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On Cauchy-Kowalevski's Theorem;
A Necessary Condition

By

Sigeru MlZOHATA*

L Introduction

We are concerned with the Cauchy-Kowalevski theorem for an

equation

m
(1.1) 3»«(*, /)= S «>(*, *\

where the coefficients are assumed holomorphic in a neighborhood of the

origin.*** The Cauchy-Kowalevski theorem says that, if

(1.2) order (afi^j,

then for any holomorphic Cauchy data d3
tu\t=Q=Uj(x) (05j/<^ — 1),

and for any holomorphic /, given in the neighborhood of the origin, there

exists a unique holomorphic solution u of (1.1) in a neighborhood of the

origin. In (1.2), order (afi means that of a$ in a neighborhood of the

origin. Our question is the following: Is the condition (1.2) necessary

for the Cauchy-Kowalevski theorem? Concerning this, the author showed

in [3] the following result. Let q (>1) be the minimum number satisfying

order

and let hj(x^ t\ 3) be the homogeneous part of order qj of a$. Then in

order that the above Cauchy-Kowalevski theorem hold, it is necessary

that
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*) We use the following abbreviations : 9J, 3| stand for [ — - ) , (— j respectively. Fur-
\r.r/ \ on

thermore, 9£ will be denoted simply by 3a.
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(1.3) Aj(x,Q: ^=0.

This implies, in particular, when all the terms of order greater than j of

&j(x, t\ £) are independent of t, then (1.2) becomes a necessary condition

for the validity of the Cauchy-Kowalevski theorem.

Recently M. Miyake investigated this problem [2], and showed that

in the case w = l, namely,

(1.4) dtu= 2 bj(x, t\ SJu+f, (order (6fi=j),
J

the condition bj(x, t\ £)=0 forj ^2 is really necessary. So that (1.2) is

necessary and sufficient in the case m = li. The purpose of this article is

to show that when we follow the argument of Miyake together with that

of Hasegawa in [1], we arrive at a sharper result than (1.3). Let us

explain this. We expand each aj(x, t\ £) appearing in (1.1) in Taylor

series in / around the origin. Then the terms appearing on the right

hand side take the form:

t*a(x) 3^f

To all these terms, we define^ (rational number) as the minimum satisfying

By saying modified principal part with weight^ of (1.1), we mean all the

terms for which the equal sign hold. Our result is:

Theorem. In order that the Cauchy-Kowalevski theorem, hold at

the origin, it is necessary that ^^1. Accordingly, in particular,

order (a,j(xy 0; 9^))^y

is a necessary condition.

2. Preliminaries

To make clear our argument, we treat (1.1) in matrix form. Put

9| u=Vj+i (Q<^j<^m — Y). Then (1.1) becomes

(2.1)
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The Taylor expansion of P(x, t\ 3%) in t gives

(2.2) />(*,*; 3*)= 2 t*P,(x] 3*),
j=o

where

0 1

0 1

(2.3)
, 0;

0

From the definition of the number p, we have

(2.4) order (*#(#

Our purpose is to show that, assuming^>l, a formal solution corresponding

to an appropriate holomorphic / does not converge in any neighborhood

of the origin (assuming the initial data is 0).

Let the modified principal part (with weight p} of P$ be Pj(x\ 3).

It is easy to see that there exists an s such that Ps^=0 but Pj=Q for j>s.

For the foregoing argument, Ps plays an important role. The case

s=0 can be treated in the similar way as in [3]. Therefore we suppose

Let

(2.5) P8(x; 3H

and hs\(x\ d)=...=h8,i-\(x\ 3)^0. but hSi(x\ 3)^0, Then, as we shall

show at the end of this section, if ^Si(0; £)=0, then by choosing x§

near the origin such that A8i(xQ] S)^0, without loss of generality, we can

assume that

for

We fix such a £ once for all.
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Next, by choosing J'Q satisfying pjo= integer, we take f(x, f] as

(2'6)

where ]>]& means the summation over all positive integers k satisfying

/^=mteger; CTC will be denned appropriately. To be precise, \c?c\ =

(p&) I and their arguments are denned recursively. So that /o(X) is holo-

morphic in x\<.\.

Let

(2.7) v(x, O-.S^'W

be the corresponding formal solution. We assume that z>o(X)=0, i.e.

Cauchy data is zero. Then denoting

^o(*)='(0,0, ...,0, /„(*)),

we have vo(x)^vi(x)= ...... =z//0(V)=0. Comparing the coefficient of

f"-1, we get

Let us remark that

Finally our observation mentioned above (see the assumption with

regards to hSi) relies on the following proposition which we used in [3] :

Proposition,, Let O be a complex domain (in Cm) containing the

origin. We assume all the coefficients of (1.1) belong to H(&}, i.e.

holomorphic in O. Assume for each f(x, f)^H(O] there exists a solution

u(x, f)^H(Vf) of (1.1) satisfying

3{u(x, 0)=0 for x^ Vf n {^-0}

where Vf is a complex domain containing the origin which may depend
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on f. Then there exists a fixed complex domain D containing the origin

such that for any f^H(O)t there exists always a solution u(xJf)^H(D}

of (1.1) with zero Cauchy data.

Proof. Let

&m = {(x, /)e=C'+i; \Xi\<\lm, \t\<\lm}.

For any pair (m, n) of positive integers, we define the set Emnc:H(O) as

follows. f€=iEmni if and only if there exists a solution u(x, f)€Eff(Dm)

of (1.1) with zero Cauchy data, satisfying

\u(x, t}\gM, for (.r, f)$=Dm.

Then Emn is closed and symmetric. In fact, if {/;} is a sequence of

Emu, and /;— >/o in H(O}, and let {uj} be the corresponding solution.

If necessary, by picking a subsequence, we can assume {uip(x, /)} is a

convergent sequence in H(D^. Then Ujt(x, £)->u$(x> /) in H(Dm}, and

^l§(x, f)\^n in Dm. Since

L(uh}=d™ujp(%, /)-s ^-(^, /; a^af-^y A» 0

tends to L(UQ) in £f(jDm), we obtain L(UQ)=/Q which proves the closedness

of Emn. In view of //((?)= U ^TOW by hypothesis, the proposition follows
m>n

immediately from Baire's category theorem. O.E.D.

Now let us make precise our hypothesis. First, let

(?={(*, 0; \xt\<P, \t\<P}

where it is assumed p<l/2/ (recall that / is the dimension of ^r-space).

Then, from the above proposition, we can find a polydisc D, say D =

{(*, /); \Xi\<pv, \t\<p®}. Now when /i8i (0;Q=0 for all f, and

hsi(x\ 0^0, we can find xo(^Rl) in such a way that denoting ,ro =

(^5> • • • » ^%)j ^ satisfies i^|<min (po5 1/2/), so that we have

0c0'= {(*,*); l^

and that (^?, ..., ̂ , 0)eZ>. This shows that
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which is holomorphic in O', is so in O. Thus by hypothesis, the cor-

responding solution should be holomorphic in a neighborhood V (I3-O)

of (*o, 0).

3. Proof of Theorem

In (2.6), instead of /o(X) itself, we take simply

/„(*)= a

and consider the coefficients Vj(x) (jo^ij^jo+&) defined by (2.8). We
are concerned with the leading term, i.e. the lowest homogeneous part in

x of the h-th component v$th(x) of Vj(x)- Note the following fact. Let

P(x, 3)= 2 aa(x~)3a= 2 aa(x)3a+ 2 ««(*) 3"
lori^W ltfi=n

=^»(^, 3)+^, 3).

Then for j>n,

where the rest term on the right hand side is analytic function of vanishing

ly — n-\-\. In view of this, we see that

where v(/, k}=pk—p(j—jo)-{-p(m—~h\ and the rest term is of vanishing

Taking account of that, (2.8) gives a recurrence formula for cy^.
In fact, let

r o i ,
; 0 1 '

\ \ ' ,
0 1
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where /^(O; £) are the terms of the modified principal part with weight

p (see the definition in the Introduction), and let

Then

rs4 '

where

aj=0 for j<jQ and a^=*(0, 0, . . . , 0, 1).

Hereafter we denote

Then by hypothesis, Ai=A2=...=^-i=0, but /ii=^=0. For convenience

of the foregoing argument, let us denote

and

w w
k»|= 2 kn,yl ; |a»il= 2 |an^].

;=1 ^=*

Next we choose a 8 (0<^S<C1) once for all in such a way that

(3.2) max \fy\ -^ ^ -1 \h*\-
j>i 1 — o Z

Then for the sequence {an} we have the following lemma:

Lemma. If jo is chosen large, then there exists an infinite subse-

quence {anp} of {a^} (n^jo) satisfying the following increasing law (in

the wider sense)'.

(^ = 2,3 , . . . ) ,

moreover we can assume that
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Proof. To define {%?}, we proceed as follows: If nv is defined,

then np+i is defined as the minimum number m (>np) satisfying

(3.3)

Accordingly, let np=n, then it suffices to prove the following fact: If

(3.4) |c4+i!, ct

then,

--
\an+s+i ^°\a

Let us consider the last, i.e. the m-th component of an+s+i. In view

of (3.1), it amounts to consider those of Ps-t^un+t (O^z^r). As we

can observe, the case where i=m is easy, so we argue as i<,m. Denote

the m-th component of Ps(£)a*n by (Psan)m-

Thus,

(3.5) \(Ps(Qan)m\^\hi\ \oLn,i\—max!^|

On the other hand, from (2.8) we see that, for general n,

(3.6) a>n, 1 = 0-11-1,1+1

In fact, all the entries of PI(£), • - . , PS(£) ar^ zero except the mth row, so

that the components anj (I^j^m — 1) of an can be defined simply by

-i- BY hypothesis (3.4),

m
2

Next, by (3.6),

m m ra-l

Thus,
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m
(1-8) 2 \anj\<8\an,i

This implies, from (3.5) and (3.2),

O

•i " 1 — o ' 2

Further, since

i.e. |aWli|^(l —S)|a'w|, the above relation can be written as

Finally let us consider the last component of Ps-i(£)a"n+ij Ps-2(£)

an+2, • - . , Po(E>)an+s. First, from our process of choosing {np} (defined

at the beginning), we have

(3.8) ^n-j^lj <41 (.7=1,2, . . .)•

In fact, it holds that cdnp_^ y a'Hp\, \anp_t\^ -=r- anp^ < -p \a'np, and so

on. Further for nq-i<^v<^Kq, it holds \al/\<^\anq.

Next, from (3.6), for any h (l^A^/— 1), we have

This gives together with (3.8)

(3.9)

and this is of course true for any k (l^^fg^/z) (see (3.4)).

Thus we have

(3-10)

where
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(3.11) JfiT=
0 i,j

Finally from (3.1), (3.7) and (3.10), we obtain

iaB -

Now we define ;'o in such a way that

(3.12) = jAil/o^max (1, AT
4

Then we have \a.n~t-s+i,m\^\a'n • This completes the proof. Q.E.D.

Let us return to (2.6). The above lemma gives the following result:

there exist z'o, j (O^z'o^^j \^j^Lm) such that, if we write

where k=pi^-\-p(m—j'}J &n(x) being of vanishing order strictly greater

than k, and <pn(x) is determined by {ct} for i<n> then, M^r^ exists an

infinite subsequence of n satisfying

(3.13) \$n\^'n (3;>0)

/<?r ^ fixed 8'.

Let us explain this. First we choose z'o in such a way that there exists

an infinite subsequence {np} stated in the above lemma, which is con-

gruent to l—2'o modulo the denominator of p. Next,/ is chosen in such

a way that, for this subsequence, say {a'np}, we have \afnpj\^ - \a-np\-
tn

Further let us decompose (pn= integer),

V
n Sn

Since the correspondence

MX) - ^ vn(x)
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is linear (see (3.1) ), for the study of the structure of vn(x} we can consider

the three terms separately. Now we see easily that the part of Vn+j0-t0j(x)

corresponding to the third term in the above decomposition, is of vanishing

order^/zo+/(??z—-jO+A hence this is greater than k-\-\.

Thus we obtain taking account of |£| = 1,

(3.14) <(£, Sy^ Vn-\-j0-i0j(x
]\x=Q = Cn j8w + ^f > ^)fc 9n\X)\x=®-

Now we define cn by

/D 1 CN / .A \ I iff(p. 15) cti = (pn)l elun,

where 0n is fixed in such a way that e*0» j3n and <(^, 3)>fc 9n(x)\x=Q have the

same argument. It follows from (3.13^ that for an appropriate subse-

quence of n the left hand side of (3.14) is greater than, in absolute value,

(pn)\ S'n.

Now we return to the formal solution (2.7), and consider

There are infinitely many integers of the form n-\-j§—z'o such that their

y-th component are greater than in absolute value

where A and c§ are appropriate positive constants. Since/>>!, the above

series is never convergent for any f(=^=0\ This completes the proof of

Theorem in the Introduction.
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