN A=U. Then the pair of the complex space I

and the subspace U of I/ satisfies all the conditions of Theorem 1, since
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U clearly is holomorphically convex. Hence by (the proof of) that theorem
we get the following situation; there exists a neighborhood W of U in V,
and a finite number of elements fi, ..., fu of HOW, Ow) such that
1) they define a proper holomorphic map 7: W—D.={(g)cC";
lzg|<e} 2) 7|W—U is isomorphic, and 3) 7|y coincides with fo=Ffly.
Thus we have the following commutative diagram which means the

blowing down of W along f;

U“——w

@ lfu i \

U’L;r—»W'Q————>D

where W’ is the analytic subset of D which is the image of ¥ and j is the
closed imbedding, the existence of which is assured by 3) above.

Note that by 3) above, f; actually are the elements of Z%(W, S), S
being defined by (1). Now by the Grauert direct image theorem, the
sheaf 7,(S) is a coherent Op-module, and then by Theorem A, (if we re-
place U by a relatively compact subdomain,) we can find a finite number
of elements s1, ..., sg of AW, §S) in such a way that s;(@)=0 if f(a)=
@', and 74(s;) generate 7,(S) at every point of D. Then if we take &

sufficiently small, a map 71 defined by
T1=T X(Sl, cny .Y]c): W —> D1=D X D', Dl——:{(Zi)E Ck; lzs)<<e'},

is proper (replacing U by a smaller one). Further, by the definition of
&S we still have 71ly=#, and have the inclusion 71: UC W1, where W3

is the image of W by the map 71. We have the commutative diagram:

U——Ww

where p1 is the projection to the first factor, and it is easily seen that pilw,
induces a homeomorphism of the underlying topological space of W’

and W{. From this, we conclude readily that 71,(S) is (coherent and)
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generated by T1,(sx) at each point of D;1. This means in particular that
every elements s of HO(W, S) can be written as a pull back of the con-
vergent power series of (z;) defined on D;. Hence we have 714(S)=0p,.
For these arguments see [27]. Therefore, we may assume from the
beginning that 7,(S)=0w in (2), replacing 7 by 71. Now take and fix
for every point ¢’ A4’ a diagram as in (2). We put a suffix ¢’ for the
corresponding letters, e.g. W'y, 1o/, etc.

Suppose Uq N Uay ¢ for a17a5 and define a map 7y,: Tlli(TV,;i N Pl/&’z)
—7ay (Way N W) by T]_z:Taz'TEi. Put Wi=W, , i=1,2, Wis, =WiN
Wy and mi=rq, ~ Then since the map ; and =, give topologically equi-
valent fiberings on Wiy, 75 is well-defined and induces a homeomorphism
of the underlying topological spaces. Further, since @W'z v =724(S)pr=
HO>r51(8"), S)=HO=1Y6), S)=71:(S)p= @W’l, p if 7,9(6)=24", we have
natural isomorphisms g,y : @W'z,b,%@w'l,b. Let 7io={rlo,p»’}- Then
it is easy to see that the morphism of ringed spaces (7, 7*): (r1(W{y), @W'l)
—(19(W1y), @W'z) gives an isomorphism of the analytic spaces. Moreover
since if Wa'l n T/V,;,:2 N 1'/17,;;;3 ¢, then we have 793'712=713, we conclude that
W'= U W, with the identification by 744, defines a well-defined

compllze,)EcAslpace and lea,EUA,Ta,'Z szgAlWa/—> W' a morphism of complex
spaces. We have naturally an inclusion 4’C, W’. Finally we set X=(X
—AYU W', where X—A and W'—A" are identified by the isomorphisms
Ta: Wo—Wao N A=W4s — Wy NA', and set f=7" on W and =identity
on X—A. Then itis immediately seen that /: X—.X" is welldefined and
gives the blowing down of X along f. The relation fi Sx, 4, r=0x

follows from construction. Q.E.D.

Colollary. Swuppose X is a reduced complex space, A, X a subspace
which is nowhere dense in X, and f: A—A' a proper surjective morphisnmi,
where A’ is another complex space. Let Cx, 4 be the normal cone of A
in X (see Remark 1), and i: AC Cx, 4 the natural inclission as a vertex.
Now assume that

1) Cx,4 can be blown down along f, and

2) R f (It Iet)=0 for every u>0, where I is the ideal sheaf
of A.
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Then, there exists a blowing down (X', f') of X along f with the
property that fiS=0x.

Proof. Let o: X—>X be the blowing up with center 4 and 4=
071(4). Then by Remark 1 we have a bimeromorphic morphism op:
C%,7—Cx, 4 which is isomorphic to the blowing up with center AG Cx, 4.
Here Cg, ; now coincides with the normal bundle NV ;,3 of 4 in X, and
the inclusion 7: ACCy, 5 is as the O-section. We set E=Cg ;7. Let
fi=foid, and h: Cx ,—>Ck, , the universal blowing down of Cyx 4
with respect to £, so that }Z*SCX,A'A’fZ@C/X,A (c.f. Prop. 1). Then /4
= /-0 gives the blowing down of Z along f1. Let p: E—A (resp. p: Cx, 4
—A) be the structure morphism. Then, since (f+2)"10 =104, (f
#)710 4 is contained in the sheaf S¢

X, A
(continuous) map p'=fp-,~1: C% 4—>A" is holomorphic. Hence we have

4,7 Hence we infer that the

the commutative diagram

But then, by [17, Satz 5.5], there exists for any point ¢’ A’ a neighbor-
hood Up of @’ in A’ and an open set W in (f1-p)"1(Up)C £, such that i)
(Y Up)C W, and ii) plw: W—f"L(U) is 1-convex (see Def. 1.1 of [17]).
Then by [17, Theorem 6.4], the dual E*—>A4 is fi-ample. Take now a
sufficiently small stein open subset U C A4, which is yet to be determined
in the sequel. Let V=fYU). Then by 2) AUV, ¥/ J¢#+1)=0 and

hence
3 HOV, Ox| Ity — HO(V, Ox]I#) —> 0

is exact for every u>0. On the other hand, let szl‘l(U). We may
assume that E* is positive on 7. Then, by the fi-ampleness of E*,
there exists a positive integer #0>0 such that YV, E¥®¥"=HYV, 4™
=0 and hence Z(V, 03/ J™+1) 25 FO(V, O3/ 4™) is surjective for every
m>myg, where J=0"1(J) is the ideal sheaf of 4 in X. Now let g be any
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element of %V, fi1Oy)=HV, f10y). Then by (3) we can extend
this to an element g1 of AV, Ox/Im+)). Let g'c HU(V, Ox|gm+1)
be the pull-back of g1. Then by the surjectivity of am, for every v>
my there exists an element g,& %V, O/ 4*+1) which extends g’.

Now define an analytic subsheaf & of O3 by &'=S%, 7,7,N 0 (Ox)
=0"1(Sx, 4, ), where Sy, 1,7, and Sx, 4, s are defined by (1). Then exactly
as in the proof of the Theorem we construct a diagram (2) for which
7.(SV=0w this time, and then patching together these W,/ and 7g,
defined for each & as in the proof of the theorem, we get the blowing down
(X', f1) of X along f; for which f{+S'=C0x. But then, since o is surjective,
we see that the map f'=f{ o071 is well-defined and continuous as a map of
the underlying topological spaces. Moreover, that this /' is induced by
the morphism of analytic spaces follows easily from ;" Ox)=0"(Sx, 4,9)-
Hence (X', f') is the desired blowing down. Q.E.D.

Remark 2. Suppose X, A4, and f: A—A' are as in the corollary.
We assume, however, only the condition 2) of the corollary. Let 4 be
the coherent sheaf of ideals of Ox whose support coincides with Ayeq,
and which is contained in J=J,4. Let B be the subspace of X corres-
ponding to 4. Then by (2), as in the proof of the corollary there exists
a proper surjective morphism fp: B—~A’ which extends /. With this
remark in mind, the following three conditions are equivalent.

1) X can be blown down along f.

2) There exists coherent ideal sheaf 4’ of Oy such thatif o: X-x
is the blowing up of X with center ’, then the sheaf J' QO is (fz0lz)-
ample, where J'=f"1(4") and B’ is the subspace of X defined by J’.

3) There exists a coherent ideal sheaf J<=Ox with support Areq
and 4 < as above with the following property; let 5 be the subspace of
X defined by 4. Then the normal cone Cx,3 of B in X can be blown

down along fg: B—A’ for some fp as above.

Proof. 1)—=2). Let f': X—X' be the blowing down of X along
/. By Chow lemma [12] there exists a coherent sheaf of ideals g of Ox-
with support Ayeq=Ff(A)req such that if /1 X—>X" is the blowing up of



500 AxIrRA FUJIKI

X' with center Jp, then we have a proper surjective morphism /%: X—X
such that /=f#"-4. Then by [14, Lemma 4], % is the blowing up of X with
center J=(f"Y"YJo). Since (F)UJo)=~A"1Y) is f-(very) ample (c.f.
§ 1bY), this implies 2).

2)—3). We put =4’ and let B be the subspace defined by 4
and B=0"1(B). Then by Remark 1 we have a bimeromorphic morphism
oo: C%,3—>Cx, p, isomorphic to the blowing up of Cx, g with center the
vertex (=58) of Cx,p. But since Cz 5 coincides with normal bundle
Nz, 3 of Bin Xand O(N*3,5)=95R0, [Blg=N"*3% is f5(o0l3)-ample.
Moreover because of the structure morphism ¢: C% 5—B and the 0-section
i1 B—~>Cg g of e, the arguments similar to the above Corollary shows that
we have a blowing-down o1: Cy 5—>C’3,5 of Cg 5 along fpool5: B—~A
such that o1 factors through o1: Cz, 5 = CX,BE C’'s,5. Then the pair
(C'%,5, 012) is seen to be the desired blowing down.

That 3)—1) is the above Corollary. It may be interesting to give the

proof of 1)-2) not using Chow lemma.

Remark 3. It is easy to generalize the corollary to the following
relative situation. Suppose X, 4 and f: A—>A’ are as in the corollary
and S a complex space. Assume that X, 4’ are complex spaces over S
and f is an S-morphism, where 4 has the natural structure of a complex
space over S. Then the blowing down (X', ') obtained in the corollary
has the additional property that X’ is a complex space over S and f is
an S-morphism. In fact, itis easily seen that mx=mx(f")~1 is a continuous
map, where mx is the structure morphism. On the other hand, we have
a2 Os)=(ma f) U Os)=F10.), 735 (Os)CSx, 4,7 and hence filmz'
Os)E  f+S=0Ox/. From this we conclude that mx is a morphism of
complex spaces. In this case we say that X can be blown down along
f over S.

In [4], it is shown that every small deformation of a monoidal transfor-
mation is again a monoidal transformation. As an easy application of
Theorem 2 together with Remark 3 above, we show the following

Proposition which generalizes this result.
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Proposition 2. Let S be a complex space, X, A’ complex spaces over
S, A an effective cartier divisor on X, and f: A—A" a proper surjective
and flat S-morphism, where A has the natural structure of an S-space
by mxlg, wx being the structure morphism of X. Set L=[A], the line
bundle corresponding to A. Let so=S be a point and denote by Xg (vesp.
Ay, Ag) the fiber over sy of X (resp. A, A"). Now assume the following
conditions,

1) the restriction La, of L onto Ao is fo-ample, where fo=f|a,.

2) R (O(L%5)=0 for every u>0.
Then, we can find a neighborhood U’ of Ay in A’ with the property that,
if we set U=fF"YU"), then there exists a neighborhood W of U in X with
WNA=U, such that W can be blown down along fly over S.

Progf. First we show that for any point a’'=4;, there exists a
neighborhood U, of @’ in A" with the following properties; (*) if we set
Uw=F1Upg), then 1) o [’IUW is flUW—ample, and 2) Rl(flyw,)*@(L*®”)
=0 for every u>0 on U'g. As for 1) 4 it is the direct consequence of
(10, VIII, Théorém 2.1], since L!s—1 (g, is ample and £ is flat. If A is
a point, 2) also is well-known [10, VIII, Corollaire 1.4]. But Banica
[2] proved the Grothendieck comparison theorem in the category of

analytic spaces. Hence in our case we have the natural isomorphism

lim RY (L3R = RY L")
k
where J is the ideal sheaf of 4y in 4, L*¥Pl=L*P"|IoL*P"  and the right
hand side is the J-adic completion of R L*P". Then the proof of (2)
can be carried through exactly as in the one point case. Thus we get (*).
Next, put U'=U U and U=f"YU"). Then the property 1) and 2)
holds if we repla?:e Ua by U, for, the properties are local with respect to
A’. Then we apply Theorem 2 to UG W and fly: U—U’, with W a
certain neighborhood of U in X such that W N .4= U, and obtain a blowing
down (W', ) of W along flir which may be considered to be over S by
Remark 3. Q.E.D.

3.2. 1In this section we shall give examples which show that, in
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general the condition 2) of both Theorem 2 and Proposition 2 cannot be
dropped. Before stating these, however, we stop to write down an ex-

plicit form of Theorem 2 (or Corollary) in certain simple cases.

Theorem 2'. Let X be a complex manifold, A a submanifold of
X, and f: A—A'" a fiber bundle over a complex manifold A' with the
typical fiber F whick is commected. Assume that

1)  the restriction N 4,x\p of the normal bundle of A in X to ecach
fiber F is weakly negative in the sense of Grauert 1), (or equivalently, the
dual N x| is ample).

2) HWF, N¥R =0 for every p>0, where N¥[3 is the n-th
symmetric product of N7, x.

Then there exists a umique (except for isomorphisms) normal com-
plex space X' and a proper surjective morphism f': X—X' such that
(X', [ is the blowing down of X along f.

Proof. 1t follows from 2) that RYAN%/2=0 for u>0 and hence
2) implies the condition 2) of the corollary, since J%/ 95 =N*/2 as O 4-
modules. So we shall see that 1) implies the condition 1) of the corollary.
Since Cx, 4= 4,x in this case, we have to show that V4, x can be blowing
down along f. Let o: N 4,x—N 4, x be the blowing up with center 4,
the O-section of N, x, and A=0"1(A4). Then N ;,3=N;, 5 is (weakly)
negative, and hence the dual N*;3 is ample on each fiber of f1i=F0dl4
(c.f. Remark 1). Then N*; % is fi-ample, since f1 is smooth. Then the
rest of the proof is the same as in that of Corollary to Theorem 2.
Since in this case, the sheaf Sx, 4, r defined by (1) coincides with Oy, the
universal blowing-down (X', ) of X along f is normal. This proves
Theorem 2'.

By the vanishing theorem of Kodaira we have

Corollary. Let X, A, and f: A—A" be as in Theorem 2'. Assume
Jurther that A is of codimension 1 in X. If both N xlp and N4, xir
QK 7 is negative (in any sense), then the conclusion of Theovem 2' holds,
where K g is the canonical bundle of F.

Hence in particular, if Kz is semi-negative (Def. 1), it suffices to
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assume only the negativity of V 4, x|r to get the blowing-down.
Typical examples of such # are projective space, abelian varieties,
etc.
The above Theorem and Corollary can of course be formulated as well
under the weaker assumption that f is a smooth morphism (see [3]).
Now we proceed to give examples stated in the beginning of this

section. Namely, we prove

Proposition 3. Let F be a (connected) nonsingular projective variety
and w: E—F a vector bundle over F. Assume the following conditions,

1) E is weakly negative, and

2)  there exists an integer u>0 for whick

HY(F, EX#)£0.

Then there exists a complex manifold X, a submanifold A of X and a
Jober bundle f: A—A" over a complex manifold A’ with typical fiber F
with the following propertiecs;

@) Naxlr=E, and

B) X can never be blown down along f.

Proof. We only deal with the case that £ is a line bundle. The
general case can then be treated roughly as follows; first let o: Z—Z be
the blowing up with center the O-section Fy of £ and let F():o—l(Fo).
Apply the result for line bundles to the pair (%o, V ,, 5) to obtain manifolds
X, A, and f: A—A" as in the Proposition.  Then it is easy to see that
f factors as f=fof1, f1: A—A and fo: A—A’, where fi (resp. f2) is the
fiber bundle with typical fiber P? (resp. 7). Then we blow down X
along f1 to a complex manifold X. This X with fa: 4A—A4" is seen to
have the desired properties.

Now let £ be a line bundle over /. We denote £ by ¥ when we
consider the bundle space of £ as a complex manifold. Then we have

a natural isomorphism

HYY, Oy)= @ HYF, E*®,
v=(0
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where the right hand side is actually a finite sum, since £* is ample. Let
&'e HI(F, E*®") be a non-zero element and let ¢ H1(Y, Oy) be the
element corresponding to ¢ by the above isomorphism. Let w: X—V
be the affine bundle corresponding to £. Let Fp be the O-section of
Y—F. Then X is trivial as an affine bundle on every u'-th neighborhood
of Fyif p'<<u. To see more explicitly, let {U,} be a finite stein covering
of F such that £ is defined by the system of transition functions {fas}
with respect to {U,}. Then ¢ is represented by a cocycle {f;ﬁ} with
respect to this covering. Then £ is represented in turn by the cocycle
{§aﬂ:£ﬁ§;ﬂ} with respect to the covering V=A{V,=r"YU,)=U, xXC}
of ¥, where {, is the fiber coordinate of £—/#. Then X is a manifold
defined as the union X= %J(VQXC), where (P, {a), 12)E VaXC and
(P, Lp), mp)= VX C are identified if and only if

@) { Na=ng+Eapll

La=/apls;

7 being defined by (2, {a), ma)—>(P, {») on each V,XCT=z"1V,).
Define A4 to be m1(Fp). Since {,=0 is the local equation of Fp on each
Va, by (4) we infer that A=FXC. Let f: A—C be the map induced
by the projection to the second factor by this isomorphism. Since 4 is
defined by {,=0o0n V,X C, we have N4, x|p=£F. Thisis a). It remains
to show that X can never be blown down along f. Assume there exists

a blowing down;

X X’
A 7 A'=C.

Let o: ¥Y— V' be the normal contraction of the O-section. Then we may
take (X', f') in such a way that 3#': X'V’ with #'f'=ocw. Indeed,
we have only to take X’ to be normal. Now take a point P A'C X’
and let S” be a closed subspace of codimension 1 in (#")~}(V") such that
S'"NA'={P}, where V is a small neighborhood of o(/g). Let S be the
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proper transform of S’ in X. Then taking V' sufficiently small we may
assume that .S contains no fibers of = (c.f. [16, I]). Suppose S intersects
with each fiber Xy, y= V, at n points counting with multiplicities (the
number 7 is independent of »), and Siy, ..., Su,y, be those points over

. . . s cits
y. Then by taking the arithmetic mean Sty Asmy
7

has the meaning since .Y is an affine bundle (see [7]), we have a section

S over IV of the nontrivial affine bundle X. This contradicts the fact that

of s4,y, which

£'5£0.  In fact, using this section we can easily get the coboundary relation

for £'. Q.E.D.

This provides a counterexample to the conjecture of [21], where it
is said that the condition 1) will be sufficient to get the blowing-down in
Theorem 2.

On the other hand, it also furnishes an example of a complex space
Z which is not holomorphically convex, but whose reduction Zyeq is
holomorphically convex (c.f. [28]). Indeed, we define Z to be a complex
space (4,0 x/J#+L), where the notations are as in the previous Proposition.
Then Zreg=A=FxC is clearly holomorphically convex. But if Z is
holomorphically convex and 7: Z—Z' is the Remmert quotient of Z,
then Zfeq=C and 7,44 is isomorphic to pa, the projection to the second
factor. Then by the same argument as above we can get a contradiction.
Finally, using the example of Proposition 3, we construct an example
which shows that the conclusion of Proposition 3 does not continue to be
true if the condition 2) is omitted. Hence, roughly, a deformation of a

blowing-down is in general not a blowing-down.

Example. We use the notations of Proposition 3. Define X3, ¢t= C,
to be affine bundles over ¥ defined by

((Na="ng+2Latup
l gazfaﬁc‘@
Then X= | X; forms a family of affine bundles over ¥ parametrized
tec
by S=C. We see easily that Xo=V X C and X=X if #540. Let
mg: Xt—Y be the projection and put A;=n;1(#p). Then we have the
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natural S-morphism f: A=Ud4;—~>A'=CxS. Since f|Ap coincides
with the projection to the first factor and N 4, x,7=E, we have RY,
N*% #0, though N4, x, is negative. Now it is readily seen that
the existence of a blowing down of X along f would lead to a contradiction
with the non-existence of a blowing down of Xy along fo. Hence this

(X, 4, f, S) is proved to be our example.
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