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On the Blowing Down of Analytic Spaces

By

Akira FujlKl

Introduction

Let X be a complex space and A be a subspace of X. Suppose there

exists a proper surjective morphism/: A-+A', where A' is another complex

space. We say that X can be blown down along /, if the following con-

ditions are satisfied; there exists a complex space X' containing A' as a

subspace, and a proper surjective morphism /': X—*X' such that i)

f'(A)=Af and f\A coincides with/, and ii) / gives an isomorphism of

X—A and X'—A'. In this case we say that (-<¥"',/') is the blowing down of

X along/. Now given a triple (X, A,/} as above, the problem of finding

conditions for blowing down X along / has been investigated by many

people from various points of view [1] [3] [7] [8] [13] [17] [18] [19] [21]

[22] [23] [26].

In this paper we give one sufficient condition for blowing down X

under the assumption that A is an effective Cartier divisor on X (Theorem

2). This theorem has been proved by Artin [1] in the category of algebraic

spaces. But our method here is a direct generalization of that of [23],

and uses a cohomology vanishing theorem for weakly 1-complete complex

spaces, which generalizes a similar theojem of Nakano [24]. (Theorem

N' in § 1). Then in §2, we treat the local version of the problem and obtain

Theorem 1, the proof of which is the main part of this paper. Next in §3,

we patch together the local blowing downs and obtain a global one. Geo-

metrically, the condition of the theorem says that the normal bundle of

A in X, when restricted to each fiber of/, is sufficiently negative. In §3

we also show by an example that this 'sufficient' negativity condition is
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not superfluous, contrary to a conjecture of Markoe and Rossi [21].

The author expresses his hearty thanks to Professor H. Hironaka

for valuable suggestions and to Professor S. Nakano for constant en-

couragement and for leading him to this subject.

§1. Vanishing Theorem on Weakly 1-Complete Complex Spaces

In this paper complex spaces are not necessarily reduced and have

the countable topology. We refer [14] for the conventions and notations

about complex spaces, for example; if A is a subspace of a complex space

X) then A (^ denotes the ju,-th neighborhood of A in X.

Let V be an analytic subspace of a domain D in some CN . A C°°-

function <p on V is by definition the restriction on V of some C°°-function

<p defined on some neighborhood W of V in D. Let R be reals. Then

a ^-valued £7°°-function <p on V is said to be strictly plurisubharmonic

(resp. plurisubharmonic) on V, if there exists a <p as above so that it is

strictly plurisubharmonic (resp. plurisubharmonic) on W. In this case we

often write briefly as <p is s. psh. (resp. psh.) on V.

Now let X be a complex space and L be a holomorphic line bundle on

X. Suppose L is defined by the system of transition functions {fa{$} with

respect to some open covering U={C/a} of X. A metric on L with

respect to this covering is given by the system of positive C°°-functions

h= {ha} , each defined on Ua, such that hp\ha = \fa^ on Ua f! Up.

Definition 1. A line bundle L on X is said to be positive (resp.

semipositive) if for a suitable choice of {fap} and Vi={Ua} as above,

there exists a metric {ha} with respect to U such that — log ha is strictly

plurisubharmonic (resp. plurisubharmonic) on Ua for every a.

Definition 2 [24]. A complex space X is said to be weakly 1-complete,

if there exists a real valued C°°-function 'Fon X which is plurisubharmonic

and has the property that there exists a ^o^-^ U {°°} such that W defines
a proper C°°-map X— >( — oo? ^0). We call W an exhaustion function of X>

and ^o the upper bound of W.

Hence in particular XC=W~1(( — oo, ^)) is relatively compact in X

But for the given X, exhaustion functions are not unique. Hence
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from now on, when we write Xc for a weakly 1-complete complex space

X, we understand that C<CQ and Xc={x^X\ WQ(X)<C} for a suitable

exhaustion function ^o with the upper bound c§ on X.

The following theorem is proved by Nakano [24].

Theorem N. Suppose X is a weakly \-complete complex manifold,

E is a vector bundle on X, and L is a positive line bundle on X. Then for

every c^ R} there exists a positive integer n$ such that Hl(XCi O(E)§§O

(L®n^(>§O(Fy)=Q for z'2^1, 7? 2^770 and for every semipositive line bundle

F on X.

In fact, this is a direct consequence of Theorem 2 of [24].

On the other hand, this result can be extended to the following more

general situation, using the method of bimeromorphic descent.

Theorem N'1^ Suppose X is a weakly \-complete complex space and

S is a coherent analytic sheaf on X. Let L be a positive line bundle on X.

Then for every c^M., there exists a positive integer HQ such that H\XC}

S^)O(L<^n')0O(F))==0 for i^l, n^n0 and for every semipositive line

bundle F on X.

Before proceeding to the proof we recall some known results and make

preliminary considerations about them.

a) Suppose X is a complex space and F is a subspace of XxPm, the

direct product of X and a complex projective space Pm of dimension m.

Let S be a coherent analytic sheaf on Y. Then by a theorem of Grauert

and Remmert, for any relatively compact subdomain D of X, there exists

a positive integer no=no(S, -D) such that Rlf^(S®pyDP™(ny)=Q on D for

i2^:1 and n^>no, where JR*f* denotes the z'-th direct image of sheaves, p\ is

induced by the projection to the second factor and O(n) is the n-th tensor

product of the fundamental sheaf 0(1) of Pm.

b) [14] Suppose X is a complex space and c5is the coherent sheaf of ideals

on X. Let /: Y—>X be the monoidal transformation with center c5 and

set £=f-i(<3}. Then for every point P^X, there exists a neighborhood

such that/~1(f/) is realized as a closed subspace of UxPm for

1) The author learned the formulation of this theorem and the idea of its proof from Prof.
Hironaka.



476 AKIRA FUJIKI

some projective space Pm, such that/i/~1(t/) is induced by the projection

to the first factor and that g=pzO(l\ where p% and 0(1) are as in a) [14].

Now let c$o be a coherent analytic sheaf on Y and let D be a relatively

compact subdomain of X. Then by virtue of a), Leray spectral sequence

for the map f \f~\D} gives the following; there exists an integer

such that for every H^HQ we have an isomorphism

where LQ is any line bundle on D. Here we note the projection formula

c) Now we write down some exact sequences needed in the sequel. We

use the notations in b) and assume further that X is reduced and A is

nowhere dense in X, where A is the subspace of X corresponding to S.

Let <S be a coherent analytic sheaf on X. Then we have an exact sequence

of 0y-modules

o — > £T0 — * sn®rs-^ rs — > rs®0y\sn — > o,
with some torsion sheaf £To, which is obtained by tensoring/*<5 with the

exact sequence

0 — >^» — +QY — + OYIS« — »0.

Let <SA be the image of j. Then by taking direct images, we get two exact

sequences of 0^-modules

(1) 0— *£Ti— >/*(^W*c5)— >/*c5K— >£T2— >0

(2) o— >/*^<— ̂ A/*^— ̂ £T8— >0

where £Ti, 2^2, and STs are torsion sheaves. In fact, these sheaves have

supports all contained in A. On the other hand, the natural map ao:

cS-^/^/^cS gives the following exact sequence

for some torsion sheaves 3*' and ff7', whose supports are contained in A.

Next assume that S is torsion-free so that £T' vanishes. Let <Ji be the
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sheaf of annihilators of £T", and L' be a line bundle on X. Let (p be a

nonzero section of O(L'}0^JL on an open set U. Then we have the follow-

ing exact sequence

(3) 0 — >£T4 — >f+f*S-^+<S®O(L") — >£T5 — >0

on [7, where a is denned to be the multiplication by (p, and £T4 and 2s

are torsion sheaves.

d) For simplicity we use the following terminology. A sheaf of Ox-

modules S on a complex space X is said to be cohomologically q-trivial,

or simply, to be ̂ -trivial for an integer ^^0, if Hi(X, S) = 0 for i^jq. Then

the following fact is easy to see ; let

0— > Sl — -> cS2— > SB— > £4 — »0

be an exact sequence of sheaves of 0^-modules. Then if Si, S% and £4

are q-trivial, then so is S%.

e) Suppose X is reduced and irreducible and S is a coherent analytic

sheaf on X. Let T\={x^X]<S is not free at x} and T%=the singular

locus of X. Then we set T= Ti\J T%. This is a nowhere dense analytic

subset of X. In this situation we can find a coherent sheaf of ideals JJ of

Ox whose support coincides with T, i.e. Supp(0^/cf)— T, and which has

the following properties ; if we let/: Y->X be the monoidal transformation

with center <3, then i) Y is nonsingular and ii) we have an exact sequence

of CV-modules;

0 — > £T6 — »• /*£— -* CV05) — > 0,

where 3*6 is a torsion part of f*S and E is some vector bundle on Y

[25]. Then tensoring this with an invertible sheaf Sn®f*Ox(L
(gmn}

we Set an exact sequence

(4) 0—> 3e(x) JC-^ /*cS® JC—> Oy(£)® JC—> 0,

where we put J(.=J<,m)n(F}=Sn®f*Ox(L®mn}®OY(F}, and where

J'=/~1(c5), Z (resp. 7^) is a line bundle on JS7" (resp. K), and w^ are integers.

f) We say that a line bundle L on a complex space X is cohomologically

positive on a subdomain D of Jf, if for any coherent analytic sheaf S on JT,
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there exists an integer mo>0 such that H\D,S®O(L®m}}=® for every

and

Lemma 1. Suppose X is a complex space, L is a line bundle on X

and Q is a relatively compact subdomain of X. Then L is cohomologically

positive on Q if and only if it is cohomologically positive on each irreducible

component of Qredj Qred being the underlying reduced sub space of Q.

Proof is quite analogous to that of [11, Proposition 4.1, 4.2], if we note

the following; since Q is relatively compact, we have i) Q has only a finite

number of irreducible components, and ii) there exists an integer w>0

such that '32m=Q on the whole Q, where 37 is the ideal sheaf of Qred-

g) Finally we make the following remark about the behavior of the

weakly-1-completeness under holomorphic maps. Suppose X and Y are

complex spaces and /: Y— >X is a morphism. If X is weakly 1-complete

with an exhaustion function *F, then Y becomes naturally a weakly 1-

complete complex space with an exhaustion function f*W, provided that

for any <:(>£o)5 f~\X^) is relatively compact. In this case we always

take as an exhaustion function of Y the pullback of that of X unless

otherwise stated. In particular any closed subspace T of a weakly

1-complete complex space X is naturally weakly 1-complete.

Now we come to the proof of the theorem.

Proof of Theorem N1 . Let W be an exhaustion function of X with

upper bound c§. (Def. 2.) Fix a real number C>CQ. We denote the

restriction of S on X by <SC- Then the proof is by induction on ^=dim

Supp(cSc), where in general Supp(*) denotes the support of *. Now if s

=0, then the theorem is trivially true. Thus we assume that j>0. First

by Lemma 1 we may assume that X is irreducible and reduced. Next,

since H\Xc, J?(g)cS)=^(SuPp(cSc), J?(g)cS) for any locally free sheaf X

on X, by induction we may take J5fc=Supp(cSc). Moreover we may
assume S is torsion free. For if T(S) denotes the torsion part of <5,

then dim Supp(7Y<S)N)<dim JTc=dim X and S\T(S} is torsion free, so

that by the exact sequence

0 — >T(S) — >S
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and by induction we easily get the assertion.

Now we take/: Y—*X as in e) with respect to the coherent analytic

sheaf <5. Then by h), Y is naturally weakly 1-complete and FC=/~1(JTC).

To apply Theorem N on FC5 we need the following

Lemma 2. For any relatively compact subdomain D of X, there

exists a positive integer m$ such that /(X)/*.£®m is positive on f~\D] for

every m^m®, ivhere J is the Jine bundle corresponding to the invertible

sheaf £.

Admitting the lemma for a while we continue the proof of the theorem.

Take and fix d ̂ R with c§>d~>c. Then by the lemma there exists a

positive integer m§ such that J®f*(L®m} is positive on Yd(=f-i(X&)')

for every m^Lm®. Take and fix such an m for the rest of the proof. Now

by h) Yd is weakly 1-complete. Hence by Theorem N, there exists an

integer m>0 such that O(E}®(gm®f*O(L®mn))®O(F) is 1-trivial on

Yc for every ri^/n\ and for any semipositive line bundle F on Y&. Write

^mtn(F) = Sn®f*O(L^n)®O(F} as in e). Then, since £T6 is torsion in

e) and 36=Supp(26|yrf) is weakly 1-complete by h), by induction we

obtain an integer 722 >0 such that 3^Q§<)<J{m,n(F) is 1-trivial for n^n% and

for any semipositive line bundle F on Y^. Hence by (4) we see im-

meadiately that f*S(x)JCm,n(-F) is 1-trivial on Yc for /&S^max(«i, n%).

Now assume that F has the form F=f*(L®k(&F} for a £^0 and for a

semipositive line bundle F on X&. This is semipositive as it is the pull-

back of a semipositive line bundle on X&. Then by b) we get an integer
^3>0 such that:

(A) f*f*<S®$n®O(L®™n+k®F} is 1-trivial for ^max(?*i5 »2, «s) on

For such an n we consider exact sequences (l)-(3) in c). For (3)

we need

Assertion. Let <Jl be as in c) i.e. the annihilator of £T". Then

there exists an integer ^>0 such that 0(Z®s)(X)cJ! has a nonzero section

*/r on Xc-

Proof. In view of Theorem N, the arguments similar to those in [18]

enable us to get H0(YA, O(J®k®f^L®tk}}^ for a sufficiently large k,
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where t is an integer with t^mQ (c.f. Lemma 3 and [24, §3]). Take a

^0(^0)EE H* ( Y*, 0(/®*®/*£®**)). By the natural isomorphism H*(X&,

f*Jk®O(L®tJc}}~H\Y<i, 0(£®*®/*Z®**)) we may regard ^0 as a section

of O(L®m}®f*$k on Xd. Then since Xc is relatively compact in Xa,

we have by the Nullstellensatz an integer />0 such that ifj=<

(Xc, 0(Z®**)(g)c5*). On the other hand, since Supp (0*M

c^? on X^ for sufficiently large ^, where \A\ denotes the underlying topo-

logical space of A. Thus we may assume i/j(=£fyE^ HQ(XC, O(Z®**)®«J[)

for the ^ above. This completes the proof.

Thus if we put U=XC) L'=L®S, and <p=ifj in the end of c), then we

obtain an exact sequence (3), where XCj Z®s, and i/j are as above.

Then since L®m is positive and £T|, 2 = 1, ..., 5, are torsion sheaves, again

by induction we can find an integer n^>0 such that : (B) %i®O(L®mn®Fi)

is 1-trivial on Xc for every ri^n^ and for any semipositive line bundle

FI on Xd- Now consider the exact sequences (l)'-(3)' obtained by

tensoring the sequences (l)-(3) with O(L®mn+lc®F"). Since L^^F is

obviously semipositive for ^^0, by (A) and (B), the cohomology exact

sequences for (l)'-(3)' together with a remark in d) shows readily that

iS®0(Z«WMI+*+«®/71) is 1-trivial on Xc ffor w^maxw^ and A^O).
l^«^4

Finally we can find an no~>0 such that every n'^no can be written in the

form nr = mn-\-&-\-s for the fixed m and s and for some TzJ^max m and ^^
l^i^4

0. Thus the theorem is proved.

It remains to prove Lemma 2.

Proof of Lemma 2. First we make a general remark concerning a

metric on a line bundle. Given a holomorphic line bundle L on a com-

plex space Xy let $={^o, - •-, <Pt} be a finite set of differentiate sections of

L which is base point free, namely, for any x^X, <Pi(x)=/=§ for some z.

Suppose L is defined by the system of transition functions {fap} with

respect to the covering H={Ua} of X, and <Pt are expressed as a system

of differentiate functions {(pi} a} each defined on Uat such that (ptt a=
t

fap<pt, p °n U a\~] Up. Then if we put ha=\\ S l^ia2, Att are positive

C°°-functions defined on U a and satisfies the relation h^\ha-=\f a^ on

Uar\ Up. Thus these ha gives a metric on L. We use this remark in
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constructing a metric on the line bundle /. Let <Jlx (resp. JLy] be the

sheaf of germs of differentiable functions on X (resp. Y). Since X is

paracompact and D is relatively compact, there exists a finite set $o of

elements of H\X, Jlx®Oxf'*(#(/)) which generates each stalk of Jlx®

/*#(/) on the closure D of D (c.f. [15] ). Then it is easily seen that this

0Q in turn gives a set 0 of elements of 77° (Y, ^Jly®OYO(J}} which are

holomorphic along each fiber of / and which has no base points on f~~l

(D}. Hence by the above remark, we have a metric h on / over f~~\D\

which has the additional property that, when restricted to each fiber of/

it coincides with the restriction of the standard metric of the hyperplane

bundle of the projactive space, where a fiber/"1 (P), P^X, is regarded

as a subspace of a projective space as in b). So if h={ka} with respect

to a suitable covering 11= { Ua} of D, then in particular —log ha is strictly

plurisubharmonic with respect to the local coordinates of fibers of/ in Ua.

More precisely, let 33= {F,} be a finite covering of the closure D of D

such that/-1(F;) is embedded in Ve xPn (c.f. b). Then we can take a

covering \L—{Ua} of f~\D} with the following properties; 1) U is a

refinement of the covering /~1(^S) so that each Ua is embedded as a

subspace of V'a xGa, where F^(resp. GO) is the subdomain of Vt(a) (resp.

Pn} and Ga has the coordinate system (wf), 2) ha is the restriction of a

U-valued C°°-function ha on V'a xGa which is holomorphic with respect

to the coordinates (wf), and 3) the hessian — a ~_a
a of —log ka with

respect to the coordinate system (wf) is positive definite at every point of

V'a xGa. Then, since L is positive on X and D is compact, there exists

an integer m$ such that <^(X)/*(Z,m) is positive for m^>m§ on D (c.f. [22,

Chap II, Lemma 4] ). Q.E.D.

This lemma could be regarded as a direct generalization of [18,

Theorem 8] together with its proof to the general projective morphisms.

Remark. The above method of bimeromorphic descent can be

applied (with slight modifications), for instance to deduce the finiteness

theorem of cohomology on compact complex spaces with coefficients in

coherent analytic sheaves from that on compact complex manifolds with

coefficients in locally free sheaves.
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Now a line bundle L on a complex space X is said to be ample on a

subdomain D of X, if there exists an integer ^o>0 such that for any

m^>mQ, we can find a finite number of elements <PQ, ...,<pt of H\D, <9(Z,®m))

which embedds Z> as a locally closed subspace of a projective space Pf

such that 0>*(O(1))=O(Z®OT), where 0: .Z2QP* is the associated map.

Lemma 3. Suppose X is a weakly \-complete complex space and L

is a line bundle on X. Then the following four conditions are equivalent

for every c^R.

1) L is ample on Xc.

2) For any coherent analytic sheaf S on X} there exists an integer

m\ such that for every m^/mi S®O(L®m^ is generated on Xc by a finite

number of elements of H\X Cj <S®O(L®m}\

3) L is cohomologically positive on Xc.

4) L is positive on Xc.

The equivalence of 1)— 3) can be proved quite analogously to [11, Theorem

3.1]. That 4)->3) follows from Theorem N1 '. Finally, if L is ample on

Xc, then L®m is positive on Xc for all sufficient large m, since it can be

regarded as the restriction on Xc of a hyperplane bundle of the ambient

projective space. From this we conclude that L is positive on X. Hence

§ 2. Local Blowing Down

Let X be a complex space. Assume that X is holomorphically

convex. Then it is known by the theory of Remmert quotients that X

admits a proper surjective morphism F\ X—>X' with X' a stein space.

(See [28] for the nonreduced case). On the other hand, by the theory

of embedding a stein space into a number space ([27] for the nonreduced

case), there exists a proper morphism j: X'(L>CN of X' into some complex

number space CN . Let (*i, ..., ̂ ) be the coordinates of CN and putg=

j-F. Then we define a H -valued C°°-function W on X as the pullback by

g of the function S W* on C^; ¥f=^*(S l^l2). Clearly W is plurisub-

harmonic and defines a proper map W: X—>R. Hence X is weakly 1-

complete with an exhaustion function W. From now on, when we are given
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a holomorphically convex space X^ we regard it as a weakly 1-complete

complex space by choosing and fixing once and for all the maps F and

j, and defining an exhaustion function W as above. In particular we use

freely the notations such as Xc, c^R, for a holomorphically convex space

X.

Now in general a subspace A of complex space X is said to be an

effective cartier divisor, if at each point of X the ideal sheaf SA °f A in X

is generated by a single element which is not a zero divisor. In this

section we shall prove

Theorem 1. Suppose X is a complex space and A is an effective cartier

divisor on X. Let L=[A] be the corresponding line bundle. We assume

the following conditions'.

1) A is holomorphically convex.

2) The restriction LA* of L* onto A is positive, where L* is the

dual line bundle of L.^

3) H\A, 0(£*ii))=0 for every p>Q.

Then for every t^R there exists a neighborhood Uc of Ac in X with

UC^\A=AC such that Uc admits a proper morphism h\ Uc-+Cl which

is isornorphic outside Ac.

For the proof we need the following two lemmas.

Lemma 4. Suppose X is a complex space and A is an effective cartier

divisor on X. Let L = [A] be the corresponding line bundle. We assume

the following conditions',

1) A is weakly \-complete, and

2) the restriction L*A of L* onto A is positive.

Then for every cEiR there exists a neighborhood Wc of Ac in X with

WcH A=AC which has the following properties•;

i) Z* is positive on Wc.

ii) There exists a plurisub harmonic function W on Wc which is

strictly plurisubharmonic on Wc—Ac.

Lemma 5. Under the notations and assumptions of Theorem 1,

1) Here the restriction means the analytic restriction. Thus L*A=i*L*, i: AC,X being the
inclusion.
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there exists for every c^R an arbitrary small neighborhood Uc of Ac

in X with UC{\A—AC which is weakly \-complete.

We first prove the theorem using these lemmas.

Proof of the theorem. Take and fix an arbitrary c^R and choose

ci, C2'EE R such that c<ci<cz. Then by Lemma 4 there exists a neighbor-

hood V of AC2 in X such that L* is positive on V. Then by Lemma 5

we can find a neighborhood W of ACl in X which is weakly 1-complete

and is contained in V. Then by Lemma 3, since L* is positive on W,

we infer that for any relatively compact subdomain Q of W, there exists

an integer w>0, and a finite number of elements ^>o, • • - , ^n^H^(W,

C^Z*®"1)) such that i) the associated map <P=(<Po: . . . : 9n) of X into
a projective space Pn gives a biholomorphic embedding of Q onto a locally

closed analytic subspace of Pn and that ii) $*(0(l))=0(Z*®m) on Q.

In particular <pi generate each stalk of L*%m on Q. Now we take and fix

Q which containes the closure of Ac in X. In view of the natural iso-
morphism i: 0(Z*®w)=c9^, defined locally by the multiplication of the

m-th power of the local equation of A in X, we may regard (pi as elements
of H\W, <3™}. We denote these by fa in distinction from <pt. Then

fa define a holomorphic map &: Q—>Cn+l by CP(#) = (^o(#), • • • 5 ^w(^))-
Then ^ generating each stalk is easily seen to be equivalent to the fact
that $~1(0)=<2n^ (set theoretically). In particular if we put ip =

\fa\2, then ^0 for any x^Q— Q[\A.
«=o

Now take some £F$ for a weakly 1-complete £F which contains Q.

By the vanishing theorem there exists an integer wi>0 such that
c5jfi)=0. Hence by virtue of the exact sequences

we get a surjective map pi H\W&, OW}-»H\A H Wa, OW/J^). On
the other hand, from the exact sequences

0— »(?X£*/)— >Ox\S^— +OM— >0 /,=!, 2, ...

and from 3) of the theorem, it follows that p^

OA) is surjective for every /x>0. Thus we can find for any/e//"°(^,
an element J^H\W^ Ow} such that J\ Q[\A=f\Q^A.
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Now let/i, 3 = 1, . . . , N, be the elements of H°(A> OA) which define

a proper holomorphic map F\ A—>CN into some number space C^=C^
N

(f) so that Ac={^ \fi\2<c} (see the beginning of this section). Then by
i=I

the above, there exist elements fi^H\W^ Ow) which extends ft\Qr\A.

Let F\ Q-*CN be the map defined by these /$. Then we get finally the

following commutative diagram

where g=0X@XF, h=<&xF, and p 23 is the projection to the second and

the third factors. Note that by the definition of 0 and <P, g factors through

g : Q-> Y and j\ FQ Pn X Cn+l X CN , where Y is the monoidal transform

of Cn+l xCN with center D=QxC^, and j is the inclusion. Explicitly,

Y is a submanifold of Pn xCn+lxC^ defined by the system of equations

£t2i=2i{;f, O^glz, j^n, where (f$) (resp. (#$)) is the homogeneous coordi-

nates of Pn (resp. the coordinates of Cn+l). Further v=p23\y coincides

with the monoidal transformation with center D. Thus we have k=

o'g'. Let B=a-± (D}. Then B[\ g(Q}=g(A<T\Q}. Indeed, as noted

above, x^A if and only if <&(x)=Q. Hence h(x]^.D if and only if x^A.

This gives the above relation on account of h=ug ' . Since cr is isomorphic

outside B and g is an embedding, we infer from this that h is isomorphic

outside A fl Q. Now define a subdomain Q£)i> of Q by QBtb={x^.Q]
N

I^OOKe, f= S l /d 2 <^>, £, ̂ >0. Then it is easily checked that for
3=1

every b, with <:I>£>0, Q^ is relatively compact in Q if we take e sufficient-

ly small. From this we infer readily that the restricted map

is proper for e sufficiently small, where DB={\Zi\<e} and
N

A~{2k;?i2<4. Put UC=Q£ c. Then, since D£xDc is stein and
3=1

hence can be embedded into some number space Cl, it is clear that this

Uc has the desired properties of the theorem. Q.E.D.

We now give the proofs of Lemma 4 and 5.

Proof of Lemma 4. First we choose and fix an arbitrary

Since A is weakly 1-complete and L*& is positive, we may apply the vanish-
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ing theorem to the pair (A , Z,^). Thus for any dE^R, L*Ad is cohomological-

ly positive. Then by Lemma 1 for every y>0 Li^>v=L^4dv also is co-

homologically positive on A&tV, where A a, v is the v-ih neighborhood

of Ad in a suitable neighborhood U of A a in X. Now we take and fix

first d^R such that d>c and then i^2 so large that /f1^ O(L*£**})

=Q for every jJi^u. For these ^ and y, by Lemma 3 there exists a

positive integer m = m(d,i>) and a finite number of elements ^QJ • • • >

<pt^H\A&,^ O(L*jff*)}, such that the associated map ^0: A $,»->?*

of ^tf,y into a projective space P* gives a biholomorphic embedding of

Ac,v onto a locally closed analytic subset Bc of P*, and further that there

exists an isomorphism of line bundles yy: ®^(H}C^.L*A on AC}V, where

AC)^=Aa,v\Ac and H is the hyperplane bundle on P*. For simplicity,

from now on, we suppress the suffix d so that for example we write Av

and Lv instead of A^v and L&tV respectively.

Now our next purpose is to extend these <pt first to the sections <p^

of H\A^ O(Lfmy) for sufficiently large /*, and then extend these V^

to the C°°-sections <pi of Z*0JW. For the first step we observe the following

exact sequence of cohomology

which comes from the exact sequence of Ox-modules

0— > c^/ i^+1®0(Z*®") — > O^/Jii+1®O(Z*®")
m — v 0

Then since H\A, S^A\S^®O(L^m}} = H\A, O(Z*P"+A£))=0 by the

choice of v, a^ is surjective for every ju^y. Hence we can extend <pi

successively to the elements <p^ of U°(A^ O(L*f>m}} for arbitrary large

fji. Next we fix one such //,, which is to be determined in the sequel, and

consider the following commutative diagram of exact sequences

0 — >

0 — > JLu(L^m+^} — -> Jlu(L*®m} — > JLAlt(L*®m} — > 0

where <-^?(*) denotes the sheaf of germs of differentiable sections of cor-
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responding line bundles, and the vertical arrows map holomorphic sections

into C°°-sections. Since U is paracompact and therefore c^?c/(^*®Cw+^))
is fine, we see that H\U, c^(Z*®("+^))=0 [15]. Hence we have a sur-

jective map a: H\U, JL(L^my)->H^(Jl^ JL(Lf)). Now let fa: H*

(U, O(L*®my)-+H\U, Jl(L*®my) be induced by ]8 and let ffi>=P*(ip^.

Take for each ffi> an element fa^H\U, ^(Z,*®1")) such that £c/°=a

(<pt). These fa are the desired elements.

Using these fa we define a C°°-map 0: £/->P* of U into a project!ve

space P* as usual. It is clear that 0\A»=0Q. Further, since i>>2

and 0Q is biholomorphic on AC) v, we can find a neighborhood V of Ae, »,

in X such that 0 defines a C°°-embedding of V onto a locally closed C°°-

subspace of P*, and that there exists an C°°-isomorphism y: <f> *(//") 2±

Z*®wz on £/ which induces the biholomorphic isomorphism y^ when re-

stricted to A p. Let (£o'. •-• St) be the homogeneous coordinates of

P«, pco>={£a=?40} and Ftt=4>-i(Fi0)). Then by the above isomorphism
we may assume the following situation; L*®m is defined by the system of

transition functions {fap} with respect to the covering { Va} of V, such

that fap = 0*(£p/£a) on Va[\ V$. Moreover the sections <pt are given

by the system of C°°-functions {$>«,«}, each defined on Va by <pi,a—

<P*(ft/|ff). Now put ^=2l^al2=**(Slft/f«l2). Then l/^ define a
*=0 *=0

metric of Z which is the pullback by 0 of the natural metric of the

hyperplane bundle of P*. Hence for (i) it is sufficient to show that log aa

is strictly plurisubharmonic at each point of V[\A.

For this, take an arbitrary point x^Ac and let y=0(x}. We may

assume that je F^0). Then we have the following local situation; i)

there exists a neighborhood U of x in X and an isomorphism r: U—S

^D^C1 of U onto an analytic subset B of a domain Z? in C* such that

T(#)=O. ii) 0\U extends to a C^-embedding 0f of j9 into FO which is

naturally isomorphic to C*. iii) If we denote 0' by (7+l)-ple of C°°-

functions ((p'Q, ..., ^) such that <p'i\B=<piQ'T~1, then ^ have the form

^*==y41)+P*2)//AS where ^)p and /' (resp. ^2)) are holomorphic functions
(resp. C°°-functions) on D, and/'b is a local equation of r(A) in B. To

see ii) and iii), first we take U so small that there exists a local equation

/ of A on U. Then by construction ^}o can be written as ̂ >0=^1)
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/^> where ^1; (resp. £42)) are holomorphic (resp. C00-} functions on

U such that <p(^ give a biholomorphic embedding of U^) into a

locally closed analytic subspace of VQ°\ Then we have only to extend

ffi-T-1 and /-T"1 (resp. p^-r-1) to holomorphic (resp. C00-) functions

^1} and /' (resp. <pf^ on Z). Hence our task is now reduced to show

that hessian °8<*a Of tne function log aa, aa= S W2, with respect to
GW* 0^ i=0

the coordinates (ze/*) of C* is positive definite at the origin. But this

follows easily from /^>2. (See the proof of Lemma 6 below, putting
k=Q there.)

Next we shall show ii). First recall the isomorphism OX(£*)—<-?A

and the C "-isomorphisms ya\ Ova(L*®m}—Ova (which is analytic on

Var\A^. In view of these isomorphisms, we infer readily that there

exists a system of C°°-functions {/«}, each defined on Va, with the following

property; i) for every point P^ V a we can find a neighborhood Up of P

in X such that fa\Up can be written in the form f<x\uP=Xpfp, where //>

is a local equation of A in Up, and XP is a non-vanishing C "-function

on £//> which is holomorphic when restricted to A^H UP, and ii) jf\

on F«n F^. Then we can define a R -valued C°° -function

F globally defined on W& by W=\fa
 2m( £ |^«|2) on Va. We contend

«=o
that this W satisfies the properties ii) of the lemma. For this, again fix

a point x^.Ac and go back to the local situation described above. Then,

by the same argument as above we can take U such that it has further

properties that W-r~l is the restriction of the function WD on D of the
n

form Fz>=|Az?/'|2w(£!l^l2), where XD is a ^"-function on D written as

XD=X(U+f'PXW with Ad> (resp. A(2>) holomorphic (resp. C°°) on D. Now

we have to show this is plurisubharmonic on a suitable neighborhood

U' of the locus A' off'=Q in D, and strictly plurisubharmonic on U'—A'9
(if we take ^ sufficiently large). But this follows from the following lemma

by the definition of A/?. Q.E.D.

Lemma 6. Suppose (p^\ 1^£^#, and f are holomorphic functions

and (p^\ \<Li<Ln, are C°° -functions on a domain D of Cl=-C\z\3 . . . ,
n

zi) which contains the origin. Assume that S l^30!2 are strictly pluri-
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subharmonic at the origin. Then there exists a neighborhood U of 0
n

in D such that the function W=\f\2k XI I$41}+/V^2) 2 is plurisub harmonic
i=I

(resp. strictly plurisubharmonic] on U (resp. on U — {/=0}) if we take

v sufficiently large, where k is a positive integer.

Proof, First in general, let gi, ...,gt be holomorphic functions
t

defined at the origin of Cl, and set G= S \gt\2- Then G is obviously
4=1

plurisubharnionic in a certain neighborhood of the origin. Let

be the hessian of G with respect to the coordinate system (#$) at the origin.

Then it is easy to see that the number s of positive eigenvalues of H(G)§

equals to the dimension / of the natural image of the set {gi — gi(0)}

in m\m^, where in is the maximal ideal at the origin. In fact note that
t

H(G)§=H(G'}§) where G' = S !^l2 and g'i=gi mod m*. In particular
4=1

for any nonvanishing holomorphic function h, hG has the same number

of positive eigenvalues as that of G.

Now our function W can be expanded in the form;

where cp" and <pffr are C™ functions, and (p" denotes the complex conjugate

of (p" '. Here the first term is clearly plurisubharmonic on D and strictly

plurisubharnionic on U — {/— 0} for some neighborhood U of the origin

by the above remark. To get the same conclusion about W, recall from

the elementary matrix theory that an hermitian matrix is positive definite

(resp. positive semidefinite) if and only if all its principal minors are

positive (resp. non-negative). Now define a map JJL: DC+ GI+I(WI, . . . ,

wi+{) by (#1, . . . , zi )->(^i, . . . , 21, /(zj), and let D' be the biholomorphic

image of D by p,. Let A be the zero of/ and p,(A^)=A'. Then A' is de-

find on D9 by the equation wi+i\D'=Q. Further let p$ly (resp. ^2)/) be

the holomorphic (resp. C00-) extension of (p^-pr^- (resp. ^^"M"1) °nt°

some neighborhood U1 of the origin of Cl+l. But since D' is noiisin-
n

gular, we can take <p^' such that 1] |^ly|2 is strictly plurisubharmonic on

U9. Now put ^'H^ml^I! l^1V + ^m^2)/l2- This is clearly the
4=1

extension of W-JJL~I onto U' , It suffices to prove that this W is pluri-
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subharmonic (resp. strictly plurisubharmonic) on a small neighborhood

U" of 0 (resp. on U"~A'). Let A be any principal minor of the hessian

of W{v = \wi+i\zk S l^lvi2 and A' be that of W' — W^ corresponding to

A. We see J>0 on U' — A1 by the above remark. We show that

' if \wi+i\ is sufficiently small and strict inequality holds if

In fact this follows from the Lojasiewicz inequality [20], but here we

prove this, by using the real monoidal transformation according to

Hironaka. Let wi+i = wi-{-J*J — \w^ where w\ and w^ are the real and

imaginary parts of w^i respectively. And let A = ̂ ai^zw\^ w|2(resP- ^'=

^ a'iiiz w\l W22^ be tne taylor series expansion fresp. the expansion to

sufficiently high order) with respect to w\ and w%. Define a real analytic

submanifold M of Cn^lxPl(R) by the equation r)iW2=r]2'Wi, where

Pl(R} is the real projective line and (770 - ̂ 0 is the real homogeneous

coordinate of PI(R). Let p be induced by the projection to the first factor

and B=p~l(wi+ 1=0). Cl+lxPl(R} is covered by two open subsets Wi

= {rH=£0},Wri=Cl+ixR(Ml'ni) j^i. Set Mi=Wi\\M. Then M^C1

X R2(wi,r]>jlr)i) j^=i and B is a real hypersurface defined by Wi—0 in

Mi. Here the isomorphisms are all real analytic. Now set D=p~l(D^)

and p\D=pD. Take an arbitrary point P on p~\0~). We may assume

that P(=Mi. Then p*(J) and p*(A') are written in the form p*(4) =

wf Ai and p*(J') = wJJ2 respectively, where Ji(/
:>)>0 and A^\B^Q

because p*(zT) does not vanish outside B. But the above exponent b

can be made arbitrarily large if we take \> large enough. From this and

the properness of the map p we infer readily that if we take i> suffic-

iently large, then on a suitable neighborhood U of p~\0) in M we have

p*6d)2>p*(zl') and the strict inequality holds on U—B{\ U. But this in

turn gives the desired inequalities on a suitable neighborhood U\ of the

origin of Cl+I. Hence we see that A^Af on U\ and A>A' on £/i —

U\\\A'. Since A was arbitrary, the lemma holds for sufficiently large

v. Q.E.D.

Remark. For the assertion i) of Lemma 4, the fact that A is an

effective Cartier divisor is irrelevant. A may be any weakly 1-complete

subspace. A similar problem was considered in [8, Prop. 8.1] when A
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is protective.

Proof of Lemma 5. Let/i, . ..,/A/ be elements of H°(A, OA] which

defines a proper morphism F: A—*C'V of A into a complex ^-space CN

N
such that Ad= {x$=A ; I] \fi(x)\2t<d} for any d^.R. Now fix an arbitrary

£fE R+ and take <2 ^ H such that d>2c. Then as in the proof of the theorem

there exists a neighborhood U& of A$ in X on which we can find holo-

morphic functions /i, . ..,/w such that fi\Ad=fi\Ad- On tne other hand,
by Lemma 4, there exists a neighborhood F of A a in X on which we can

find a phirisubharmonic function Wi which is strictly psh. on F — V[}A^.

Moreover by the proof of the lemma we may assume that Wi(x)=Q, x^ V,

if and only if x^A. Now put W= V R Ud and W2= S l/d2- We shall
*=i

show that for any ^/'<^the subset W Eta
f of PF defined by W£ta

t={x^ W\

¥/i<£ and ^z<~d'} is relatively compact in fF, if we take e sufficiently

small. Assume the contrary. Then there exists a sequence {£n}n=i>2---

of positive reals which tends to 0 and there associated for each sn a sequence

Wr} f l=i f2--- of P°ints of WS9 such that W2(x^]}<d' and ^i(x^<en

for every a and that x^ tends to the boundary of W in X if a— >°o.

Take the diagonal sequence {x^} . Since we may assume that W is re-

latively compact in X, we can choose a subsequence from {^f°} which

converges to a point XQ on dW, the boundary of PF in X. Then by the

choice of {x^}, ¥fi(^o) = 0 and hence x^A. Moreover W^x^^d' .

Thus XQ is the interior point of W, contradicting the assumption.

Now let Wi=2c/£ W± and W=W{+W2, where e is chosen for d' =

2c. Then the subset Wc= {^/(.r)<<f} of W is relatively compact and

Wcr\A=Ac. From this we see readily that Wc is weakly 1-complete

with an exhaustion function W (with upper bound c). Further if we take

£ small, then Wc is arbitrarily small. This completes the proof of the

Lemma.

We can also prove the Theorem using Lemmas 4 and 5, by a modi-

fication of the method of Grauert [6]. In fact we can prove

Lemma 7. Suppose X is a weakly \-complcte complex space with

an exhaustion function W, and A is an effective C artier divisor on X.

Let Z, = \A] be the corresponding line bundle. Now assume that L* is
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positive on X, and let x$ be a point on dXc for some c^R such that W

is strictly plurisub harmonic at XQ and x^^A. Then there exist a holo-

morphic fimction g on Xc such that lim £"(#%)— °°.
Xn-*Xo
Xn^Xc

Proof. By [7, Satz 1.4], there exist a neighborhood U of XQ in X

and an effective cartier divisor B' of U which is stein, and such that B'

fl Xc= {x$}. Take c~>c sufficiently near to c so that B=Br D Xc
f is the

analytic subset of Xc', and that A fl B=<f>. Put F=[B\ the corresponding

line bundle and consider the exact sequence

0 — > O(L*®m} — > O(L*®m®F — > OBF — > 0

From this, we obtain a cohomology exact sequence

If we take m sufficiently large, then by the vanishing theorem N' we have

Hl(XC', (5(Z,*®?"))=0, and hence the map p is surjective. Since B is

stein, we can find an element s^H®(B, OS(F^) such that sXo=^=0. Let

s be an element of ff°(Xc>, O(L*®m®F}} which lifts s. By virtue of the

natural isomorphism 0(Z*®m) = c5 ,̂ s can be regarded as an element

s' of H\XG>, 0(^)® J^). Then clearly, this s' gives a meromorphic

function g' on Xc
f which has a pole on B and is holomorphic outside B.

But since Br\Xc~{xQ}, g=g'\Xc is the desired function. O.E.D.

As a Corollary we have

Corollary. Suppose X and A are as in Theorem 1, except that we

replace the condition 1) by the following weaker condition 1').

1') X is weakly \-complete.

Then for any t^R there exists a relatively compact neighborhood W

of Ac in X such that for every point x$^dWc — 3WC^, A there exists an

element gx^HWCf Ow^) such that lim xQx=°°-

c

If we further assume that A is holomorphically convex, then we can

find also for the point x\ on 3 Wc fl A an element gXl with the similar

property. Thus under the assumptions of Theorem 1, we can find for any

, a holomorphically convex neighborhood Uc of Ac in X such that
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Ucr\A=Ac, and that 3*F, a plurisubharmonic function on Uc which is

strictly plurisubharmonic on UC—AC. Let/c: UC->UC be the Remmert

quotient of Uc. Then fe is isomorphic outside Ac. In fact, if dim

/c~
1(jy)>0 for some y^ UQ~fo(Ac), then W must be constant on /^~1

(y), and this contradicts with the fact that W is strictly plurisubharmonic

on Uc—Ac (c.f. [26, Lemma 3.2]). But then since the fibre of fc is

connected and/c*0£/c==0£/c,/c is isomorphic outside Ac. This will prove

the theorem.

An example of the pair X and A satisfying the conditions 1)', 2), 3)

but not 1), was constructed in [5].

In the following remark, we shall discuss the case that AciX is not

a cartier divisor in Theorem 1.

Remark 1. Suppose A is a subspace of a complex space X^ which

is holomorphically convex. Perform a monoidal transformation a: X—>X

with center A and put A=a~l(A}. Then A is an effective cartier divisor

on X. In this situation if the pair (Jf, A) satisfies the conditions 1)—3)

of Theorem 1 and if X is normal, then the conclusion of the theorem

holds also for the pair (X, A\ namely, for any c^ R there exists a neighbor-

hood Uc of A c in X which admits a proper morphism h: Uc-*Cm into some

number space Cm, which is isomorphic outside Ac. In fact, first we apply

the Theorem to the pair (X, A] to obtain for any ct=R a neighborhood

Uc of Ac in X and a finite number of elements /i, ..., fn^-ff°(Uc, Ogc)

such that the map F: Uc—*-Cn defined by them is proper and isomorphic

outside Ac. Here we may take Ac and Ac so as to Ac=a~l(Ac}. Now

the normality of X implies a^(Of) = Ox and hence the natural inclusion

H\UC, Ox)ciH®(Uc, Ox), Uc=a(Uc\ is an isomorphism. Thus we

may consider/^ as elements of U°(UC, Ox}, (which will then be denoted

by/$), and the map F factors through a\Uc: UC-^UC arid F\ Uc—>Cn,

where F is defined by/$. These Uc and F are the desired ones.

But unfortunately I could find no nice conditions for the pair (JT,

A} to satisfy the requirements of the Theorem, for instance, in terms of the

normal cone Cx,^ = Specan (©3%I^T1) of A in X [16, II]. (But c.f. §3).
m=0

Here we only note the following fact in this connection; there exists a
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proper morphism CTQ: Cx,A==^V^/j>=[A]^[—>Cx,A, which is isornorphic to

the monoidal transformation with center the vertex (=A) of the cone CX,A

(c.f. [9, I (8.7.7)]). Let i\ A^CX,A be the inclusion of A as the vertex

of CX,A and p\ Cx,A~^A the natural projection. Consider for example

the following condition (*) for the normal cone C X,A',

(*) there exists a strictly plurisubharmonic function ^on CX,A— i(A}

such that p\C%tA\ CX,A-»A is proper, where CX,A = {P^CX,A; W(P^d}.

Then by the above remark, C X,A satisfies the condition (*) if and only if

CX>A satisfies the corresponding one, (if X is normal). If A is compact,

then it is well-known that, (*) for C^-tA=NA/x is equivalent to the fact

that the line bundle N*^/x is positive in the sense of Definition 1 [7], [9],

and hence in particular (*) for C 'X,A implies the condition (2) of Theorem

1. Thus we get the following result corresponding to Satz 3.8 of [7];

Suppose X and A are as above. If A is compact and CX,A satisfies the

condition (*), then A is exceptional in X in the sense of [7]. But I don't

know whether the analogous fact holds or not, if we assume only that A

is holomorphically convex.

§3* Globalization

Now we come back to the original problem of finding the sufficient

condition for the blowing-down as stated in the introduction.

3.1. Suppose X, A, and/: A—>A' are as in the introduction. First

we introduce a coherent analytic subsheaf <S=<Sx,A,f of Ox as follows;

Sx: = Ox,x if x^A, and

- "

where r\ OX,X—*OA,X is the restriction map and f~l(OA'} is the image of

/*(C^4') in OA- By definition, we have the exact sequence of C^-modules

o — > S— + Ox — * 0Alf-\0A^ — > o.

Thus <S is coherent. The motivation for this is

Proposition 1. Assume that a blowing-down (Jf',/') of X along /

exists. Then there exists a blowing-down (^,/) of X along f satisfying
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the following equivalent conditions •;

1) For any blowing down (X" ,f"} of X along f, there exists a unique

morphism h\ X-^X" s^lch that h'f=f".

2) The relation /*(£>, A, f)=O x holds.

Hence in particular (X, /) is unique except for isomorphisms. We call

this (X, /), the universal (or Remmert) blowing down of X along/. But

we do not prove this proposition here, because the method of the proof

is essentially contained in the proof of the next Theorem. Now we show

the following theorem by patching together the local blowing downs

obtained in Theorem ] .

Theorem 2. Suppose X is a complex space, A an effective cartier

divisor on X and f: A—>A' a proper surjective morphism of A onto another

complex space A'. Let L = [A] be the corresponding line bundle and

LA = L\AJ the restriction on A. Now assume the following conditions',

1) L^ is /-ample [10].

2) H^(L^=0 for

Then there exists a blowing down (J5f',/') of X along f siich that f*<Sx,A, f

=0X>.

Remark. We say that a line bundle F on A is /-positive, if for any

point a'^A' there exists a neighborhood Ua
f of a in A' such that F is

positive on/~1(6ra') in the sense of Definition 1. Then as follows from

Lemma 3, (1) is equivalent to saying that L*A is /-positive.

Proof. Let a'EiA' be any point, U'=U'a' a stein neighborhood of

a in A' , and U=f~\U'\ But in the following, we replace U' by a

smaller neighborhood, if necessary, without a particular mention of it.

Taking U' sufficiently small, we may assume that L*A is positive on U

by virtue of the above Remark. On the other hand, by the Leray spectral

sequence for the map /It/: £/—>£/' and by the condition 2), we have

H\U, 0(Z*f))=:0 for any /x>0. Now let V be the open neighborhood

of U in X such that V fl A = U. Then the pair of the complex space V

and the subspace U of V satisfies all the conditions of Theorem 1, since
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U clearly is holomorphically convex. Hence by (the proof of) that theorem

we get the following situation; there exists a neighborhood W of U in V,

and a finite number of elements /i, ..., fn of HQ(W, Ow} such that

1) they define a proper holomorphic map r: W—>D£={(zi)^Cni

\2i\<e} 2) r\W— U is isomorphic, and 3) r\u coincides with fu=f\u>

Thus we have the following commutative diagram which means the

blowing down of W along /;

where W is the analytic subset of D which is the image of W and j is the

closed imbedding, the existence of which is assured by 3) above.

Note that by 3) above, fi actually are the elements of HQ(W, <S), S

being defined by (1). Now by the Grauert direct image theorem, the

sheaf r*(<S) is a coherent 0£>-niodule, and then by Theorem A, (if we re-

place U by a relatively compact subdomain,) we can find a finite number

of elements sit ..., sjc of H®(W, <S) in such a way that Si(a)=0 if f(a) =

a', and T*(si) generate r:!s(<5) at every point of D. Then if we take e'

sufficiently small, a map TI defined by

TI=TX(JI, ...,**): W— +Di=Dy.D'tD'={(zi)<=C*; [st\<e'},

is proper (replacing U by a smaller one). Further, by the definition of

S we still have ri\u=f, and have the inclusion j\\ UC^W\, where W\

is the image of W by the map TI. We have the commutative diagram:

where/i is the projection to the first factor, and it is easily seen that

induces a homeomorphism of the underlying topological space of W

and W{. From this, we conclude readily that ri*(<S] is (coherent and)
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generated by TI*(SJC) at each point of D\. This means in particular that

every elements s of HQ(W^ cS) can be written as a pull back of the con-

vergent power series of (zf) defined on D\. Hence we have Ti#(<S)=Owl.

For these arguments see [27]. Therefore, we may assume from the

beginning that T*(S^=Ow in (2), replacing r by TI. Now take and fix

for every point a'^A' a diagram as in (2). We put a suffix a for the

corresponding letters, e.g. W'a', Ta', etc.

Suppose Ua' fl U a =/=$ for a'-^=/=a'^ and define a map r12:
 T^' (J^a' H W^' )

-^(0^0 ^p by T12=Taa-TSJ;. Put W{_=W'a., * = 1, 2, ^2, = »ln

fF2
 anQl Ti~Ta'. Then since the map rl and r2 give topologically equi-

valent fiberings on W'^ r12 is well-defined and induces a homeomorphism

of the underlying topological spaces. Further, since 0j^' &/=7"2*(<S)&' =

\b\ S}=r^(S}b=Ow^b if 7-^) = *', we have

natural isomorphisms rl%tW\ Ow'^,=Ow'vb. Let rJ2={Tj2>6>6/}. Then

it is easy to see that the morphism of ringed spaces (r, T*): (7"iCfF{2), Oj^')

o) giyes an isomorphism of the analytic spaces. Moreover
2

since if Wa' fl W^a' fl W^a' =7^^, then we have T23'ri2— 713, we conclude that
1 It 3

Fl7'— U K7^, with the identification by Tn'a", defines a well-defined
a'^A'

complex space and r'= U ra/: JF= U Wrf-^W a morphism of complex
Ob'^A' 0,'eA'

spaces. We have naturally an inclusion A'C^W. Finally we set X=(X

—A}\J> W , where X— A and W'—A' are identified by the isomorphisms

T^: Wa'—Wa'KA^W'v—W'a'ftA', and set/^r7 on W and -identity

on X— A. Then it is immediately seen that/: X-+X' is welldefined and

gives the blowing down of X along /. The relation /* <Sx,A,f = Ox'

follows from construction. O.E.D.

Golollary. Suppose X is a reduced complex space} AC^X a s^tbspace

which is nowhere dense in X, and '/: A—>A' a proper surjective morphism,

where A' is another complex space. Let CX,A be the normal cone of A

in X (see Remark 1), and i\ AC+Cx,A the natural inclusion as a vertex.

Now assume that

1) CX,A can be blown down along f, and

2) J?1/s|c(J^/^+1)=0/or every p,>0, where S is the ideal skeaf

of A.
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Then, there exists a blowing down (X', /') of X along f with the

property that f*S=Ox'•

Proof. Let cr: X-^*X be the blowing up with center A and A =

a~\A}. Then by Remark 1 we have a bimeromorphic morphism ao'.

CX,A~~*CX,A which is isomorphic to the blowing up with center AC*Cx,A-

Here CXiA now coincides with the normal bundle TVA/x °f A ^n ^> and

the inclusion i\ AdCX)A is as the 0-section. We set E=CX,A. Let

fi=f'0\A, and h\ CX)A->CX}A the universal blowing down of CX}A

with respect to /, so that h*Sc ,A,f=&c' (c.f. Prop. 1). Then h\
•X, A X} A

= /I-(JQ gives the blowing down of R along f\. Let p: E—>A (resp. p: C X,A

—>A) be the structure morphism. Then, since (f'p't^)~lOA'=f~lOA', (/*

p}~lOA' is contained in the sheaf Sc ,A,f- Hence we infer that the
X) A

(continuous) map p1 =f'p-h~^\ Cf
X}A—>A' is holomorphic. Hence we have

the commutative diagram

But then, by [17, Satz 5.5], there exists for any point a'^A a neighbor-

hood £/o of a in A and an open set W in (frp^~~l(Uo)c:JS} such that i)

i(f-i(U0y)c:W, and ii)p\w: W-+f~\U} is 1-convex (see Def. 1.1 of [17]).

Then by [17, Theorem 6.4], the dual E*—>A is /i-ample. Take now a

sufficiently small stein open subset UdA, which is yet to be determined

in the sequel. Let V=f~\U}. Then by 2) H\V, ^/^+1)=0 and
hence

(3) H\ V, OX/J^ — > H\ V, OX/J^ — > 0

is exact for every /u>0. On the other hand, let V=f^\U}. We may

assume that E* is positive on V. Then, by the /i-ampleness of E* ,

there exists a positive integer m0>0 such that H\V , E*®m}=Hl(V, £m)

=0 and hence H\V, OxIS
m+r) ^ H\V, Ox//

m) is surjective for every

Q> where <tf=(j~l(^) is the ideal sheaf of A in X. Now let^ be any
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element of H\VJ^Ou]=H\V, f~^Ou\ Then by (3) we can extend

this to an element gl of H\V, 0^/Jm+1). Let g'i=H\V, (?x/^m+1)

be the pull-back of g\. Then by the surjectivity of am, for every y>

7HQ there exists an element g»E^H\V, O^I^V+T) which extends g .

Now define an analytic subsheaf S' of O% by <S'= ̂ $jj>, ̂ 4 , / x H o~~\Ox)

= o~l(Sx,A,f)) where <Sx,A,fi anc^ <5^5^,/are defined by (1). Then exactly
as in the proof of the Theorem we construct a diagram (2) for which

T*(St} = Ow this time, and then patching together these Wa' and Ta
f,

defined for each a as in the proof of the theorem, we get the blowing down

(Jf'j/i) of X along/x for which f{*Sf = Oxf- But then, since a is surjective,

we see that the map/'—/{ a~l is well-defined and continuous as a map of

the underlying topological spaces. Moreover, that this /' is induced by

the morphism of analytic spaces follows easily fromfi~1(Ox'^=o'~l(<$x,A,f)-
Hence (Jf',/') is the desired blowing down. O.E.D.

Remark 2. Suppose X, A, and/: A—>Af are as in the corollary.

We assume, however, only the condition 2) of the corollary. Let $ be

the coherent sheaf of ideals of Ox whose support coincides with A red,

and which is contained in C$=SA- Let B be the subspace of X corres-

ponding to £. Then by (2), as in the proof of the corollary there exists

a proper surjective morphism f R\ B—>Af which extends /. With this

remark in mind, the following three conditions are equivalent.

1) X can be blown down along /.

2) There exists coherent ideal sheaf £' of Ox stich that if cr: X-+X

is the blowing up of X with center $', then the sheaf Sf®OB
f is (fjB°v\B'}-

ample, where $*'=f~\S'} and B' is the subspace of X defined by $'.

3) There exists a coherent ideal sheaf S^Ox with support A red

and <$^S as above with the following property; let B be the subspace of

X defined by S- Then the normal cone CX,B of B in X can be blown

down along f B'> B-^-A' for some f B as above.

Proof. 1)—>2). Let/': X-+X1 be the blowing down of X along

/. By Chow lemma [12] there exists a coherent sheaf of ideals S® of Ox1

with support A'red=f(A\e(% such that if/: X-^X' is the blowing up of



500 AKIRA FUJIKI

X' with center SQ, then we have a proper surjective morphism h\ X->X

such that/=/'-^. Then by [14, Lemma 4], h is the blowing up of X with

center J=(/')-i(J0). Since (/)-*( Jo)^"1^) is /-(very) ample (c.f.

§ lb)), this implies 2).

2)->3). We put £=£' and let B be the subspace defined by £

and B = a~l(B}. Then by Remark 1 we have a bimeromorphic morphism

^ CX,B~*CX,B, isomorphic to the blowing up of CX,B with center the

vertex (=-ff) of CX,B- But since C^,# coincides with normal bundle

N§,z of Sin Xand O(N*S,2)=3S®O§, [B}§=N*g,x is/^aol^-ample.

Moreover because of the structure morphism e: CXjg—*B and the 0-section

2: B—>Cx,g of £, the arguments similar to the above Corollary shows that

we have a blowing-down v\\ Cx^->Cr
Xtg of CXtg along fs'o"o Iz?: 3->A

ffll °iz
such that cri factors through a\\ CXjg—> CX,B—> C'xiB- Then the pair

(C'X*B> ^iz) is seen to be the desired blowing down.

That 3)—>1) is the above Corollary. It may be interesting to give the

proof of 1)—>2) not using Chow lemma.

Remark 3. It is easy to generalize the corollary to the following

relative situation. Suppose X, A and /: A—>Ar are as in the corollary

and 5 a complex space. Assume that X, A' are complex spaces over 5

and / is an S-morphism, where A has the natural structure of a complex

space over 5. Then the blowing down (Xf, /') obtained in the corollary

has the additional property that X' is a complex space over 5 and /' is

an ^-morphism. In fact, it is easily seen that 7rx'=7Tx(f')~l is a continuous

map, where TTX is the structure morphism. On the other hand, we have

i-l7TX\Os} = (irA>f}-\Os}^f-\0A,\ irx\Os^Sx,A,f and hence /J^1

(0$y)= f*<$=Oxf- From this we conclude that TTX is a morphism of

complex spaces. In this case we say that X can be blown down along

/ over 5.

In [4], it is shown that every small deformation of a monoidal transfor-

mation is again a monoidal transformation. As an easy application of

Theorem 2 together with Remark 3 above, we show the following

Proposition which generalizes this result.
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Proposition 2. Let S be a complex space, X , A' complex spaces over

Sj A an effective earlier divisor on X, aiid f: A—>Af a proper surjective

and flat S-morphism, where A has the natural structure of an S -space

by TTX\A) nx being the structure morphism of X. Set L = [A]j the line

bundle corresponding to A. Let SQ^S be a point and denote by X§ (resp.

AQ, A'Q) the fiber over SQ of X (resp. A, Af}. Now assitme the following

conditions ;

1) the restriction LAQ of L onto AQ is f^-aniple, where fy=f\A0-

2) Rify+(O(L*A$=0 for every p.>Q.

Then, we can find a neighborhood U' of A Q in A ' with the property that,

if we set U=f~~l( £/'), then there exists a neighborhood W of U in X with

W f] A = Uj such that W can be blown down along f\u over S.

Proof. First we show that for any point d^.A'§, there exists a

neighborhood Ur
a> of a' in A' with the following properties; (*) if we set

£/*/=/-!( tfiO, then 1) a/ L\Uat is /|^fl/ -ample, and 2) R^(f\u^O(L^^

=0 for every ^>0 on U'a'- As for 1) a
f it is the direct consequence of

[10, VIII, Theorem 2.1], since L\f-i(a') is ample and/ is flat. If A'Q is

a point, 2) also is well-known [10, VIII, Corollaire 1.4]. But Banica

[2] proved the Grothendieck comparison theorem in the category of

analytic spaces. Hence in our case we have the natural isomorphism

where J is the ideal sheaf of .40 in A, &$£ = I*?1' I & L*?*1 , and the right

hand side is the J-adic completion of Rif+Df1' . Then the proof of (2)

can be carried through exactly as in the one point case. Thus we get (*X

Next, put Ur=\]U'a> and U=f~\U'}. Then the property 1) and 2)
a'

holds if we replace Ua
f by C/, for, the properties are local with respect to

A'. Then we apply Theorem 2 to UC>W and/k/: U~>U' , with W a

certain neighborhood of U in X such that W f] A = U, and obtain a blowing

down (W, /) of W along /b which may be considered to be over 5 by

Remark 3. O.E.D,

3.2. In this section we shall give examples which show that, in
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general the condition 2) of both Theorem 2 and Proposition 2 cannot be

dropped. Before stating these, however, we stop to write down an ex-

plicit form of Theorem 2 (or Corollary) in certain simple cases.

Theorem 2'. Let X be a complex manifold, A a submanifold of

X, and f\ A—>Ar a fiber bundle over a complex manifold A' with the

typical fiber F which is connected. Assume that

1) the restriction N ' A/X\F of the normal bundle of A in X to each

-fiber F is weakly negative in the sense of Grauert [7] , (or equivalently , the

dual N^/x F is ample).

2) H\F, N^\^ = Q for every ^>0, where N$}% is the n-th

symmetric product of N\fx.

Then there exists a unique (except for isomorphisms] normal com-

plex space X' and a proper surjective morphism f : X—*-X* such that

(X' ', /') is the blowing down of X along f.

Proof. It follows from 2) that Ry*N*£f$=Q for /x>0 and hence

2) implies the condition 2) of the corollary, since ^A/^A^I = NA/X as ®A-
modules. So we shall see that 1) implies the condition 1) of the corollary.

Since C ' x,A = N A/X in this case, we have to show that NA/X can be blowing

down along /. Let a: NA/X—^NA/X be the blowing up with center A,

the 0-section of NA/X, and A=a~\A). Then N ' A/X^NA/X is (weakly)

negative, and hence the dual N^^ix *s ample on each fiber of fi=f'a\A

(c.f. Remark 1). Then N*^/x is /i-ample, since /i is smooth. Then the

rest of the proof is the same as in that of Corollary to Theorem 2.

Since in this case, the sheaf Sx,A,f defined by (1) coincides with Ox, the

universal blowing-down (X1 , f'} of X along / is normal. This proves

Theorem 2'.

By the vanishing theorem of Kodaira we have

Corollary,, Let X, A, and f\ A-^A' be as in Theorem 2'. Assume

further that A is of codimension 1 in X. If both NA/X\F and NA/X\F

®Kp is negative (in any sense), then the conclusion of Theorem 2' holds,

where Kp is the canonical bundle of F.

Hence in particular, if Kp is semi-negative (Def. 1), it suffices to
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assume only the negativity of N A/X\F to get the blowing-down.

Typical examples of such F are projective space, abelian varieties,

etc.

The above Theorem and Corollary can of course be formulated as well

under the weaker assumption that / is a smooth morphism (see [3]).

Now we proceed to give examples stated in the beginning of this

section. Namely, we prove

Proposition 3, Let F be a (connected^ nonsingular projeclive variety

and TT: E-+F a vector bttndle over F. Assume the following conditions;

1) E is weakly negative, and

2) there exists an integer /x>0 for which

Then there exists a complex manifold X ' , a submanifold A of X and a

fiber bundle f\ A—>A' over a complex manifold A' with typical fiber F

with the following properties ;

a) N A/x\F=E>, and

]8) X can never be blown down along f.

Proof. We only deal with the case that E is a line bundle. The

general case can then be treated roughly as follows; first let cr: E-^E be

the blowing up with center the 0-section FQ of E and let F§—G~\F§).

Apply the result for line bundles to the pair (F§, N 'jp0/£) to obtain manifolds

X, A, and f: A-+A' as in the Proposition. Then it is easy to see that

/factors as /=/2/i, /i: A->A and/2: A-+A' , where /i (resp. fz) is the

fiber bundle with typical fiber P* (resp. F}. Then we blow down X

along /i to a complex manifold X. This X with /a : A—>Af is seen to

have the desired properties.

Now let E be a line bundle over F. We denote E by Y when we

consider the bundle space of E as a complex manifold. Then we have

a natural isomorphism
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where the right hand side is actually a finite sum, since E* is ample. Let

%^H\F,E*®^) be a non-zero element and let {^Hl(Y, Oy) be the

element corresponding to f by the above isomorphism. Let TT: X—*Y

be the affine bundle corresponding to f. Let FQ be the 0-section of

Y->F. Then X is trivial as an affine bundle on every /x'-th neighborhood

of FQ if //</x. To see more explicitly, let {U a} be a finite stein covering

of F such that £ is defined by the system of transition functions {fap}

with respect to {Ua}. Then £' is represented by a cocycle {£'ap} with

respect to this covering. Then | is represented in turn by the cocycle

{£«£ = £££*/?} with respect to the covering V={Va=ir-^-(Ua}~UaxC}
of y, where ^ is the fiber coordinate of E—*F. Then X is a manifold

defined as the union X=\J(VaxC}, where ((/>, fa), T^GEF^xC and

((/>, £0), 7j0)e F^xC are identified if and only if

77 being defined by ((/>, £a), T^) ->(/>, C«) on each VaxC=ir-\Va).

Define y4 to be TT~I(FQ). Since ^fl;
::=0 is the local equation of .F0 on each

F^ by (4) we infer that A=FxC. Let/: A-^»C be the map induced

by the projection to the second factor by this isomorphism. Since A is

defined by £a=0 on F^X C, we have NA/X\F=E- This is a). It remains
to show that X can never be blown down along /. Assume there exists

a blowing down;

X

Let cr: ¥—>¥' be the normal contraction of the 0-section. Then we may

take (Xr, /') in such a way that BTT' : X'-^F' with ir'f'=<rir. Indeed,

we have only to take X' to be normal. Now take a point P^A'C^X'

and let 5' be a closed subspace of codimension 1 in (^^^(F) such that

Sf nA'= {P}, where F is a small neighborhood of <j(F$). Let S be the
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proper transform of Sr in X. Then taking V sufficiently small we may

assume that 5 contains no fibers of 77 (c.f. [16, I]). Suppose 5 intersects

with each fiber Xy,y^ V, at n points counting with multiplicities (the

number n is independent of y\ and Si,y, . . . , Sn,y, be those points over

y. Then by taking the arithmetic mean — — — -'-- - ^- of Sity, which
n

has the meaning since X is an affine bundle (see [7]), we have a section

S over V of the nontrivial affine bundle X. This contradicts the fact that

£'=7^0. In fact, using this section we can easily get the coboundary relation

forf. O.E.D.

This provides a counterexample to the conjecture of [21], where it

is said that the condition 1) will be sufficient to get the blowing-down in

Theorem 2' '.

On the other hand, it also furnishes an example of a complex space

Z which is not holomorphically convex, but whose reduction Zr^ is

holomorphically convex (c.f. [28]). Indeed, we define Z to be a complex

space (A,Oxl^+l\ where the notations are as in the previous Proposition.

Then Zre(t=A=FxC is clearly holomorphically convex. But if Z is

holomorphically convex and r: Z-+Z' is the Remmert quotient of Z,

then Zred^C and rre^ is isomorphic to p2, the projection to the second

factor. Then by the same argument as above we can get a contradiction.

Finally, using the example of Proposition 3, we construct an example

which shows that the conclusion of Proposition 3 does not continue to be

true if the condition 2) is omitted. Hence, roughly, a deformation of a

blowing-down is in general not a blowing-down.

Example. We use the notations of Proposition 3. Define Xt, t^. C,

to be affine bundles over Y defined by

Then X= U Xi forms a family of affine bundles over Y parametrized
t^c

by S=C. We see easily that XQ=YxC and Xt=X± if t=£Q. Let

rrt\ Xf-^-Y be the projection and put At=ir^\F^). Then we have the
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natural 5-morphism /: A=[^At-^A'=CxS. Since /Mo coincides

with the projection to the first factor and NA*/x^F=E>i we have Rlf*

NA$X*¥^®I though NAQ/xQ is negative. Now it is readily seen that
the existence of a blowing down of X along/would lead to a contradiction

with the non-existence of a blowing down of XQ along /Q. Hence this

(X, A,f, S) is proved to be our example.
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