Publ. RIMS, Kyoto Univ. 10 (1975), 509-519

On Cauchy-Kowalevski's Theorem; A Necessary Condition

By

Sigeru MIZOHATA*

1. Introduction

We are concerned with the Cauchy-Kowalevski theorem for an equation

(1.1)
$$\partial_t^m u(x, t) = \sum_{j=1}^m a_j(x, t; \partial_x) \partial_t^{m-j} u(x, t) + f(x, t),$$
$$(x, t) \in \mathbb{C}^l \times \mathbb{C}^1,$$

where the coefficients are assumed holomorphic in a neighborhood of the origin.**) The Cauchy-Kowalevski theorem says that, if

$$(1.2) order (a_j) \leq j,$$

then for any holomorphic Cauchy data $\partial_t^2 u|_{t=0} = u_j(x)$ $(0 \le j \le m-1)$, and for any holomorphic f, given in the neighborhood of the origin, there exists a unique holomorphic solution u of (1.1) in a neighborhood of the origin. In (1.2), order (a_j) means that of a_j in a neighborhood of the origin. Our question is the following: Is the condition (1.2) necessary for the Cauchy-Kowalevski theorem? Concerning this, the author showed in [3] the following result. Let q(>1) be the minimum number satisfying

order
$$(a_j) \leq q_j$$
 $(1 \leq j \leq m)$,

and let $h_j(x, t; \partial)$ be the homogeneous part of order q_j of a_j . Then in order that the above Cauchy-Kowalevski theorem hold, it is necessary that

Received March 30, 1974.

^{*)} Department of Mathematics, Kyoto University, Kyoto.

^{**)} We use the following abbreviations: ∂_x^{α} , ∂_t^{j} stand for $\left(\frac{\partial}{\partial x}\right)^{\alpha}$, $\left(\frac{\partial}{\partial t}\right)^{j}$ respectively. Furthermore, ∂_x^{α} will be denoted simply by ∂^{α} .

SIGERU MIZOHATA

$$(1.3) h_j(x, 0: \zeta) \equiv 0.$$

This implies, in particular, when all the terms of order greater than j of $a_j(x, t; \zeta)$ are independent of t, then (1.2) becomes a necessary condition for the validity of the Cauchy-Kowalevski theorem.

Recently M. Miyake investigated this problem [2], and showed that in the case m=1, namely,

(1.4)
$$\partial_t u = \sum_j b_j(x, t; \partial_x) u + f,$$
 (order $(b_j) = j),$

the condition $b_j(x, t; \zeta) \equiv 0$ for $j \geq 2$ is really necessary. So that (1.2) is necessary and sufficient in the case m=1. The purpose of this article is to show that when we follow the argument of Miyake together with that of Hasegawa in [1], we arrive at a sharper result than (1.3). Let us explain this. We expand each $a_j(x, t; \zeta)$ appearing in (1.1) in Taylor series in t around the origin. Then the terms appearing on the right hand side take the form:

$$t^n a(x) \ \partial_t^{\alpha} \partial_t^j \qquad (a(x) \not\equiv 0).$$

To all these terms, we define p (rational number) as the minimum satisfying

$$|a|+p(j-n) \leq pm$$

By saying *modified principal part* with weight p of (1.1), we mean all the terms for which the equal sign hold. Our result is:

Theorem. In order that the Cauchy-Kowalevski theorem hold at the origin, it is necessary that $p \leq 1$. Accordingly, in particular,

order
$$(a_j(x, 0; \partial_x)) \leq j$$

is a necessary condition.

2. Preliminaries

To make clear our argument, we treat (1.1) in matrix form. Put $\partial_t^j u = v_{j+1} \ (0 \le j \le m-1)$. Then (1.1) becomes

(2.1)
$$\partial_t v(x, t) = P(x, t; \partial_x) v(x, t) + g(x, t).$$

510

The Taylor expansion of $P(x, t; \partial_x)$ in t gives

(2.2)
$$P(x, t; \partial_x) = \sum_{j=0}^{\infty} t^j P_j(x; \partial_x)$$

where

(2.3)

$$P_{0} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ \vdots \\ a_{m}(x, 0; \partial_{x}) \dots & a_{1}(x, 0; \partial_{x}) \end{bmatrix}$$

$$P_{j} = \begin{bmatrix} 0 \\ a_{jm}(x; \partial_{x}) \dots & a_{j1}(x; \partial_{x}) \end{bmatrix} \quad (j \ge 1)$$

From the definition of the number p, we have

(2.4) order
$$(a_{jk}(x; \partial)) \leq pj + pk$$
 $(j \geq 0, 1 \leq k \leq m)$.

Our purpose is to show that, assuming p > 1, a formal solution corresponding to an appropriate holomorphic f does not converge in any neighborhood of the origin (assuming the initial data is 0).

Let the modified principal part (with weight p) of P_j be $\mathring{P}_j(x; \partial)$. It is easy to see that there exists an s such that $\mathring{P}_s \neq 0$ but $\mathring{P}_j = 0$ for j > s. For the foregoing argument, \mathring{P}_s plays an important role. The case s=0 can be treated in the similar way as in [3]. Therefore we suppose $s \ge 1$.

Let

(2.5)
$$P_{s}(x; \partial) = \begin{bmatrix} 0 \\ h_{s1}(x; \partial) \dots h_{sm}(x; \partial) \end{bmatrix}$$

and $h_{s1}(x; \partial) \equiv ... \equiv h_{s,i-1}(x; \partial) \equiv 0$. but $h_{si}(x; \partial) \neq 0$, Then, as we shall show at the end of this section, if $h_{si}(0; \zeta) \equiv 0$, then by choosing x_0 near the origin such that $h_{si}(x_0; \zeta) \neq 0$, without loss of generality, we can assume that

 $h_{si}(0; \zeta) \neq 0$, for $\zeta \in C^1$ $(|\zeta|=1)$.

We fix such a ζ once for all.

Next, by choosing j_0 satisfying pj_0 =integer, we take f(x, t) as

(2.6)
$$\begin{cases} f(x, t) = \frac{t^{j_0}}{j_0!} f_0(x), \\ f_0(x) = \sum'_k c_k \frac{\langle \zeta, x \rangle^{pk}}{(pk)!} \end{cases}$$

where \sum_{k}' means the summation over all positive integers k satisfying pk=integer; c_k will be defined appropriately. To be precise, $|c_k| = (pk)!$ and their arguments are defined recursively. So that $f_0(x)$ is holomorphic in |x| < 1.

Let

(2.7)
$$v(x, t) \sim \sum_{j=0}^{\infty} \frac{t^j}{j!} v_j(x)$$

be the corresponding formal solution. We assume that $v_0(x) \equiv 0$, i.e. Cauchy data is zero. Then denoting

$$g_0(x) = {}^t(0, 0, ..., 0, f_0(x)),$$

we have $v_0(x) \equiv v_1(x) \equiv \dots \equiv v_{j_0}(x) \equiv 0$. Comparing the coefficient of t^{n-1} , we get

(2.8)
$$\begin{cases} v_n(x) = P_0(x; \partial) v_{n-1}(x) + (n-1)P_1(x; \partial) v_{n-2}(x) + (n-1)(n-2)P_2(x; \partial) v_{n-3} + \dots + (n-1)\dots(n-s)P_s(x; \partial) v_{n-s-1} + \dots \end{cases}$$

Let us remark that

$$v_{j+1}(x) = P_0(x; \partial)g_0(x).$$

Finally our observation mentioned above (see the assumption with regards to h_{si}) relies on the following proposition which we used in [3]:

Proposition. Let \mathcal{O} be a complex domain (in \mathbb{C}^{l+1}) containing the origin. We assume all the coefficients of (1.1) belong to $H(\mathcal{O})$, i.e. holomorphic in \mathcal{O} . Assume for each $f(x, t) \in H(\mathcal{O})$ there exists a solution $u(x, t) \in H(V_f)$ of (1.1) satisfying

$$\partial_t^j u(x, 0) = 0 \text{ for } x \in V_f \cap \{t=0\} \quad (0 \leq j \leq m-1),$$

where V_f is a complex domain containing the origin which may depend

on f. Then there exists a fixed complex domain D containing the origin such that for any $f \in H(\mathcal{O})$, there exists always a solution $u(x,t) \in H(D)$ of (1.1) with zero Cauchy data.

Proof. Let

$$D_m = \{(x, t) \in \mathbb{C}^{l+1}; |x_i| < 1/m, |t| < 1/m\}.$$

For any pair (m, n) of positive integers, we define the set $E_{mn} \subset H(\mathcal{O})$ as follows. $f \in E_{mn}$, if and only if there exists a solution $u(x, t) \in H(D_m)$ of (1.1) with zero Cauchy data, satisfying

$$|u(x, t)| \leq n$$
, for $(x, t) \in D_m$.

Then E_{mn} is closed and symmetric. In fact, if $\{f_j\}$ is a sequence of E_{mn} , and $f_j \rightarrow f_0$ in $H(\mathcal{O})$, and let $\{u_j\}$ be the corresponding solution. If necessary, by picking a subsequence, we can assume $\{u_{j_p}(x, t)\}$ is a convergent sequence in $H(D_n)$. Then $u_{j_p}(x, t) \rightarrow u_0(x, t)$ in $H(D_m)$, and $|u_0(x, t)| \leq n$ in D_m . Since

$$L(u_{j_{b}}) \equiv \partial_{t}^{m} u_{j_{b}}(x, t) - \sum a_{j}(x, t; \partial_{x}) \partial_{t}^{m-j} u_{j_{b}}(x, t)$$

tends to $L(u_0)$ in $H(D_m)$, we obtain $L(u_0)=f_0$ which proves the closedness of E_{mn} . In view of $H(\mathcal{O})=\bigcup_{m,n} E_{mn}$ by hypothesis, the proposition follows immediately from Baire's category theorem. Q.E.D.

Now let us make precise our hypothesis. First, let

$$\mathcal{O} = \{ (x, t); |x_i| < \rho, |t| < \rho \}$$

where it is assumed $\rho < 1/2l$ (recall that l is the dimension of x-space). Then, from the above proposition, we can find a polydisc D, say $D = \{(x, t); |x_i| < \rho_0, |t| < \rho_0\}$. Now when $h_{si}(0; \zeta) \equiv 0$ for all ζ , and $h_{si}(x; \zeta) \equiv 0$, we can find $x_0 (\in \mathbb{R}^l)$ in such a way that denoting $x_0 = (x_1^0, ..., x_n^0)$, it satisfies $|x_i^0| < \min(\rho_0, 1/2l)$, so that we have

$$\mathcal{O} \subset \mathcal{O}' = \{ (x, t); |x_i - x_i^0| < 1/l, |t| < 1/l \},\$$

and that $(x_1^0, \ldots, x_n^0, 0) \in D$. This shows that

$$f_0(x) = \sum_{k}' c_k \frac{\langle \zeta, x - x_0 \rangle^{pk}}{(pk)!} \quad (|c_k| = (pk)!),$$

SIGERU MIZOHATA

which is holomorphic in \mathcal{O}' , is so in \mathcal{O} . Thus by hypothesis, the corresponding solution should be holomorphic in a neighborhood $V (\supset D)$ of $(x_0, 0)$.

3. Proof of Theorem

In (2.6), instead of $f_0(x)$ itself, we take simply

$$f_0(x) = \frac{\langle \zeta, x \rangle^{pk}}{(pk)!}$$
 (pk=integer),

and consider the coefficients $v_j(x)$ $(j_0 \le j \le j_0 + k)$ defined by (2.8). We are concerned with the leading term, i.e. the lowest homogeneous part in x of the *h*-th component $v_{j,h}(x)$ of $v_j(x)$. Note the following fact. Let

$$p(x, \partial) = \sum_{|\alpha| \le n} a_{\alpha}(x) \partial^{\alpha} = \sum_{|\alpha| = n} a_{\alpha}(x) \partial^{\alpha} + \sum_{|\alpha| < n} a_{\alpha}(x) \partial^{\alpha}$$
$$= p_n(x, \partial) + q(x, \partial).$$

Then for $j \ge n$,

$$p(x, \partial) \frac{\langle \zeta, x \rangle^j}{j!} = p_n(0, \zeta) \frac{\langle \zeta, x \rangle^{j-n}}{(j-n)!} + \dots$$

where the rest term on the right hand side is analytic function of vanishing order $\geq j-n+1$. In view of this, we see that

$$v_{j,h}(x) = a_{j,h} \langle \zeta, x \rangle^{\nu(j,h)} / \nu(j,h)! + \dots$$

where $\nu(j, h) = pk - p(j-j_0) + p(m-h)$, and the rest term is of vanishing order $\geq \nu(j, h) + 1$.

Taking account of that, (2.8) gives a recurrence formula for $a_{j,h}$. In fact, let

$$P_{0}(\zeta) = \mathring{P}_{0}(0; \zeta) = \begin{bmatrix} 0 & 1 \\ & 0 & 1 \\ & & 0 & 1 \\ & & & h_{01}(0; \zeta) & \dots & h_{0m}(0; \zeta) \end{bmatrix},$$

$$P_{j}(\zeta) = \mathring{P}_{j}(0; \zeta) = \begin{bmatrix} 0 \\ & h_{j1}(0; \zeta) & \dots & h_{jm}(0; \zeta) \end{bmatrix} \quad (j \ge 1),$$

where $h_{jk}(0; \zeta)$ are the terms of the modified principal part with weight p (see the definition in the Introduction), and let

$$a_n = t(a_{n,1},\ldots,a_{n,m}).$$

Then

(3.1)
$$\begin{cases} a_n = P_0(\zeta) a_{n-1} + (n-1)P_1(\zeta) a_{n-2} + (n-1)(n-2)P_2(\zeta) a_{n-3} + \dots + (n-1)(n-2)\dots(n-s)P_s(\zeta) a_{n-s-1}, \end{cases}$$

where

$$a_j = 0$$
 for $j < j_0$ and $a_{j_0} = t(0, 0, ..., 0, 1)$

Hereafter we denote

$$h_{sj}(0; \zeta) = h_j \qquad (1 \leq j \leq m).$$

Then by hypothesis, $h_1 = h_2 = ... = h_{i-1} = 0$, but $h_i \neq 0$. For convenience of the foregoing argument, let us denote

$$a'_{n} = t(a_{n,i}, a_{n,i+1}, ..., a_{n,m}),$$

and

$$|a_n| = \sum_{j=1}^m |a_{n,j}|; \quad |a'_n| = \sum_{j=i}^m |a_{n,j}|.$$

Next we choose a δ (0 $<\delta<1$) once for all in such a way that

(3.2)
$$\max_{j>i} |h_j| \frac{\delta}{1-\delta} \leq \frac{1}{2} |h_i|$$

Then for the sequence $\{a_n\}$ we have the following lemma:

Lemma. If j_0 is chosen large, then there exists an infinite subsequence $\{a_{n_p}\}$ of $\{a_n\}$ $(n \ge j_0)$ satisfying the following increasing law (in the wider sense):

$$|a'_{np}| \geq \delta |a'_{np-1}| \qquad (p=2, 3, \ldots),$$

moreover we can assume that

$$n_p - n_{p-1} \leq s+1.$$

Proof. To define $\{n_p\}$, we proceed as follows: If n_p is defined, then n_{p+1} is defined as the minimum number $m \ (>n_p)$ satisfying

$$|a'_m| \ge \delta |a'_n|.$$

Accordingly, let $n_p = n$, then it suffices to prove the following fact: If

$$(3.4) |a'_{n+1}|, |a'_{n+2}|, \dots, |a'_{n+s}| < \delta |a'_{n}|,$$

then,

$$|a'_{n+s+1}| \geq \delta |a'_{n}|.$$

Let us consider the last, i.e. the *m*-th component of a_{n+s+1} . In view of (3.1), it amounts to consider those of $P_{s-i}(\zeta)a_{n+i}$ $(0 \leq i \leq s)$. As we can observe, the case where i=m is easy, so we argue as i < m. Denote the *m*-th component of $P_s(\zeta)a_n$ by $(P_sa_n)_m$.

$$(P_s(\zeta)a_n)_m = h_i a_{n,i} + \sum_{j>i} h_j a_{n,j}.$$

Thus,

$$(3.5) \qquad |(P_s(\zeta)a_n)_m| \ge |h_i| |a_{n,i}| - \max_{j>i} |h_j| \sum_{j>i} |a_{n,j}|.$$

On the other hand, from (2.8) we see that, for general n,

$$(3.6) a_{n,j} = a_{n-1,j+1} (1 \le j \le m-1).$$

In fact, all the entries of $P_1(\zeta), \ldots, P_s(\zeta)$ are zero except the mth row, so that the components $a_{n,j}$ $(1 \le j \le m-1)$ of a_n can be defined simply by $a_n = P_0(\zeta)a_{n-1}$. By hypothesis (3.4),

$$\sum_{j=i}^{m} |a_{n+1,j}| < \delta \sum_{j=i}^{m} |a_{n,j}|.$$

Next, by (3.6),

$$\sum_{j=i+1}^{m} |a_{n,j}| = \sum_{j=i+1}^{m} |a_{n+1,j-1}| = \sum_{j=i}^{m-1} |a_{n+1,j}|$$
$$\leq \sum_{j=i}^{m} |a_{n+1,j}| < \delta \sum_{j=i}^{m} |a_{n,j}|.$$

Thus,

516

$$(1-\delta)\sum_{j=i+1}^{m} |a_{n,j}| < \delta |a_{n,i}|.$$

This implies, from (3.5) and (3.2),

$$|(P_{s}(\zeta)a_{n})_{m}| \geq |h_{i}| |a_{n,i}| - \max_{j>i} |h_{j}| \frac{\delta}{1-\delta} |a_{n,i}| \geq \frac{1}{2} |h_{i}| |a_{n,i}|.$$

Further, since

$$|a_{n}'| = |a_{n,i}| + \sum_{j>i} |a_{n,j}| \leq |a_{n,i}| \left(1 + \frac{\delta}{1-\delta}\right),$$

i.e. $|a_{n,i}| \ge (1-\delta)|a'_{n}|$, the above relation can be written as

$$(3.7) \qquad |(P_s(\zeta)a_n)_m| \ge \frac{1-\delta}{2} |h_i| |a'_n|.$$

Finally let us consider the last component of $P_{s-1}(\zeta)a_{n+1}$, $P_{s-2}(\zeta)a_{n+2}$, ..., $P_0(\zeta)a_{n+s}$. First, from our process of choosing $\{n_p\}$ (defined at the beginning), we have

(3.8)
$$|a'_{n-j}| \leq \frac{1}{\delta^j} |a'_n| \quad (j=1, 2, ...)$$

In fact, it holds that $|\alpha'_{n_{p-1}}| \leq \frac{1}{\delta} |\alpha'_{n_p}|, \ |\alpha'_{n_{p-2}}| \leq \frac{1}{\delta} |\alpha'_{n_{p-1}}| \leq \frac{1}{\delta^2} |\alpha'_{n_p}|, \ \text{and so}$ on. Further for $n_{q-1} < \nu < n_q$, it holds $|\alpha'_{\nu}| < |\alpha'_{n_q}|$.

Next, from (3.6), for any h $(1 \leq h \leq i-1)$, we have

$$a_{n+j,h} = a_{n+j-1,h+1} = a_{n+j-2,h+2} = \dots$$

This gives together with (3.8)

$$(3.9) \qquad |a_{n+j,k}| \leq \frac{1}{\delta^{m}} |a'_{n}| \qquad (0 \leq j \leq s),$$

and this is of course true for any $k (1 \leq k \leq m)$ (see (3.4)).

Thus we have

$$(3\cdot10) \qquad \sum_{\nu=1}^{s} |(P_{s-\nu}(\zeta)a_{n+\nu})_m| \leq sm \cdot \max_{i,j} |h_{ij}(0; \zeta)| \frac{1}{\delta^m} |a'_n| \equiv K |a'_n|,$$

where

SIGERU MIZOHATA

(3.11)
$$K = \frac{sm}{\delta^m} \max_{i,j} |h_{ij}(0; \zeta)|.$$

Finally from (3.1), (3.7) and (3.10), we obtain

$$\begin{aligned} |a_{n+s+1,m}| &\geq (n+s) (n+s-1) \dots (n+1) |(P_s(\zeta)a_n)_m| \\ &- (n+s) \dots (n+2) \sum_{\nu=1}^{s} |(P_{s-\nu}(\zeta)a_{n+\nu})_m| \\ &\geq (n+s) \dots (n+1) \Big\{ \frac{1-\delta}{2} |h_i| |a'_n| - \frac{1}{n+1} K |a'_n| \Big\}. \end{aligned}$$

Now we define j_0 in such a way that

(3.12)
$$\frac{1-\delta}{4}|h_i|_{j_0} \ge \max(1, K).$$

Then we have $|a_{n+s+1,m}| \ge |a'_n|$. This completes the proof. Q.E.D.

Let us return to (2.6). The above lemma gives the following result: there exist i_0 , j $(0 \le i_0 \le s, 1 \le j \le m)$ such that, if we write

$$v_{n+j_0-i_0,j}(x) = c_n \beta_n \frac{\langle \zeta, x \rangle^k}{k!} + \varphi_n(x) + \psi_n(x),$$

where $k=pi_0+p(m-j)$, $\psi_n(x)$ being of vanishing order strictly greater than k, and $\varphi_n(x)$ is determined by $\{c_i\}$ for i < n, then, there exists an infinite subsequence of n satisfying

$$(3.13) \qquad \qquad |\beta_n| \ge \delta'^n \qquad (\delta' > 0)$$

for a fixed δ' .

Let us explain this. First we choose i_0 in such a way that there exists an infinite subsequence $\{n_p\}$ stated in the above lemma, which is congruent to $1-i_0$ modulo the denominator of p. Next, j is chosen in such a way that, for this subsequence, say $\{a'_{np}\}$, we have $|a'_{np,j}| \ge \frac{1}{m} |a'_{np}|$. Further let us decompose (pn=integer),

$$f_0(x) = c_n \frac{\langle \zeta, x \rangle^{p_n}}{(p_n)!} + \sum_{k < n} c_k \frac{\langle \zeta, x \rangle^{p_k}}{(p_k)!} + \sum_{k > n} c_k \frac{\langle \zeta, x \rangle^{p_k}}{(p_k)!}.$$

Since the correspondence

$$f_0(x) \longrightarrow v_n(x)$$

518

is linear (see (3.1)), for the study of the structure of $v_n(x)$ we can consider the three terms separately. Now we see easily that the part of $v_{n+j_0-i_0,j}(x)$ corresponding to the third term in the above decomposition, is of vanishing order $\geq pi_0 + p(m-j) + p$, hence this is greater than k+1.

Thus we obtain taking account of $|\zeta|=1$,

$$(3.14) \qquad \langle \zeta, \, \partial \rangle^k \, v_{n+j_0-i_0,\,j}(x)|_{x=0} = c_n \, \beta_n + \langle \zeta, \, \partial \rangle^k \, \varphi_n(x)|_{x=0}.$$

Now we define c_n by

$$(3.15) c_n = (pn)! e^{i\theta_n}$$

where θ_n is fixed in such a way that $e^{i\theta_n} \beta_n$ and $\langle \bar{\zeta}, \partial \rangle^k \varphi_n(x)|_{x=0}$ have the same argument. It follows from (3.13) that for an appropriate subsequence of *n* the left hand side of (3.14) is greater than, in absolute value, $(pn)! \delta'^n$.

Now we return to the formal solution (2.7), and consider

$$\langle \bar{\zeta}, \partial \rangle^k v(x, t)|_{x=0} \sim \sum_{n \ge 0} \frac{t^n}{n!} \langle \bar{\zeta}, \partial \rangle^k v_n(x)|_{x=0}$$

There are infinitely many integers of the form $n+j_0-i_0$ such that their *j*-th component are greater than in absolute value

$$\frac{1}{(n+j_0-i_0)!} |c_n \beta_n| \geq \frac{(pn)!}{(n+j_0-i_0)!} \delta'^n \underset{n \to \infty}{\sim} A c_0^n n^{(p-1)n},$$

where A and c_0 are appropriate positive constants. Since p > 1, the above series is never convergent for any $t(\neq 0)$. This completes the proof of Theorem in the Introduction.

References

- Haseagawa, Y., On the initial-value problems with data on a double characteristics, J. Math. Kyoto Univ. 11-2 (1971), 357-372.
- [2] Miyake, M., A remark on Cauchy-Kowalevski's theorem, to appear.
- [3] Mizohata, S., On Kowalevskian systems, Uspehi Mat. Nauk. 29, (1974), 213-227.