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The Products in the Steenrod Rings of the
Complex and Sympletic Cobordism Theories
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Tetsuya AIKAWA*

§ 1. Introduction

This paper is concerned with the Hopf algebra structure of a certain
subalgebra S of the Steenrod ring AG of stable cohomology operations
in the complex cobordism theory and the sympletic cobordism theory
MG*( ), where G=U or Sp, the infinite dimensional unitary or sym-
pletic group, respectively.

The Hopf algebra structure and its applications of Steenrod algebra
with coefficients Zp, for a prime p, have long been studied by many
topologists (Steenrod-Epstein [6]). Novikov [3] investigated the Steenrod
rings of generalized cohomology theories. Landweber [1] also studied
general properties of AG as Hopf algebra.

The main purpose of this paper is to determine the explicit product
formula in S (Theorem 3.1) and the indecomposable quotient S/S2

(Theorem 4.1), where S denotes the kernel of the augmentation S-»Z.
We use the following notations. Let Z be the ring of integers and

Zm = Z/mZ. According to Landweber [1], AG can be expressed as

AG = A®S, with the coefficient A = Q^MG*(point). In case G=£7,
/t=Z[xl5 x2,...], deg(Xj)=-2/. In case G = Sp,A has not been deter-
mined completely. The subalgebra S is a Hopf algebra over Z and has
a Z-free basis {Sj}, with dQg(SI) = d^rrir9 where d=2 or 4 according
as G=17 or Sp and I=(il9 i2,...) is a sequence of non-negative integers
such that all but a finite number of ir are zero. For two Z-graded
modules M=^i^L_aoMi and N^^^-^ Ni9 the completed tensor product

Communicated by N. Shimada, March 12, 1973. Revised October 11, 1974.
* Department of Mathematics, Okayama University, Okayama.



582 TETSUYA AIKAWA

M®N is defined by

We remark that S/ in this paper and that in Adams [2] are the
same as S1 in Landweber [1]. Sf in Landweber [1] and Novikov [3]
are different from ST in this paper. (For the detail on the relationship
between two notations S/ and S1 by Landweber, see Landweber [1,
Page 101].) While revising the manuscript, the author was informed
that the main theorem of the present paper was obtained independently
by I. Kojima.

The author expresses his hearty thanks to Dr. K. Shibata for many
improvements of the contents (see Remark after Theorem 4.1) and also
to Professor M. Mimura for reading the manuscript.

§2. Notations

Let /=0'i, 129"-) be a sequence such that each ir is a non-negative
integer and all but a finite number of ir are zero. We define

|I[ = Z,ir and ||/|| = Ir nr.

We order sequences such that

J<J if ifo>Jr0 for some r0 and ir—jr for all r>r0;

if ir^jr for all

Then "<" is a total order and "^" is a partial order. We denote
by 0 the sequence (0,0,...); by An the sequence (il9 i25...) with ir=0
for r^n and /„=!; by nl the sequence with each component in /
multiplied by n. Sometimes we abbreviate I=(il9 i29.-.,in,Q,Q,...) by
0*!, i2,..., t). I+J denotes a componentwise sum. I—J is defined
componentwisely if Z^J. A small letter indexed by n denotes the n-th
component of the sequence expressed by the corresponding capital letter.

Let M be a module, ml9 m29..., mr in M and R a ring with unit.
Then we denote by R{ml9...9 mr} a free ^-module generated by ml9...,
mr.
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Let R be a ring, m^ and m2 in R. Then we denote [mi9 w2] =

i2 — wi2'Wi-
Let X be an indexed set of non-negative integers:

(2.1) *=(fcm,M,s; m, n^O, (m, n)^(0, 0), l^s^s(m, n)).

we consider another indexed set

such that

For fixed m and n we order the set of

0'iyn,B,s ;0^r^m); l^s^ s(m, n)

such that

s<s' implies O'r>m)n,s; 0^r^m)<(ir,m,BjS'; O^r^m), where s(m, n) is
the number given by

s(m, n)=

The set of such (ils..., fm) is denoted by /(m, n). Then s(m, n) has the

following properties:

, n — l) + s(m — 1, n), n*zQ

s(m, 0)=l=s(0, m)=s(l, m),

s(m, l)=[m/2] + l, ([ ] denotes a Gauss integer.),

f 3j2+(k+3)j + k, 0<fc^5, m = 6/+fc,
5(m,2)=

I 3/2 + 3/+l, m = 6/.

We use the following notations:
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K(X)=(k1(X\k2(X),...),

FLrMi^M £m>" A, )
X^w.w, ! » • • • ' ^w.n.sOM,/!)/

We define polynomial coefficients for /=(/!,...,/,.) with \I\£i as
follows:

Remark. The definition of ir(X) is equivalent to the following;

§3. Product Formula

Theorem 3.1.

Remark. The sum in Theorem 3.1 is a finite sum. JJ in Theorem

3.1 means that if two sequences / and J are given, then the sum runs
over all indexed sets X as in (2.1) such that I(X)=I and J(X)=J.

The product formula in Theorem 3.1 corresponds to the product formula
for the Milnor basis in the modjp Steenrod algebra of ordinary coho-

mology theory with coefficients Zp (for the Milnor basis, see Milnor

[5] ; Theorem 4b).
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Proof. The proof is complicated and we will give it in the last

part of this section.

Corollary 3.2.

where the sum runs over all (fe, kQ,...,kn+i) such that

is a Kronecker's delta and

Corollary 3.3.

Corollary 3.4.

and in particular if ir=0 for all r^n, then

where the two sums run over all pairs (m, J) such that

m^O, JEl(m,ri), Q^J^I.

For the next corollary define fc(/)=max{r; ir>0} for each sequence

I=0"i, i2,...)-

Corollary 3.5. // h(l)<n, then for any j^l,

9 aKeZ.

Proof of Theorem 3.1.
Let (p and i/r be the product and the coproduct of the Hopf algebra
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S, respectively. Then

Let S* be the Hopf algebra dual to S and ^ the element dual to SAi.

Then S* is a polynomial algebra on generators bl9 b2, b3,.... Set fc =

ZS=o&i> where b0 = l. Then Theorem 6.3 in Adams [2] says that the

coproduct in S* is as follows:

Therefore

/
!»•••> *»+!

where the second sum runs over all (i0, il9...9in+1) such that £ir=n + l.

Then the homogeneous component is

where

V0» * l»*"j lm-n/

(the sum runs over all (z'0, il9..., im-n) such that

In other words, using the notation in §2, we have

B-Dm,n
s(m-n,»)^+l \

-s=l I/ / }
V0,m— Bjn^s"'* *TO— w,m— n,n,s/

Since <p* is a homomorphism of algebras,

where £(1) runs over all (fe^o,.-, fc0§J such that £«.0 km_ttin=km
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- From now on we have a convention that two

sums 2(B) with ^e same index number n run over the same set.

^BI-B,B, ! » • • • » ^BI-B,B,S(BI-B,B)/

n—B,B) VO,m-B,B,s»'"» *BI-B,BI-B,B,

X Z > !

where 2(2) runs over all (fem_n>B,i,.-., *m-».»x»-»^)) such that

fcm-»,B,s=fem-»,»» fcm-»,»,s^0(l^s^s(m-n, n)) and S(3)=

x n (?+i / yO^n^m V0,m— n , B , s » I I * 5 *m— n,m— n,n,s/

^ \*m — n » n » s

_ - - _ < 0 »BI~B, B,S' * * * ' BI~"B,?B^B, B.Sj
I^S^S(BI-B.B)

xUb*

where the sum 2(4) runs over all pairs (n, s) such that m^n^O, m-

n^r, l^s^s(m—w, w).

Let K=(fel9 fe2v) be a sequence of non-negative integers such that

all but a finite number of km are zero. We denote bK=bk
1
lb%2-~b*t

m~-.

Then we have

mil

n d"-"'" «. )
m^l X^m-n.n, l9"*9 ^m-n.B.sCm-ii,!!)/
^B^O

n f?+1 \*
m^ 1 vO,m-B,B,s»'"9 'm-B.m-B.B.s/

„*«-„,„

where 2(5) runs °ver aH sequences (fcm,n,s) such that 2?«o km-ntn=km,
SsiTll'w)fcm-B,«,s=fcm-n,B9fcm-B,»^0, fem_BfllfS^0 for all m, w, s; 2(6) runs
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over all triples (m, n, s) such that m^l, n^O, m — n^r, lgsgs(m — n,
n). Replacing m — n with m, we have

u(k
k
m

 k ) n
m£l \Km,09"-9 Ko,m/ m.n^O

(m.ii)*<0.

where 2(?) runs over all sequences (feWfnfS) such that S?=o^m-n fii
==fcm>

Z?iwi'w)fe«,«,,=fem,»Jfem,»^0, fe^^O, for all m,n , s; £(8) runs overall
triples (m, n, s) such that n^O, (m, n)^(0, 0), rgm, l^s^s(m, n). Since
s(m, 0) = s(0, m) = l, we have for m = 0 or w=0

Thus the coproduct formula in S* is

Thus we can prove the theorem by using the following lemma.

Lemma 3.6. Let R be a principal ideal domain, A an £-free Hopf
algebra over R with a basis {at} and a product q>, A* the Hopf algebra
dual to A, a1 the element dual to ai9 <p* the coproduct in A*. If

then

where e = (deg a,-) x (deg ak).

Proof. The proof is essentially a part of the proof of Theorem 4b
in Milnor [5; Page 164].
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§4. The Indecomposable Quotient

In this section we determine the indecomposable quotient S/S2.

Throughout this section " = ", " = " and "=p" denote the equality in
S, the congruence in S/S2 and (S/S2)®Zp, respectively. All Sx are

called monomials. Ipt0 denotes 2aA2 for p=2 and denotes 2paAl or
paA2 for p an odd prime in the next theorem.

Theorem 4.1. (1) Sr is indecomposable in S if and only if

I = paAe or 2paAl9 for some prime p, a^O, e = \, 2.

(2) Let V be a set of monomials. Then V is a minimal set of

generators of S if and only if V={SpaAl, SIpta; p: prime, 0^0}.

(3)

0 £ Zp{SpaAf;a^l9e=l92,(p9a9e)*(29l9l)}
p-.Pfime

The only relations in S/S2 are:

, = - SP«A 2 (P : odd Prime, a ̂  1)

Suppose that p is any prime in (4), (5) and (6) below:

(4) Sj is indecomposable in S®Zp if and only if

= paAe or 2paAi; for a^O, e=!9 2 (p: odd prime),

= 2-4, ; for a^O, e=\9 2 (p = 2).

(5) Let V be a set of monomials. Then V is a set of generators

of (S/S2)®Zp if and only if V={Spa.l9 SJp>a; a^O, e=l, 2}.

(6) S®ZP/S®ZP =Zp{Spfl^; a^O, e=l9 2}.

Among representatives there are relations:

SW^P-S^ (P'odd, a^l).

Proof. The remainder of this section, except for Corollary 4.14, is
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devoted to the proof of Theorem 4.1.

Remark. Of course the order of S2paAl is p. Landweber [1] has
proved (4), (5) and (6) except for the relations. The original proof of
Proposition 4.13 is improved by Dr. K. Shibata as mentioned below in
this section. Corollary 3.5 and Lemma 4.12 are preparations for Proposi-
tion 4.13 and are due to Dr. K. Shibata.

Proposition 4.2.

SfSj= ft (J* /
ffiei^ 1 \ HI' Ji

Proof. It suffices to show the following two statement.
Statement A: There is a unique sequence X such that I(X)=I,

J(X)=J and K(X)=I+J. Moreover the sequence X satisfies

Statement B: If I(X)= I, J(X)= J and K(X)*I+J, then K(X)<
I+J.

First we show Statement A. There is an integer m0 such that im=
jm=0 for all m>m0. Then I,^0km-ntn=km(X) = im+jm=Q, for all
m>m0. Thus fem(W=0 for all m, n^O, m + n>m0

\J*o> m=0

^m,mo~"| ^
[ 0, m>0.

Since fein,n,s=0 for all m^m0, n>0, we have Jmo = felfl0iO' Thus

Therefore for

W (m, n, s)=(m0, 0, 1)

0, otherwise.

This implies

kKm,m0 -1
0, m>0
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and imo _ t = kmo _ Ip0. Thus Statement A is proved by repeating the
similar process.

Secondly we show Statement B. This is equivalent to the statement
that if kmi(X)*imi+jmi, for some m^l, and km(X) = im+jm, for all
m>m l 5 then kmi(X)>imi+jmi.

Similarly to the proof of the first part, we have

, m>0, n>0, m + n>m1

p (™> «) = (0, MI)

i, (m, n)=(mlf 0)

Thus

kmt = 4*0<n<mi ^mi-n,n"^ ^mi +Jmi s^mi+Jmi •

Thus Statement B is proved.
For the next corollary we define the length of a sequence / as

follows:

Corollary 4.3. (1) l(K)^2 implies

(2) // K = kAm9 2:gfc and k is not a prime power, then

SKeS2+Z{SqbAn', m<n, qbn = km, q: prime}.

(3) // K=paAm, m^l, p is a prime and 0^1, then

pSKeS2+Z{SqbAn; m<n, qbn=pam, q: prime}.

Proof. (1): Let / and J be such that 1^0, J^O, I+J=K and
yr=0 for all r. Then

S/S j = SK + 2! i(x) = urn - J,K(X) <i+J a(XjSK(xy '

Repeating this process, we find that all SK, l(K)^29 are generated by
Sj, /(/) = !, modulo S2. (2), (3): Let K=kAm and 0<k'<k. Then
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SrdmS(fc-fc')jm=(|,)sfcJm+(terms of lower order).

Thus (2) and (3) follow from the second and first equalities in the next

lemma, respectively.

Lemma 4.4.

p, k=ps
9j"^l9 p: prime</k\ } ( P> k=p*,j^l

.c.d. m;o<i<fc =iv/ J [ 1, otherwise.

Proposition 4.5. The components of degree d and 2d of S/S2 are

Z{SAl} and Z{SAz, S2Ai}l2Z{SA2 + S2Ai}9 respectively.

Proof. SAlSAl=2SA2 + 2S2Ai.

Proposition 4.6. If n^3, then SAn is in S2.

Proof. Case (I): n = l(mod2). It follows from the following rela-

tion:

Case (2): w=0(mod4). By Corollary 3.2 we have

^ and

where T^S^

We define inductively as follows:

Then we have
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Thus cn=l, (n: even), =0, (n: odd). Then we have

( SA2n, n:even

0, n:odd.

Case (3): w=2(mod4). By Corollary 3.2, we have

Thus the proof is completed.

We can consider S®Zp as a tensor product of algebras S and Zp.

Theorem 4.7. (Landweber [1]) For any prime p9 S®Zp has

Sp*Ae; a^O, e=l,2

as a minimal set of generators.

Remark. (Landweber [1]). If p is odd, then another minimal set

of generators is {Sfp*Al: a^O, e=l, 2}. If p=2, no other monomials

are decomposable.

Proposition 4.8. Under the correspondence of the same representa-

tive Sj we have an isomorphism

Proof. The short exact sequence

0 —» S2 —» S —> S/S2 —> 0

and an isomorphism S®Zp-*S'®Z|, induced by the middle linear function

(for the definition, see MacLane [4; Page 138]) S x Zp-»S®Zp imply

that the following diagram is commutative:

S2®ZP — >S®ZP — > (S/S2)®Zp

IL ._ ..s®zp
2 — > s®zp — > s®zp/s®zp

2 — » o
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Since f^ and /2 are isomorphisms, it follows from the five Lemma
that /3 is an isomorphism. Thus the proof is completed.

Proposition 4.9. (S/S2)n=Q9 unless n = depa, for some p: prime,
a^O, e=l, 2.

Proof. Since S is locally finitely generated as a Z-module, so is
S/32, that is, (S/S2)B is finitely generated for all n. Thus (S/S2)B is
decomposed into a direct sum of m copies of Z and mq copies of

Z€&> fc^l, for primes #.
Thus (S/S2)n®Zp is a direct sum of m + mp copies of Zp. Theorem

4.7 yields (S/S2)n®Zp=Q, for all primes p, under the assumption of this
proposition. Thus in this case, (5/52)B=0.

Lemma 4.10. Let p be a prime, fe=S?Lifli>

b = 2j*0bjpJ,Q^bj<p and a

Then we have

C ...... J-j
if bj<^i aitj, then we define ( J J=0.

Proo/. Well known.
For the next proposition, we give some preparations. Lemma 5.6

in Landweber [1] says that

where FP°° is the infinite dimensional complex or quaternion projective
space according as d= 2 or 4, respectively, and

I 0, otherwise.

Proposition 4.11.

0, |/|>n.
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Proof. We prove by induction on n. Use the Cartan formula

repeatedly.

Lemma 4.12. If m, n^l and mn^3, then mSm^n is in S2.

Proof. By Corollary 3.2, we have for i^l

Thus by Proposition 4.6,

Proposition 4.13. // p is a prime, 0^1, n^ 3, then SpaAneS2.

Proof. It suffices to prove the following assertions Q(i) for each

.
Assertion Q(i): Sp«^w=0 for each p, a, n such that p is a prime,

^3 and l<^pa<^i.

We prove Assertion Q(j) by induction on i. The assertion Q(l) is

just Proposition 4.6.

Suppose that 60' -1) holds for i^2 and that pa = L

Case(l): n^2(modp). By Corollary 3.2,

with K=k0Al + kAH-l + klAm+k2A2m-i9 kQ + k1 + k2=pa and fe+fc1+2fe2

pa. By Corollary 4.3 and 6(z-l), we have

with fc0 + fe1 = fe+fc1=jpa. Unless fe!=0 or jpa, Corollary 3.5 yields that

SkoAi+Un-iSkiAn = S*02ii +fcdn_ t +fcljn 4-

So again by Corollary 3.2 and fi(i-l),

Therefore
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On the other hand, Corollary 3.2, Corollary 4.3 and Q(/-l) yield

Thus (n'*-2'm)S,.Alt = [Sf.Al, S^.jEEO.

But paSpaAn=0 by Lemma 4. 12 and (n^fl-2^a, pfl) = l by our hypothesis
on n, and so SpaAn=0.

Case (2): n = mp+2(m^.i), p: an odd prime.
As in the preceding case, Corollaries 3.2, 3.5, 4.3 and Q(i— 1) yield

IS,.A2, S,.Amf] s (On/* + 1)*" - 3ns,*A» •

((mp+ir-3^,p-) = l yields Sp.Jl§sO.

Case (3) : p = 2, n = 2m (HI ̂  2).
As in the preceding cases, Corollaries 3.2, 3.5, 4.3 and Q(i—\) yields

(4. L) S2a+iAm-lS2«A2 = 32aS2a/i2m

with fc0 + fc1=2fl+1 and
Now the proof of Q(i) will be continued after we prove the fol-

lowing assertion R(j), 2^j^[m/2] + l, under the hypothesis Q(/ — 1);
Assertion R(j): If Ei=0 ke=2a+l, fc+Zi=i cA:c=2fl, k^O and X7 =

then 5X. = 0.

Proo/. «([m/2] + l) follows from Corollaries 3.5, 4.3 and Q(f-l).
Suppose that K([fn/2] + l),...,flO' + l) hold for [m/2]^;^2. If ky>0,
then k+k 0 H ----- hk i /_ i>0 and we consider the product SKj^1SkjAm_1

As in the proofs of Corollaries 3.3, 3.5, we put

and

Then we obtain by Theorem 3.1 that



PRODUCTS IN THE STEENROD RINGS 597

where X' = ̂ 2 + SJc=Sfc^m-i+2C+Zc^ //]+1 Mm-i+2C, %eZ, and the first
sum on the right runs over all {IE, Kc} with Zc=6 fcc+Z1*^1 £c=2fl+1

and )c+2^i} cfcc+£fe//3+1 cJEc=2a. Thus the inductive hypothesis and

2(i-l) yield

This completes the proof of R(j), for all

Proof of Proposition 4.13 Case (3) (continued).

By Corollary 3.4 and the assertions R(j),

(4.2) ^2^2^2^1^-1 = 2^ °J

with fc0 + fc1=2fl+l and k + kl=2a. By Theorem 3.1 and SO'-l

Therefore, by (4.1), (4.2), and (4.3),

The coefficient of S2aA2m in the equation above is odd and so it is rela-
tively prime to 2fl. Thus by Lemma 4.12 we have SpaA2m=Q.

This completes the proof of the inductive step and the assertions
Q(i) are proved for all i^l. Thus the proof of Proposition 4.13 is
completed.

Proof of Theorem 4.1.

Proof of (1) and (3): Case (1): K=paAe9 for some prime p, a^l,
e=l or 2, (p, 0)7^(2, 1). By Corollary 3.2, we have

5f
P--ije5'(1,«-p«-i)j. = E^

where k0 + k1 + k2=pa-pa~1, k+ki+2k2=pa~l, k, fe^O, and K=(k+

ko)Ae+k1A2e+k2A3e. If either two of three integers fe+fe0, k1 and fe2

are positive, then by Corollaries 4.3 and 3.5 we have
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where n>h(K)*z29 q is a prime, fc^l and epa = qbn. By Proposition 4.13
each 5€bJn=0, and hence SK=0. If fe=fe0 = fc1=0, then pa~1=2k2 =
2(pfl-p«-i)=2Jp

fl"1. This is a contradiction. If fc=fc0 = fc2=0, then
pa~l=k1=pa-pa~1>pa~l except for p=2. In case p=2, since 2fl~1^
a — 1, we have 22fl"1S2«-ij2B=0 by Lemma 4.12. Therefore we have

By Lemma 4.12, pflSp«Ja=0. Since . i=0(p), ^Od?2), we have

Case (2): JK=2pa/d1, for some odd prime p, a^l. By Corollary
4.3 (1), (2) and Proposition 4.13, we may express SK=cSpaA2, for some
integer c. Therefore in S we can express

*A 2

where the last sum runs over all pairs (I, J) such that 1^0, J^O, ||/|| +
||J||=2pfl. Evaluate the both sides by xPa+t-pa. Then by Proposition
4.11 we have

Therefore cs-l(modp). Thus SK=(mp— 1)SP«J2 for some integer m.
The result of Case (1) yields SK=—SpaA2. Thus SK is of order p in
SIS2.

Case (3): K^paAe, 2paAl9 for any prime p,a^l,e=l or 2. By
Corollary 4.3 (1), (2) and Proposition 4.13 we have Sxs=0.

Proof of (2). Let F be either of the sets mentioned in Theorem
4.1 (2). Then the proof of (1) and (3) implies that we can express

(4.4) S=B+S2,

where B is a subalgebra of S generated by V and 1. If S^B, then
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there is an element g of the smallest degree such that geS and g$B.
By (4.4) we can express

Since deg(af)>0 and deg(aj)>0, deg(a()<deg(0) and deg(a;)<deg(0).
Since g is of the smallest degree, at and a\ are in B for all i. There-
fore g is in B. This is contrary to the assumption. Thus S=J5.

Proof of (4) and (6): They are just the modp reductions of (1)
and (3).

Proof of (5): Similar to the proof of (2).
Thus the proof of Theorem 4.1 is completed.

We denote AG=ker(AG-+A).

Corollary 4.14. Let V be a subset of AG consisting only of mono-
mials. Then V is a minimal subset such that V generates AG as a left
.^-module if and only if V is either of the sets mentioned in Theorem
4.1 (2).

Proof. Since AG=A®S and the product in AG is a semi-tensor
product of A and S (that is, for A, A' e A,

where S/<(A') is the action of SreS on A'e.4), the following two state-
ments on a subset VcScAG are equivalent:

(1) V is a minimal subset such that V generates S as a left S-
module.

(2) V is a minimal subset such that V generates AG as a left ^4G-
module.

(1) is equivalent to (3) below:
(3) V is a minimal set of generators of S.

(We note that the proof of (1)=>(3) is similar to that of Theorem 4.1

(2)0
Thus the proof is completed.
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