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Ergodic Automorphisms of 7 Are
Bernoulli Transformations

By

J

Nobuo A0KI* and Haruo TOTOKI

§1. Introduction

The purpose of this paper is to prove the fact stated by the title.
After Ornstein and Friedman [5], [1], several authors studied the Bernoulli
properties of various transformations. Especially Katznelson [3] proved
that every ergodic automorphism of a finite-dimensional torus is a Bernoulli
transformation extending the results by Sinai-Ornstein-Friedman [9],
[1]. The present result is on the way towards the conjecture that every
ergodic automorphism of a compact metrizable abelian group is a Bernoulli
transformation.

Let X be a compact metrizable group and u be its normalized Haar
measure. Then (X, p) is a Lebesgue space (cf. [10]). Let o be an (group)
automorphism of X, then o is an invertible measure-preserving trans-
formation of (X, u). Our problem is concerned with measure-theoretic
properties of a. We call o a Bernoulli transformation if there exists a

measurable partition ¢ of X such that {6"¢} —..<u<.. are independent and

co

\/ o"¢é=e the partition of X into individual points.

—oo

We assume X=T> an infinite-dimensional torus i.e. X is a compact
metrizable abelian group which is connected, locally connected and
infinite-dimensional. Further we assume naturally that the automorphism
o is ergodic i.e. any o-invariant measurable set has measure 0 or 1.

Our result is the following
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Theorem. J/f o is an ergodic (group) automorphisn of an infinite-

dimensional torus T, then o is a Bernoulli transformation.)

§ 2. Preliminary Discussions

Let o be an ergodic automorphism of X=T=. To prove the theorem,
the character group G of X plays an essential role. & is countable and
discrete. Since X is connected, G is torsionfree. Let {g> denote the
free cyclic group generated by g&=G, g==1. Then we have G=éw<gn>
(a direct product of discrete groups).

Conventions. We make use of multiplications for the group operations
instead of additions. The units of X and G are denoted by e and 1
respectively.

The automorphism ¢ of X induces the dual automorphism U of G.
We classify elements of G into two classes. The first class is characterized
by the condition

(A) for g =G there exist integers k=0, no, m1, ..., ng such that (ng, ...,
1;,)7(0, ..., 0) and ghUg™, ... Ukgh=1.

Let G4 be the set of all g&G satisfying the condition (4), then G4
is U-invariant (i.e. UG 4=G4). It is not hard to see that G 4 is a subgroup.

Let K(g) denote the subgroup of G generated by

0 N
{(Ung); €2} ie. K(O=U 1[I U™

Lemma 1. If ¢EG\Ga, then (i) K(§)=® U"<g> and (i) Gan
K(g)=A11}.

Proof. To prove (i) it is enough to show that —[zﬁv Un{g>= _(% Unlg>
for each N¥=1. If fel{g>N Ug) then f=g"= Ug™ for some 7o and
n1. Since g does not satisfy (4), #o=#1=0 and so f=1. If feg>
QR ULg>)N U2{g)> then f=1 by the same reason as above, and so on.

1) After the preparation of the manuscript, the authors were informed that D. Lind obtained
the same result which will appear in the Israel Journal.
2) Z denotes the set of all integers.
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To prove (ii) take any fEG 4N K(g). Then £ is of the form f= Ut g™
.. Utsg™s and f satisfies the condition (A4): feUf% ... U¥f*=1. Putting
the above expression of f into the last equation, we see that g& G 4 unless

F=1.

We will prove tlie theorem by the following steps:
Case l. G=G4.
Case 2. G=K{(g), g G\C 1.
Case 3. G=G4K(g1) ... K(gn), g2i=G\Ga, 1=<i<NV.
Case 4. General case.

§3. Cases 1 and 2

Case 1. We assuine G=G,4. Let G={f1, /2, ...} and Gy the sub-
group generated by {U%f; k= Z, 1<<i<n} for n=1.

Lemma 2. Rank (Gp)<oo for all n=1.
Proof. By the condition (4) we have
RO — gpp® gkt iy,

Let A be the subgroup generated by {U¥f;; 1=<A<k;, 1</<n}. Then
it is easy to see that for any £2=Z and 1<{;<{# there is m=~0 such that
ka:-"EH. Therefore for any g&=G, there is m=40 such that gmeH.
This implies that rank (Gn)<A1+ ...+ 4, <<co.

Let Xp=ann(Gy) (the annihilator of Gy), then Gy, is the character
group of X/Xy. Itis known that dim (XX p)=rank(Gy) (ct. [8]). Thus
the factor group X/Xy is a finite-dimensional torus, indeed it is compact,
metrizable, abelian, connected, locally connected and finite-dimensional.
Since UG y=_Gy, we have 6. X=X} and so o induces a factor automorphism
on of X/Xy, which is obviously ergodic. By the theorem of Katznelson
[3], on is a Bernoulli transformation. Since GnCGyy1, L] Gp=0G, we

have Xpn2 Xp+1, ﬂ Xn=Ae}, and hence the tollowing Lemma 3 implies

that ¢ is a Bernoulh transformation.
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Lemma 3. (Ornstein [6]). Let o be an ergodic invertible measure-
preserving transformation on a Lebesgue space (X, F, ). Assume that
there is a sequence of sub-o-fields {Fp}y such that FpnC Fpi1, o(Fn)=

Fn, \) Fn=5F and eack factor on=acl|F, isa Bernoulli transformation.
n=1

Then o is itself a Bernoulli transformation.

Remark. Ornstein [6] proved the above lemma under the additional
assumption that the entropy 4(on)<<co for all ». But it is easy to see that

we can remove this assumption using

Lemma 4. (Ornstein [7]). Every non-trivial factor of a Bernoulli

transformation is Bernoullian.

Case 2. We assume G=K(g). By Lemma I, K(g)=® Un{g>.
Therefore Pontrjagin duality theorem ([8]) implies X= éa"X:)w(a direct
product of compact groups) where Xp=ann (n@OU”<;7;). Then o is
Bernoullian, indeed o acts on X as (xy)2. — (6x5-1)".. and so (X))
n%a”(u(Xo)) is a Bernoulli generator of o, where v denotes the trivial

partition.

§4. Case 3

We assume that G=G4Go where Go=K7... Ky and K;=K(gj),
gEG\G4, 1=<j=<N. Let £ Dbe the largest integer such that (renumbering

if necessary)

(K1®...QKp) N Kj#A {1}, b+1<j=N.

Lemma 5. G4 N(&K1Q...Q Kp)=={1}.

Proof. Take any feG4N(K1Q ... Q Kk), then we have f=f1 ... fg,
fieK; 1<j<k, and fflUf™ ... Usfts=1 for (mo, ..., ns)5=(0, ...,0).
Hence we get f1o...UfFs=(f2 ... fx)™ ...U(f2 ... fx)~™ which implies
/1=1 and inductively all fj=1, and so f=1.

Thus we have G=(GC4Q K1 Q...  Kp)Kr+1... Kn. If £=N, there
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is nothing to prove. Indeed we then have X=X 4Q X1 & ... ® X' n where
the character group of X 4 and X; are G4 and Kj for j=1, ..., V, and so
Cases 1 and 2 imply that o is a Bernoulli transformation as a direct product
of Bernoulli transformations.

Let us assume £<</V and denote

Ci=K1®...Q Kp.

We will make use of a divisible extension G of G, namely & is a minimal
divisible (=complete) group containing G (cf. [4]). In order to clear the
structure of G we have the following Lemma 6, of which proof is given in

Appendix.

Lemma 6. Loz K=® Ut g)> where g is free. Then there exisis

a divisible extention K= @U"Oo of K, where Qo is an abelian group
isomorphic to the (additive) group Q of all rational numbers and U is an

automorphism of K which is an extension of U.

Using Lemma 6, it is not hard to see that there exists a divisible
extension G=(GC4aQK1Q ... @ Kx)Kr+i1... Ky of G, where K;= ®U”Q;,
Qj=Q and U is an automorphism of G which is an extension of U. We

remark that G is also torsionfree (cf. [4]). Let us put
Gi=K1Q .. QK

which is a divisible extension of G7j.

Lemma 7. GoCGi.

Proof. In order to prove the lemma it is enough to show that for
any fixed j=4-+1, ..., V, there is an integer »=~0 such that g}’EGl.

Let Go={ge=G1K;; g"= G for some <0}, then Gz is a subgroup of
G1Kj such that G1CGeC Gy and UGa=G3. Take 14 =GN K then f
has the form f=U"g}: ... U™sg?s. Hence multiplying Ga to the both
sides of the last equation and operating some U™, we have an equation of

the form

g‘;?’o Ug;zl Uﬁg?ﬁng GZ; 710750, ﬂpﬁéo <1>
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Assume that p is the smallest non-negative integer which assures the
equation (1). If p=0, (1) implies gfo&G2 and so gi" =Gy for some
70. Assuming p>0 we W111 show a contradiction.

Let us denote Kj, p—@Usz which is a divisible extension of
Kjp= ® Ut g;>, and put H@ GZUU{] p and H;=G3U'Ky,,.  Take any
gEGgﬂ UZK],p then gGa=Gg and there is #540 such that U~tgr= K p.
Hence we have U ig"= U}’l...Upg}'b and so Ga=U"'g"Gy= Ug]?'l
U%glsGy for some 71, ..., 7p&Z which implies g=1 by the minimality of
p. Thus we have H;=G2@ UiK; p and H;=GsQ UiKj,p for all 2. The
equation (1) implies that gjv&Hp and inductively that Ulg}ie Ho for
some 7;5=0 for all 7. Therefore for any g& K there is #50 such that
g"EH().

We will prove

GCoRi=G2 QK . @

First notice that G2K;/Gy is torsionfree. Indeed if g”Ge=Gy for g= K
and %0 then g™&Gy and so g”" =Gy for some 7540, which implies
g=Ga. Let Wg be a divisible extension of GgKj/G3, then it is also
torsionfree ([4]). We have

Hi|G2C GaK;|Ga GaKi|Ga, i< Z,

since GoK;/Ge (DG2K;j|/Ge) is divisible and H;|Gs is a divisible extension
of H;|Gy (CGeKj|/G). Take any F&G2K;/Gy then there is #7+-0 such
that ™= G2K;/Gs, and so there is g&= K such that F™=gGs. For this
g and fixed 7 & Z, there is 7540 such that g® = /H;. Hence g" is decomposed
into g"=fk, fEGs, A= UK, p. For this % there is k= UtK; p such
that Zm"=4. Therefore we have FM?—Emn(G, which implies F=kGr=
Hi/Gz, because m/VGz is torsionfree. Thus we have E/GZ—GZXV@é
-HO/GZ for all Z, which implies Hy;=Hy for all 7 and so K; — Hy. This
also implies the equation (2).

Take any g&GaN Kj, where GaN K; is a divisible extension of
Ga2N Kj, then there is #=~0 such that g"=G2N K and so g™(GaN K )=
GeN Kj. Since Kj/GoN Ky=G2K;|Go=(G2Q K}, p)|Go=Kj,p is torsionfree
we have g&G9N K;. Therefore we have mCGgﬂﬁ;CG, which
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implies GaN Kj={1} and so G1N K;={1} because the character group X
of G is locally connected (cf. [8]). Thus we arrive at a contradiction,

which proves Lemma 7.

Now let us prove the Bernoulli property of (X, 0). Let X=X,Q0X1
be the character group of G4®G, and & the dual automorphism of X
induced by U. Then the factors (X 4, 5) and (X3, &) are Bernoullian by
Case 1 and the same reason as Case 2 respectively. Therefore (X, 5) is
also Bernoullian. Since (X, o) is a factor of (X, &) (i.e. X=2X/ann (%)),

(X, 0) is a Bernoulli transformation by Lemma 4.

§5. General Case

There is a sequence {gn} CG\G4 such that putting

Ga=GaK(g)K(gs) ... K(gn), n=l,

we have UGp=Gn, GnCGni1 and U Gp=G. Let Xp=ann(Gp), then
n=1
0 Xn=2Xn and Gy, is the character group of X/X,. Hence o on X/Xy is
Bernoullian by Case 3. Since XD Xp41 and F} Xp=1{e¢}, Lemma 3
n=1

implies that ¢ on X is itself a Bernoulli transformation. Thus the proof

of our theorem is completed.

§6. Examples

Lemma 1 and the argument of Case 2 imply that if G5~4G 4 then the
entropy Z(c)=co. This applies also to an automorphism of a finite-
dimensional torus, and we have G=G4 for it because it has a finite

entropy. The first example is like a finite-dimensional one.

Example 1. Let {n;; =1} be an infinite non-decreasing sequence
of integers such that #;==2. Let o; be an ergodic automorphism of the

torus T™ and ¢; be a continuous homomorphism from T%: into T for

all 7=1. Define an infinite-dimensional torus T== @ T":. Denoting
=1

xr=(x1, x2, ...)ET" where ;& T", /=1, we define a mapping
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o(x)=(01(x1), p1(x1)oa(x2), pa(x2)os(xs), -..).

It is easy to see that o is an automorphism of the topological group T=.

Since the subgroup ® T™i is o-invariant, o induces the factor automor-

phism o®) of the factor group T® =T~/ ® Tri=T"m®... Q T":
1=k+1

a(")(xl, ceey xk)—:(O]_(xl), @1(251)0'2(.9{:2), veey q:k_l(xk_l)ak(xk)).

It can be proved inductively using the following lemma that each o® is

ergodic. Hence o is itself ergodic.

Lemma 8. Let o; be an ergodic automorphism of a compact abelian
metrizable group X; (i=1, 2) and ¢ be a continuous homomorphism from
X1 into Xo. Define an automorphism o of X1Q X2 by

o(x1, #2)=(01(x1), p(x1)02(*¥2))-
Then o is ergodic.

Proof. Let G; be the character group of X; (=1, 2), then G1QGC2
is the character group of X1®Xs. Denote the dual automorphisms of
o, o1 and o3 by U, U, and U,, respectively. Since

o"(1, x9) = (07 (x1), Yu(rr)o3(¥s))
where

() =p(o7 H(x)oglp(o] 2 (xy)) ... 08 Ho(x),
we have

Ug(£10£2)=(U%£1)(g22¢m)Q U's,£2
for g=Gy, i=1,2. Hence for g1@g2£1R1

(£18g2, U, b4 (£1Qg2)) r2x0x
=(g1, (U%,g1)(g2°%n)) 12 cx (g2 U%.82) 12 xn=0.

because Uy, and Uy, have no finite orbit except 1. Thus U, has no finite

orbit except 1®1, and hence o is ergodic.

Next we will show that G=G4 where G is the character group of
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T=. Let G be the character group of T%, 7=1, then G= é G;. Let
U and U® denote the dual automorphisms of G and G(’”L——GTé ... QG
(a subgroup of &) induced by o and o®) respectively. Each g=G has the
form g= ® gi where gy=1, i=/-+1, for some 4. Hence we can consider
geG® and Ug=U®g. Since o® is an automorphism of a finite-
dimensional torus, we have g&G 4 for U® and so g=G 4 for U.

Examp/e 2. Let T = ® T;, T;=T1, be an infinite-dimensional torus
and G= @G@ the character group of T™. Let Uy be the shift automor-

phism of G (Uog)i=gi—1, —oo<2< oo. Let Uj be an automorphism of
Go® G1 which is dual to an ergodic automorphism of ToQT1=T?2.
Define an automorphism /; of G by

g’l:: lf ZH#O‘ 1,
(Uﬂgoy gl))ir if =0, 1.

Then we define automorphism U=UpU; of G. We take Ui(gy, £g1)=

(Urgn=|

(g2g1, go£1) for simplicity. Notice that U] is given by the matrix (? i )

in the usual notation of addition. Hence we have

U(...,g-1,80, £1, &2 £3 ...)
={(..., £-2,£-1, £0£1, 8081, &2, -..).

First we will show that U has no finite orbit except 1 and so the dual
automorphism of T induced by U is ergodic. Indeed if U"g=g for
£=(g1)—wcij<- EC then gi=gnui; for =2, gi=g n+; for /<0 and gog1=
Zn+1. Since gi=1 except a finite number of 7, we have g;=1 for all
—oo< (< oo i.e. g=1.

Next we will show that G4={1}. Assume g% Ug™ ... Ukgm=1 for
g=(gi)—wci<e =G. Then we have gpt;gp4i—1 ... £i*=1 for =2 and
ghogh | gt =1 for ;<0, and so g;=1 for i=~1. We have also g}(g2g)™

(218240 - £og)™=1 and so gy=1. Thus we get g=1.

Appendix

We suppose that the fact stated in Lemma 6 is well known. But we
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can not find it in literatures, so we will give here its proof for the com-
pleteness.
Since each U"{g) is isomorphic to the (additive) group Z of all

integers, there is a divisible extension K= @ Qy of K where each Qy is

—oa

isomorphic to Q (cf. [4]). Let us define U as follows. For each feX
there is % such that /¥& K, and then there is unique f & K such that f¥=
Ufk. 1t is easy to see that f does not depend on the choice of 4. Thus
Uf=f defines a transformation U on X.

Let us now prove that U is an automorphism of X£. Let f, 2K and
take 7 and £ such that f%, A= K. Then (Ufh)*= U(fh)¥*= Uftk Uh*t=
(UF)k(O kY% =(UfUk) and so Ufh=UTfUk; U is a homomorphism. Let
fEK and f¥e K. Take f< K such that f¥= U-1f%  Then (UF)k=Uf¥
=f% and so Uf=f; U is onto. Assume Uf=1 and f¥= K, then Uff=
(Uf)*=1 and so f¥=1 which implies /=1; U is one-to-one.

Next let us prove UQn=0n+1. Take any f&Q, and £ such that
fEeUm{g>. Then (Ufk=Uft=U"1{g> and hence Uf<Qpi1.
Conversely take anv f&Qu41 and £ such that ffe U?*1{g>. Then
(U= U-1fk= U*{g) and so f€UQ,. This completes the proof.
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