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Boundary Value Problems with
Oblique Derivative
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Hideo SOGA*

§ 0. Introduction

Let Q be a bounded open set in R" with a smooth boundary F.

Let us consider the boundary value problem

in Q,

on F9

where A(x, Dx) is a second-order elliptic differential operator in O, and

v is a smooth non-vanishing real vector field on F. When v is nowhere

tangent to F, the problem (0.1) is, so-called, of coercive type and satis-

factory results are obtained (e.g., see [7]).

Egorov and Kondrat'ev in [2] have considered (0.1) when v is

tangent to F on its submanifold F0, and have classified the problem

into three cases in the following way.

First class: v leaves Q through F0;

Second class: v enters Q through F0;

Third class: v neither leaves nor enters Q through F0,

(for details, see [2] or § 1 of our paper). In the first class the problem

(0.1) has an infinite-dimensional kernel. Therefore, adding the Dirichlet

condition w|Fo to (0.1), they have shown that the problem

(A(x, Dx)u=f in Q,

du
W = 9 on F,

u = ho on Fn
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becomes Noetherian (cf. §4 of our paper). But they have not mentioned

the solvability for the second class, and their method shown there con-

cerning the solvability for the first class does not work for the second

and third classes.

In the present paper we assume that A(x, Dx) is strongly elliptic

and that the vector field v is tangent to F of finite order, and we shall

study mainly, for each class, the unique solvability of the problem with a

parameter /^(^O):

/ A(x, Dx)u + n2u=f in O,

(°-2) du
dv = g on

However, we add the Dirichlet condition u\ro to (0.2) in the first class

as well as Egorov and Kondrat'ev have done and the coboundary condi-

tion B^(p®<5ro) in the second class, because the problem (0.2) has an

infinite-dimensional kernel in the first class and an infinite-dimensional

cokernel in the second class (see §4 and §5). In order to solve uniquely

(0.2), we construct the similar regularizer to that of Agranovich-Visik

[1] by modifying the method in Visik-Grusin [10]. In short, their

method can be stated as follows. Let & denote the Poisson operator

of the Dirichlet problem

f A(x,Dx)u = Q in O,

1 11 = ft on T.

Then, T: h *-*-„—(0>h)\r is an operator acting on F9 and the solvability

of the problem (0.1) can be reduced to that of T.
\

Eskin [3], Visik-Grusin [10], etc. have considered more general

boundary value problems than ours, and have stated that the problems

are Noetherian. However, they have not studied the unique solvability.

Maz'ja [8] has studied the unique solvability of the similar problem to

ours by the method different from ours. His results imply that there

exists a unique solution u of (0.2) for any (/, g) in some spaces, but

the mapping u »->(/, g) is not continuous. In our paper we show that

the mapping u •-»(/, g) is a topological isomorphism between two spaces

with^ome appropriate norms when ju is sufficiently large.
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Finally, I would like to thank Professor H. Kumano-go, who has

given me many useful pieces of advice.

§ 1. Preliminaries

Let R" be the ^-dimensional Euclidean space and R+ be the half

space {x = (*!,..., xn)eR"; xw>0}. Cm(G) denotes the set of functions

continuously differentiate in G of order m (m=0, I,...)- Q>(G) ^s *ne

set of functions of Cm(G) with compact supports. ^"n(R") is the of

set {ueCm(R"); sup \D«u(x)\ < + oo for |a|^m}. y = ̂ (R") is the space
jceR" ^

rapidly decreasing functions, and &" is its dual space. /(0 = ^[/1 denotes

the Fourier transform of /(x), which is defined by

The inverse Fourier transform ^""'[/l is expressed by

/ i \ii
where ^£ = f— — j d^. For a multi-index a = (a1,..., aw) (ay is a non nega-

tive integer), we set

We define the operator p(x, Dx) by

for a function p(x, £) on RjxR^ , and call p(x, £) the symbol of p(x,

Dx). We denote the Sobolev space by HS(G) where seR and G is an

open set in R". That is, Hs(R
n) = {fe&"i (l + |/)J2P/eL2(RB)} and

HS(G) is the restriction of Hs(R
n) to G. ||/||SjG denotes the norm of

HS(G).

Now, let Q be a bounded open set in R" (n ̂  3) with a connected

C°° smooth boundary T. We assume that F is separated into two con-
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nected components F_9 F+ by an (n —2)-dimensional C°° submanifold

F0. Let v be a C°° smooth non-vanishing real vector field. We assume

that v is tangent to F just on F0 and not tangent to F0 there. We

denote by F+ the part of the two com-

ponents which is on the positive side for

the direction v on F0, and the other by

F_ (see Figure (1)). We decompose v into

the two components:

(1.1) v = v, + vw

where vt is tangent to F and VM is

perpendicular to F (the interior direction

is positive). Then we see that three cases
Figure (1)

are possible. Namely,

First class: vn is positive in F_ and negative in F+;

Second class: vn is negative in F_ and positive in F+;

Third class: vn is positive or negative in both F_ and F+9

(cf. Egorov-Kondrat'ev [2]).

Proposition 1.1. For any point x0eF0, there exists a C°° diffeo-

morphism $ (local coordinates) defined in a neighborhood U(x0) of

x0 satisfying the following four conditions. Set <f>(x) = (t, y, z) = (t,

(1) U(x0) is transformed to an open ball of R"? and x0 to the

origin.

(2) U(XQ) n F is transformed to the surface given by the equation

z = 0.

(3) U(x0) n F0 is transformed to the surface given by the equation

t = Q9 z = 0.

(4) vt(x) (x 6 U(x0)) is transformed to f-^— J, and the positive normal

vector of F (near XQ) is transformed to (-^— )•

The above diffeomorphism ^ transforms -^— to
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where vr
n(t, y) is a real valued C00 -function defined near the origin. In

this paper we assume that the vector field v is tangent to F of finite order

k at every point of F0. That is, for any point (0, y, 0)e$(L/(;c0) n F0)

we have

rl\ir rlk—l-uf r
v'(0,y)=(09y) = ---=?(0,y)=0 and

where k is a constant positive integer independent of the choice of x0

and <&. Then we obtain

Proposition 1.2. The following (1), (2) and (3) are equivalent to

the fact that v is of first, second and third class respectively.

fik^r
(1) k is odd and ̂ r(09 y)<0;

dkv'
(2) k is odd and ^f-(0, j)>0;

(3) k is even.

From now on, we shall study the boundary value problem

=f in O,

V-*> 3u(-ft-=g on r.

Here \JL is a parameter (^0), and A(x, Dx) is a second order differential
operator in Q with coefficients belonging to C°°(0) (O is the closure of

]Q) and independent of u. We assume that there exists a positive constant

d such that

holds for every £, eR" and every xeQ where A0(x9 £) is the principal
symbol of A(x, Dx).

Let A'(t, y, z; Dt, Dy, Dz) be the transformed operator of A(x, Dx)

by the diffeomorphism ^ stated in Proposition 1.1, and we denote its
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principal symbol by A'0(t9 y, z\ T, i/, CD). We denote by r(fjJ,jZ)(T, ;/, p) the

root of the quadratic equation in co

A'0(1, y, zi T, Y], c

with a positive imagenary part. We set

Proposition 1.3. Suppose 5^0, /^>0 and ueN^ and put h(t, y) =

u\z = Q. Then u belongs to Hs(R'l) if and only if Aef/^fR11"1), and we

can express it uniquely by the form

Conversely, if we define u(t, y, z) by (1.3) for h E HS_±(R"~L), then

u(t, y, z) belongs to #S(R!0 fl N ^

Let us set

du _(du 1 dkv'n
- ~ - ~

From Proposition 1.3 we get

du 0

for any ueN/t(n>0). The operator

du(1.4)

(where ueN^ and ju>0) is defined on H_i(R"~1)5 and is a pseudo-

differential operator with the symbol

Setting
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we reduce the solvability of the problem (1.2) to the solvability and the

estimates for the operator P^(1, D(, Dy) on R""1.

In § 2 we fix \JL and 77, and investigate the ordinary differential

operator P^(i, Dt, ij). In §3, §4 and §5 we consider the problem (1.2)

in the case of third, first and second class respectively. Finally in

Appendix we summarize several elementary theorems for the pseudo-

difTerential operator with a parameter which we often use in this paper.

Remark 1.1. Hereafter, whenever we consider PjU(t, T, r\), we assume

that there exist positive constants Ml3 M2 independent of the choice of

x0 and <P in Proposition i.L such that

(1.5) M j L ^ I R e a l , H^M2

where a = —^-^—- r (, which is possible since F0 is compact). Then

we can take the constant in the a priori estimate for P^t, Dt, Dy) which

is independent of the choice of 0 (e.g., see Theorem 3.1). Furthermore,

we can assume that the constants in estimates for the operators trans-

formed by ^ are all independent of the choice of $ (e.g., see Lemma

3.3).

§2, Bask Theorems for an Ordinary Differential Operator

In this section we consider an ordinary differential operator -T--f-

atk. The theorems below play a basic role in the following sections.

Let us set

where k is a positive integer and the coefficient a is a constant satisfying

Rea^O. Noting Proposition 1.2 and Re [z>0(0, rj, ̂ )] < 0, we see easily

that the following case (2.1), (2.2) and (2.3) correspond to the first, the

second and the third class respectively.

(2.1) k is odd and Re«>0;

(2.2) k ib odd and Rea^.0;
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(2.3) k is even.

For seR we define

(2.4)

Lemma 2.1. i) p(t, Dt): W^R^H^^R1) is continuous and Noe-

therian (Fredholm type).

ii) Suppose that v(i)e&" and p(t9Dt)ve^, then VE&>. The same

statement is obtained for the formally adjoint pw(t, Dt)= — -^ — \-atk.

iii) Let KjLt denote the cokernel of p(t, Dt):

Then we have

Proof. We refer the proofs of i) and ii), for example, to Grusin

[4], [5]. So we shall prove only iii). From i) we have the orthogonal
decomposition of lfs_1(R1):

5-1

Since (1 + D?) 2 : J/5_1(R1)->L2(R1) is isometric, we get the orthogonal

decomposition of L2(R1):

Hence it follows that

Therefore, from ii) we have

Theorem 2.1. Let seR, and suppose that k is even and

Then, for the operator

p(t, Dj:
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the kernel and the cokernel are both {0}, and we have the estimate

Here the constant C depends only on positive numbers Ml9 M2 when

M^IReal, \a\^M2.

Proof. If veW(
s
k\Rl) and p(t, £> = 0, then fleC^R1) and

From the hypotheses, v(f) belongs to W$k\~Rl) if and only if i;(0) = 0.

Therefore the kernel is {0}. By iii) of Lemma 2.1, in the same way we

see that the cokernel is {0}.

It is easy to see that ||p(f, Dt)v\\s^ltni^C\\v\\w^. So we indicate

only that

(2.5) Mw™£C\\p(t9Dt)vL-i.n>-

Since the kernel and the cokernel are {0}, (2.5) holds at any fixed a

by the Banach theorem. Fix aQ such that M1^|Rea0|, \a0\^M2, and

assume that

s-l.R1

Then we get

dv

if \a — a0\ is sufficiently small. Noting that the set

\a\^M2} is compact, we can take the constant C in (2.5) independently

of a provided that Mj^JReal , |a|^M2. The theorem is proved.

Theorem 2.2. Let seR, and suppose that k is odd and Re0>0.

Then, for the operator

(2.6) p(t, Dt):

the kernel K is one-dimensional and the cokernel is {0}.
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Corollary. For s^l we define the operator

(2.7) 8I0

by yi0(v) = (p(t9 Dt)v, v(Q)). Then the kernel and the cokernel are both

{0}, and we have the estimate

*\\v\\w™ ^ \\p(t, Dt)v\\s- I.RI + W0)| £C\\v\\w<*>, v G

constant C depends only on positive numbers M19 M2 when

We can show the theorem in the same way as in Theorem 2.1, and

have

(2.8) *

Proo/ o/ the corollary. From (2.8) the kernel of (2.7) is {0}. We

take (/, po)e^ r
s-i(R1)xC arbitrarily. Since the cokernel of (2.6) is

{0}, we can find an element w(r)e PFi^R1) such that p(t, Dt)w=f. Set

then it follows that veW™(Rl) and 210(0) = (/, p0). Hence the cokernel
of (2.7) is {0}. The estimate can be obtained in the same way as in

Theorem 2.1. The corollary is proved.

Theorem 2.3* Let seR and suppose that k is odd and Rea<0.

Then, for the operator

r/?e kernel is {0} 0/tJ ?/?e cokernel K*^± Is one-dimensional.

Corollary. Le* g0(0 be a given element of HS_1(R1) nor orthogonal

to K*.! w HS_1(R1), and we rfe/?ne the operator

(2.9) TT: ̂ J*>(Ri)xC - ^-^(R1)

by n(v, Po) = p(t, A)y + Po#o(0- Then the kernel and the cokernel are

both {0}, and we have the estimate
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ol)^ll^^

We can show the theorem in the same way as in Theorem 2.1.

Proof of the corollary. Let (/, #)s_i denote the inner product

T2)5-1/^)^)^ and es_i(0 be a base of £*_! satisfying (es_1?

-i = l. Suppose that TT(I;, p0) = 0 where (v, p0)eW™(Rl)xC, then

because g0(f) is not orthogonal to es_i(0- That is, the kernel of (2.9)
is {0}.

We decompose H^.^R1) into K*_! and its orthogonal complement
(KJLO"1. Noting that

we can find veWik\Rl) such that

p(t, />,)* = {/-(/, ^Os-i^-j}" //' e'-l\l [do- (do, ^-i).-i
V ^ O ^ ^s-Us-1

Here, put p0= /-^ gs-i)s-i

Hence the cokernel of (2.9) is {0}. The estimate can be obtained in
the same way as in Theorem 2.1. The corollary is proved.

Remark 2.1. We have proved Theorem 2.1, 2.2 and 2.3 (also Lemma
3.1, 4.1 and 5.1) in the same way as in Grusin [4], [5], Visik-Grusin
[10]. Otherwise, representing the solution of p(t, Dt)v=f:

we can verify them as well as Eskin [3] has done.
At the end of this section we shall state an interpolational inequality

which is often used later.
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Proposition 2.1. Let /I be a parameter (>0) and s be a real num-

ber satisfying \S\^SQ. Suppose that k is a positive integer. Then, for

any positive number e we have

(2.10) ||(T2 + A2p(s+;)l)^

where j = 0, 1,..., fe— 1. Here, £/ze constant C depends only on s0, k

e.

Proof. We shall prove the proposition by the induction with respect

to k. Set %(t, A) = (T2 + A2)i When fc=l, (2.10) is trivial. Suppose

that (2.10) is proved when k = k0, then for any 8j (>0) we get

(2.11) HtfT,

where 7 = 1, 2,..., k0. By partial integration,

Using this inequality and (2.11) where s1 = l, we have

Hence, for any e2 (>0) independent of el9 it follows that

Combining this inequality and (2.11), we see that (2.10) is valid when

k = k0 + l. Therefore, the proposition is proved.

§3, The Third Class

In this section we shall consider the problem (1.2) where the vector

field v is of third class. In this case we obtain the same results as in the

coercive case by introducing the weighted Sobolev space (see Theorem 3.2).
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We set (for geHs(G))

(3.1)

where s^O and \JL is a parameter (^0). Agranovich and Visik in [1]

have used the norms of this type. The interpolational inequality

(3.2) Ms-%iUG^C(s)(ll0L,G + ^^^^

is obtained where O^j^s and the constant C(s) does not depend on u.

The similar inequality

(3.3) ^-^\g\\j,G^Cf(s)(\\g\\S}G + ̂ ^\\g\\^iG)

is also valid where — i^j^s and the constant C(s) does not depend

on \JL. We define

OeH^R"-1); Dth

(3-4) ||/i||i^-i = ||^

(where s^l and ju>0). When \JL is fixed, obviously the norms

and |||h|||£*R«-i are equivalent to the norm ||D tfc| | s_ l iHB-i

^IL-i fH«-i + l | f tL - i .H»- i» which gives the topology to
First, we investigate the operator P^t, Dt, Dy) :

Theorem 3.1. Let s^l and ju^/i0 (^o ^s an arbitrary positive
constant). We have

i) c-Mllfc||lS&-i^l^
where the constant C does not depend on \JL.

ii) For the operator

Pf(t, Dt, Dy): ffi*

the kernel and the cokernel are both {0}.

Corollary. Pft(t9 Dt9 Dy) (ji>0) has the inverse G1: HQ(Rn~l)

Hi^CR"-1). Furthermore, if g eT/^^R"'1) (s^l), then
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and we have the estimate

The corollary is clear from the theorem.
Before proving the theorem, we verify

Lemma 3.1. Set

where X is a parameter (>0), k is even and a satisfies (0<)M1g

|Rea| and |a|^M2. Then, for a real number s there is a constant C

independent of a and X such that

c-Hii(A2+^M*^
(3.5) ^ !!(/>? + ̂ )5/,A(^A^

_ _ _
Proof. By the change of variable: t = k k+1t', we have

f, DJv\\l.v=ffir\\Pi(*, ^Mr^
_ 2s+l

Therefore, noting that the norm IM]^'1^ (see (2.4)) is equivalent to

(IIAfll^H' + ll'*" .̂! ,̂ we obtain (3.5) by Theorem 2.1.

Proof of Theorem 3.1. Let us prove i). From the definitions (3.1)

and (3.4), it suffices to indicate that the inequality

(3.6) ^
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holds for h(1,y)ey where the constant C docs not depend on ^( = ̂ 0)-

We put

i
^ = (|^|2-}-^2)2 ancj p^t9 Dt) = Pfl(t, Df, /?)

(note that (1.5) is satisfied), and apply Lemma 3.1. Then we have the

inequalities:

where the constants G! and C2 are independent of ;/ and / j ( ^ /

Therefore, since CjHT2 + l / / | 2 + /*2)5"1^(T2 + (|//|2+/x2)^)^1+(|//|2 +

^C3(T2 + |^|2-h/.i2)s~1 (ju^/JoX ^ere is a constant C4 independent of ?/
and ju(^0) such that

Thus we get (3.6).

Next we show ii). It is clear from i) that the kernel is {0}. Let

us take g(t, jOe/l^^R""1) arbitrarily. Then, by Theorem 2.1 we can

find vn(t) for almost every ;/ such that
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Set

then h(t, y) belongs to H^^R""1) and satisfies

Pfl(t,Dt9Dy)h = g.

Hence the cokernel is {0}. The theorem is proved.

Let d(x) be the distance between x and F0. Let a(x) ( e

satisfy a(X)=l near F0 and supp(a) be sufficiently small. We introduce

the space

for

(/ = (), 1, 2,...; v, is defined in (1.1)). Clearly this space depends on the

vector field v. Fixing a(X), we employ the following norms of H[k\Q):

Remark 3.1. We have

and if ueH\k\Q) and supp (u) n T0 = 05 then uEHt(Q).

We denote the Sobolev space on the manifold M by HS(M) (seR)

and its norm by ||0||5§M. We set

The following theorem implies that the problem (1.2) is uniquely solvable

for large ^
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Theorem 3.2. Let I be an integer ^2. We obtain

i) Estimate: a) We have

where the constant Cl does not depend on ju.

b) There is a constant ji^ such that provided 1*^

w/tere r/ie constant C2 does not depend on /i.

ii) Solvability: There is a constant u2 independent of I such that

if jU^jU2, a solution u of (1.2) is found in H\k\Q) for any (/,#)e

iii) Regularity: We fix /,i(^0) in (1.2) arbitrarily. Suppose that u

is a solution of (1.2) in #(
2

fc)(O) /or (/, ^) e H <*>2(fl) x F^.a (r), rAen w

Remark 3.2. The regularity follows so long as ^4(x, Dx) is elliptic.

Furthermore, the problem is Noetherian in the above spaces (cf. Visik-

Grusin [10]).

To begin with, we shall present several lemmas and propositions.

Let Xj(j = l,...9 N) be points in F0 and fix a diffeomorphism cp

stated in Proposition 1.1 for each Xj under (1.5). Let {<pj}j=itm..tN denote

a partition of unity near F0, and assume that each supp(<pj) is suf-

ficiently small and contains Xj. For the function /(x) we set

For a non-negative integer / we define

= {n(f, y,

(The norm |||wl||̂  differs from (3.4)). Obviously ||M||{*ij is equivalent
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to the norm ||/)(w||/-lfR: + ||(rk + fzk)M|| / iR» + | |w| | j_ l i R», which gives the
topology to H^}(R£). From Lemma 3.2 below it is easily seen that f/^}(O)
is equal to the set

{ii eff^CO); (l-EVjlueH^Q), (^.«)'(r, y, z)e#i&)(R£) for any j] .

Therefore, if the partition of unity {<pj}j=ittm.tN is fixed, the norm \\u\\fy
is equivalent to

Hereafter, we make {<p/}j =!,...,# fine enough to have the later statements,
and define the norms ||ti||{$, ||| u \\\ ($ by

(3.7) |||(1 - 1» |||/tfl + £ \\\((pju)'(t, y, z)|||{f>-
J J

respectively. Similarly, assume that the norm |||0|||s>r is defined with
a sufficiently fine partition of unity.

Remark 3.3. Using Lemma 3.2 below, we have easily for any

So it follows that

This implies that the operator DJ: H\k)(Q)-*H\^(Q) is continuous.

Proposition 3.1. Let 1 be an integer (^2). The trace operator

y: w(f, y, z)*->w|z=o is a continuous one from H(jfe)(R£) tc
he estimate

constant C does not depend on p.
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Proof. Tt suffices only io show the estimate for t / e r j y f R f f ) . From

(3.4) and (3.2), it follows that

For a positive integer /' we have

ll7(w)|lr- | ,R»-i+^ r"i|l700llo,R»-i^^2(INIIr,R^ + M z lw| lo 5R^) J w e Cg(R£)

where the constant C2 does not depend on /.i, which is stated in Agranovich-

Visik [1]. Therefore,

Furthermore, using (3.3) and the inequality

(3.8) ||f*W||riR"+;gC^ (7' = 0, 1,...),

we get l l l^ l l l^ i^M-i^CHlMll l^ . The inequality (3.8) is easily ob-

tained by means of the following lemma.

Lemma 3.2. Lei / be a positive integer. The commutator [_D"ttyt^9

**] (l2g|a|^/) has the estimates:

ii) ]|[1>%«0,R^^^

(These estimates are valid also on RM, and [Da, zk] has also the same

estimates.)

Noting that

11^110^^11^110^+ l l« l lo ,R- 0=1, 2,.. . ,k) ,

we can easily prove the lemma.

In order to construct the regularizer of the problem (1.2), we try to
solve the problem
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'0(0; Dt9 Dy9 D> +/i2n =f in'y

du
dv0

= g on R"-1

by the well-known procedure. First, we extend f ( t , y, z) to Rn and,

ignoring the boundary value, define a function v(t, y, z) on R" satisfying

A'0(Q; Dt, Dy, Dz)v + n2v=f in R£ by means of the Fourier transformation

(, which are described in Proposition 3.2 and Lemma 3.3). Consequently

we have only to consider the equation

dv'
dv0

on

(where g' = g— ~ V ). We reduce this equation to the problem on the

boundary R""1 by employing intermediately the Dirichlet problem

n

on

(cf. Proposition 1.3).

For a non-negative integer I we define

Restrict w(r, 3;, z) e ̂ fe)(R") to Rj, then weH^ f c )(R£) and

Proposition 3.2S Let MS define Ef (for /e CSCRJ)) by

,f(t,y,z) (z^O)

lo+1
S ajf(t9y,-jz) (z<0)

j=i
/o+l
Z fl/-7)l = l /or /=-!, 0, 1,...,



BOUNDARY VALUE PROBLEMS

Then we have

i) There is a constant C± depending only on /0 such that

for /=-!, 0, 1,..., Z0. (This estimate holds for J = /l5 ^ + 1,..., JJ + /Q
/o+l

If Z ai(—j)l = l *5 satisfied for I = ll9 /! + !,..., /i + /0- #ere /0 is
j=i

negative integer.)

ii) Tfoere is a constant C2 depending only on 10 such that

Proof. Let us prove only ii). From the definition of

^

The estimate in i) yields

Jt is easily seen that for any a(|a|g/)

ll^ + iz^,,,^

Using the inequality in i), this inequality and Lemma 3.2, we get for

any a(|a|gl,

/
Hence,

0 i H j+n^

The proof is complete.

From this proposition we can extend £ to a continuous operator

from H(jU(R+) to Jf ^(R») (/ = 0, 1,..., /0).
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Lemma 3.3. Let I be an integer (^2) and ja^f-io (f.i0 is an arbitrary

positive constant). Define Qf (for f e H(£)2(R$)) by

TTien we obtain

i) e/etf^CRU {A'0(0;D,, Dy,D:) + n2}Qf=f in R'+, and there is

a constant C1 independent of \JL such that

(fc)

ii) Suppose <p, ^ e ^^(R'1) and supp(f/?) n supp(i//) = 0, ^/zen we?

j) am/

constant C2 is independent of ju.

Proof. Let us prove i). In virtue of ii) of Proposition 3.23 we

have only to show that the estimate

$(T, 11, w)

holds for a constant C3 independent of /x(^^i0) . From the definition of
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Obviously there is a constant C5 independent of I.L such that

(7=0, 1,..., A:).

By this inequality we have

\j=O

Furthermore, using Proposition 2.1 and (3.8), we gel

1 2 = C8

7 3 is also estimated in the same way. Thus i) is obtained.

Similarly, noting the following fact, we can prove ii). Set

then jf'(t, y, :) and <p'(t, y, 2) (where ^', r//e^»(R''))
^*OV U J T3 '/» UJJ-TfA.

belong to 5^ and Sj^2 respectively (S'j^ is defined in Appendix). There-

fore, if supp(i//') n supp((p') = </», the estimate

is derived for any 5, sf e R from Theorem A.2 and A. 3 in Appendix.

The lemma is proved.

In view of Proposition 1.3, u eN^ O>0) corresponds to the trace

yu one to one. The mapping ^:yu\-^u is a continuous operator from

Hs^(Rn-l)(s^O) to //5(RJ) (^ is called the Poisson operator).

Moreover we have
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Lemma 3.4, Let \l/(f) e Cg'CR1) and [i^nQ O^o fs flw arbitrary posi-

tive constant). Then, for an integer 1(^2) there is a constant C inde-

pendent of ju such that

Proof. From the definition of |||-|||J*H; ,

For any integer s we have later the estimates:

(i)

(3.9) (ii)

(iii)

where the constants Ci~C3 do not depend on ^(^/i0). Then, the

estimate (i) and (ii) yield

Let cp(f) (eC§'(R1)) satisfy (p(t)=i in a neighborhood of supp(i^). We

have
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From (iii) of (3.9), it follows that

Furthermore, combining (i) of (3.9) and Lemma 3.5 below, we obtain

>,|2 + M2

Finally, we shall prove the estimates (3.9). There is a constant d

such that

£ r 0 T , 17, ii^

Hence, for any non-negative integer s we have

^^^

For any negative integer s, we obtain

\\8tRi= sup | <^A, <p> | =sup| <{I>O(T,I/, [ i ) } s e i r o z f i ,

>t, D,,

The proof of (ii) is similar. Let us show (iii). We can express

S
fc2=0
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where a^(t, Y\, $ is homogeneous of order — k2 in (T, r\, //)• Therefore

for any non-negative integer s,

Furthermore, by Proposition 2.1 we have

For any negative integer, we can obtain the same estimate in the similar

way to the proof of (i). The proof is thus complete.

Lemma 3.5. Let $(t\ <p(t) ( e ̂ (R1)) satisfy supp W) n supp(p) = 0
and JU^/JQ (/,f0 is an arbitrary positive constant). Then, for any non-

negative integer s we have

where the constant C does not depend on ILL

The lemma is proved in Appendix.

Let us set

Lemma 3.6. Suppose 0<egl, 1 = 2, 3,... and ^JLLO (JJLO is an arbi-

trary positive constant), then we have

'oCO; Dt9 Dy9

for we// (j f c )(R£) whose support lies in Kj f+. Here the constants Cl

and C2 are independent of 8 and /j.



BOUNDARY VALUE PROBLEMS 645

Proof. We can assume u e CgtR!,1 ) without loss of generality.

Let iKOCeCg-CR 1)) satisfy \l/(i)=\ in a neighborhood of {/; |r|gl), and

set

/(/, y, z) = X'0(0; Dt, Dy,

We have

111 « 111 ifc ^ we/ 111 ifi»+ + in -K« - e/) in i& s /! + 12 ,
(Q is defined in Lemma 3.3). i) of Lemma 3.3 yields

Let us note u — QfeN^. From Lemma 3.4 and Theorem 3.1 it follows

that

Furthermore, since T t f y ( u - Q f ) ) = -^~(u-Qf) (see (1.4)), we have

3v0

By i) of Lemma 3.3, it is easily seen that

We can write

{
(3.10)

f1 drwhere j5(i, rj, n)=\ —^-(Br, n9 u)d99 which is homogeneous of order 0
Jo vt

in (T, ?f, /<(). By this expression and Proposition 2.1, we obtain

-r,)/!!!!,.̂
(3.11)



646 HIDEO SOGA

Therefore, from the fact that supp(w)c:F£>+, we see that

Let <p(t, y, z) ( e Cg>(R!|.)) satisfy cp(t, y, z) = l in a neighborhood of Vn
lt+*

Then, using (3.11), Proposition 3.1 and Lemma 3.3, we have

M - TMQD III i-f .H- i ̂  IIKP, - T,)y(9Qf) III z_ 3 >R,- ,

Thus,

^C10 III. / I I I / - 2 , R "

Therefore the lemma is proved.

Lemma 3.7. Suppose Q<s^—, 1 = 2, 3,... and ju^ju0 (/^0 is an arbi-

trary positive constant). Let \l/(f) (eC00^1)) satisfy \l/(i) = Q in {t;

\t\>2}9 ^(0 = 1 *'» « neighborhood of {t; |f|gl

(3.12) W/, J; -)

Rl(f, g) by

where (/, g)eH^2(Rl) x ^_|(R«-i) and supp(/), supp(^) /ie in K-+,

FJ"1 respectively. (G1 is defined in Corollary of Theorem 3.1).

we obtain

i) 7%ere w a constant Cl independent of e and ^ such that

ii) Scr
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S[(f, g)=A'0(t, y, z; Dt, Dy, D^+nR^f, g)-f,

(v' denotes the transformed vector field of v by the diffeomorphism

$ stated in Proposition 1.1). Then we have

where S^s), <52(e)-»0 uniformly in /t as e->0, and the constants C2(e),

C3(e) do not depend on /j,.

Proof. The proof of i) is similar to that of Lemma 3.6. Let us

prove ii). We write

S\(f, g) = {A\t, y, z; Dt, Dy, D,), W^H/, 9}

'(t, y, z; Dt, Dy, Dz)-A'0(t, y, z; Dt, Dr DJ}Rl(f,

'0(t, y, z; Dt, Dy, DZ)-A'0(0; Dt, Dy, D z ) } R l ( f , g)

R l ( f , g)-f}

Obviously 74 = 0. Noting that [A'0(t, y, z; Dt, Dy, Dz), \j/J and [A'(t, y, z;

Dt, Dy, Dz)-A'0(t, y, z; Dt, Dy, Dz)} are first order operators, we have
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by means of (3.8), (3.2) and (3.3). Let A'Q be written in the form

A'0(t, y, z; Dt, Dr Dz) = ILfti, y, *)£&,,.*)

and put

(53(e) = sup2 \aa(t, y, z) - aa(0)|,
n

(t, y, Z)Gr2E> +

then <53(e)-»0 as e->0. From (3.2) and (3.3) it follows that

3\\\Rl(f, flf)llli*i; + C9(fi)|||/J
1C/; 0)III(A,R';

(A,R'; + l l l ^ l l l / - | > H » - i ) .

Therefore, we obtain the estimate for S}(/, g).

Next let us examine

+
d
^c

We can write v'(t, y) = (-jL-\+v'n(t, y)(-^) . Set

S4(s)= sup k\ —5ijr(0t9
Vn- 1 J0 ^

then ^4(e)->0 as e->0. By (3.2),

/5^(A

We have

«-§..-•
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dVr I-iH--

From the definition of G1 , /7 = 0 follows. It is easily seen that

" H

By (3.10) we have

C17(c)
- -

Therefore, we get the estimate for S^(/, ^f). The proof is thus complete.

Proof of Theorem 3.2. In view of Remark 3.3, it is easy to show
N

a) of i). Let us prove b) of i). Let <p(x)= ]T tpj(x) be the partition of
j= i

unity in (3.7) and satisfy 0^ </?/x) ̂  1 for any j. Set s = max {diameter

(supp^-)}. From the definition of |||'||1/^ (see (3.7)),

ll|w|||^= Z lll(MU3'^)|||(f*i.;+|||(1-9)M|||/ifl-J=i

Since v is not tangent to F in F — T0, we can use there the method in

Agranovich-Visik [1] (see Theorem 4.1 of [1]). Hence,

|||(i~<p)W|||a^

(3.13)

+

where the constants C3 and C4((p) docs not depend on ^. By Lemma

3.6 we have
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m<Pju)'(t, y, z)lll(,ft;

^C5(|||(4'0(0;D,,D,,

I I 3

(3.14) +

A'(t, y, z; Dt, Dy, D,

where (5(e)->0 uniformly in \i and the choice of the partition of unity
AT AT

£ (Pi as e-»0. Let the partition of unity ^ cp,- be fine enough, then
7=1 7=1
from (3.13) and (3.14) it follows that

du
<3v i-f.r

X 1 0~

which proves b) of i).

Next let us show ii). In F — F0 we can apply the method in Agranovich-

Yisik [1]. At any point of T0 we have obtained Lemma 3.7. Therefore,

we can construct an operator

by the same procedure as in Agranovich-Visik [1] (see Theorem 5.1 of

[1]) such that

(3.15)

)-0
\ ^ v

where the constants C12, C13 do not depend on p. We define the
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opeator <5l(f, 0) in ^}*)
2(Q)xfT /_i(r) by

From (3.15) there is a constant jU'2(/) such that for any /i^'2(/) the

operator

/+ S1 : #

has the continuous inverse. Therefore, noting iii), we have ii) when

Finally let us prove iii). We fix ^ (^0) arbitrarily, and assume that

w is a solution of (1.2) in H(
2

k\Q) for (/, g)eH(f)2(Q)xHl.^(r)' Then,

obviously w is a solution of the equation

A(x, D> + Q/2+/ii)0=/+jiit i in

on

where ^3 is sufficiently large. On the other hand, by the proof of ii)
we can find a solution v of this equation in H(^n(lt4}(Q). From b) of i)

we have v = u. Hence ueH^n^li4)(Q). By induction, we see that ue

). The theorem is proved.

§4 The First Class

In this section we shall consider the problem (1.2) where the vector

field v is of first class. In this case the problem (1.2) has an infinite-
dimensional kernel (see Remark 4.2). But, adding the Dirichlet condition

u\ro to (1.2), we obtain the same results as in the third class (see Theo-
rem 4.2).

To begin with, we shall investigate PM(f, Dt, Dy) as we have done in
§ 3. Theorem 2.2 implies that the operator

Pfi, Dt, Dy): H

has an infinite-dimensional kernel. But, adding the Dirichlet condition
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/j | f=0==y0(/?), the kernel and the cokernel are both {0} ( , which is stated

in Theorem 4.1). Therefore, we consider the problem

(4.1)

A(x, Dx)u + jA2u = f in

du_
dv

on

on

instead of (1.2). Then we can repeat the same procedure as in §3.

Theorem 4.1. Let sgrl and /i^ju0 (fj,0 is an arbitrary positive

constant). We have

n-l^^^^

where the constant C does not depend on /(.

ii) We define the operator

K-T I ;

r/?e cokernel are

both {0}.

Corollary L 9^ /?as ffcg iwugrse G2: ^(R^^x H2^fRn

^(R"-1). Furthermore if (g, ft0)egg_1(R''-1)xgg_1+2 i (R""1),

he estimate

l l |G 2 ( f f ,Ao) l l l ( . f i - '^GCIII f fL- J .H- .+ PolL-i+,7Jm.H-0.
^l/CT 1 J

Corollary 2, T/te trace operator y0- HM(Hn-l)->ffs n i (M;~2)
2(/c+ 1)

is continuous and has the estimate

The corollaries are clear from the theorem.

Proof of the theorem. From the following Lemma 4.1, we derive
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/x

+ (M2 +/(
2)-' +2lAr-)|^ViC/iKO, >7)l

where the constant Ct is independent of ?? and /i (^A'o)- Therefore, i)

is proved in the same way as in Theorem 3.1. By Corollary of Theorem

2.2 we can show ii) in the same fashion as in Theorem 3.1.

Lemma 4.1. Set

Pi(t, Dt) = -^ + a^

where 1 is a parameter (>0), k is odd and a satisfies (0<)M tgRefl,

|a|^M2. Then, for a real number s (5:0) there is a constant C inde-

pendent of a and A such thai

By means of Corollary of Theorem 2.2, the lemma is proved in the

same way as in Lemma 3.1.

The following theorem is the main result in this section, which

corresponds to Theorem 3.2.

Theorem 4.2. Let 1 be an integer ^2. We obtain

i) Estimate: a) We have

dv
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where the constant Ct does not depend on n.

b) There is a constant /.ii such that provided (J.^filt

8u
dv l-\.T

where the constant C2 does not depend on u.

ii) Solvability: There is a constant \JL2 independent of I such that

if A*^M2, a solution u of (4.1) is found in H\k)(Q) for any (/, 0, /i0)e

iii) Regularity: We fix \JL (^0) in (4.1) arbitrarily. Suppose that

u is a solution of (4.1) in H<2
k\Q) for (/, g, /i0) e H\*\(Q) x Jf,_3(r) x

(r0), then u belongs to H^(Q).

Remark 4.1 The regularity follows so long as A(x9 Dx) is elliptic.

Furthermore, the problem is Noetherian in the above spaces (cf. Egorov-

Kondrat'ev [2], Visik-Grusin [10]).

Remark 4.2. Let us show briefly that the problem (0.1) (and (1.2))

has an infinite-dimensional kernel (where v is of first class). Set

and assume that A(x9 Dx) is elliptic. Then, we know that the operator

x HZ_| _ _ _

is Noetherian for / = 25 35... (e.g., see [10]). Hence, we have infinite

elements {hn}n= 1>2>... of Hj_!+ _ i _ (F0) linearly independent such that
2 2(fc+ 1 )

there exists a solution unEHk
t(Q} of 8l(iiB) = (0, 0, /ij for any w. Then

{Wn}«=is2,... are linearly independent and satisfy

in Q,

on
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That is, the problem (0.1) has an infinite-dimensional kernel.

Proof of Theorem 4.2. Noting that from Corollary 2 of Theorem

4.1 the estimate I I N I I * - | i 2
 1

+1 9rv^C\\\u\\\¥ta is obtained, we can easily

show a) of i). By means of following Lemma 4.2 and Lemma 4.3

(, which correspond to Lemma 3.6 and Lemma 3.7 respectively), we can

prove b) of i) and ii) respectively in the same way as in Theorem 3.2.

The proof of iii) is also similar to that of hi) of Theorem 3.2.

Lemma 4.2. Suppose 0<e:gl, 1 = 2, 3,... and ^UQ (UQ is an arbi-

trary positive constant), then we have

'o(0; Dt9 Dy, Rn +
du
dv0 l-A Rn-

+ \\\U\\\i-*+^l-ryR«

for u£f/(jfe)(R!f.) whose support lies in F£J+. Here the constants C1

and C2 are independent of e, [i.

The proof is similar to that of Lemma 3.6.

Lemma 4.3. Suppose 0<e:g^-, 1 = 2, 3,,.. and u^u0 (u0 is an

arbitrary positive constant). Let \l/E(t, y, z) be the function (3.12). We

define R2(f, g, /i0) by

t=0

where (/, g, fc0)eHi*)
2(Rj)xffJ^(R»-i)xffl.3+T^(R»-2) and supp(/)9

supp(gf), supp(/z0) lie in F^j+, F^1"1, F^1"2 respectively (G2 is defined

in Corollary 1 of Theorem 4.1). Then we have

i) There is a constant Ci independent of 8 and fi such that

\\\R2(f, 9,

ii) Set
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, 9, /'o) = [A'(t, y, z; Dt, Dy 02

S2
3(f, g, h0)

then we have

+ III 9 I l l j - f .R-I +^

i(e), ^2(
8)~>0 uniformly in ^ as e-^03 anrf r/?g constants C2(e),

C3(e) do rc0£ depend on 11.

The proof is similar to that of Lemma 3.7.

§5, The Second Class

In this section we shall consider the problem (1.2) where the vector

field v is of second class. In this case the problem (1.2) has an infinite-

dimensional cokernel (see Remark 5.3). But, adding a coboundary

condition (cf. [3], [5], [10]) to (1.2), we obtain the results in Theorem

5.2.

To begin with, we shall investigate Pfo, Dt, Dy) as we have done in

§3 and §4. Theorem 2.3 implies that the operator

has an infinite-dimensional cokernel. This fact suggests that the problem

(1.2) has also an infinite-dimensional cokernel (, which is proved in Re-

mark 5.3). Therefore, adding the coboundary condition £^(p®(5ro) to

(1.2), we consider the problem
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' A(x, Dx)u + [i2u=f in Q,

du p®orQ) = g on F,

instead of (1.2). Here, (5Fo is the Dirac measure on F0, p is a function

on F0 and B^ is a pseudo-differential operator on F satisfying Assump-

tion 5.1 below.

For any x0 e F0 we choose a diffeomorphism $XQ(x) (x e U(xQJ)

stated in Proposition 1.1 such that, in addition to (1.5), for every pair

of <PXQ(x) = (t, y, z) and $Xl(x) = (t'9 /, z') (x09 xi eF0 and x e U(x0) n

U(xJ) the transition from (t'y y', z') to (t, y, z) is given by the trans-

formation in the form

Throughout this section we fix

(5.2) {$*o(*)}*oe/o-

Definition 5.1. Let /i be a parameter (>0). We say that a function

B(I9 y, T, ;/, /i)eC00(R"-1xR' I~1 xR£) belongs to S'"(meR) when for any

multi-index oc and j5 we have

where the constant C^ is independent of t.y.i.i] and jU (^OJ Mo is an

arbitrary positive constant).

/ 1
Proposition 5.1. Let B(t, y; T, ;?, /x) 6 Sm a/ia M^^o( m < ~~ y

ju0 zs a/i arbitrary positive constant). Then we have

where 0 ^ s < — m —y and ^/t^ constants C, I are independent of \JL and

the choice of B(1, y; T, 17, /z). ( |fl | / I l i r denofes r,.v,T
S^>/Jo

\
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D*(t>y)D^n)B(t, y; T, ly. p)

The proposition is proved in Appendix.

We assume that B^ in the problem (5.1) satisfies

Assumption 5.1, B^ is a pseudo-differential operator on F (e.g.,

see §IV of [9]) with the parameter ft, and for any $XQ of (5.2) there

exists a symbol B(t, y ; T, q, fi) e Sm which is the local representation of

Bp in ^0. Here m is a constant (< — 1) independent of the choice of
00

0XQ. Moreover B(t, y; T, 77, /*) has an asymptotic expansion X #/(*> Jj
j=0

T, iy, j0 ^(t, y; T, iy, ri-^Bft, yn;,ri, ̂ eS'"-") satisfying
\ j=o /

(i) Each Bj(t, y\ T, 17, /*) ( e Sm~J') possesses the property of quasi-

homogeneity

3;; AT, A fc+1^? Ak+1/i) = A«-^/t, y; T, iy, ^), A>0;

(ii) For any (rj, }£) such that \rj\2+fi2 = l, the function

is not orthogonal in L2(R/) to the solution of P(^\t9 Dt, if)v(i) = Q.

Actually there exists such B^i

no
Example 5.1. Let £a/(x)Cxer) be a partition of unity near F0

and j8/x) (eC°°(r)) satisfy fij(x) = l in a neighborhood of supp(a7-).

Let supp (a,-) and supp (fj) be small enough. We take Xj ( e supp (a^) n

r0) and denote by ^}(x) the restriction to F of $XJ(x) in (5.2). We set

6(r, 17, ^)=

where m is a constant (< — 1) and ]V is a sufficiently large constant

Define B^h) (for h e C°°(F)) by

1 & 30)}] (*}
7=1

then 5M satisfies Assumption 5.1 when JV is large enough.
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Let us set

n(h, p) = P^ Dt9 Dy)h(t, y) + B0(Qi Dt, Dy9 »)(S(t)®p(y»

where h and p are functions on R""1 and R"~2 respectively and 5(i)

is the Dirac function.

Theorem 5.1. Suppose m<—^-9 l^s<~m + -j- and ^#0 GUO is

an arbitrary positive constant). We have

( i f < j_2 2 ( S " 1

(A,

/je constant C does not depend on fi.

ii) For the operator

the kernel and the cokernel are both {0}.

Corollary. 17 has the inverse G^Ho

(R«-2). Furthermore if g G/f^^R"-1),

(R""1) x / f s_ 1 +m+i/2(R"~ 2) flw^ we /ifli;e f/ie estimate

n-> + K\Dy\
2+»2^

The corollary is clear from the theorem. Using Lemma 5.1 below,

we can prove i) of the theorem in the same way as in Theorem 3.1.

Noting ii) of Assumption 5.1, we can show ii) of the theorem in the

same fashion by means of Corollary of Theorem 2.3.

Lemma 5.1. Let us set
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and define n^(v, p0) (for (f, p0)6 t9
9(R1)xC) by

where k is odd and 1>Q. Then, for a real number s(<—m —

there is a constant C independent of a and 1 such that

2 s 2 s

(v,

Proof. In view of i) of Assumption 5.1, we get

0o; T,
\ A

by a change of variable. Similarly

2 s 2 s 2s+2m+l

Noting ii) of Assumption 5.1, by Corollary of Theorem 2.3 we have a

constant C(a, Q at any fixed a and C = (-?-» -y-J such that

1
C(a,trl{\\D,(v(A t+10)||s,Ri + ||/XA k + 1 Ol l s > R.+^ t + 1 | Po l

(5.3) gl

Let us fix a0 and Co- If \a — a0\ and |C—Col are small enough, the
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constant C(a, 0 in (5.3) can be taken independently of a and £. Since

(a, 0 moves on a compact set, we can choose C(a, 0 in (5.3) independent

of a and £, which proves the lemma.
N

Let 2 Pi be the partition of unity in (3.7) and define the norm
= e R ) b y

(where /^>0 and (plp)'()') = (w)[^l
1(0, J, 0)]).

Theorem 5.2. Le£ / be an integer satisfying 2^1 <— m + 1 (m is

Z/?e constant in Assumption 5.1) and jw0 &e an arbitrary positive constant.

Then we obtain

i) Estimate: a) PFe

w/iere /i^A'o flM(i f^e constant Cl does not depend on
b) T/?ere is a constant fi1 such that provided p^

\\\A(x,

where the constant C2 does not depend on ju.

ii) Solvability: There is a constant \i2 such that if ju^

a so/iifion (11, p) o/ (5.1) m Hi fe)(D)xH?_3+m++i/2(r0) for any ( f , g ) e

H{i>2(Q)xHl.3(jr).

Noting that the estimate |||BM(p®5ro)|||/_3fr^C|||p|||/_i+m+i/2>ro is

obtained from Proposition 5.1, we can easily show a) of i). Furthermore,

we can prove b) of i) and ii) in the similar way to the proof of Theorem

3.2 by means of Lemma 5.2 and 5.3 below, which correspond to Lemma
3.6 and 3.7 respectively.
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Remark 5.1. The same estimates and regularity of the problem

(1.2) as in Theorem 3.2 are also valid without the coboundary condition.

Remark 5.2. Let us consider the problem

A(x,Dx)u=f in

dv
on F.

Here, A(x, Dx) is elliptic, v is of second class and B is a pseudo-differ-

ential operator satisfying Assumption 5.1 where # = 0. We set

Then, by the similar method to that of this section, we see that the
operator

)X/ij_|(

is continuous and Noetherian (cf. Visik-Grusin [10]).

Remark 5.3. We shall prove briefly that the problem

A(x, Dx)u=f in
I

(5.5)

has an infinite-dimensional cokernel where A(x, Dx) is elliptic and v is

of second class. Set

is closed in H^>2(O) x Ht_ |(r). Decompose

_i(r) into e^7! and its orthogonal complement e^f f. We have only

to show that ^\ is infinite-dimensional. From Remark 5.2, «2f2 =

91 (̂0, Hl 3,m+i/2(r0)) is infinite-dimensional. Therefore, c^fi^i or

Jf 2 n ̂ f is infinite-dimensional. Remark 5.2 yields that the dimen-

sion of ^2^^ i i§ finite. Hence, Jf 2 n «^f is infinite-dimensional,
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and so is Jff. The proof is complete.

Lemma5.2. Suppose 0<egl, 1 = 2, 3,... and /^^0 G*o is an arbi-
trary positive constant), then we have

i J - f ,R»-

/or (u, p)6//Su(R^)x/f (_|+m+.i^2_(R»-2) satisfying supp(ii)c:K;i+.

f/ie constants CL and C2 are independent of e and fi.

By Theorem 5.1, we can prove the lemma in the same way as in

Lemma 3.6.

Lemma 5.3. Suppose 0<e^-^-, 1 = 2, 3,... and ^//0 (j"o IS an

arbitrary positive constant). Let ij/E(t, y, z) be the function (3.12). We

define R\f, g) = (Rl(f9 g), R\(f, g)) (eH^(R>±) x Ht i+J!1±1/2(M«-2)) by
~+

where (/, g) e H^2(Rl) x H ̂ (Rn~ ^) and supp(/)s supp(fif) lie in K»+,

V'l~l respectively (G\, G\ are defined in Corollary of Theorem 5.1).

Then we obtain

i) There is a constant Cl independent of e and fi such that

1 /, 3 , m + l / 2 \
2 2 ( 3 t+1 }

ii) Sci
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, <7) = [A'(t, y, z; Dt, Dy,

(t, y, Dt, Dy,

then we have

where <Ji(e)5 a2(e)-*0 uniformly in \JL as c-*0, cmd f/te constants C2(e),

C3(e) do /tot depend on ^.

By means of Proposition 5.1 and Theorem 5.1, we can prove the

lemma in the similar way to the proof of Lemma 3.7.

Appendix

We shall define a class of pseudo-differential operators with a

parameter and state several theorems. We can prove these theorems in

the same way as in Kumano-go [6]. So we omit the proofs.

Let JLL be a parameter and move on M.

Definition A.I. We say that a C°°-function A^) on R'l with the

parameter ^ is a basic weight function when A^(£) satisfies

where the constants a and A0(0<cr^l, 0<A0) do not depend on //;

ii) For any multi-index a there is a constant AK independent of \JL

such that

Example A.I. Set M = ]/IO, +oo[ where ft0 is an arbitrary positive

constant.
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SI' + A*2)* (cf. Lemma 3.3).

1 1
ii) A^T, /7) = {T2+(|^|2+^2)fc" i-1}"2 (k is a positive integer; cf. Defini-

tion 5.1).

Definition A.2. We say that a C°° -function p^(x9 £) on R; x RJJ with

the parameter ju belongs to S'j^ (m £ R) when for any multi-index a and

ft we have

where the constant Ca/? does not depend on /«.

We set

m,i= sup

Definition A.3. We say that a C°° -function pM(x, £, x', ^') on Rj x

' ^xR^xR ' j , belongs to S'fc'"' (m, m'eR) when for any multi-index a,

8, a' and ft' we have

where the constant Ca/?a^- does not depend on //.

For ^(.\, c, A;', ̂ ')eS5f;m' we define

(cf. § 1 of [6]).

Theorem A.I. For

(where n0 is an integer and 2«0^/t + l). r/?en, L(pfl)(x, ^)E S'^m' and

we have
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Furthermore, L is a continuous operator from S™^"1' to S™+m' (see

Theorem 1.1 of [6]).

Theorem A.26 (The asymptotic expansion formula). Let p^x, £, xf,

£') e S^f1' 9 then we have R%(x, £) S'%+m '~N for any positive integer N such

that

Furthermore, the operator p^x, £, x' ,£')*-> R% (x, £) is a continuous one

from Sy;m' to S^m''N (see Theorem 4.1 of [6]).

Theorem A38 Let \\u\ s denote ||A^(Dx)5w||0jRn (seR). Suppose p^x,

we ft aue

\\Pjx, D

where the constants C and I do not depend on the choice of p^x, £)

(see Theorem 5.2 of [6]).

Proof of Lemma 3.5. We set AM(T, ^) = (T2 + |^|2+^2)28 It is easily

seen that

Let us fix z. We see that

f i M ) z esj and

where the constants C2(/) and <5(/^0)(>0) do not depend on z. Theorem

A.I implies that there is a symbol q^t, y; i, rj)eS^ such that

qJt, y; Dt9 Dy)h = (peir°tD"Dyrts°il/h9
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By Theorem A.2, we have for any integer JV>0

and

where the constant C3(N, 1) does not depend on z. Therefore, from

Theorem A. 3 it follows that

J2 is also estimated in the same way. Hence, the lemma is proved.

Proof of Propositions.!. Let us set A,,(T, iy)= {

We see easily that

P(r, j>; A, Dr /0/IIII..H— ^C^oXH^A, Dy)°B(t, yi Dt9 Dy9

where h(t, y)=iS(l)®p(y). Theorem A. 3 yields

For any j( < —m — -~-} we get

(A.I)

J+m+1/2

Therefore,

s+m+l /2
g C4{|BL,

Noting that (|j/|2 + ju2peS^+1)s, by Theorem A.2 we have RN(t, y ; T, »;,
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!) such that

Using Theorem A. 3 and (A.l), we obtain

Therefore the proposition is proved.
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