Ergodic Automorphisms of T^{∞} Are Bernoulli Transformations

By

Nobuo Aoki* and Haruo Тотокі

§ 1. Introduction

The purpose of this paper is to prove the fact stated by the title. After Ornstein and Friedman [5], [1], several authors studied the Bernoulli properties of various transformations. Especially Katznelson [3] proved that every ergodic automorphism of a finite-dimensional torus is a Bernoulli transformation extending the results by Sinai-Ornstein-Friedman [9], [1]. The present result is on the way towards the conjecture that every ergodic automorphism of a compact metrizable abelian group is a Bernoulli transformation.

Let X be a compact metrizable group and μ be its normalized Haar measure. Then (X,μ) is a Lebesgue space (cf. [10]). Let σ be an (group) automorphism of X, then σ is an invertible measure-preserving transformation of (X,μ) . Our problem is concerned with measure-theoretic properties of σ . We call σ a *Bernoulli transformation* if there exists a measurable partition ξ of X such that $\{\sigma^n\xi\}_{-\infty< n<\infty}$ are independent and $\bigvee^{\infty} \sigma^n\xi=\varepsilon$ the partition of X into individual points.

We assume $X=T^{\infty}$ an infinite-dimensional torus i.e. X is a compact metrizable abelian group which is connected, locally connected and infinite-dimensional. Further we assume naturally that the automorphism σ is ergodic i.e. any σ -invariant measurable set has measure 0 or 1.

Our result is the following

Received April 17 1974.

^{*} Department of Mathematics, Tokyo Metropolitan University, Setagaya, Tokyo.

Theorem. If σ is an ergodic (group) automorphism of an infinite-dimensional torus T^{∞} , then σ is a Bernoulli transformation.¹⁾

§ 2. Preliminary Discussions

Let σ be an ergodic automorphism of $X = T^{\infty}$. To prove the theorem, the character group G of X plays an essential role. G is countable and discrete. Since X is connected, G is torsionfree. Let $\langle g \rangle$ denote the free cyclic group generated by $g \in G$, $g \neq 1$. Then we have $G = \bigotimes_{-\infty}^{\infty} \langle g_n \rangle$ (a direct product of discrete groups).

Conventions. We make use of multiplications for the group operations instead of additions. The units of X and G are denoted by e and 1 respectively.

The automorphism σ of X induces the dual automorphism U of G. We classify elements of G into two classes. The first class is characterized by the condition

(A) for $g \in G$ there exist integers $k \ge 0$, n_0 , n_1 , ..., n_k such that $(n_0, ..., n_k) \ne (0, ..., 0)$ and $g^{n_0}Ug^{n_1}$, ... $U^kg^{n_k}=1$.

Let G_A be the set of all $g \in G$ satisfying the condition (A), then G_A is U-invariant (i.e. $UG_A = G_A$). It is not hard to see that G_A is a subgroup.

Let K(g) denote the subgroup of G generated by

$$\{U^n\langle g\rangle; n\in \mathbb{Z}\}^{2}$$
 i.e. $K(g)=\bigcup_{N=1}^{\infty}\prod_{n=-N}^{N}U^n\langle g\rangle.$

Lemma 1. If $g \in G \setminus G_A$, then (i) $K(g) = \bigotimes_{-\infty}^{\infty} U^n \langle g \rangle$ and (ii) $G_A \cap K(g) = \{1\}$.

Proof. To prove (i) it is enough to show that $\prod_{-N}^{N} U^{n} \langle g \rangle = \bigotimes_{-N}^{N} U^{n} \langle g \rangle$ for each $N \geq 1$. If $f \in \langle g \rangle \cap U \langle g \rangle$ then $f = g^{n_0} = Ug^{n_1}$ for some n_0 and n_1 . Since g does not satisfy (A), $n_0 = n_1 = 0$ and so f = 1. If $f \in (\langle g \rangle \otimes U \langle g \rangle) \cap U^2 \langle g \rangle$ then f = 1 by the same reason as above, and so on.

¹⁾ After the preparation of the manuscript, the authors were informed that D. Lind obtained the same result which will appear in the Israel Journal.

²⁾ **Z** denotes the set of all integers.

To prove (ii) take any $f \in G_A \cap K(g)$. Then f is of the form $f = U^{i_1}g^{m_1} \dots U^{i_s}g^{m_s}$ and f satisfies the condition $(A): f^{n_0}Uf^{n_1}\dots U^kf^{n_k}=1$. Putting the above expression of f into the last equation, we see that $g \in G_A$ unless f=1.

We will prove the theorem by the following steps:

Case 1. $G = G_A$.

Case 2. $G = K(g), g \in G \setminus G_A$.

Case 3. $G = G_A K(g_1) \dots K(g_N), g_i \in G \setminus G_A, 1 \leq i \leq N.$

Case 4. General case.

§ 3. Cases 1 and 2

Case 1. We assume $G=G_A$. Let $G=\{f_1,f_2,\ldots\}$ and G_n the subgroup generated by $\{U^kf_i; k\in\mathbb{Z}, 1\leq i\leq n\}$ for $n\geq 1$.

Lemma 2. Rank $(G_n) < \infty$ for all $n \ge 1$.

Proof. By the condition (A) we have

$$f_i^{n_0(i)} = U f_i^{n_1(i)} \dots U^{k_i} f_i^{n_{k_i}(i)}, \qquad 1 \leq i \leq n.$$

Let H be the subgroup generated by $\{U^k f_i; 1 \leq k \leq k_i, 1 \leq i \leq n\}$. Then it is easy to see that for any $k \in \mathbb{Z}$ and $1 \leq i \leq n$ there is $m \neq 0$ such that $U^k f_i^m \in H$. Therefore for any $g \in G_n$ there is $m \neq 0$ such that $g^m \in H$. This implies that $\operatorname{rank}(G_n) \leq k_1 + \ldots + k_n < \infty$.

Let $X_n = \operatorname{ann}(G_n)$ (the annihilator of G_n), then G_n is the character group of X/X_n . It is known that $\dim(X/X_n) = \operatorname{rank}(G_n)$ (cf. [8]). Thus the factor group X/X_n is a finite-dimensional torus, indeed it is compact, metrizable, abelian, connected, locally connected and finite-dimensional. Since $UG_n = G_n$, we have $\sigma X_n = X_n$ and so σ induces a factor automorphism σ_n of X/X_n , which is obviously ergodic. By the theorem of Katznelson [3], σ_n is a Bernoulli transformation. Since $G_n \subset G_{n+1}$, $\bigcup_{n=1}^{\infty} G_n = G$, we have $X_n \supset X_{n+1}$, $\bigcap_{n=1}^{\infty} X_n = \{e\}$, and hence the following Lemma 3 implies that σ is a Bernoulli transformation.

Lemma 3. (Ornstein [6]). Let σ be an ergodic invertible measure-preserving transformation on a Lebesgue space (X, \mathcal{F}, μ) . Assume that there is a sequence of sub- σ -fields $\{\mathcal{F}_n\}$ such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$, $\sigma(\mathcal{F}_n) = \mathcal{F}_n$, $\bigvee_{n=1}^{\infty} \mathcal{F}_n = \mathcal{F}$ and each factor $\sigma_n = \sigma|_{\mathcal{F}_n}$ is a Bernoulli transformation. Then σ is itself a Bernoulli transformation.

Remark. Ornstein [6] proved the above lemma under the additional assumption that the entropy $h(\sigma_n) < \infty$ for all n. But it is easy to see that we can remove this assumption using

Lemma 4. (Ornstein [7]). Every non-trivial factor of a Bernoulli transformation is Bernoullian.

Case 2. We assume G=K(g). By Lemma 1, $K(g)=\overset{\circ}{\underset{n\to 0}{\otimes}}U^n\langle g\rangle$. Therefore Pontrjagin duality theorem ([8]) implies $X=\overset{\circ}{\underset{n\to 0}{\otimes}}\sigma^nX_0$ (a direct product of compact groups) where $X_0=\operatorname{ann}(\overset{\circ}{\underset{n\to 0}{\otimes}}U^n\langle g\rangle)$. Then σ is Bernoullian, indeed σ acts on X as $(x_n)^{\overset{\circ}{\underset{n\to 0}{\otimes}}}\to (\sigma x_{n-1})^{\overset{\circ}{\underset{n\to 0}{\otimes}}}$ and so $\varepsilon(X_0)\otimes \overset{\circ}{\underset{n\to 0}{\otimes}}\sigma^n(\nu(X_0))$ is a Bernoulli generator of σ , where ν denotes the trivial partition.

§ 4. Case 3

We assume that $G = G_A G_0$ where $G_0 = K_1 \dots K_N$ and $K_j = K(g_j)$, $g_j \in G \setminus G_A$, $1 \le j \le N$. Let k be the largest integer such that (renumbering if necessary)

$$(K_1 \otimes ... \otimes K_k) \cap K_j \neq \{1\}, k+1 \leq j \leq N.$$

Lemma 5. $G_A \cap (K_1 \otimes ... \otimes K_k) = \{1\}.$

Proof. Take any $f \in G_A \cap (K_1 \otimes ... \otimes K_k)$, then we have $f = f_1 ... f_k$, $f_j \in K_j$, $1 \leq j \leq k$, and $f^{n_0} U f^{n_1} ... U^s f^{n_s} = 1$ for $(n_0, ..., n_s) \neq (0, ..., 0)$. Hence we get $f_1^{n_0} ... U^s f_1^{n_s} = (f_2 ... f_k)^{-n_0} ... U^s (f_2 ... f_k)^{-n_s}$ which implies $f_1 = 1$ and inductively all $f_j = 1$, and so f = 1.

Thus we have $G = (G_A \otimes K_1 \otimes ... \otimes K_k) K_{k+1} ... K_N$. If k = N, there

is nothing to prove. Indeed we then have $X=X_A\otimes X_1\otimes ...\otimes X_N$ where the character group of X_A and X_j are G_A and K_j for j=1,...,N, and so Cases 1 and 2 imply that σ is a Bernoulli transformation as a direct product of Bernoulli transformations.

Let us assume k < N and denote

$$G_1 = K_1 \otimes \ldots \otimes K_k$$
.

We will make use of a divisible extension \bar{G} of G, namely \bar{G} is a minimal divisible (=complete) group containing G (cf. [4]). In order to clear the structure of \bar{G} we have the following Lemma 6, of which proof is given in Appendix.

Lemma 6. Let $K = \bigotimes_{-\infty} U^n \langle g \rangle$ where g is free. Then there exists a divisible extention $\overline{K} = \bigotimes_{-\infty} \overline{U}^n Q_0$ of K, where Q_0 is an abelian group isomorphic to the (additive) group Q of all rational numbers and \overline{U} is an automorphism of \overline{K} which is an extension of U.

Using Lemma 6, it is not hard to see that there exists a divisible extension $\bar{G} = (\bar{G}_A \otimes \bar{K}_1 \otimes ... \otimes \bar{K}_k) \bar{K}_{k+1} ... \bar{K}_N$ of G, where $\bar{K}_j = \bigotimes_{-\infty} \bar{U}^n Q_j$, $Q_j \cong Q$ and \bar{U} is an automorphism of \bar{G} which is an extension of \bar{U} . We remark that \bar{G} is also torsionfree (cf. [4]). Let us put

$$\bar{G}_1 = \bar{K}_1 \otimes \ldots \otimes \bar{K}_k$$

which is a divisible extension of G_1 .

Lemma 7. $G_0 \subset \overline{G}_1$.

Proof. In order to prove the lemma it is enough to show that for any fixed j=k+1,...,N, there is an integer $n\neq 0$ such that $g_j^n \in G_1$.

Let $G_2 = \{g \in G_1K_j; g^n \in G_1 \text{ for some } n \neq 0\}$, then G_2 is a subgroup of G_1K_j such that $G_1 \subset G_2 \subset \overline{G}_1$ and $UG_2 = G_2$. Take $1 \neq f \in G_1 \cap K_j$ then f has the form $f = U^{m_1}g_j^{n_1} \dots U^{m_s}g_j^{n_s}$. Hence multiplying G_2 to the both sides of the last equation and operating some U^m , we have an equation of the form

$$g_j^{n_0}Ug_{j}^{n_1}\dots U^pg_j^{n_p}G_2=G_2, n_0\neq 0, n_p\neq 0.$$
 (1)

Assume that p is the smallest non-negative integer which assures the equation (1). If p=0, (1) implies $g_j^{n_0} \in G_2$ and so $g_j^{n_0} \in G_1$ for some $n \neq 0$. Assuming p>0 we will show a contradiction.

Let us denote $\bar{K}_{j,p} = \bigotimes_{i=1}^{p} \bar{U}^{i}Q_{j}$ which is a divisible extension of $K_{j,p} = \bigotimes_{i=1}^{p} U^{i}\langle g_{j}\rangle$, and put $\hat{H}_{i} = G_{2}\bar{U}^{i}\bar{K}_{j,p}$ and $H_{i} = G_{2}U^{i}K_{j,p}$. Take any $\bar{g} \in G_{2} \cap \bar{U}^{i}\bar{K}_{j,p}$ then $\bar{g}G_{2} = G_{2}$ and there is $r \neq 0$ such that $U^{-i}\bar{g}^{r} \in K_{j,p}$. Hence we have $U^{-i}\bar{g}^{r} = U_{j}^{r_{1}} \dots U^{p}g_{j}^{r_{p}}$ and so $G_{2} = U^{-i}\bar{g}^{r}G_{2} = Ug_{j}^{r_{1}} \dots U^{p}g_{j}^{r_{p}}$ and so $G_{2} = U^{-i}\bar{g}^{r}G_{2} = Ug_{j}^{r_{1}} \dots U^{p}g_{j}^{r_{p}}$ and $U^{p}g_{j}^{r_{p}} = U_{j}^{r_{p}} = U_{j}^{r_{$

We will prove

$$G_2\bar{K}_j = G_2 \otimes \bar{K}_{j,p}. \tag{2}$$

First notice that G_2K_j/G_2 is torsionfree. Indeed if $g^mG_2=G_2$ for $g \in K_j$ and $m \neq 0$ then $g^m \in G_2$ and so $g^{mn} \in G_1$ for some $n \neq 0$, which implies $g \in G_2$. Let $\overline{G_2K_j/G_2}$ be a divisible extension of G_2K_j/G_2 , then it is also torsionfree ([4]). We have

$$\hat{H}_i/G_2 \subset \overline{G_2K_j}/\overline{G_2} \subset G_2\overline{K_j}/G_2, \quad i \in \mathbb{Z},$$

since $G_2\bar{K}_j/G_2$ ($\supset G_2K_j/G_2$) is divisible and \hat{H}_i/G_2 is a divisible extension of H_i/G_2 ($\subset G_2K_j/G_2$). Take any $F \in \overline{G_2K_j/G_2}$ then there is $m \neq 0$ such that $F^m \in G_2K_j/G_2$, and so there is $g \in K_j$ such that $F^m = gG_2$. For this g and fixed $i \in \mathbb{Z}$, there is $n \neq 0$ such that $g^n \in H_i$. Hence g^n is decomposed into $g^n = fk$, $f \in G_2$, $k \in U^iK_{j,p}$. For this k there is $\bar{k} \in \bar{U}^i\bar{K}_{j,p}$ such that $\bar{k}^{mn} = k$. Therefore we have $F^{mn} = \bar{k}^{mn}G_2$ which implies $F = \bar{k}G_2 \in \hat{H}_i/G_2$, because $\overline{G_2K_j/G_2}$ is torsionfree. Thus we have $\hat{H}_i/G_2 = \overline{G_2K_j/G_2} = \hat{H}_0/G_2$ for all i, which implies $\hat{H}_i = \hat{H}_0$ for all i and so $\bar{K}_j \subset \hat{H}_0$. This also implies the equation (2).

Take any $\bar{g} \in \overline{G_2 \cap K_j}$, where $\overline{G_2 \cap K_j}$ is a divisible extension of $G_2 \cap K_j$, then there is $n \neq 0$ such that $\bar{g}^n \in G_2 \cap K_j$ and so $\bar{g}^n(G_2 \cap \bar{K_j}) = G_2 \cap \bar{K_j}$. Since $\bar{K_j}/G_2 \cap \bar{K_j} \cong G_2 \bar{K_j}/G_2 = (G_2 \otimes \bar{K_j}, p)/G_2 \cong \bar{K_j}, p$ is torsionfree we have $\bar{g} \in G_2 \cap \bar{K_j}$. Therefore we have $\bar{G_2 \cap K_j} \subset G_2 \cap \bar{K_j} \subset G$, which

implies $G_2 \cap K_j = \{1\}$ and so $G_1 \cap K_j = \{1\}$ because the character group X of G is locally connected (cf. [8]). Thus we arrive at a contradiction, which proves Lemma 7.

Now let us prove the Bernoulli property of (X, σ) . Let $\hat{X} = X_A \otimes \bar{X}_1$ be the character group of $G_A \otimes \bar{G}_1$ and $\bar{\sigma}$ the dual automorphism of \hat{X} induced by \bar{U} . Then the factors $(X_A, \bar{\sigma})$ and $(\bar{X}_1, \bar{\sigma})$ are Bernoullian by Case 1 and the same reason as Case 2 respectively. Therefore $(\hat{X}, \bar{\sigma})$ is also Bernoullian. Since (X, σ) is a factor of $(\hat{X}, \bar{\sigma})$ (i.e. $X = \hat{X} / \text{ann}(G)$), (X, σ) is a Bernoulli transformation by Lemma 4.

§ 5. General Case

There is a sequence $\{g_n\} \subset G \setminus G_A$ such that putting

$$G_n = G_A K(g_1) K(g_2) \dots K(g_n), \quad n \ge 1,$$

we have $UG_n=G_n$, $G_n\subset G_{n+1}$ and $\bigcup_{n=1}^{\infty}G_n=G$. Let $X_n=\operatorname{ann}(G_n)$, then $\sigma X_n=X_n$ and G_n is the character group of X/X_n . Hence σ on X/X_n is Bernoullian by Case 3. Since $X_n\supset X_{n+1}$ and $\bigcap_{n=1}^{\infty}X_n=\{e\}$, Lemma 3 implies that σ on X is itself a Bernoulli transformation. Thus the proof of our theorem is completed.

§ 6. Examples

Lemma 1 and the argument of Case 2 imply that if $G \neq G_A$ then the entropy $h(\sigma) = \infty$. This applies also to an automorphism of a finite-dimensional torus, and we have $G = G_A$ for it because it has a finite entropy. The first example is like a finite-dimensional one.

Example 1. Let $\{n_i; i \geq 1\}$ be an infinite non-decreasing sequence of integers such that $n_1 \geq 2$. Let σ_i be an ergodic automorphism of the torus T^{n_i} and φ_i be a continuous homomorphism from T^{n_i} into $T^{n_{i+1}}$ for all $i \geq 1$. Define an infinite-dimensional torus $T^{\circ\circ} = \bigotimes_{i=1}^{\infty} T^{n_i}$. Denoting $x = (x_1, x_2, \ldots) \in T^{\circ\circ}$ where $x_i \in T^{n_i}$, $i \geq 1$, we define a mapping

$$\sigma(x) = (\sigma_1(x_1), \varphi_1(x_1)\sigma_2(x_2), \varphi_2(x_2)\sigma_3(x_3), \ldots).$$

It is easy to see that σ is an automorphism of the topological group T^{∞} . Since the subgroup $\bigotimes_{i=k+1}^{\infty} T^{n_i}$ is σ -invariant, σ induces the factor automorphism $\sigma^{(k)}$ of the factor group $T^{(k)} = T^{\infty} / \bigotimes_{i=k+1}^{\infty} T^{n_i} = T^{n_1} \otimes \ldots \otimes T^{n_k}$:

$$\sigma^{(k)}(x_1, \ldots, x_k) = (\sigma_1(x_1), \varphi_1(x_1)\sigma_2(x_2), \ldots, \varphi_{k-1}(x_{k-1})\sigma_k(x_k)).$$

It can be proved inductively using the following lemma that each $\sigma^{(k)}$ is ergodic. Hence σ is itself ergodic.

Lemma 8. Let σ_i be an ergodic automorphism of a compact abelian metrizable group X_i (i=1, 2) and φ be a continuous homomorphism from X_1 into X_2 . Define an automorphism σ of $X_1 \otimes X_2$ by

$$\sigma(x_1, x_2) = (\sigma_1(x_1), \varphi(x_1)\sigma_2(x_2)).$$

Then σ is ergodic.

Proof. Let G_i be the character group of X_i (i=1,2), then $G_1 \otimes G_2$ is the character group of $X_1 \otimes X_2$. Denote the dual automorphisms of σ , σ_1 and σ_2 by U_{σ} , U_{σ_1} and U_{σ_2} respectively. Since

$$\sigma^n\!(x_1,\,x_2)\!=\!(\sigma^n_1\!(x_1),\,\psi_n\!(x_1)\sigma^n_2\!(x_2))$$

where

$$\psi_n(x_1) = \varphi(\sigma_1^{n-1}(x_1))\sigma_2(\varphi(\sigma_1^{n-2}(x_1)) \dots \sigma_2^{n-1}(\varphi(x_1)),$$

we have

$$U_{\sigma}^{n}(g_{1}\otimes g_{2})=(U_{\sigma_{1}}^{n}g_{1})(g_{2}\circ\psi_{n})\otimes U_{\sigma_{2}}^{n}g_{2}$$

for $g_i \in G_i$, i=1, 2. Hence for $g_1 \otimes g_2 \neq 1 \otimes 1$

$$(g_1 \otimes g_2, U_{\sigma}^n(g_1 \otimes g_2))_{L^2(X_1 \otimes X_2)}$$

$$= (g_1, (U_{\sigma_1}^n g_1)(g_2 \circ \psi_n))_{L^2(X_1)}(g_2, U_{\sigma_2}^n g_2)_{L^2(X_2)} = 0,$$

because U_{σ_1} and U_{σ_2} have no finite orbit except 1. Thus U_{σ} has no finite orbit except $1 \otimes 1$, and hence σ is ergodic.

Next we will show that $G=G_A$ where G is the character group of

 $T^{\circ\circ}$. Let G_i be the character group of T^{n_i} , $i \geq 1$, then $G = \bigotimes_{i=1}^{\infty} G_i$. Let U and $U^{(k)}$ denote the dual automorphisms of G and $G^{(k)} = G_1 \otimes \ldots \otimes G_k$ (a subgroup of G) induced by σ and $\sigma^{(k)}$ respectively. Each $g \in G$ has the form $g = \bigotimes_{i=1}^{\infty} g_i$ where $g_i = 1$, $i \geq k+1$, for some k. Hence we can consider $g \in G^{(k)}$ and $Ug = U^{(k)}g$. Since $\sigma^{(k)}$ is an automorphism of a finite-dimensional torus, we have $g \in G_A$ for $U^{(k)}$ and so $g \in G_A$ for U.

Example 2. Let $T^{\infty} = \bigotimes_{-\infty}^{\infty} T_i$, $T_i \cong T^1$, be an infinite-dimensional torus and $G = \bigotimes_{-\infty}^{\infty} G_i$ the character group of T^{∞} . Let U_0 be the shift automorphism of $G: (U_0g)_i = g_{i-1}, -\infty < i < \infty$. Let U_1' be an automorphism of $G_0 \otimes G_1$ which is dual to an ergodic automorphism of $T_0 \otimes T_1 \cong T^2$. Define an automorphism U_1 of G by

$$(U_1g)_i = \begin{cases} g_i, & \text{if } i \neq 0, 1, \\ (U'_1(g_0, g_1))_i, & \text{if } i = 0, 1. \end{cases}$$

Then we define automorphism $U=U_0U_1$ of G. We take $U_1'(g_0,g_1)=(g_0^2g_1,g_0g_1)$ for simplicity. Notice that U_1' is given by the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ in the usual notation of addition. Hence we have

$$U(..., g_{-1}, g_0, g_1, g_2, g_3, ...)$$

= $(..., g_{-2}, g_{-1}, g_0^2 g_1, g_0 g_1, g_2, ...).$

First we will show that U has no finite orbit except 1 and so the dual automorphism of T^{∞} induced by U is ergodic. Indeed if $U^ng=g$ for $g=(g_i)_{-\infty < i < \infty} \in G$ then $g_i=g_{n+i}$ for $i \ge 2$, $g_i=g_{-n+i}$ for $i \le 0$ and $g_0g_1=g_{n+1}$. Since $g_i=1$ except a finite number of i, we have $g_i=1$ for all $-\infty < i < \infty$ i.e. g=1.

Next we will show that $G_A=\{1\}$. Assume $g^{n_0}Ug^{n_1}\dots U^kg^{n_k}=1$ for $g=(g_i)_{-\infty< i<\infty}\in G$. Then we have $g^{n_0}_{k+i}g^{n_1}_{k+i-1}\dots g^{n_k}_i=1$ for $i\geq 2$ and $g^{n_0}_ig^{n_1}_{i-1}\dots g^{n_k}_{i-k}=1$ for $i\leq 0$, and so $g_i=1$ for $i\neq 1$. We have also $g^{n_0}_i(g^2_0g_1)^{n_1}\dots (g^2_{-k+1}g^2_{-k+2}\dots g^2_0g_1)^{n_k}=1$ and so $g_1=1$. Thus we get g=1.

Appendix

We suppose that the fact stated in Lemma 6 is well known. But we

can not find it in literatures, so we will give here its proof for the completeness.

Since each $U^n \langle g \rangle$ is isomorphic to the (additive) group \mathbb{Z} of all integers, there is a divisible extension $\overline{K} = \bigotimes^{\infty} \mathcal{Q}_n$ of K where each \mathcal{Q}_n is isomorphic to \mathbb{Q} (cf. [4]). Let us define \overline{U} as follows. For each $f \in \overline{K}$ there is k such that $\overline{f}^k \in K$, and then there is unique $\overline{f} \in \overline{K}$ such that $\overline{f}^k = Uf^k$. It is easy to see that f does not depend on the choice of k. Thus $\overline{U}f = \overline{f}$ defines a transformation \overline{U} on \overline{K} .

Let us now prove that \bar{U} is an automorphism of \bar{K} . Let $f, h \in \bar{K}$ and take i and k such that $f^i, h^k \in K$. Then $(\bar{U}fh)^{ik} = U(fh)^{ik} = Uf^{ik}Uh^{ik} = (\bar{U}f)^{ik}(\bar{U}h)^{ik} = (\bar{U}f\bar{U}h)^{ik}$ and so $\bar{U}fh = \bar{U}f\bar{U}h$; \bar{U} is a homomorphism. Let $f \in \bar{K}$ and $f^k \in K$. Take $\bar{f} \in \bar{K}$ such that $\bar{f}^k = U^{-1}f^k$. Then $(\bar{U}\bar{f})^k = U\bar{f}^k = f^k$ and so $\bar{U}\bar{f}=f$; \bar{U} is onto. Assume $\bar{U}f=1$ and $f^k \in K$, then $Uf^k = (\bar{U}f)^k = 1$ and so $f^k = 1$ which implies f=1; \bar{U} is one-to-one.

Next let us prove $\bar{U}Q_n = Q_{n+1}$. Take any $f \in Q_n$ and k such that $f^k \in U^n \langle g \rangle$. Then $(\bar{U}f)^k = Uf^k \in U^{n+1} \langle g \rangle$ and hence $\bar{U}f \in Q_{n+1}$. Conversely take any $f \in Q_{n+1}$ and k such that $f^k \in U^{n+1} \langle g \rangle$. Then $(\bar{U}^{-1}f)^k = U^{-1}f^k \in U^n \langle g \rangle$ and so $f \in \bar{U}Q_n$. This completes the proof.

References

- Friedman, N. A. and Ornstein, D. S., On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1971), 365-394.
- [2] Husain, T., Introduction to Topological Groups, Saunders Co. Philadelphia and London, 1966.
- [3] Katznelson, Y., Ergodic automorphisms of Tⁿ are Bernoulli shifts, Israel J. Math. 10 (1971), 186-195.
- [4] Kurosh, A. G., The Thoery of Groups I. Chelsea, New York, 1960.
- [5] Ornstein, D. S., Bernoulli shifts with the same entropy are isomorphic, Advances in Math.4 (1970), 337-352.
- [6] ———, Two Bernoulli shifts with infinite entropy are isomorphic, ibid. 5 (1971), 339–348.
- [7] , Factors of Bernoulli shifts are Bernoulli shifts, ibid. 5 (1971), 349-364.
- [8] Pontrjagin, L., Topological Groups, Princeton Univ. Press, Princeton, 1946.
- [9] Sinai, Ya. G., Markov partitions and C-diffeomorphisms, Func. Anal. and its Appl. 2 (1968), 61-82.
- [10] Rohlin, V. A., On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. Ser. I. 10 (1962), 1-54.