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The Products in the Steenrod Rings of the
Complex and Sympletic Cobordism Theories

By

Tetsuya AIKAWA*

§1. Introduction

This paper is concerned with the Hopf algebra structure of a certain
subalgebra S of the Steenrod ring AY of stable cohomology operations
in the complex cobordism theory and the sympletic cobordism theory
MG*( ), where G=U or Sp, the infinite dimensional unitary or sym-
pletic group, respectively.

The Hopf algebra structure and its applications of Steenrod algebra
with coefficients Z,, for a prime p, have long been studied by many
topologists (Steenrod-Epstein [6]). Novikov [3] investigated the Steenrod
rings of generalized cohomology theories. Landweber [1] also studied
general properties of A¢ as Hopf algebra.

The main purpose of this paper is to determine the explicit product
formula in S (Theorem 3.1) and the indecomposable quotient S/S2
(Theorem 4.1), where S denotes the kernel of the augmentation S—Z.

We use the following notations. Let Z be the ring of integers and
Z,=Z/mZ. According to Landweber [1], A¢ can be expressed as
AS=A®S, with the coefficient A=Q§=MG*(point). In case G=U,
A=Z[x, X5,...], deg(x;)=—2i. In case G=Sp, A has not been deter-
mined completely. The subalgebra S is a Hopf algebra over Z and has
a Z-free basis {S;}, with deg(S;)=dX,ri,, where d=2 or 4 according
as G=U or Sp and I=(iy, i,,...) is a sequence of non-negative integers
such that all but a finite number of i, are zero. For two Z-graded
modules M= _ M; and N=Y;._, N;, the completed tensor product
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M®N is defined by
(M&N),= T1 M,®N,.
i+j=n

We remark that S; in this paper and that in Adams [2] are the
same as S! in Landweber [1]. S; in Landweber [1] and Novikov [3]
are different from S; in this paper. (For the detail on the relationship
between two notations S; and S! by Landweber, see Landweber [1,
Page 101].) While revising the manuscript, the author was informed
that the main theorem of the present paper was obtained independently
by I Kojima.

The author expresses his hearty thanks to Dr. K. Shibata for many
improvements of the contents (see Remark after Theorem 4.1) and also
to Professor M. Mimura for reading the manuscript.

§2. Notations

Let I=(i,, i5,...) be a sequence such that each i, is a non-negative
integer and all but a finite number of i, are zero. We define

Hl=%,i and |I|=X, ri.
We order sequences such that
I<J if i, >j,, for some ry and i,=j, for all r>ro;
I<J if i,£j, for all rx=1.

Then ““<” is a total order and ‘““<” is a partial order. We denote
by 0 the sequence (0,0,...); by 4, the sequence (i, i5,...) with i,=0
for r#n and i,=1; by nI the sequence with each component in I
multiplied by n. Sometimes we abbreviate I=(iy, is,..., iy, 0, 0,...) by
(iys i3s-.s i) I+J denotes a componentwise sum. I—J is defined
componentwisely if I=J. A small letter indexed by n denotes the n-th
component of the sequence expressed by the corresponding capital letter.

Let M be a module, m;, m,,....,m, in M and R a ring with unit.
Then we denote by R{m,,..., m,} a free R-module generated by my,...,
m,.
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Let R be a ring, m; and m, in R. Then we denote [m, m,]=
mlmz_mzml.
Let X be an indexed set of non-negative integers:

@D X=(kpps; m 120, (m, n)#(0, 0), 1<s=<s(m, n)).
we consider another indexed set
(Grmpmss m>0, n20, 0=r<m, 1<s<s(m, n))
such that
2o bemms=n+1, Xy Fippp=m
For fixed m and n we order the set of
(irmnss 0Sr=m); 1=s=s(m, n)

such that
s<s’ implies (i, pnss O0SrEm)<(ipmny; 0Sr<m), where s(m, n) is
the number given by

s(m, n)=#{(iy..., im); Xy i, S0+1, Xy 1i,
=m, 0<Zi,eZ}.

The set of such (ij,...,i,) is denoted by I(m, n). Then s(m, n) has the
following properties:

s(m+n, n)=s(m+n, n—1)+s(m—1, n), n20
s(m, 0)=1=s(0, m)=s(1, m),
s(m, 1)=[m/2]+1, ([ ] denotes a Gauss integer.),

3j2+(k+3)j+k, 0<k=<5 m=6j+k,
s(m, 2)=
3j24+3j+1, m=6j.

We use the following notations:
I(X)=(11(X)s iZ(X)"'-)’

J(X)=(j(X), j2(X),...),
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K(X)=(k((X), k3(X),...),
I(X)= Znzomzr,1 ssssmmbramnskmn,ss
JlX)=Zmzokmn>

km(X)= Zognémkm—n,n’

km,n = Z 1 §s§s(m,n)km,n,s ’

a(X)=TTnz1 ﬁz(f) ko ,..)

X[ Tmnz1 (k""" )

km,n, IERRRR] km,n,s(m,n)

n+ 1 Knisnss
X Hm.l@l,lés§s(m,n)< . im o s>

lO,m,n,ss"

We define polynomial coefficients for I=(i,,..., i) with |[|Si as
follows:

<i>=<i >= il
1) \igsens i) S G=TIN 510,

Remark. The definition of i(X) is equivalent to the following;

lr(X) = kr,O + Zm_z_r,n<0,l §s§s(m,n)ir,m,n,skm.n.x

§3. Product Formula
Theorem 3.1.
S;8;= ZI(X) =IJ(X)=J a(X )SK(X) .

Remark. The sum in Theorem 3.1 is a finite sum. Y in Theorem
3.1 means that if two sequences I and J are given, then the sum runs
over all indexed sets X as in (2.1) such that I(X)=I and J(X)=J.
The product formula in Theorem 3.1 corresponds to the product formula
for the Milnor basis in the modp Steenrod algebra of ordinary coho-
mology theory with coefficients Z, (for the Milnor basis, see Milnor
[5]; Theorem 4b).
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Proof. The proof is complicated and we will give it in the last
part of this section.

Corollary 3.2.
Orsn 1 ke
SiAijA,,=Z<£+kO) H1§c§n('cl+ ) SKa

where the sum runs over all (k, ko,..., ky+1) such that
Xuh ke=j, k+Xick.=i,
0, is a Kronecker’s delta and
K=k4,+ X%t kdpire-
Corollary 3.3.
85484,=(n+1)S, ., +(1+46,,)84.+4,-

Corollary 3.4.

$S4n= Zlimsnt D5 )1t s

and in particular if i,.=0 for all r=n, then

1
SISA,.=2(";+ )SI—J+4,,,+,.,
where the two sums run over all pairs (m, J) such that
m=0, Jel(m,n), 0=<JZI.

For the next corollary define h(I)=max{r; i,>0} for each sequence

I=(i1, iz,...).
Corollary 3.5. If h(I)<n, then for any j=1,
818740 ="S1+jant Znx)>n 4&Sk> ag€eZ.

Proof of Theorem 3.1.
Let ¢ and y be the product and the coproduct of the Hopf algebra
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S, respectively. Then

¢(SK)= 2r+s=xkS1®S;.

Let S* be the Hopf algebra dual to S and b; the element dual to S,
Then S* is a polynomial algebra on generators by, b,, bs,.... Set b=
>2ob;, where bo=1. Then Theorem 6.3 in Adams [2] says that the
coproduct in S* is as follows:

0*(b)=X 200" ®b,.
Therefore

o*O=SwoX(J ] | pubr.bires,,

yeres ni 1

where the second sum runs over all (ig, iy,..., i,+1) such that >i.=n+1.
Then the homogeneous component is

(p*(bm) = ZZLOBm,n@ bn s

where

Buu=3(1H] Yotsbs.. b

P05 i 15eees imen

(the sum runs over all (ig, iy,..., im—p) Such that X7 i=n+1,
ymenri,.=m—n, i,=0.)
In other words, using the notation in §2, we have

I R )

lo,m—n,n,si LAd ] lm—n,m-n,n,s

X bihm-mm'...b'i"":;'mm-mnu .

Since ¢* is a homomorphism of algebras,

*(pkm) = o k >
PO =@ G =T (" p
XB,':,’:‘6°B,'$,':‘f"""B,’f,?,’,,'"@b’i"""‘b’i""z"...b,':,""",

where Yy runs over all (kg,o,..., kom) such that Y, k,_,,=k,,
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Kp-nn=0(m=n=0). From now on we have a convention that two
sums Y, with the same index number n run over the same set.

f )
Km=nsn — m—n,n
Bm'" Z(2)(km—n,n,l!'-'s km-n,n,s(m-n,n)

km-n’n;a
X IT ('.H' 1 , )
1 =sss(m—n,n) lO,m—n,n,sr LA ] lm—n,m—n,n,s

X bIZ(S)ilsm-nsn;skm—nnns...bm_”Z(s)im-rnm—nnnskm-nnnl

where 35y runs over all (ky—ppn1s+> Km—nmsm-nm) such that 3,
km—n,n,s':km—n,n! km n,ns-—-o (1<s<s(m n, n)) and 2(3)_21535s(m —n,n)*

@ = ko Ve L (e e enm)

km-nsnu
X T1 (t"H . )
O0snsm lo,m—n,n,s""9 ’m—n,m—n,n,s

1SsSs(m—n,n)

X l;[lbrz(d)irsm-n-n::km-n:nu®b’im- 1, 1...b£m—u.n’
rz

where the sum 3, runs over all pairs (n,s) such that m=zn20, m—
n2r, 1<s<s(m—n, n).

Let K=(ky, k,,...) be a sequence of non-negative integers such that
all but a finite number of k, are zero. We denote bK=p%1b%2--.bkm...
Then we have

K
(p*(b") - Z(S)MI;'I;. (km,OQ'--s ko,m)

<km—n on )
m21 m—n n,1s°°°s m—n,n,s(m—n,n)

mZn=0
n+1 )"m—n:nu
X l'[ X .
m=1 lo,m—n,n,ss'-" Im—n,m—n,n,s
mg é
Ssss(m—n,n)

X I_I er(G)ir:m—mm:"m—mnu@ H b"Zménkm—mn ,

rz1 n=1

where 35, runs over all sequences (k,,,) such that Y™ ,k,_,,=k,,
T3 ke wns=Km—nps Km-nn20, Ky n 20 for all m,n,s; ¥ runs
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over all triples (m, n,s) such that m=1,n=0, m—n=r, 1<s<s(m—n,
n). Replacing m—n with m, we have

ACORDIES N LI B § S LT

[
(m,n)#(0,0)
1 kWI!"l!
x I (’.”‘ .
m,n20 lO,m,n,s’-"s lm,m,n.s
(m,n)#(0,0)
1Ssss(m,n)

X Hbrz(a)ir:m:nnskrmms® Hbr)lm;okm.n
r21 nz1

where 3 ;) runs over all sequences (k,,,s) such that 3" oKk,_p,=Km
s e =K Kn 20, Ky =0, for all m,n,s; Y runs over all
triples (m, n, s) such that n=0, (m, n)#(0, 0), r<m, 1<s<s(m, n). Since
s(m, 0)=s(0, m)=1, we have for m=0 or n=0

(o =1 (L Y-
km,n,l""s km,n,s(m,n) ’ lo,m,n.s,--': lm,m.n,s ’

Thus the coproduct formula in S* is
o*(b¥)= 2K(X)=Ka(X)bI(x)® b7,
Thus we can prove the theorem by using the following lemma.

Lemma 3.6. Let R be a principal ideal domain, A an R-free Hopf
algebra over R with a basis {a4;} and a product ¢, A* the Hopf algebra
dual to A, a' the element dual to a;, o* the coproduct in A*. If

o*(a')=Z k¢ 12’ ®a*, ¢} e R,
then
o(a;®a) =X (—1)ect ,a;,
where e=(dega;) x (degay).

Proof. The proof is essentially a part of the proof of Theorem 4b
in Milnor [5; Page 164].
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§4. The Indecomposable Quotient

In this section we determine the indecomposable quotient S/52.

Throughout this section *“‘=”, “=” and “=,” denote the equality in

S, the congruence in S/5%2 and (S5/5*)®Z,, respectively. All S; are
called monomials. I,, denotes 294, for p=2 and denotes 2p°4, or
p°d, for p an odd prime in the next theorem.

Theorem 4.1. (1) S; is indecomposable in S if and only if
I=p°A, or 2p°4,, for some prime p,a=0,e=1,2.

(2) Let V be a set of monomials. Then V is a minimal set of
generators of S if and only if V={S,a4,, Sy,,,; p: prime, a=0}.

(3 SIS2=Z{S4,}®Z{S 4> S24,}/2Z{S4,+524,}
@ 2 Zp{spﬂde; agla e=1: 23 (P, a, ?)#(2, 15 1)}
p:Prime
The only relations in §/52 are:

Sopas, =—Spas, (p: odd prime, a=1)

Suppose that p is any prime in (4), (5) and (6) below:
(4) S; is indecomposable in SQZ, if and only if

I=p°4, or 2p°4,; for a=0, e=1, 2 (p: odd prime),
I1=2%4, ; for a=0,e=1,2(p=2).

(5) Let V be a set of monomials. Then V is a set of generators
of (§/S)®Z, if and only if V={S,ay,, S1,,,; a20, e=1, 2}.

JE— )
6) SQRZ,IS®Z, =Z,{Spa4,; a20, e=1, 2}.
Among representatives there are relations:
Sopaa, =p —Spas, (p: odd, az=1).

Proof. The remainder of this section, except for Corollary 4.14, is
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devoted to the proof of Theorem 4.1.

Remark. Of course the order of Sj,q4, is p. Landweber [1] has
proved (4), (5) and (6) except for the relations. The original proof of
Proposition 4.13 is improved by Dr. K. Shibata as mentioned below in
this section. Corollary 3.5 and Lemma 4.12 are preparations for Proposi-
tion 4.13 and are due to Dr. K. Shibata.

Proposition 4.2.

§$;S;= ml;I1 ;-::l}i"')stu + X1y =1500=7.k0) <1+ 74 X)Skcx) -

Proof. It suffices to show the following two statement.

Statement A: There is a unique sequence X such that I(X)=I,
J(X)=J and K(X)=I+J. Moreover the sequence X satisfies a(X)=
T tm).

Statement B: If I(X)=I, J(X)=J and K(X)#I+J, then K(X)<
I+J.

First we show Statement A. There is an integer m, such that i,=
jm=0 for all m>m, Then XY™ k,_,,=k(X)=i,+j,=0, for all
m>m,. Thus k,,=0 for all m,n20, m+n>m,

Jmos m=0
km,mo =
0, m>0.

Since k,,,,=0 for all m=m,, n>0, we have i,,=kp,o. Thus

Z:’go kmo -nn= kmo(X) = imo +jmo =Kmo,0 + kO,mo .

Therefore for m+n=m,,
imm (ms n, s)=(m0, 0, 1)

km,n,s= Jmos (m, n, 5)=(0, my, 1)
1 0, otherwise.
This implies

jmo—b m=0

km,mo-1={
0, m>0
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and iy, =Ku,-1,0- Thus Statement A is proved by repeating the
similar process.

Secondly we show Statement B. This is equivalent to the statement
that if K, (X)#i,, +jm,, for some m;21, and Kk, (X)=i,+j, for all
m>m,, then k,, (X)>i,, +jn,.

Similarly to the proof of the first part, we have

0, m>0,n>0, m+n>m,
km,n= ljmp (m, ”)=(Os ml)

imls (m’ n)=(m1’ 0)
Thus
km; = 20<n<m1 km;—n,n+ im1 +jm1 glm; +jm1 .

Thus Statement B is proved.
For the next corollary we define the length of a sequence I as
follows:

I(D)=4#{r; i,>0}.
Corollary 4.3. (1) (K)=2 implies
SxeS2+Z{Sy; I<K, |Il|=|Kl, iN)=1}.
(2) If K=kA,,2=k and k is not a prime power, then
Sg€82+Z{Sss4,; m<n, gn=km, q: prime}.
(3) If K=p°4,, m=1,p is a prime and a=1, then

DPSg €82+ Z{Sse4,; m<n, g°n=p°m, q: prime}.

Proof. (1): Let I and J be such that I#0,J#0,I+J=K and
ij,=0 for all ». Then

SISJ=SK+ ZI(X)=I,J(X)=J,K(X)<I+Ja(X)SK(X) .

Repeating this process, we find that all Sy, ((K)=2, are generated by
Sp, (D=1, modulo §2. (2),(3): Let K=k4,, and 0<k’'<k. Then
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S,‘.AmS(k_k.,Am=<I,§,)S,mm+(terms of lower order).

Thus (2) and (3) follow from the second and first equalities in the next
lemma, respectively.

Lemma 44.

k p, k=pl,j=1, p: prime
g.c.d. {(i);0<i<k}=
1, otherwise.

Proposition 4.5. The components of degree d and 2d of S§/5% are
Z{S,,} and Z{S,,, S;4,}/2Z{S4,+S24,}, respectively.

Proof. S41841=21S’A2+2S241.
Proposition 4.6. If n23, then S, is in §2.

Proof. Case(1): n=1(mod2). It follows from the following rela-
tion:

[Stms St s] =S tzme 12 mz1.

Case(2): n=0(mod4). By Corollary 3.2 we have
SnA1S4n= :’=0<l{l+ 1) T; and

StnsiS-na,=Ti+2T;4y, 0si<n,

where T;=Sg-p4,+4ns:-
We define inductively as follows:

Co=1, ci=<’il+l)—20;_1, 0<i§n.
Then we have
—i(n+1
ck=zlic=o(_2 ki (i ) ’

(Dt =(=24+1)*1==2c,+1.
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Thus ¢,=1, (n: even), =0, (n: odd). Then we have

S4,», Nh:ieven
834184, 2120 CiSapsSn-1a, = 0, —
Case(3): n=2(mod4). By Corollary 3.2, we have
[SZAzm’ SA;] +(2m_2)SAzm+ zsdzm_(zmz —m)[sdzms SA;,,..;. 4]

=SA4m+z .

Thus the proof is completed.
We can consider S®Z, as a tensor product of algebras S and Z,.

Theorem 4.7. (Landweber [1]) For any prime p, S®Z, has
Spas,s a0, e=1,2
as a minimal set of generators.

Remark. (Landweber [1]). If p is odd, then another minimal set
of generators is {S,pa4,:a20,e=1,2}. If p=2, no other monomials
are decomposable.

Proposition 4.8. Under the correspondence of the same representa-
tive S; we have an isomorphism

— 2
S®Z,/S®Z,=(S5/5%)®Z,.
Proof. The short exact sequence
0— 52 —§—5/52—0

and an isomorphism S®Z,—»S®Z, induced by the middle linear function
(for the definition, see MacLane [4; Page 138]) SxZ,—»S®Z, imply
that the following diagram is commutative:

52®zZ, — S®Z,— (S/5)®Z, —0
lft lfz 11'3
S®Z,> — S®Z, — S®Z,|S®Z," — 0
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Since f; and f, are isomorphisms, it follows from the five Lemma
that f; is an isomorphism. Thus the proof is completed.

Proposition 4.9. (5/52),=0, unless n=dep®, for some p: prime,
a=0, e=1, 2.

Proof. Since S is locally finitely generated as a Z-module, so is
S/82, that is, (§/52), is finitely generated for all n. Thus (§/52), is
decomposed into a direct sum of m copies of Z and m, copies of
Zp, b21, for primes gq.

Thus (5/5%),®Z, is a direct sum of m+m, copies of Z,. Theorem
4.7 yields (5/52),@Z,=0, for all primes p, under the assumption of this
proposition. Thus in this case, (5/5§2),=0.

Lemma 4.10. Let p be a prime, b=3Y7, a;
b=3X;50b;p’, 0=b;<p and a;=3%;504a;;p/, 05a;;<p.

Then we have

b — b;
Qiseees am>—jI;[O (a]l,jr"’ am,j) (mOdp),
where if b;<Y; a;;, then we define 21; ; a j)=0,

Proof. Well known.
For the next proposition, we give some preparations. Lemma 5.6
in Landweber [1] says that

MG*(FP°)=AQZ[x], deg(x)=d,

where FP>® is the infinite dimensional complex or quaternion projective
space according as d=2 or 4, respectively, and

xn+l, I=An’

SIx'-—'[

SIx"=[

0, otherwise.
Proposition 4.11.

?)xnﬂml’ | En,

) |I|>n.

(=P N
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Proof. We prove by induction on n. Use the Cartan formula
repeatedly.

Lemma 4.12. If m,n=1 and mn2>3, then mS,,, is in S2.
Proof. By Corollary 3.2, we have for i1

Sa4aSm-)an =M+t 1)S4, 1y ntm=i=1)ant Sain+m-1)dn-

Thus by Proposition 4.6,
mS,,, =(—1)"(n+1)*"1S, =0.
Proposition 4.13. If p is a prime, a21,n23, then Sy, € Sz,

Proof. It suffices to prove the following assertions Q(i) for each
i1,

Assertion Q(i): Spay,=0 for each p,a,n such that p is a prime,
a=20,n=3 and 1<p*<i.

We prove Assertion Q(i) by induction on i. The assertion Q(1) is
just Proposition 4.6.

Suppose that Q(i—1) holds for i=2 and that ps=i.
Case(1): n#2 (mod p). By Corollary 3.2,
Spasn-1Spas, =2k 2%1 Sk

with K=koAl+kA”_1+k1A”+k2A2,'_1, ko+k1+k2=Pa and k+k1+2k2=
p°. By Corollary 4.3 and Q(i—1), we have

—_ k
SP"An—xsp"A1=k kzk 2 lSkodx+k4n-1+k14n
sko,k1

with ko+k;=k+k;=p% Unless k;,=0 or ps Corollary 3.5 yields that

Skods +kdn-15k14n="Skods +kdn—1 +k1ant 2. GxSk.
h(K)>n

So again by Corollary 3.2 and Q(i—1),

Skody +kdn-1+k14n=0"

Therefore
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Spadn-1Spaay =Span,_+paa, 27 Spay, -

On the other hand, Corollary 3.2, Corollary 4.3 and Q(i—1) yield
SpaySpasn_ =Spas tpasn_, TN Spay, .

Thus (nP*—2P°)Spa s, =[Spauy> Spas,_,1=0.

But p°S,.,,=0 by Lemma 4.12 and (n?*—2°°, p?)=1 by our hypothesis
on n, and so S,a,, =0.

Case(2): n=mp+2(m=1), p: an odd prime.
As in the preceding case, Corollaries 3.2, 3.5,4.3 and Q(i—1) yield

[Sp"‘419 SP"Amp] = ((mp+ 1)”“—3”“% pidy, -
((mp+1)r"—=3p°, p?)=1 yields S,a4,=0.

Case(3): p=2,n=2m (m=2).
As in the preceding cases, Corollaries 3.2, 3.5, 4.3 and Q(i—1) yields

(4.[) SZ""‘A".-1S2"Az—=—3zaszn42m
k k Oms 3
+Z(k+ 0> 3lekAl+kOAm-l+klAm+l

with ko+k;=2%%! and k+k;=2.
Now the proof of Q(i) will be continued after we prove the fol-
lowing assertion R(j), 2<j<[m/2]+1, under the hypothesis Q(i—1);
Assertion R(j): If i o k=21, k+ X i, ck,=2° k;#0 and K;=
kdy+3 i o koAt 430 then Sy =0.

Proof. R([m/2]+1) follows from Corollaries 3.5,4.3 and Q(i—1).
Suppose that R([m/2]+1),..., R(j+1) hold for [m/2]=j=2. If k;>0,
then k+ko+:++k;_ ;>0 and we consider the product S,  Si4n_,,a,

As in the proofs of Corollaries 3.3, 3.5, we put

I(X)=kA2+Z£;6kcAm—1+2w J(X)=ijm~l+2j and h(K(X)).S_m

Then we obtain by Theorem 3.1 that

m+2j\Fe
Sky-1Skjdm-142,= ZHE’%”“(C —j ]> Sk + Zhky> 2m+ 188 Sk
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where K'=kA,+ X I28k Ap-1 420+ 21k A, 115, ageZ, and the first
sum on the right runs over all {k, k;} with X /2§ k + X241 k =24+1
and k+ X iz} ck,+ X211 ¢k, =24, Thus the inductive hypothesis and
0(@i—1) yield

OESKJ_IS,‘MM_H”ESKJ.

This completes the proof of R(j), for all [m/2]+1=j=2.

Proof of Proposition 4.13 Case (3) (continued).
By Corollary 3.4 and the assertions R(j), [m/2]+1=j=2,

4.2) S2a42S2a+1Am_,EZ(llg+ko>am,3mk‘Skdz+koAm-1+k14m+1
with ko+k,=2%*! and k+k;=2° By Theorem 3.1 and Q(i—1)
4.3) Skaz+kodm=15k1Am+ 1= Skaz +kodm—1+k1dms 1
+0y,,20(Mm+2)2"S5ay,,, .
Therefore, by (4.1), (4.2), and (4.35,
0=[Ssa+14,_,5 Szas,1=(32°—(m2° =3 2°)(m+2)2")S;ay,, -

The coefficient of S,a,,, in the equation above is odd and so it is rela-
tively prime to 2°. Thus by Lemma 4.12 we have S,.4, =0.

This completes the proof of the inductive step and the assertions
Q(@i) are proved for all i=1. Thus the proof of Proposition 4.13 is
completed.

Proof of Theorem 4.1.

Proof of (1) and (3): Case (1): K=p°4,, for some prime p, a=1,
e=1 or 2, (p, a)#(2,1). By Corollary 3.2, we have

Spa-lA.S(pn_pa—x)A.=Z(II:-I-kO)ZleK,
where ko+ki+k,=p*—p*!, k+k,+2k,=p*~1, k, k;20, and K=(k+

ko)A, + kA5, +kyA5,. If either two of three integers k+ky, k; and k,
are positive, then by Corollaries 4.3 and 3.5 we have
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SKE ch,b,nsq"d..s cq,b,n €Z s

where n>h(K)=2, q is a prime, b=1 and ep*=gqg®n. By Proposition 4.13
each Sp,,=0, and hence Sg=0. If k=ky=k;=0, then p*~'=2k,=
2(ps—p*~1)=2p+~1. This is a contradiction. If k=k,=k,=0, then
P i=k,=p*—p*~1>p+! except for p=2. In case p=2, since 291>
a—1, we have 22°7'S,.-14, =0 by Lemma 4.12. Therefore we have

pa
Sp“"A.S(p"—p"'l)A.E(pa—l)sp"d. .

By Lemma 4.12, p°S,.,, =0. Since (ﬁ:_l)EO(p), #0(p?), we have
PSpas, =0.

Case(2): K=2p°A,, for some odd prime p,a=1. By Corollary
4.3 (1), (2) and Proposition 4.13, we may express Sgx=cSpa,,, for some
integer c¢. Therefore in S we can express

Sx=cspn42+ ZI,J cI,JSlS-”

where the last sum runs over all pairs (I, J) such that I#0, J#0, ||I]|+
| Jll=2p°. Evaluate the both sides by x?**'~P°, Then by Proposition
4.11 we have

pa+1_pa _ (Pa+1_pa pa+1_pa+llju pa+1_pa
zpa )—-c pa +Z'c,,1 T J .

Therefore ¢=—1 (modp). Thus Sg=(mp—1)S,.,, for some integer m.
The result of Case (1) yields Sg=—S,as,. Thus Sk is of order p in
S/82.

Case (3): K#p°4,,2p°A,, for any prime p,a=1,e=1 or 2. By
Corollary 4.3 (1), (2) and Proposition 4.13 we have Sg=0.

Proof of (2). Let V be either of the sets mentioned in Theorem
4.1 (2). Then the proof of (1) and (3) implies that we can express

4.4) S=B+52,

where B is a subalgebra of S gererated by V and 1. If S#B, then
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there is an element g of the smallest degree such that geS and g ¢ B.
By (4.4) we can express

g=g'+>a;a} g'€B, a,ajeS.

Since deg(a)>0 and deg(a})>0, deg(a)<deg(g) and deg(a})<deg(g).
Since g is of the smallest degree, a; and a} are in B for all i. There-
fore g is in B. This is contrary to the assumption. Thus S=B.

Proof of (4) and (6): They are just the modp reductions of (1)
and (3).

Proof of (5): Similar to the proof of (2).
Thus the proof of Theorem 4.1 is completed.
We denote A% =ker (45— A).

Corollary 4.14. Let V be a subset of A¢ consisting only of mono-
mials. Then V is a minimal subset such that V generates A¢ as a left
A%-module if and only if V is either of the sets mentioned in Theorem
4.1 (2).

Proof. Since A¢=A®S and the product in A% is a semi-tensor
product of 4 and S (that is, for 4, A'e 4,

AR®SPA'®S)= Zrﬂ"=I(A'Sl'('1'))®sns.r ’

where S;(4') is the action of S; €S on A’'eA), the following two state-
ments on a subset V=S < A€ are equivalent:

(1) V is a minimal subset such that V generates S as a left S-
module.

(2) V is a minimal subset such that V generates A® as a left AS-
module.

(1) is equivalent to (3) below:

(3) Vis a minimal set of generators of S.
(We note that the proof of (1)=(3) is similar to that of Theorem 4.1
2>

Thus the proof is completed.
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