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Boundary Value Problems with
Oblique Derivative
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Hideo Soca*

§0. Introduction

Let Q be a bounded open set in R* with a smooth boundary TI.
Let us consider the boundary value problem

A(x, Dyu=f in Q,

0.1)
%%=g on I,

where A(x, D,) is a second-order elliptic differential operator in @, and
v is a smooth non-vanishing real vector field on I When v is nowhere
tangent to I', the problem (0.1) is, so-called, of coercive type and satis-
factory results are obtained (e.g., see [7]).

Egorov and Kondrat’ev in [2] have considered (0.1) when v is
tangent to I’ on its submanifold I';, and have classified the problem
into three cases in the following way.

First class: v leaves @ through I'y;

Second class: v enters Q through I'y;

Third class: v neither leaves nor enters Q through I,
(for details, see [2] or §1 of our paper). In the first class the problem
(0.1) has an infinite-dimensional kernel. Therefore, adding the Dirichlet
condition u|r, to (0.1), they have shown that the problem

A(x, Dyu=f in Q,

—gg—=g on I,

u=hy, on I,
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becomes Noetherian (cf. §4 of our paper). But they have not mentioned
the solvability for the second class, and their method shown there con-
cerning the solvability for the first class does not work for the second
and third classes.

In the present paper we assume that A(x, D,) is strongly elliptic
and that the vector field v is tangent to I of finite order, and we shall
study mainly, for each class, the unique solvability of the problem with a

parameter p(=0):
A(x, DJu+p?u=f in Q,

(0.2)
g—;‘=g on I.

However, we add the Dirichlet condition u|, to (0.2) in the first class
as well as Egorov and Kondrat’ev have done and the coboundary condi-
tion B,(p®J,) in the second class, because the problem (0.2) has an
infinite-dimensional kernel in the first class and an infinite-dimensional
cokernel in the second class (see §4 and §5). In order to solve uniquely
(0.2), we construct the similar regularizer to that of Agranovich-Visik
[1] by modifying the method in Visik-Grusin [10]. In short, their
method can be stated as follows. Let &£ denote the Poisson operator
of the Dirichlet problem

A(x, DJu=0 in Q,

u=h on I.

Then, T: h H_aav—(g)h)lr is an operator acting on I', and the solvability
of the problem (0.1) can be reduced to that of T.

Eskin [3], Visik-Grusin [10], etc. have considered more general
boundary value problems than ours, and have stated that the problems
are Noetherian. However, they have not studied the unique solvability.
Maz’ja [8] has studied the unique solvability of the similar problem to
ours by the method different from ours. His results imply that there
exists a unique solution u of (0.2) for any (f,g) in some spaces, but
the mapping uw~(f, g) is not continuous. In our paper we show that
the mapping u—(f, g) is a topological isomorphism between two spaces
with some appropriate norms when p is sufficiently large.
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Finally, T would like to thank Professor H. Kumano-go, who has
given me many useful pieces of advice.

§1. Preliminaries

Let R" be the n-dimensional Euclidean space and R%Z be the half
space {x=(x,,..., x,) €R"; x,>0}. Cm(G) denotes the set of functions
continuously differentiable in G of order m (m=0, 1,...). C%G) is the
set of functions of C™(G) with compact supports. £™(R") is the of
set {ue Cm(R"); sup [D*u(x)| <+ oo for |au|=m}. L=L(R") is the space
rapidly decreasingl}unctions, and &' is its dual space. f(&)=Z[f] denotes
the Fourier transform of f(x), which is defined by

f(5)=ge‘ix‘5f(x)dx, fes.
The inverse Fourier transform & ~1[f] is expressed by

a”““[f](x)=ge"é'*‘f(§)¢lé', Jes

where d€=(%>"d€. For a multi-index a=(oy,..., 2,) (o; is a non nega-

tive integer), we set
Ia|=“l+a2+“'+am €d=éa{1£%‘2“. ‘:",

. gls!
a—(—_e| ___~
Di= (=DM e

We define the operator p(x, D,) by

p(x, D) f(x)=F 51, [p(x, O (&)]

for a function p(x, ) on R:xRY, and call p(x, &) the symbol of p(x,
D,). We denote the Sobolev space by H(G) where seR and G is an
open set in R”. That is, HS(R")={fey”;(1+|Dx!2)'§feL2(R")} and
H(G) is the restriction of H(R") to G. | f|,¢c denotes the norm of
H{(G).

Now, let @ be a bounded open set in R” (n=3) with a connected
C» smooth boundary I We assume that I" is separated into two con-
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nected components I'_, I, by an (n—2)-dimensional C® submanifold
I'y. Let v be a C* smooth non-vanishing real vector field. We assume
that v is tangent to I' just on I'y and not tangent to Iy, there. We
denote by I', the part of the two com-
ponents which is on the positive side for
the direction v on I'y, and the other by
I'_ (see Figure (1)). We decompose v into
the two components:

(1.1) v=v,+v,

where v, is tangent to I’ and v, is
perpendicular to I’ (the interior direction

is positive). Then we see that three cases

Figure (1)

are possible. Namely,

First class: v, is positive in I'_ and negative in I',;

Second class: v, is negative in I'_ and positive in I, ;

Third class: v, is positive or negative in both I'_ and I,
(cf. Egorov-Kondrat’ev [2]).

Proposition 1.1. For any point x,e€Ily, there exists a C® diffeo-
morphism @ (local coordinates) defined in a neighborhood U(x,) of
X, satisfying the following four conditions. Set ®(x)=(t, y, z)=(t,
Viseees Yu-25 2)-

(1) U(xg) is transformed to an open ball of R*, and x, to the
origin.

(2) U(xo)nI is transformed to the surface given by the equation
z=0.

(3) Uxg)nTy is transformed to the surface given by the equation
t=0, z=0.

@) v(x) (xeU(xy)) is transformed to (Fat—) and the positive normal
¥l
vector of I' (near x;) is transformed to (—52—)
The above diffeomorphism & transforms 2 to

ov
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0 0 0
v = vl )5,
where v/ (¢, y) is a real valued C®-function defined near the origin. In
this paper we assume that the vector field v is tangent to I' of finite order
k at every point of I'y. That is, for any point (0, y, 0)e @(U(x,) N I'y)
we have

kv,
otk

(0, 1) =200, yy= =020, 5)=0 and TV (0, ) #0

where k is a constant positive integer independent of the choice of x,
and @. Then we obtain

Proposition 1.2. The following (1), (2) and (3) are equivalent to
the fact that v is of first, second and third class respectively.

ok v,,

0, y)<0;

ok v,,

0, y)>0;

(3) k is even.
From now on, we shall study the boundary value problem

A(x, DJu+plu=f in Q,

(1.2)
—g%=g on I.

Here u is a parameter (=0), and A(x, D,) is a second order differential
operator in Q with coefficients belonging to C*(Q) (@ is the closure of
Q) and independent of u. We assume that there exists a positive constant
0 such that

Re[A4o(x, £)]=0(¢|?
holds for every £eR™ and every xeQ where Ay(x, &) is the principal
symbol of A(x, D,).

Let A'(t, y, z; D,, Dy, D,) be the transformed operator of A(x, D,)
by the diffeomorphism ¢ stated in Proposition 1.1, and we denote its
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principal symbol by Ay(1, y, =5 1, 1, w). We denote by r, (1, 11, 1) the
root of the quadratic equation in w

Ao, y, 25 T,y w)+p?=0
with a positive imagenary part. We set

N,={ueHyR}); A5(0; D,, D), DJu+p*u=0} (u>0).

Proposition 1.3. Suppose s=0, u>0 and ueN,, and put h(t, y)=
Ul,=g. Then u belongs to H(RY) if and only if heHS_A(R" 1), and we

can express it uniquely by the form
(1'3) Ll(l J” “) ’)——v(t \v)[e“l)(t 11 1)E h’(t ’I):l

Conversely, if we define u(t, y, z) by (1.3) for IzeHS_,;:(R"‘l), then
u(t, y, z) belongs to H(R:)N N ,.
Let us set

(10 i)
v, —<6t o (o

z=0 "
From Proposition 1.3 we get

0 0 - . -~
?%za(—l(u]z=0)+nolk‘gg(r}u)—»(t.y)[er(Ta ", #)ul,'.:O(T’ 7’)] H]

1 0dky,
(ro=%r G- ©)
for any ue N, (u>0). The operator

du
0vg

(L.4) T: uleo —
(where ueN, and p>0) is defined on H_%(R"‘l), and is a pseudo-
differential operator with the symbol

T, (t, T, M=it+net*ire(t, n, p).
Setting

P.(t, t, M=it+net*irg(0, n, u),
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we reduce the solvability of the problem (1.2) to the solvability and the
cstimates for the opcrator P,(1, D, D;) on R*™L,

In §2 we fix 4 and 5, and investigate the ordinary differential
operator P (1, D, ). In §3, §4 and §5 we consider the problem (1.2)
in the case of third, first and second class respectively. Finally in
Appendix we summarize several elementary theorems for the pseudo-

differential operator with a parameter which we often use in this paper.

Remark 1.1. Hereafter, whenever we consider P,(t, 7, #), we assume
that there exist positive constants M,, M, independent of the choice of
Xo and @ in Proposition [.1 such that

(1.5) M,<[Redl, la] <M,
) nyire(0, n, K L . . .
where a=-——"-—"—""—-(, which is possible since I’y is compact). Then
(Iul2+p?)2

we can lake the constant in the a priori estimate for P,(t, D,, D,) which
is independent of the choice of & (e.g., see Theorem 3.1). Furthermore,
we can assume that the constants in estimates for the operators trans-
formed by ¢ are all independent of the choice of ¢ (e.g., see Lemma
3.3).

§2. Basic Theorems for an Ordinary Differential Operator

In this section wc consider an ordinary differential operator —dd7+
att.  The thcorems below play a basic role in the following scctions.

Let us sct
_d k
p, D)= di +at*,

where k is a positive integer and the coefficient a is a constant satisfying
Rea#0. Noting Proposition 1.2 and Re[iry(0, 7, ©)]<0, we see easily
that the following case (2.1), (2.2) and (2.3) correspond to the first, the
second and the third class respectively.

2.1 L is odd and Rea>0;

(2.2) L 15 odd and Rea<.0;
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2.3) k is even.
For seR we define
wPRY)={v@®)eH(R); tve H,_,(R")},
(2.4) oo = (ol 2ms+ I5002 1 )2,

Lemma 2.1. i) p(t, D): WRD->H,_,(R!) is continuous and Noe-
therian (Fredholm type).

ii) Suppose that v(t)e ¥’ and p(t, D)ve S, then veS. The same
statement is obtained for the formally adjoint p™*(t, D,)=—%+ atk,

iiiy Let K¥* , denote the cokernel of p(t, D,): W (R!)->H,_ (RY).
Then we have

K2 =1+ D) ({oe S RY); p(t, DYv=0}).

Proof. We refer the proofs of i) and ii), for example, to Grusin
[4], [5]. So we shall prove only iii). From i) we have the orthogonal
decomposition of H,_(R!):

H,_;(RY)=p(t, D)W RHSKE, .

5—1
Since (1+D?) 2 : H,_,(R')->L2(R"') is isometric, we get the orthogonal
decomposition of L2(R!):

L2(RY)= (14 D)7 op(t, D)W P @(1+D}) 7 KX,
Hence it follows that
(1+D2)°7 K&, = {ve LERY); p®(t, D,)o(1+D2)'7 =0}
Therefore, from ii) we have

Ki=(1+D2) Y ({ve s’ pG, D,)v=0}).

Theorem 2.1. Let seR, and suppose that k is even and Rea#0.
Then, for the operator

p(ta Dt): ng)(Rl)-—)Hs—l(Rl) )
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the kernel and the cokernel are both {0}, and we have the estimate
C oy p(t, DJols-1,m: SCllollweo,  ve WPR?).

Here the constant C depends only on positive numbers M,, M, when
M <|Rea|, |a|=M,.

Proof. If ve W (R?) and p(t, D,)v=0, then ve C*(R!) and

v(t)=v(0) exp <_E% t"+1> .

From the hypotheses, v(f) belongs to W{¥(R') if and only if »(0)=0.
Therefore the kernel is {0}. By iii) of Lemma 2.1, in the same way we
see that the cokernel is {0}.

It is easy to see that |p(t, D)vl;—; g1 =Cllv|lw¢. So we indicate
only that

(2.5) lvollweo = Clip(t, Dolls- 1 g -

Since the kernel and the cokernel are {0}, (2.5) holds at any fixed a
by the Banach theorem. Fix a, such that M, =|Reay|, |ag|<M,, and
assume that

d
lollweo <Cy HT:'FaotkU

s—1,R1 -

Then we get

Iollwgo =2C,

dv X
71,7+at v

s—1,R!

if |la—a,| is sufficiently small. Noting that the set {aeC; M,<|Red|,
la|=M,} is compact, we can take the constant C in (2.5) independently
of a provided that M;<|Reaq|, |a]<M,. The theorem is proved.

Theorem 2.2. Let seR, and suppose that k is odd and Rea>0.
Then, for the operator

(2.6) p(t, D): WP(RY)— H,_,(RY),

the kernel K is one-dimensional and the cokernel is {0}.
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Corollary. For s=1 we define the operator
Q.7 Wo: WRRN)— H,_,(R)xC

by Uy(w)=(p(t, D)v, v(0)). Then the kernel and the cokernel are both
{0}, and we have the estimate

CHlollw¢ < [p(t, DYolls— 1,1+ O S Cllvllweo,  ve WPRY).

Here the constant C depends only on positive numbers M,, M, when
MléReas |a|§M2'
We can show the theorem in the same way as in Theorem 2.1, and

have

(2.8) K={v(t); u(z)=p0exp<—kL+] t"“), poec}.

Proof of the corollary. From (2.8) the kernel of (2.7) is {0}. We
take (f, po)e H,_(R*)xC arbitrarily. Since the cokernel of (2.6) is
{0}, we can find an element w(f)e W*(R') such that p(t, D)w=f. Set

v(t) =w(t) + (po—w(0)) exp<_kL+1,A+1>,

then it follows that ve W(R!) and U,(v)=(f, po). Hence the cokernel
of (2.7) is {0}. The estimate can be obtained in the same way as in
Theorem 2.1. The corollary is proved.

Theorem 2.3. Let seR and suppose that k is odd and Rea<O.
Then, for the operator

p(t! Dt): ng)(Rl) —‘-"Hs—— I(Rl) s

the kernel is {0} and the cokernel K¥ | is one-dimensional.

Corollary. Let gy(t) be a given element of H,_,(R') not orthogonal
to K¥ , in H,_,(RY), and we define the operator

(2.9) n: WUWRY) x C—s H,_(R!)

by n(v, po)=p(t, D)o+ pogo(t). Then the kernel and the cokernel are
both {0}, and we have the estimate
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C([lvllw ¢ +[poD £ (v, po)lls- 1.k SC(0lw +1pol) s
(v, po) e WPRY) X C.
We can show the theorem in the same way as in Theorem 2.1.
Proof of the corollary. Let (f, g),—; denote the inner product

S(1+12)s~1 7(g@2c and e, ,(f) be a base of K%, satisfying (e,_,,
e,_1)s—1=1. Suppose that n(v, po)=0 where (v, po) € W¥(RY)xC, then

po=0, v=0,

because go(f) is not orthogonal to e,_,(f). That is, the kernel of (2.9)
is {0}.

We decompose H,_,(R!) into K#* , and its orthogonal complement
(K*.,)". Noting that

n
J=(fs es-)s—165-15 go—(go» €—1)s—16-1 € (KE ) ,

we can find ve W¥(R?) such that

P(t’ Dt)v= {f_ (.f’ es—l)s—les—l} _M{go‘(go, es—l)s—les—l} .

(90, €s—1)s-1

Here, put p, =—(£é];—’e?s‘—‘;))s—‘:1? then

TL'(U, pO) =f .
Hence the cokernel of (2.9) is {0}. The estimate can be obtained in

the same way as in Theorem 2.1. The corollary is proved.

Remark 2.1. We have proved Theorem 2.1, 2.2 and 2.3 (also Lemma
3.1, 41 and 5.1) in the same way as in Grusin [4], [5], Visik-Grusin
[10]. Otherwise, representing the solution of p(t, D)v=f:

v(t)={v(0)+ S;exp(ki Ia"“) flo)ds} exp(—k—i—i e+l > s

we can verify them as well as Eskin [3] has done.

At the end of this section we shall state an interpolational inequality
which is often used later.



630 Hipeo Soca

Proposition 2.1. Let A be a parameter (>0) and s be a real num-
ber satisfying |s|<s,. Suppose that k is a positive integer. Then, for

any positive number ¢ we have
Lis+j i Les+k .
2.10)  (s2+22)2 " Dlw(v)| 22 el (2 + 422V Dkw (1)) 7

+Cll(e2 +22)3w(1) 32, weLRY)

where j=0, 1,...,k—1. Here, the constant C depends only on sy, k and
&

Proof. We shall prove the proposition by the induction with respect
1
to k. Set yx(r,A)=(r2+1%)2. When k=1, (2.10) is trivial. Suppose
that (2.10) is proved when k=k,, then for any &, (>0) we get

(2.11) |ix(z, D IDiw|Z2Sey|lgsthor  DEot 1w | 22+ Cley, ko, so)lx*+' DowlZ2

where j=1, 2,..., k,. By partial integration,
‘sz-‘”Derrwdt‘ < ‘Sx“”D}wVvd‘r +2(sq+1) ‘ gxz"“Drw wdt| .

Using this inequality and (2.11) where ¢, =1, we have
Ix=*2Dewl| 22 S [l kot L DE |l 2 [ w2
+Ci(ko, s)*  Dow| L2l 2wl L2
Hence, for any &, (>0) independent of ¢;, it follows that
l2s+ 1D wl iz S e,y thott DEot | L2+ Cy (e, ko, So)lX*WlIZ2

Combining this inequality and (2.11), we see that (2.10) is valid when
k=ky+1. Therefore, the proposition is proved.

§3. The Third Class

In this section we shall consider the problem (1.2) where the vector
field v is of third class. In this case we obtain the same results as in the
coercive case by introducing the weighted Sobolev space (see Theorem 3.2).
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We set (for g e H(G))

(3.1 liglls,c=lglls,c+elgllo-

where s=0 and p is a parameter (=0). Agranovich and Visik in [1]
have used the norms of this type. The interpolational inequality

(3.2) g6 = CO)NIglse+119l0,6)=CO) g lls6

is obtained where 0<j<s and the constant C(s) does not depend on p.
The similar inequality

(3.3) 17 0gl,e=C GG+t gl -1,6)

is also valid where —1Z£j<s and the constant C’(s) does not depend
on pu. We define

HP (R ={h(t, y)e H,_(R"""); Dhe H,_(R*™1),
(1+1D,Dt*h e H,_(R"1)3,
(34 ISk - 1= 1D el g =1+ I 1D E* R g g -1+ el EF Rl g -1
ISk - 1= N RS- 1 s~ TR -1

(where s=1 and u>0). When p is fixed, obviously the norms | h[$¥}.-
and [|h)|{kka-1 are equivalent to the norm [[Dhls—y gn-1+[(1+]D,))
t%h||y~ y gn-1+ | 1]l;— 1 gn-1, which gives the topology to H{¥(R*~1).

First, we investigate the operator P,(t, D,, D,):

Theorem 3.1. Let s=1 and p=pg (o is an arbitrary positive
constant). We have

) CHIAN -1 S WP Dy DD ls— g mn-1 S ClI B -1, heH (R,

where the constant C does not depend on u.
ii) For the operator

Pu(t, D,, Dy); Hgk)(Rn-l)_,Hs_l(Rn—l) ,
the kernel and the cokernel are both {0}.

Corollary. P, (t, D,, D,) (u>0) has the inverse G': Hy(R"!)—>
H{(R*1).  Furthermore, if geH,_(R* ') (s21), then GlgeH{(R"1),
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and we have the estimate

G g ligkn-1 S Cliglls-1,mn-1-

The corollary is clear from the theorem.
Before proving the theorem, we verify

pit, D )=——+a/1t"
A\Es t It 3

where A is a parameter (>0), k is even and a satisfies (0<)M;=
|IRea| and |a|£M,. Then, for a real number s there is a constant C

independent of a and A such that
2 s 2 _ s
CH{I(D2+ A 1)2D 0|1 g+ [|(DF + A+T)22k0 || § g1}
2 s 2 _ s
(3.5)  SI(DE+A%+1)2 py(t, D)o §, 5 < C((DE + 2%+ 1)2D,0|§ g1

+ (D2 + AT 2 ak0)2 1), veP(RY).

1

Proof. By the change of variable: t=A"%+1¢, we have

2 s 2s5+1 1
[(DZ + A+1)2 p,(t, D)o § ms =AFF 1| p (2, DYo(ATF+12) |2 g1,

2 2 s 2 2s+1 1 2
[(DE + AR+ 1)2D 0[5, g1 =AM T D(v(A5+18)) |5 k15
2 s 2s+1 1

I(D? + 2%+ 1)2 Atkv||§ g1 = AR+ 1 || eko(ATF+T2) || 2 g .

Therefore, noting that the norm |[v],¢, (see (2.4)) is equivalent to

1
(IDwl||Z gt + v 2g1)2, we obtain (3.5) by Theorem 2.1.

Proof of Theorem 3.1. Let us prove i). From the definitions (3.1)
and (3.4), it suffices to indicate that the inequality

C=1 e+ iz + w2y 1Dz, w12+l + w2)liFh, w12} dd
(3.6) §S§<r2+|n|2+u2)s-1|g«-[P,,hJ(r, idudn = C{ (22 + Inf2 + w2y

/N s
X {ID¢h(z, ))I? +(Inl* + p®)\t*h(z, n)|?}dedy
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holds for h(1, y)e& wherc the constant C docs not depend on (= o).
We put

1
A=(nl*+u*)?2 and p,(t, D)=Pt, D, i)

(note that (1.5) is satisfied), and apply Lemma 3.1. Then we have the
inequalities:

1 AN\ AN
C1 e+ Qnl + 2y B Ge, )12+ (2 + w9l mI)de
1
<@ (2 + 2P0y | TP e, I2de
1 A\
=@+ Q2+ w2y B, W12+ (02 + w2l I3,
A\ A\
C31(nl2 +2y= {UB G mI?+ (2 + w)Iikhce, )2}s
S(nf+u2 (| TP e
AN\ N\

< Collnl+ w2y [{1B e, mI2 -+ (nl2 + )z, i),

where the constants C;, and C, are independent of 5 and u (=).
1
Therefore, since C31(t2+|n|? +p2)» L S (w2 +(n]? +p2)FTp= L (]2 + p2)!
SC3(t2+nl2 +u2)y !t (u=p,), there is a constant C, indepcndent of y
and u(=ug) such that
Cat @241+ 42y (B, m2 -+ (nl? + )bz, w2}
<{@ 42 +u2 | # TP )P
A\ AN
< C{(@2 + Inl7 + w2 1Dz, I+l + w)IiFh s, w2

Thus we get (3.6).

Next we show ii). It is clear from i) that the kernel is {0}. Let
us take g(f, y)e H,_ (R"™1') arbitrarily. Then, by Theorem 2.1 we can
find v,(t) for almost every 5 such that
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P(t, D, Mo, ()= ,.,,[91(t, m).
Set
h(t, y)=31,[v,(0],
then A(t, y) belongs to H¥(R"1) and satisfies
P,t, D, D)h=g.

Hence the cokernel is {0}. The theorem is proved.

Let d(x) be the distance between x and I,. Let a(x) (e C®(RQ))
satisfy a(x)=1 ncar I'; and supp(x) be sufficiently small. We introduce
the space

HW(Q)= {u eH,_(Q); %(au)elfl- 1(2), d(x)*Di(au)e L*(2)
for hish  (l-aueH(@)

(I=0,1, 2,...; v, is defined in (1.1)). Clearly this space depends on the
vector field v. Fixing a(x), we employ the following norms of H{¥(Q):

Il = 55,0+ 3 ()" DY) lo,o
T 1 e L Py T
el = a8y + el e
Remark 3.1. We have
H(Q) e HP@ < H,_ & (),

and if ue H®(Q) and supp(u) N [y=¢, then uec H(Q).
We denote the Sobolev space on the manifold M by H(M) (seR)
and its norm by [gl; . We set

lglls,e=llgllsme+plglom  (s20).

The following theorem implies that the problem (1.2) is uniquely solvable
for large p.
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Theorem 3.2. Let | be an integer 22. We obtain
i) Estimate: a) We have

'

| 3  SCIullfD, ue HP(Q)

Il ACx, Du+ p2ul|{®; o+ H {1-3

ou
dv

where the constant C, does not depend on p.
b) There is a constant p; such that provided p=pu,,

Ml 8y 1
el < Cz(IIIA(x, D) u+p2ul|®, o+ l“g—ﬂl

,_%,r) ue H(Q)
where the constant C, does not depend on u.

ii) Solvability: There is a constant u, independent of 1 such that
if u=p,, a solution u of (1.2) is found in H®W(Q) for any (f, g)e
H®,(@)x Hy_3 (D).

iii) Regularity: We fix p(=0) in (1.2) arbitrarily. Suppose that u
is a solution of (1.2) in H¥(Q) for (f, g)eHE’i’z(Q)xH,_% (I'), then u
belongs to H{¥(Q).

Remark 3.2. The regularity follows so long as A(x, D,) is elliptic.
Furthermore, the problem is Noetherian in the above spaces (cf. Visik-
Grusin [10]).

To begin with, we shall present several lemmas and propositions.

Let x;(j=1,...,N) be points in I'; and fix a diffeomorphism @
stated in Proposition 1.1 for each x; under (1.5). Let {¢;};-,, » denote
a partition of unity near Iy, and assume that each supp(e;) is suf-
ficiently small and contains x;. For the function f(x) we set

'@y, =f(@7!(t, y, 2)).
For a non-negative integer ! we define
HPRL)={u(t, y, z) e H,_(R}); Du e H_(RY), (*+iz*)u e H(RL)},
Il fen = I Dually— 1w + I(E* +iz%)uall e
e 1§ = Nl 8+l By -

(The norm ||u|||{*kn differs from (3.4)). Obviously |ul|{%~ is equivalent
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to the norm |[Dull,—; g +II(t*+izF)ull; g» + ull;—; g2, which gives the
topology to H{¥(R%). From Lemma 3.2 below it is easily seen that H{)(Q)
is equal to the set

{ue H,_\(@); (1~ So)u e H(Q), (pu)(t, y, z) € HO(RY) for any j}.
J

.....

is equivalent to

I(1— ;tp Dllo+ JZ Iu)'(t, y, 2l -

Hereafter, we make {¢;};-,, . » fine enough to have the later statements,

.....

and define the norms [ul|{%, [lu]|f%} by
1A =X o ule+ Zleu)E, v, 2)| ke,
J J

(3.7 - JZ(P Ao+ ; @), v, 2) Il

respectively. Similarly, assume that the norm ||g|l,r is defined with
a sufficiently fine partition of unity.

Remark 3.3. Using Lemma 3.2 below, we have easily for any
a(laf 1)

Dy, 252 19 a) mn £ Collull o

So it follows that
IDZul|$¥)),0 S Calllull 45 .

This implies that the operator D¢: H{¥(Q)—H{¥), () is continuous.

Proposition 3.1. Let | be an integer (=2). The trace operator
y:u(t, y, z)~ul,—o is a continuous one from H{Y(R2) to H(,"_)%(R"‘l) and
has the estimate

@)L gn-1 S Cllull e

where the constant C does not depend on p.
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Proof. Tt suffices only to show the estimate for ue Cg(RY). From
(3.4) and (3.2), it follows that

-3
Iy IR L, gn-1 S Colly D)l -3, mn-1 + 12 (Do) [ o mn-

=3
y Ly
+ ||V(tk”)”1—%,m- v+ 72y u) o gn- 1) -
For a positive integer I’ we have

1 . =
9@l -1, mn-1+p 729 lo,rn-1 = Collullymy + 1" ullo,ry), ue CF(RY)
2

where the constant C, does not depend on p, which is stated in Agranovich-
Visik [1]. Therefore,

”[)’(”)”Wi)%,m— 1S C5(| D], - 1,R" + w1 Du ”0,[«',‘r +[lt*u ”I,R',‘ + | tku ”0,11';) .
Furthermore, using (3.3) and the inequality
(3.8 rfully rr SCa(IDully - g wn + 1 +iz8)ullp gn)  (I'=0, 1,...),

we get |||y(u)|!|(,"_’%,nn-l§C||iu|]|$f‘,"g. The inequality (3.8) is easily ob-

tained by means of the following lemma.

Lemma 3.2. Let | be a positive integer. The commutator [Df , .,
t*] (1 Z\e| 1) has the estimates:

D% Flullomr Ci(lulli-rn+ X (@ +i2D%ulomn),

o’ [Z1-1
i)  [D%, t*Jullo,rr S Co(llull;— 1,mn + (#* +izF)ull;— 1 7)) -

(These estimates are valid also on R", and [D?, z¥] has also the same
estimates.)

Noting that
“tjuuo,n'; < | tku HO,R'; +|lu “0,11'; (j=1,2,..,k)),

we can easily prove the lemma.
In order to construct the regularizer of the problem (1.2), we try to
solve the problem
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Ay(0; D,, Dy, D)+ i2u=f in R#,

{ aa"u =g on Rr1
]

by the well-known procedure. First, we extend f(t,y,z) to R” and,
ignoring the boundary value, define a function v(¢, y, z) on R" satisfying
Ay(0; Dy, Dy, D)v+p?v=f in R% by means of the Fourier transformation
(, which are described in Proposition 3.2 and Lemma 3.3). Consequently
we have only to consider the equation

’
dav ,

=g on Rr1

{ A(0; Dy, Dy, DY +p?0"=0 in Ri%,

vy

ov
0vg
boundary R"~! by employing intermediately the Dirichlet problem

(where g =g~ ) We reduce this equation to the problem on the

{ Ap©; D, D, D)w+p*w=0 in RY,

w=h on Rr-1,

(cf. Proposition 1.3).
For a non-negative integer I we define

HOR)={u(t, y, z)eH,_;(R"); DuecH,_(R"), (t*+iz¥)ue H(R")},
lull 0> =Dl 1,mn+ [(t*+ iz gn s
e ll g 000 = lull g o> + prt ]| - G

Restrict u(t, y, z)e #P(R") to R%, then uweH®(RZ) and |ul{-<

lull 2o, Nl < Null 2 go.

Proposition 3.2. Let us define Ef (for fe CZ(R%)) by
f@t, y, 2) (zz0)

Ef(t’ Y, Z)={ lo+1 .
jgl ajf(t’ Vs —_]Z) (Z<0)

lo+1
where {a;}j=;, 1,+1 Satisfy T)Zl a(—jp'=1 for I=-1,0,1,.., [,—1.
=
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Then we have

i) There is a constant C, depending only on ly such that

||Ef”l,nn§c1”f”t,n’;, fe C§(RY)

for 1=—1,0,1,...,1,. (This estimate holds for I=Iy,1{+1,...,1;+l,+1
lo+1

if Er a(—j)'=1 is satisfied for I=1;,1l;+1,.,1;+1l,. Here l, is a
~

negjative integer.)

ii) There is a constant C, depending only on Iy such that
NEf Nl SCollf ¥k, fe CR(RYE)
for 1=0, 1,..., 1,.
Proof. Let us prove only ii). From the definition of |4,
WES 20> = {UDES 11— 1 wn+ I DES || - 4 e}
+ {0+ iZ9VES oo+ U+ i2ES o o} =1, + .
The estimate in i) yields
LECUDS -+ BUDS - w) S CsllLf e -
It is easily seen that for any « (|u|=1)
(% +izM)D¢,, s, Ef llo,xn S Call(* + 24Dy, o) fllo ey -

Using the inequality in i), this inequality and Lemma 3.2, we get for
any a (|1, 1=0)

1D, y, (8 +izF)Ef) ]| o, rn S Cs(||t* +izF) f lomn+ 11— 1,R';) .
Hence,

I = Co(l(t* +iz) f [ + M1+ iz) f o, + [1Def Nl1-1,m7)
SColl £l -

The proof is complete.
From this proposition we can extend E to a continuous operator
from H{M(R}) to A#M(R") (I=0, L,..., [y).
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Lemma 3.3. Let | be an integer (Z2) and pu=p, (1o is an arbitrary
positive constant). Define Qf (for fe H{¥,(R)) by

or= ?_1[ 45(0; , 111 o)+ p? B, w)] '

Then we obtain
i) QfeH®(RL), {45(0; D,, D,, D.)+u?}Qf=f in RY, and there is
a constant C, independent of u such that

NQf Nk Co SN, mr . feHER(RY).

ii) Suppose ¢, e Z°(R") and supp(p)nsupp(f)=¢, then we have
@Qyfe HiY (R}) and

NoQuf 1§y wr S Coll Iy s fe HIP2(RY)
where the constant C, is independent of u.

Proof. Let us prove i). In virtue of ii) of Proposition 3.2, we

have only to show that the estimate

1-2°

3;_1,' éi(r5 , 0)) —]
0057, 1, @)+ p?

| SCillgllag, geFRY)

holds for a constant C; independent of p (Zpy). From the definition of

M 0,

|7 e ]

“z’f"’
§C4(ﬂo)[{ggg<(fz+ [n]?+w2+1)t

A 1
- D.g|? 2
+uP(e+ 2+ o+ 1) 1)%5—01“1'1‘1@}

-

A

2
+{S§S(12+ l"[2+w2+”2)l|m7€%77‘ drdndco}

D=

2
+{SSS(I2+ |l1|2+cu2+u2)”D"f,— - g 2—' d‘cdndcu}
otu

]

=Cylpo) Uy + 1, +15).
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Obviously there is a constant Cs indcpendent of p such that

; I
J
= Ay(05 7, n, @)+ p?

| PP
SCs(e2+ |2+ 02+ p2)2 77,
(j=0, 1,..., k).

By this inequality we have

I, =Co(IDglli-3.mn+ 121D gl - 1,x) S Cslllg ”]z’}':’z >

N

k .
< c7< z_joggdi7dwg(r2+ Inl2+ w2+u2)l~2-k+f|Dgg|2dr) .

j_

I‘urthermore, using Proposition 2.1 and (3.8), we gct

I, gCB{SSS(H Il + @2 + 12)1=2| DA g 2 dednde
¥
+ Sgg(tz +[n|? + w? +;L2)"2"‘|g|2(1rdi1dw}
=GCollgll e, .

15 is also cstimated in the same way. Thus i) is obtained.
Similarly, noting the following fact, we can prove ii). Sct

1
AT, 0, w)=(t2+ ]2+ o + 22,

’ y ~Y . ' ) - ! . ’ i o) n
then Y'(t, y, 2) and @'(t, y, 2) 407, 7 ) F 12 (where ', @' € #*(R"))
belong to S, and S;? respectively (S%, is dcfined in Appendix). There-

fore, if supp(¥') nsupp(@')=¢, the estimate

’ ’ -1 ’
14,(Dys Dy, D.)*09'(A5(0, Dy, Dy, D.)+p?) ~o'ullo,pn
éCIOIM'u(Dt’ Dy9 Dz)s’uHO,R"

is derived for any s,s'eR from Theorem A.2 and A.3 in Appendix.
The lemma is proved.

In view of Proposition 1.3, ue N, (u>0) corresponds to the trace
yu one to one. The mapping £:yu—u is a continuous operator from
IIS__%(R"‘l)(s_E_O) to Hy(RY) (2 is called the Poisson operator).
Moreover we have
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Lemma 3.4. Let Yy(t)e CZ(RY) and u=p, (uo is an arbitrary posi-
tive constant). Then, for an integer [(=2) there is a constant C inde-
pendent of u such that

I PRI R SCIRIRsge-s,  he HRLR™).
Proof. From the definition of [|-[{k= ,
Iy 2hll e < UDWPW— 1 pn +HIDWG LI -1 g}
+{I 2P hlpr + Y Phlo mz}
+ {9 Pl + Y PRl g} =1, + I, + 1.
For any integer s we have later the estimates:
@) [Phloms SCIDI+ 1Dy 1241522 S Dh] g g
(3.9) (i) 2Pk, pn CI(DZ+ 1Dy 2+ 123 Dl g oo
(i) [-2hl, uy S C5(I1D2 + D,y 12+ 1222 () oo

Lgmpl
FIDF+ 1D, 12+ 422 D hlg g ),

where the constants C;~C; do not depend on u(=pe). Then, the
estimate (i) and (ii) yield

3
I, = Cy( ”Dzh”t—%,n"- 1+ 472D g, mn- 1+ ”h”z—%,n"— 1
+#l—7”h”o rn-1)=Cs ”lhm(zk—)i,n" 15

I, =2 Co(lAlli—k~L,mn-1+ 4"~ 2] hllo,mn-1) S C4 12N R “Lme-t

Let ¢(t) (e C3(RY)) satisfy @(f)=1 in a neighborhood of supp(¥). We
have

I; = Ce{(I*2(pM) 1 g7 + 6! [Pl o,r7) + ¥ 2(1 = @)D 17}

=Cy(Io+15).
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From (iii) of (3.9), it follows that
LS Coll IR, me-
Furthermore, combining (i) of (3.9) and Lemma 3.5 below, we obtain
3

1,
Is£Cyol (D + 1D,y |2+ p2) 2 2 bl g1 S C oy 12112 g1 -

Finally, we shall prove the estimates (3.9). There is a constant ¢
such that

1 1
8(z2 +1n* +p?)2 Im [ro(, 1, W= |ro(T, 1, WIS~ (T2 +Inl>+u?)2.

Hence, for any non-negative integer s we have

12hme £C{(([ (1624 12+ pyierocnms e, )2

-

+ ID_;eiro(T.ﬂ,ﬂ)zﬁ | 2>d1’d)1d2}2

écucn{gg(ru 1012+ u2)*| | 2dedy

N

+o0 1
X So exp[ —26(z%2+ In|2+u2)7z]dz}
2 2 236
SCull(DZ+ 1Dy 12+ p2)2" 27k o, gn-1-
For any negative integer s, we obtain

|2kl py=sup | <Ph, @>|=sup| <{ire(t,n, p}*erh,

el -s,zn<1

®eCo(R™) 075
o -&:s_g’-(r}y)-'(t,n)[(P](T’ 1, 2)>|

ssup | 2(ro(Dy Dy, wih)llogn @l -5
141
ZCysl(DZ+1Dy|2 +p2)2" 2’ h| g gn-1 .

The proof of (ii) is similar. Let us show (iii). We can express

k k1 . ~
FamenltPH = 3 (3 kaabie, o, ) et nwpibl,
k1=0 k2=0
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where afi(t, n, ) is homogeneous of order —k, in (r, #, #). Therefore
for any non-negative integer s,

[N

k -k, -1 ~
I 2hl s < Cuof T ({22 1012412y ™ 75| Diih(e, )| dedn)
k1=

Furthermore, by Proposition 2.1 we have

1

1.
5 Ph| o qn < C17 {I(DZ+ | D, |2+ u?)2C 2%k 5 gn-1

1.1
+ (D24 D, |24+ p2)2%7 27| gu-1} .

For any negative integer, we can obtain the same estimate in the similar
way to the proof of (i). The proof is thus complete.

Lemma 3.5. Let Y(t), o(t) (e #°(R')) satisfy supp(¥)nsupp(p)=¢
and pu=p, (o is an arbitrary positive constant). Then, for any non-

negative integer s we have
1.3
lo2(Wh)|s,xn S CI(DZ + | D12+ 122 2h|g gn-1, heL(R™),

where the constant C does not depend on n
The lemma is proved in Appendix.
Let us set

Vg,+={(t5 ya Z)ER”; It|<8a !yil<sn 0<Z<8}5

Vitt={(t, y)eR1; |t] <e, Iyl <o}

Lemma 3.6. Suppose 0<e=Zl1,1=2,3,... and pu=p, (to is an arbi-
trary positive constant), then we have

1l 5y < Co( 1146005 Dy Dy DJu+p2ull L,
0 1
+llga g )+ Cos + 0wl e

for ue H{W(RL) whose support lies in V!, Here the constants C,
and C, are independent of ¢ and p.
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Proof. We can assume ueC%(R") without loss of generality.
Let y(t) (e C3(RY)) satisfy Y(f)=1 in a neighborhood of {t;|t|<1}, and
set

f(t, y, 2)=A5(0; D,, D,, D,)u+p’u.

We have
ol < MY QS N n + M (u— QNN =11 + 1,
(Q is defined in Lemma 3.3). i) of Lemma 3.3 yields
LiZCsllfl§%, R -

Let us note u—QfeN,. From Lemma 3.4 and Theorem 3.1 it follows
that

LECollyw—0NNEL r-1 SCsIIP (1, Dy D)) (= QfNi-3 gn-1-

Furthermore, since T,(y(u—Q f))=%(u—Q f) (see (1.4)), we have
0

nscy

20— (u=0f)

-2 s F IPU= TG @ =0 li-3mn1 )
By i) of Lemma 3.3, it is easily seen that

ou

LsCof | 5

REYNEY 7 )
We can write
{Pu(ts Dn Dy)_Tu(ts Dt’ Dy)} h(ls y)
=not*F1[if(x, n, wych(z, NI, )
_(torg
where B(T’ n, #)—SO o1

in (t, n, p). By this expression and Proposition 2.1, we obtain

(3.10)

(07, n, w)dO, which is homogeneous of order 0

I(P,=TDhl1-3,&n-1 = Co(ll£*Deh [l -3 n-1
(3.11)
2 2 2y3U-3-%)
+(D?+ |Dy|?+u?)2" 2 "Dk o gn-1).
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Therefore, from the fact that supp(u)< V7., we see that
1
N(P,—T)y()lli-3 mn-1 = Cs<8 +—”—>III ull e

Let o(t, y, z) (e C5(R%)) satisfy o(t, y, z)=1 in a neighborhood of V7% ,.
Then, using (3.11), Proposition 3.1 and Lemma 3.3, we have

NP, —TINQHM -3, mn-1 = NP, — TINPQ) -3, n- 1
+ (Pu =TI = 9)2 )l 1-3,rn-1
SGColl f 158, gn -
Thus,

1 '
1S ol s s + Col e+l

Therefore the lemma is proved.

Lemma 3.7. Suppose 0<8§-;—, 1=2,3,... and pu=py (1o is an arbi-
trary positive constant). Let y(f) (e C*(R'Y)) satisfy Y(t)=0 in {t;

|t|>2}, Y(©)=1 in a neighborhood of {t;|t|=<1} and 0ZY(H)<1. Put

s v =W D)

&

We define R(f, g) by
RY(f, 0)=01+1:26'(9- 5001 ).

where (f, g)e H{,(R1) x H,_3(R*™!) and supp(f), supp(g) lie in VI,
Vo1 pespectively. (G! is defined in Corollary of Theorem 3.1). Then
we obtain

i) There is a constant C, independent of ¢ and pu such that

IRCS ) < o N2, + NG -3, mm- 1) -

iy Set
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S1C, @)=(4o(t, 3, 25 Do Dy, DI+12 JR(fs )1,
1 _ 0 1
Sz(f‘s g)__a’;:—lpsR (f5 g) l =09

(v' denotes the transformed vector field of v by the diffeomorphism
@ stated in Proposition 1.1). Then we have

+

ISTCS O3 5(8306)+ 2N UF U8 s+ g li-30-0),

1305 D) igmn- =620+ XN Nz + g i-3mm-0)
uz

where 6,(g), 0,(€)—0 uniformly in p as €—-0, and the constants C,(e),
C5(e) do not depend on p.

Proof. The proof of i) is similar to that of Lemma 3.6. Let us
prove ii). We write

Si(f, 9)=[4'(t, y, z; D,, Dy, D), ¥, JoR'(f, 9)
+¥.{4'(t, y, z; Dy, Dy, D,)—Ap(t, ¥, z; Dy Dy, D)}R(f, 9)
+y. {45, ¥, z; Dy, Dy, D,)— A5(0; Dy, Dy, D,)}R'(f, g)
+¥.{(45(0; D,, D,, D)+ pu*)R'(f, 9)—f}
=l +1,+1,+1,.

Obviously I,=0. Noting that [Ay(t, y, z; D, Dy, D,), ¥.] and {A'(t, y, z;
D, D,, D,)—Ay(t, y, z; D,, D,, D,)} are first order operators, we have

A TCNCELAOT TS T [ON
< S 2y + g i)
lI172 mg,i)z,n’; =Cs(a)IR' (£, 9) |”EE)1 R

< CEO U+ 19 -0
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by means of (3.8), (3.2) and (3.3). Let Ay be written in the form

’O(ts Y, Z, Dt’ Dy’ Dz)=|¢|z=2aa(ta Vs Z)D%t,yﬂ)

and put

63(8) = li]ilfz [aa(ta Vs Z) - aa(o)l )

(t,y,2)eV 26, +
then J;(e)—0 as ¢—»0. From (3.2) and (3.3) it follows that

7518203 = Cob5@ IR (f; DS + Co@ RIS, I
<(Crods @) + YU UEs ey + g G-

Therefore, we obtain the estimate for Si(f, g).
Next let us examine Si(f, g).

1S3 )i mee || (= 5o R (s 9] g o

N EI5+IG .

Ny

— —

We can write v'(¢Z, y)=<~§t—>+ vi(t, y)(%) . Set

d4(e)=  sup

-1
(t,)evy;

16’( ! 6h ’
i (08, ) (1= 0y~ 10— (0))
then d,(¢)—0 as e—0. By (3.2),
15 <(04()+ S )18 D.WR (S, ) l1-gome-s

< C13(04()+ S )L 3 + 119 i)
We have

fo|

g0 =9+ 0Pyt Dy )G (9 =501 )| g o
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Ve R4,

e

EI7+18+19.

o~ Pu)Gl(

l—%’Ru—l l—%,n"'l

From the definition of G!, I,=0 follows. It is easily seen that
SC@NE+izM) RS @Ili-1,mn
< S UL w4 g -3 m1)

By (3.10) we have

I, = H\‘Pet’”ﬁ(Dn D, u)D,Gl<

s(ecior SR

< CaC 16+ SR YUz + 19 im0

1-3.Kn- 1

(k)
l—— R -1

'(9--0r)

0vy

Therefore, we get the estimatc for Si(f, g). The proof is thus complete.

Proof of Theorem 3.2. lau view of Rcmalk 3.3, it is easy to show
a) of i). Let us prove b) of i). Let ¢(x)= z @{(x) be the partition of

unity in (3.7) and satisfy 0=¢;(x)=1 for any Jj.- Set g=max {diameter
(supp@;)}. From the definition of [|-[|{*) (see (3.7)),

N
el = 2 lite,uy(t, v, 2) e + N = )ull e -
i~

Since v is not tangent to I' in I'—Iy, we can use there the method in
Agranovich-Visik [1] (see Theorem 4.1 of [1]). Hence,

Il =@ulles Ca( ICACx, D) +p?) (=@l - 2,0
(3.13)

o

l—%,r>+ %HI( L—o)ull;,q

where the constants C; and Cu(¢) docs not depend on up. By Lemma
3.6 we have
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ll(@u)(t, y, 2) ||k

< Co( (46003 Dy Dy DY+42) () 12,
G180 g )+ Col(e o) 1S

< ClI(A'@, v, 25 Doy Dy D)+ 1200 1,y

|2 @]y e+ (86 + S Yo 0 Ry

where 0(e)>0 uniformly in u and the chmce of the partition of unity
Z ¢@; as 0. Let the partition of unity Z @; be fine enough, then
flom (3.13) and (3.14) it follows that

s (4G Dyutnull®y, o+ | 4]

C
Al

which proves b) of i).
Next let us show ii). In I'—TI"y we can apply the method in Agranovich-
Visik [1]. At any point of I'y we have obtained Lemma 3.7. Therefore,

we can construct an operator

H{®,(Q) x Hy_3(1)— HP(Q)

by the same procedure as in Agranovich-Visik [1] (see Theorem 5.1 of
[1]) such that

(12 (f, DR CoaNf %20+ g -3, 0;

I(A(x, D) +u2)2(f, 9)—flI¥; o

(3.15) ¢ é(%-}- C”)([Hflll"" atllglli-3,0);

=

where the constants C;;, C;3 do not depend on pu. We define the

3.0 S (0 YIS 0+ gm0

\mav'@ (f,9)—9g
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opeator S'(f, g) in H{¥,(Q)x H,_3(I') by
1 — 2 1 6 1
&1(f, ) =((U+12)2 (1, )1, 52"/, D11 —9).-

From (3.15) there is a constant p4(l) such that for any p=p5(l) the
operator

I+@': H{M(Q) x H,_3(I— H,(Q) x H,_3(T")

has the continuous inverse. Therefore, noting iii), we have ii) when
B2 pp=max (g, pa(2).

Finally let us prove iii). We fix u (=0) arbitrarily, and assume that
u is a solution of (1.2) in H¥(Q) for (f, g)eH‘,’i)z(Q)xH,_%(F). Then,

obviously u is a solution of the equation
Alx, DJv+ (2 +pv=f+p3u in Q,

ov _
W—g on I,

where p, is sufficiently large. On the other hand, by the proof of ii)
we can find a solution v of this equation in H®&) , ,)(Q). From b) of i)
we have v=u. Hence uer,i‘i)n(,,“(Q). By induction, we see that ue
H{¥(Q). The theorem is proved.

§4. The First Class

In this section we shall consider the problem (1.2) where the vector
field v is of first class. In this case the problem (1.2) has an infinite-
dimensional kernel (see Remark 4.2). But, adding the Dirichlet condition
ulr, to (1.2), we obtain the same results as in the third class (see Theo-
rem 4.2).

To begin with, we shall investigate P(t, D,, D,) as we have done in
§3. Theorem 2.2 implies that the operator

Pu(t! Dt’ Dy): H gk)(R”—l) - Hs—l(Rn_l)

has an infinite-dimensional kernel. But, adding the Dirichlet condition
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hl,=o=7yo(h), the kernel and the cokernel are both {0} ( , which is stated
in Theorem 4.1). Therefore, we consider the problem

A(x, Dyu+p?u=f in Q,

Ou _
4.1) T on I,
u=h, on I,

instead of (1.2). Then we can repeat the same procedure as in §3.

Theorem 4.1. Let s=1 and p=p, (4y is an arbitrary positive
constant). We have

1) c! ”| h ”[(sfcl){"‘ 1 é ||[ Pu(t’ Dta Dy)h ”l s—1,R""1 + |H ’YO(h) I“s— — R';" 2

2(k+1)y

SCNANE -1, he HP(R™T)

where the constant C does not depend on u.
ii) We define the operator

A, : HOR™Y) — Hy (R X Hyyp 1 (R32)

1
2(k+1)

by W,h=(Pt, D,, D))h, yo(h)). Then the kernel and the cokernel are
both {0}.

Corollary 1. U, has the inverse GZ:HO(R"‘l)tz(lirl)(R"‘z)——+
H©@®R"1), Furthermore if (g, ho) € Hy_;(R""1) x Hs_1+2(k1+1)(R"‘1), then
G2(g, ho) e HP(R""1) and we have the estimate

I1G>(g, B lI$kn-1 S CCNG = 1,mn- 1+ Mol = 14yl mn-2) -

2(k+1)

Corollary 2. The trace operator yO:Hﬁ."’(R"“)—»H-HZ_(TIm(R;‘Z)

is continuous and has the estimate

7oA lls= 145t mn-2 = CllA N n-s

2(k+1)°

The corollaries are clear from the theorem.

Proof of the theorem. From the following Lemma 4.1, we derive
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O\ @42+ 12y U5 e, D12 + (Dl + 2N K, 2 e

< (@ + 0l +2y 1 F 1P e ide

+ (0|2 + 2y 7w | £ o, [h(0, 7))
N\ N
§C13(12+lnlz+uz)"‘{|Dth(T, N2+ (1712 + p2)|t+h(z, n)|2}de

the constant C; is independent of # and p(=po). Therefore, i)

where
By Corollary of Theorem

is proved in the same way as in Theorem 3.1.
2.2 we can show ii) in the same fashion as in Theorem 3.1.

Lemma 4.1. Set

Pit, DY =-2+ au

where A is a parameter (>0), k is odd and a satisfies (0<)M;<ZRea,
la|£M,. Then, for a real number s(=0) there is a constant C inde-

pendent of a and A such that

_2 s _2 s
C (D2 +AFT)2D0 || § ya + (D + I3 1) 208k 0[| ] 1}

2s+1
K1 p(0) |2

_2 s
<|(D? +AF1)2p,(2, D)o||3 qs+4

2 _ s 2 s
SC{I(D? + 2% T)2D,0||§ g + |(D? + AF1) 2080 |§ gi},  veSL(RY).

By means of Corollary of Theorem 2.2, the lemma is proved in the

same way as in Lemma 3.1.
The following theorem is the main result in this section, which

corresponds to Theorem 3.2.

Theorem 4.2. Let | be an integer >2. We obtain

i) Estimate: a) We have

- 2, 111€K) Ou
AGe, Dut 2l | 55| 5 +lullge sy

SCllully . weHP@),
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where the constant C, does not depend on pu.
b) There is a constant p, such that provided p=p,,

Nl llfky < Cz(IIIA(x, D) u+p2ull$®, 0

-3,r
+ [zl '—%"'Z—Uel?»l_)’rﬂ)’ ue H{P(Q)

where the constant C, does not depend on p.
ii) Solvability: There is a constant u, independent of 1 such that
if u=p,, a solution u of (4.1) is found in H(Q) for any (f, g, ho)€
H{® (Q)XH,_Q(F)XH,_7+2("+1)( 0)-
iii) Regularity: We fix u(=0) in (4.1) arbitrarily. Suppose that
u is a solution of (4.1) in HP(Q) for (f,g, ho)eHg’i)z(Q)xH,-%(F)x

Hy 3, ('), then u belongs to H{)(Q).

2(k+1)

Remark 4.1 The regularity follows so long as A(x, D,) is elliptic.
Furthermore, the problem is Noetherian in the above spaces (cf. Egorov-
Kondrat’ev [2], Visik-Grusin [10]).

Remark 4.2. Let us show briefly that the problem (0.1) (and (1.2))
has an infinite-dimensional kernel (where v is of first class). Set

QI(u)=<A(x, D )u, g—:ln ulfo>’

and assume that A(x, D,) is elliptic. Then, we know that the operator

A: HP(Q)— H{P,(Q) x H\_3(N) x H,_34 (o)

2(k+1)

is Noetherian for [=2,3,... (e.g., see [10]). Hence, we have infinite
elements {h,},-;,,, . of H,_7 P

there exists a solution u,e H¥Q) of WA(u,)=(0, 0, h,) for any n. Then
{#p}n=1,2,.. are linearly independent and satisfy

(I'y) linearly independent such that

A(x, D)u,=0 in Q,

@lr_n—()

v on I, (n=1,2,..).
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That is, the problem (0.1) has an infinitc-dimensional kernel.

Proof of Theorem 4.2. Noting that from Corollary 2 of Theorcm

4.1 the estimate [lull,-3+ o =Cllullf% is obtained, we can easily

2(k+1)
show a) of i). By means of following Lemma 4.2 and Lemma 4.3

(, which correspond to Lemma 3.6 and Lemma 3.7 respectively), we can
prove b) of i) and ii) respectively in the same way as in Theorem 3.2.
The proof of iii) is also similar to that of iii) of Theorem 3.2.

Lemma 4.2. Suppose 0<e¢=1,[=2,3,... and u=p, (o is an arbi-
trary positive constant), then we have

Nl < C <|(|A0(0 Dy, Dy, D )yu+ pulli®, “HmavO

JR 1

Ml gy gty + Col s 5 sl

for ue H®(R%) whose support lies in V" ,. Here the constants C,
and C, are independent of ¢, u.
The proof is similar to that of Lemma 3.6.

Lemma 4.3. Suppose 0<a$—,~,l—2 3,. and uzp, (ue is an
arbitrary positive constant). Let Y (t, y, z) be the function (3.12). We

deﬁne Rz(fs gs ]'0) by
2 — 2 a
RS, g, ho)=Qf +1,2G*(g —59-0f, ho—0f | =9)
0 t=0
where (f, g, ho) € HYEL(RY) x H,_3(R™) X Hy_3. 1 (R3™2) and supp(f),

supp(g), supp(ho) lie in VI, Vo=l V=2 respectively (G2 is defined
in Corollary 1 of Theorem 4.1). Then we have

i) There is a constant C, independent of ¢ and u such that

RS, 9> ho)ll Pk < C(NF N2 mn + gl -3, mn-

+lholli-3+

2(k+1) JRn-2)

i) Set
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S3(f, g, ho)={A'(t, y, z; D;, Dy, D)+ p* Y .R*(f, g, ho)—f,
d
S%(.f’ g, hO) =W lpeRz(.f) g, hO)]z=0'—g s

S3(/, g5 ho)=WeR*(f; 9 ho)l=g =0

=0
=0

then we have

IS3CA 9 ko) i2my = (8:0)+ S2E) U715 s

119 M2t + o3y )

1S3 95 o)l 5 (9200) + D) T 12,

g M=+ o3y e mn=2)

S3(f, 9> ho)=0,

where 0,(g), 6,(6)—>0 uniformly in u as e—0, and the constants C,(e),

Cs(e) do not depend on u.

The proof is similar to that of Lemma 3.7.

§5. The Second Class

In this section we shall consider the problem (1.2) where the vector
field v is of second class. In this case the problem (1.2) has an infinite-
dimensional cokernel (see Remark 5.3). But, adding a coboundary
condition (cf. [3], [5], [10]) to (1.2), we obtain the results in Theorem
5.2.

To begin with, we shall investigate P,(t, D,, D,) as we have done in
§3 and §4. Theorem 2.3 implies that the operator

Pt, D, D,): HP(R"*~1) —> H,_(R""1)

has an infinite-dimensional cokernel. This fact suggests that the problem
(1.2) has also an infinite-dimensional cokernel (, which is proved in Re-
mark 5.3). Therefore, adding the coboundary condition B,(p®d,) to
(1.2), we consider the problem
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A(x, Du+pPu=f in Q,

5.1 ou
7‘)— F+Bu(p®ér0)=g on F,

instead of (1.2). Here, d,, is the Dirac measure on Iy, p is a function
on I'y and B, is a pseudo-differential operator on I' satisfying Assump-
tion 5.1 below.

For any x,el, we choose a diffcomorphism @&, (x) (xe U(x,))
stated in Proposition 1.1 such that, in addition to (l1.5), for every pair
of &, (x)=(,y,2z) and @, (x)=(t, ), 2z") (X0, x; €'y and xe U(xp) N
U(x,)) the transition {rom (¢, y’, z') to (t, y, z) is given by the trans-
formation in the form

t=t, yi=0,(y) (j=1,..,n=-2), ==z,

Throughout this scction we fix

(5.2) {(pxo(x)}xoero .

Definition 5.1. Let pu be a parameter (>0). We say that a function
B, y; v, n, 1) e Co(R™IxR*" ! xR1) belongs to S"(meR) when for any
multi-index « and f wc have

| Dz D? B, y: 1,1 |<C,, {12 |2+ 2)#{1%(""‘””)
ton D B ys o, 1) = Copit?+ (I u §

where the constant C,, is independent of ¢, y, 7, 4 and pu (Zpg, o is an
arbitrary positive constant).

Proposition 5.1. Let B(t, y; 1,1, WeS™ and pZp, (m< —“é‘ and

Uo is an arbitrary positive constant). Then we have
”lB(t’ Vs Dn Dy: ‘LL) (6(t)®p(y)) l”s,R"‘l

m+1/2

< (1Bl D12 4 12 H ) g

Py _
1Bl (D2 + 2y Do s), @),

where 0§s<—m——;— and the constants C, | are independent of u and

the choice of B(, y; 1, 1, 1. (lB},,,,,f denotes ,,y,f,li,‘?.zuo

fal+B =0
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D, ) D,y B, .V;' ‘L',111, H) l
| {2+ ()2 4 p2)ETy 0 .

The proposition is proved in Appendix.
We assume that B, in the problem (5.1) satisfies

Assumption 5.1. B, is a pseudo-differential operator on I (e.g.,
see §IV of [9]) with the parameter p, and for any &, of (5.2) there
exists a symbol B(t, y; 7, n, p)€S™ which is the local representation of
B, in &,. Here m is a constant (<—1) independent of the choice of
&,.. Moreover B(t, y; 7,7, u) has an asymptotic expansion i By, y;

j=0
N-1
T, 1, 1) (B(t, yitn wW— X Bit, y; 1,1, u)eS'”‘”> satisfying
j=0
(i) Each Bgt, y; 7, n, ))(eS™J) possesses the property of quasi-
homogeneity
Bj(t, y; Av, A 1n, A1) =A""IB(t, y; T, 0, ), A>0;
(ii) For any (4, ) such that |g|2+pu?=1, the function
F34[Bo(0; 7, 1, W1(1)

is not orthogonal in L2(R}) to the solution of P{*)(t, D,, n)uv(t)=0.
Actually there exists such B,:

Example 5.1. Let f‘, aix)(xel) be a partition of unity near I,
j=1
and f(x) (eC~(I)) satisfy fi(x)=1 in a neighborhood of supp («;).
Let supp(x;) and supp(B;) be small enough. We take x; (esupp(x;)n
I'y) and denote by ®}(x) the restriction to I' of &, (x) in (5.2). We set
1
bz, 1, 1= el exp {— N(lnl?+u?)26++ 1}t

where m is a constant (<—1) and N is a sufficiently large constant.
Define B,(h) (for he C>(I')) by

B, (h)= giﬁj(x) X [b(Dy, Dy, ) {o;h(P571 (2, y))}]1(P}(x)),

then B, satisfies Assumption 5.1 when N is large enough.
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Let us set

I(h, p)=P(t, D,, D)h(t, y)+Bo(0; Dy, D, 1) (3()®p(y)

where h and p are functions on R""! and R""2? respectively and d(¢)
is the Dirac function.

Theorem 5.1. Suppose m<—-;—,1§s<—m+% and puZpe (Ho is
an arbitrary positive constant). We have

m+1/2

. _ (-
D O (WA + 11 Dy 12+ w22 g )

é “'H(hi p)”ls—l,ﬂ"’1
1(g—q4mt1/2
< C(WANE 1+ 101D, 124 5227 50 ),
(hy e HOR™) x H,y me1 2 (RS™)

where the constant C does not depend on p.
ii) For the operator

Im: HP(R" 1) x Hs—1+%1{2(R"_2) — H_(R"™1),
the kernel and the cokernel are both {0}.

Corollary. IT has the inverse G*: Ho(R"™)—— H{P(R"™ ) x Hmt1/2

(R"~2), Furthermore if geH,_,(R"1), then G3g=(Gig, Gig)e H¥
(R”“)st_H%(R”’Z) and we have the estimate

1 m+1/2
G311 ®hn=1+ (1 D, |2 +12) 20 5163 g o g2 < CllG lomg.mn-s -

The corollary is clear from the theorem. Using Lemma 5.1 below,
we can prove i) of the theorem in the same way as in Theorem 3.1.
Noting ii) of Assumption 5.1, we can show ii) of the theorem in the
same fashion by means of Corollary of Theorem 2.3.

Lemma 5.1. Let us set

1 neiro(0, n,
L L i
(In12+pu?)?
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and define m,(v, py) (for (v, po)e Z(R)xC) by
(v, po)=%%+altkv+pof:3,[30(0; 7, 1, w)1()

where k is odd and 2>0. Then, for a real number s<<—m—%>

there is a constant C independent of a and ) such that

2 s 2 s 2s+2m+1
C 1 (I(D?+ AFF)2D013 s+ |(DZ 4 AFF )220 |+ 4 91| ]2)

_2 s
S(DZ+ A%+ 1)2m (v, Po)”%,nl

2 2 s 2s+2m+1
< C(I(D?+ 75D 0] s + (DY + IFD)Zitkol i+ 4 51 [po]?),

(v, po)eL(RY)xC.

Proof. In view of i) of Assumption 5.1, we get

2 s 2s+1
[(D?+ A%+ T)2m,(v, po)llg, g1 =4 &F1

Attt )o(ATFTY)
dr ¢

2
s

+ 724 Bo(05 7, 1, ) 0715,

by a change of variable. Similarly

st+2m+1

2 2 _ s 2
|(D2+ZF1)3D,0[13 o+ (D2 + A )20 3 a+ 2 EF1 | po] 2

2st1 L L 2m
=1 T{|D(v (A" FT0)) |2 e+ [0(AFF 1) |2 g + 255 T | po | 2]

Noting ii) of Assumption 5.1, by Corollary of Theorem 2.3 we have a
constant C(a, {) at any fixed a and { E(%, %) such that
1 1 2m_
C(a, O {ID (v(AF 1) |2 s + |£50(A 1) || gu + A%+ T pg | 2}
2

d 1 _ _m_
(53 s|(Gr+at ) FI+ 4 B0; 7 DIOIF I,

< C(a, D{ID(o(AF 1)) | 2 o + [ 0(A D) |2 g+ 2507 po|2)

Let us fix ay, and {,. If |a—ay| and |{—{,| are small enough, the
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constant C(a, {) in (5.3) can be taken independently of a and (. Since
(a, {) moves on a compact set, we can choose C(a, {) in (5.3) independent
of a and C which proves the lemma.

Let }:, @; be the partition of unity in (3.7) and define the norm
llollis,ro of Hs(l"o) (seR) by

ollara= 2, 10D,12+ 123010 (Do o

(where u>0 and (¢;0)'(y)=(¢:p) [31(0, y, 0)]).

Theorem 5.2. Let | be an integer satisfying 2Zl<—m+1 (m is
the constant in Assumption 5.1) and u, be an arbitrary positive constant.
Then we obtain

i) Estimate: a) We have

4Gy, Du+ 12wl .0+ || 54+ B, (0@ 61,)

-3,r

SCi(llullfR+ Nplli-3emeriz ro), (u, p)e HP(Q) x Hy-3mt1/2(Tg)

kFL ’

where p=pu, and the constant C, does not depend on p.
b) There is a constant u, such that provided p=p,,

el + 1o li-3eme/2, 0 S Co (ACE, Ddu+ k2wl P,
0
e noin)| ) PeHP @) gz

where the constant C, does not depend on u.
ii) Solvability: There is a constant u, such that if p=p,, we have
a solution (u, p) of (5.1) in Hﬁ")(Q)le_;z,+m;1L11/2(I"0) for any (f,g)e
H{®,(Q) x H,_3(D).

Noting that the estimate [|]Bu(p®6ro)|||,__,r__C|||p|][, 34midf2 p is
obtained from Proposition 5.1, we can easily show a) of i). Furthermore,
we can prove b) of i) and ii) in the similar way to the proof of Theorem
3.2 by means of Lemma 5.2 and 5.3 below, which correspond to Lemma

3.6 and 3.7 respectively.
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Remark 5.1. The same estimates and regularity of the problem
(1.2) as in Theorem 3.2 are also valid without the coboundary condition.

Remark 5.2. Let us consider the problem

A(x, DJu=f in £,
(5.49) ou

-‘a— +B(.0®5ro)=g on F'

vir

Here, A(x, D,) is elliptic, v is of second class and B is a pseudo-differ-
ential operator satisfying Assumption 5.1 where u=0. We set

U, (u, p) =(4Cx, Du, G&| +B(p®1,)).

Then, by the similar method to that of this section, we see that the
operator

A, HD(Q) x H,_3,m1/2 (I'o) — H{P,(Q) x H,_x(TI')
is continuous and Noetherian (cf. Vi§ik-Grusin [10]).

Remark 5.3. We shall prove briefly that the problem
A(x, DJu=f in Q,

(5.5 ou
—a—v—=g on I
has an infinite-dimensional cokernel where A(x, D,) is elliptic and v is

of second class. Set
ou
le(u)=<A(x, Dx)u, m"’r>

#,=U,(HP(Q)) is closed in Hﬁ’i)z(Q)xH,_%(F ). Decompose H{¥,(Q)x
H ,_%(I" ) into 2, and its orthogonal complement 1. We have only
to show that o#f is infinite-dimensional. From Remark 5.2, +#,=
A€, (0, Hz—%+ﬂ%+l{i(ro)) is infinite-dimensional. Therefore, s, N, or
#,N#1 is infinite-dimensional. Remark 5.2 yields that the dimen-
sion of s,ns, is finite. Hence, #,Nn o7 is infinite-dimensional,
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and so is s#f. The proof is complcte.

Lemma 5.2. Suppose 0<e<1,1=2,3,... and pu=u, (o is an arbi-
trary positive constant), then we have

m+1/2

1¢,_3
el + (1D, 12+ u2)2 035D p s

= C,(1146(0; Dyy Dy D)ut w2ull s

d )

1
+Cof(o 4 ) Ml e

Lt Bo(0; Doy D, (60

for (u, p)eHﬁ"’(Ri)xH,_%Jr%llﬁ(R"‘z) satisfying supp(u)cV?® .. Here
the constants C, and C, are independent of ¢ and p.

By Theorem 5.1, we can prove the lemma in the same way as in
Lemma 3.6.

Lemma 5.3. Suppose 0<8§—1—, =2,3,... and pu=pe (U is an

b9

arbitrary positive constant). Let Y (t, y, z) be the function (3.12). We
define R*(f, 9)=(R3(/; ), R3(f, 9)) (€ HIO(RY) X Hi_3 me112(R™) by

RIS, 9)=0f+ 1,263 (9 - 55-0f ),
R3(A, 9)=63(9-752-01),

where (f, g)e H{?,(RY)x H,_3(R""') and supp(f), supp(g) lie in VI,
V=t respectively (G}, G3 are defined in Corollary of Theorem 5.1).
Then we obtain

i) There is a constant C, independent of ¢ and p such that

m+1/2

1(j-34mt1/2
R3S, g)||l§f1)11+||(lDy|2+#2)2( 20k )R?z(f, Dlo,rn-2
SCyUIANEE, v+ g lle-3,gn-1)

ii) Set
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Sy 9)={A'(t, y, 73 Doy Dyy D)+R2JW.RIS, 9)—F,
3/, 9) =2 RIS, 9]0

+¢25B(t Y Dt’ Dya .u)!//a(a(t)®R (f’ g)) g,

then we have

153/ 2205 S (92 + 2N N2z + g gm0

1S3Cf )i+ S(o200) +13Ehr )L + 91 oe1)

where o,(g), a,(e)=0 uniformly in p as ¢—-0, and the constants C,(g),
C;(e) do not depend on p.

By means of Proposition 5.1 and Theorem 5.1, we can prove the
lemma in the similar way to the proof of Lemma 3.7.

Appendix

We shall define a class of pseudo-differential operators with a
parameter and state several theorems. We can prove these theorems in
the same way as in Kumano-go [6]. So we omit the proofs.

Let u be a parameter and move on M.

Definition A.1. We say that a C«~-function A, on R} with the
parameter p is a basic weight function when 4,(¢) satisfies

D) A2+ DESA,0)

where the constants ¢ and 1,(0<o=1, 0<4,) do not depend on u;
ii)) For any multi-index « there is a constant A, independent of u
such that

IDEA, (D S Ah, (O 1=

Example A.1. Set M=]uy, +oo[ where p, is an arbitrary positive
constant,
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. : 1
i) A8)=(¢*+p>? (c¢f. Lemma 3.3).

1 1
i) At n)={t2+(nl>+u?)*1}2 (k is a positive integer; cl. Defini-
tion 5.1).

Definition A.2. We say that a C*-function p,(x,{) on RiIxR} with
the parameter p belongs to S7 (meR) when for any multi-index o and
B we have

lD;Dgpy(x’ (E)l é Caﬁ)'u(é)m_w‘

wherc the constant C,; does not depend on p.
We set

[Pubne= sup  IDEDLP,(x, A",

ue
(x.&)eR2n
le+18 =t

Definition A.3. We say that a C®-function p,(x, &, x’, ') on Rix
RixRY xRE belongs to Spu™ (m, m'eR) when for any multi-index a,
P, &' and B’ we have

| DEDADE DEp,(x, & X'y E) = Copyp P12, (&YW

where the constant C,g,,» does not depend on p.
For p,(», ¢, x', &) e Sy we dcfine

[pu(x, Dy, X', D )ul(x)
= gdég{ge“*‘*')‘“ B (& X LAY, ues
(cf. §1 of [6]).
Theorem A, For p,(x, & x', &)e ST we define L(p,)(x, &) by
L(p)(x, §)=Sdlge_“g(1 +1z[2) (1 =4y pu(x, E+(, x+2z, Edz

(where nq is an integer and 2nozn+1). Then, L(p,)(x, {)e Sy ™ and
we have

Py, Dy, A7, Du=L(p,)x, D)u, Hes.
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Furthermore, L is a continuous operator from S{™ to SpFm (sce
Theorem 1.1 of [6]).

Theorem A.2. (The asymptotic expansion formula). Let p,(x, &, x',
¢e Sy, then we have RY(x, &) ST =N for any positive integer N such

that

RYGx, O=L(p) (5, 0= T 5r Dt (55) e &3, 6],

al <N 9

r—

Furthermore, the operator p,(x, &, x', &) RY (x, ) is a continuous one
Srom S to Syt N (see Theorem 4.1 of [6]).

Theorem A.3. Let |u|, denote ||A,(D,)ulor- (s€R). Suppose p,x,
¢)e S}, then we have

“pu(xa Dx)u”sz é ‘pulnzt,0'|u“sz+1n+ Clpulrfx,l”u ”sﬂm—%s ue y

where the constants C and | do not depend on the choice of p,(x, &)
(see Theorem 5.2 of [6]).

1
Proof of Lemma 3.5. We set A, (7, p)=(t2+[n|*+u*)2. It is easily
seen that

lo2(h))Z s
+00 .
< C ()] 12D,y D))= pero @b} s d

(try)
+o .
+So l@{iro(Dy, Dy, p)} eiro®PePymzogh Il%yna:;,dz}

=Cy(po)Iy +15).
Let us fix z. We see that
peronmre Sy, and  [g(eirols1mlg, < Cyljedo:

where the constants C,(I) and 6(ug)(>0) do not depend on z. Theorem
A.1 implies that there is a symbol q,(t, y; 7, n) €S}, such that

qu(ta Ys D:; Dy)ll=(Peir°(D"Dy’u):°lph, he&.
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By Theorem A.2, we have for any integer N>0
N—1 o' . .
S3¥2 4t yi T )= 2, 0@ (47 e 07) Dip)

=4, y; 1, M)
and

lqul—N,z =< C3(N, I)e—5(ﬂo)z

where the constant C5;(N, I) does not depend on z. Therefore, from
Theorem A.3 it follows that

+
0

o0
L5C " em2000dz | 174Dy, DI o1
I, is also estimated in the same way. Hence, the lemma is proved.

1 1
Proof of Proposition 5.1. Let us set 4,(t, n)={t2+(|n|2+p2)*1}2.
We see easily that

1B, y5 Dsy Dyy i)l lls mn-1 S C1(pto) {1143(Dys Dy)oB(t, y; Dy, Dy, whllo gn-1
+[(IDy|? +12)2B(t, y; Dy, Dy, Whlloun-1} = Cr(pto)I +15)
where h(t, y)=6()®@p(y). Theorem A.3 yields
N ﬂl—'—l‘
()2 Z1BIZ ol 25 ™Dy DYRE rn-1+ CalBIZ 112 ™ 2(Dy D)RIE g1 -
For any j<<—m——%—) we get
(A.1) 123 ™(Dys D,) (3(5) ® p(Y)llo,gen-1
. 2 2 J+m+1/2
=C3(j, mI(IDy|*>+u?) 27D pllg gn-2.
Therefore,
2 2 stm+1/2
11 S C4{|Blmoll(IDy1*> + p?) 2GFD plg ga_2

s+m
+ |B|m,l”(lDylz +/—‘2)2(k+1)P"0,R"—2} .

Noting that (|11|2+,u2)%e S{k+Us, by Theorem A.2 we have Ry(t, y; 1,1,
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) € SEHEEHD=N(N>m +s(k+1)+1) such that

(IDy|2+uz)%°B(t, y; Dy, Dy, h

| o s ~
= ar” lKga,ﬂ (In1>+u®)2xD3B(L, y; T, 1, #)h]

+RN(t, s Dt’ Dy’ M)h'

Using Theorem A.3 and (A.1), we obtain

1 m+1/2
L Cs{Bluol(D,12 + 1220 51 ) ol e

1(gpmm_
+1Blur 1(D,)2 4+ 12)2C 5D p ) i)

Therefore the proposition is proved.
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