On the Cohomology of the Classifying Spaces of PSU(4n+2) and PO(4n+2)

By

Akira Kono* and Mamoru MIMURA**

§ 0. Introduction

The quotients of SU(m) and SO(2m) by their centers $\Gamma_m = \left\{e^{\frac{2\pi j\sqrt{-1}}{m}}\left(\begin{array}{c}1 \\ 0 \\ \end{array}\right); \ 0 \leq j < m\right\}$ and $\Gamma_2 = \left\{\pm\left(\begin{array}{c}1 \\ 0 \\ \end{array}\right), \begin{array}{c}0 \\ 1\end{array}\right)\right\}$ are denoted by PU(m) and PO(2m) respectively.

The purpose of this paper is to determine the module structure of the cohomology mod 2 of the classifying spaces BPU(4n+2) and BPO(4n+2).

The method is first to determine the E_2 -term of the Eilenberg-Moore spectral sequence by constructing an injective resolution for $H^*(G; \mathbb{Z}_2)$, $(G=SU(4n+2)/\Gamma_2, PO(4n+2))$. Then by making use of naturality of the Eilenberg-Moore spectral sequence we show that the spectral sequence with \mathbb{Z}_2 -coefficient collapses for these G.

Our results are

Theorem. As a module

$$H^*(BPU(4n+2); \mathbf{Z}_2) \cong \mathbf{Z}_2[a_2, a_3, x'_{8l+8}, y(I)]/R$$
,

where $1 \le l \le 2n$ and R is an ideal generated by $a_3y(I)$, $y(I)^2 + \sum_{j=1}^{r} x_{8i_1+8}...a_{4i_j+2}^2...x_{8i_r+8}$ and $y(I)y(J) + \sum f_i y(I_i)$.

Theorem. As a module

$$H^*(BPO(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, x_{4l+4}, y'(I)]/R$$

Communicated by N. Shimada, July 17, 1974. Revised October 1, 1974.

^{*} Department of Mathematics, Kyoto University, Kyoto.

^{**} Mathematical Institute, Yoshida College, Kyoto University, Kyoto.

where $1 \le l \le 2n$ and R is an ideal generated by $a_2 y'(I)$, $y'(I)^2 + \sum x_{4i_1+4} \dots a_{i_j+1}^2 \dots x_{4i_r+4}$ and $y'(I)y'(J) + \sum f'_i y'(I_i)$.

In the above theorems I runs over all sequences of integers $(i_1,...,i_r)$ satisfying $1 \le r \le 2n$ and $1 \le i_1 < \cdots < i_r \le 2n$. (For details see § 5.)

The paper is organized as follows:

In the first section we show that there exists a sort of "stability" in $H^*(BG; \mathbb{Z}_2)$. §2 is used to calculate $H^*(U(n)/\Gamma_p; \mathbb{Z}_p)$. In §3 we determine the E_2 -term of the Eilenberg-Moore spectral sequence, Cotor $H^*(G;\mathbb{Z}_2)$ (\mathbb{Z}_2 , \mathbb{Z}_2), for G=PO(4n+2), PU(4n+2). In the next section, §4, we show that the Eilenberg-Moore spectral sequence (with \mathbb{Z}_2 -coefficient) collapses for these G. §5 is devoted to showing that the elements a_i 's in the above theorems, namely Theorems 4.9 and 4.12, are in the trangression image. In the last section, the generators x_{8l+8} and x_{4l+4} in Theorems 4.9 and 4.12 are shown to be represented by certain exterior power representations.

Throughout the paper the map $BH \rightarrow BG$ induced from a homomorphism $H \rightarrow G$ of groups is denoted by the same symbol.

The authors would like to thank N. Shimada for his kind advices.

§ 1. Quotients of SU(n) and SO(n)

Notation.
$$I_n = \begin{pmatrix} 1 & \ddots & 0 \\ 0 & \ddots & 1 \end{pmatrix} \in U(n)$$
 the identity matrix,
$$C(n) = \{\alpha I_n; \ |\alpha| = 1 \quad \text{and} \quad \alpha \in \mathbb{C} \},$$

$$\Gamma_m = \{wI_n; \ w^m = 1 \quad \text{and} \quad w \in \mathbb{C} \} \subset C(n).$$

Then C(n) (resp. Γ_m) is the center of the unitary group U(n) (resp. SU(n)). In particular we have the inclusions

$$\Gamma_2 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \subset SO(2n) \subset SU(2n).$$

Hereafter we use the following

Notation.

$$G_l(m)=SU(m)/\Gamma_l$$
 for a subgroup Γ_l of the center Γ_m ,
$$G_m(m)=PU(m)=PSU(m)\cong U(m)/C(m),$$

$$G(2n)=G_2(2n)=SU(2n)/\Gamma_2,$$

$$PO(2n)=SO(2n)/\Gamma_2.$$

Denote by π the natural projections $SU(m) \rightarrow G_l(m)$ and $SO(2n) \rightarrow PO(2n)$

Consider the k-fold diagonal map:

$$\Delta_k: SU(n) \longrightarrow (SU(n))^k \longrightarrow SU(nk),$$

$$\Delta_k: SO(n) \longrightarrow (SO(n))^k \longrightarrow SO(nk),$$

where Δ_k is the diagonal embedding:

$$\Delta_k(A) = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}.$$

For the identity matrix I_n then we have

$$\Delta_k(I_n) = I_{nk}$$
 and $\Delta_k(-I_n) = -I_{nk}$.

So for even *n* there exist maps $G(n) \rightarrow G(nk)$ and $PO(n) \rightarrow PO(nk)$ such that the following diagrams commute:

$$\begin{array}{ccc} SU(n) \xrightarrow{\Delta_k} SU(nk) & SO(n) \longrightarrow SO(nk) \\ \downarrow^{\pi} & \downarrow^{\pi} & \downarrow^{\pi} & \downarrow^{\pi} \\ G(n) \longrightarrow G(nk) & PO(n) \longrightarrow PO(nk) , \end{array}$$

We denote them by the same symbol:

$$\Delta_k$$
: $G(n) \longrightarrow G(nk)$, Δ_k : $PO(n) \longrightarrow PO(nk)$.

Notation.

$$C(n, k) = SU(nk)/\Delta_k SU(n),$$

 $R(n, k) = SO(nk)/\Delta_k SO(n).$

So we have fiberings:

$$(1.1) SU(n) \xrightarrow{\Delta_k} SU(nk) \xrightarrow{\rho} C(n, k).$$

(1.2)
$$SO(n) \xrightarrow{A_k} SO(nk) \xrightarrow{\rho} R(n, k),$$

Remark 1.3.

- (1) C(n, k) is homeomorphic to $G_l(nk)/\Delta_k G_l(n)$ for l|n.
- (2) R(2n, k) is homeomorphic to $PO(2nk)/\Delta_k PO(2n)$.

Now recall from [4] and [5] the following

Proposition 1.4.

(1)
$$H^*(SU(n); \mathbf{Z}) \cong \Lambda(u_3, ..., u_{2n-1}),$$

$$H^*(U(n); \mathbf{Z}) \cong \Lambda(u_1, u_3, ..., u_{2n-1}),$$

where $\deg u_{2i-1}=2i-1$ and u_{2i-1} is universally transgressive with $\tau(u_{2i-1})=c_i$ the i-th universal Chern class.

(2)
$$H^*(SO(n); \mathbb{Z}_2) \cong \Delta(v_1, ..., v_{n-1}),$$

where $\deg v_{i-1} = i-1$ and v_{i-1} is universally transgressive with $\tau(v_{i-1}) = w_i$ the i-th universal Stiefel-Whitney class.

Then

Proposition 1.5. (1) For any integer k>0 and any prime p with (k, p)=1, we have

$$H^*(C(n, k); \mathbf{Z}_p) \cong \Lambda(\bar{x}_{2n+1}, \dots, \bar{x}_{2nk-1})$$

where $\deg \bar{x}_{2i+1} = 2i+1$ and $\rho^* \bar{x}_{2i+1} = u_{2i+1}$.

(2) For any odd integer k>0 we have

$$H^*(R(n, k); \mathbf{Z}_2) \cong \Delta(\bar{z}_n, \dots, \bar{z}_{nk-1})$$

where $\deg \bar{z}_i = i$ and $\rho^* \bar{z}_i = v_i$.

Proof. (1) The map Δ_k : $SU(n) \rightarrow SU(nk)$ induces a map Δ_k : $BSU(n) \rightarrow BSU(nk)$ which gives the k-fold Whitney sum of complex vector bundles. Thus

(1.6)
$$\Delta_k^*(c_i) = \sum_{i_1 + \dots + i_k = i} c_{i_1} \dots c_{i_k} = kc_i + (\text{decomposables}).$$

For the Serre cohomology spectral sequence with \mathbb{Z}_p -coefficient $\{E_r^{*,*}\}$ of the fibering

$$SU(nk) \longrightarrow C(n, k) \longrightarrow BSU(n)$$
,

we have

$$E_2^{*,*} = \mathbb{Z}_p[c_2,...,c_n] \otimes \Lambda(u_3,...,u_{2nk-1})$$

and

$$E_{\infty}^{*,*} \cong \mathcal{G}r(H^*(C(n, k); \mathbf{Z}_p)).$$

Then it follows from Proposition 1.4 and (1.6) that

$$d_{2i}(1 \otimes u_{2i-1}) = kc_i \otimes 1$$
 for $2 \leq i \leq n$

and all other differentials are trivial. So we get

$$\mathscr{G}r(H^*(C(n, k); \mathbf{Z}_p)) \cong E_{\infty}^{*,*} \cong E_{2n+1}^{*,*} \cong \Lambda(u_{2n+1}, ..., u_{2nk-1}).$$

Since (k, p) = 1, (1.6) implies that $\Delta_k^* : H^*(SU(nk); \mathbb{Z}_p) \to H^*(SU(n); \mathbb{Z}_p)$ is epimorphic, and hence SU(n) is totally non-homologous to zero in the fibering (1.1). Thus $\rho^* : H^*(C(n, k); \mathbb{Z}_p) \to H^*(SU(nk); \mathbb{Z}_p)$ is monomorphic.

Theorem 1.7. (1) Let p be a prime, k an integer with (k, p) = 1 and l|n. Then $\Delta_k^* : H^i(BG_l(nk); \mathbf{Z}_p) \to H^i(BG_l(n); \mathbf{Z}_p)$ is isomorphic for $i \leq 2n$ and monomorphic for $i \leq 2n+1$.

(2) Let k be an odd integer. Then $\Delta_k^*: H^i(BPO(2kn); \mathbb{Z}_2) \to H^i(BPO(2n); \mathbb{Z}_2)$ is isomorphic for $i \le n-1$ and monomorphic for $i \le n$.

Proof. Proposition 1.5 applied with the Serre exact sequence (Proposition 5 of $\lceil 12 \rceil$) for the fiberings

$$C(n, k) \longrightarrow BG_l(n) \longrightarrow BG_l(nk)$$

$$R(2n, k) \longrightarrow BPO(2n) \longrightarrow BPO(2nk)$$

gives the results.

Q.E.D.

Notation. For each rational number k, define $v_p(k)$ to be the exponent of p when k is expressed as a product of powers of distinct primes.

Corollary 1.8. (1) If $v_p(n) = v_p(m)$, then as algebras there hold $H^*(BG_l(n); \mathbf{Z}_p) \cong H^*(BG_l(m); \mathbf{Z}_p) \quad \text{for } * \leq 2\min(m, n).$

(2) If $v_2(m) = v_2(n)$, then as algebras there hold

$$H^*(BPO(2n); \mathbb{Z}_2) \cong H^*(BPO(2m); \mathbb{Z}_2)$$
 for $* \leq \min(m, n)$.

In the below we denote by ϕ the diagonal map in $H^*(G; \mathbf{Z}_p)$ induced from the multiplication on a group G. Put $\overline{\phi} = (\eta \otimes \eta) \circ \phi$, where $\eta: H^*(G; \mathbf{Z}_p) \to \sum_{i>0} H^i(G; \mathbf{Z}_p)$ is the natural projection.

Now we recall from [3] and [5] the following facts:

Proposition 1.9. Let n = p'n' with (p, n') = 1 and l|n. Then

$$H^*(G_l(n); \mathbf{Z}_p) \cong \mathbf{Z}_p[y]/(y^{p^r}) \otimes \Lambda(x_1, ..., \hat{x}_{2p^r-1}, ..., x_{2n-1}),$$

where $\deg y = 2$ and $\deg x_{2i-1} = 2i-1$.

Proposition 1.9'. There exist generators $y \in H^1(G(4n+2); \mathbb{Z}_2)$ and $x_{2i+1} \in H^{2i+1}(G(4n+2); \mathbb{Z}_2), 2 \le i \le 4n+1$, such that

(1)
$$H^*(G(4n+2); \mathbb{Z}_2) \cong \Delta(y, y^2, x_5, ..., x_{8n+3}),$$

(2)
$$\bar{\phi}(y) = 0$$
, $\bar{\phi}(x_{4j+1}) = 0$ for $1 \le j \le 2n$, $\bar{\phi}(x_{4j+3}) = x_{4j+1} \otimes y^2$ for $1 \le j \le 2n$,

(3)
$$Sq^{2k}x_{2i-1} = (k, i-k-1)x_{2i+2k-1}$$
.

Remark 1.9". $\overline{\phi}(x_{4j+3} + \text{decomp.}) \neq 0$.

Proposition 1.10. There exist generators $y \in H^1(PO(4n+2); \mathbb{Z}_2)$ and

 $z_i \in H^i(PO(4n+2); \mathbb{Z}_2), 2 \le i \le 4n+1$, such that

(1)
$$H^*(PO(4n+2); \mathbf{Z}_2) \cong \Delta(y, z_2, ..., z_{4n+1}),$$

(2)
$$\overline{\phi}(y)=0$$
, $\overline{\phi}(z_{2k})=0$ for $1 \le k \le 2n$, $\overline{\phi}(z_{2k+1})=z_{2k} \otimes y$ for $1 \le k \le 2n$,

(3)
$$Sq^{i}z_{k} = (k-j, j)z_{j+k}.$$

Notation. PS(X; p) = the Poincaré series of X over \mathbb{Z}_p , i.e.,

$$PS(X: p) = \sum_{i=0}^{\infty} \{ \operatorname{rank} H^{i}(X; \mathbf{Z}_{p}) \} t^{i}.$$

Using this expression we obtain from Propositions 1.5, 1.9 and 1.10:

$$PS(G_l(n): p) \cdot PS(C(n, k): p) = PS(G_l(nk): p)$$
 for $(k, p) = 1$,
 $PS(PO(2n): 2) \cdot PS(R(n, k): 2) = PS(PO(2nk): 2)$.

Thus we have

Proposition 1.11. (1) The cohomology Serre spectral sequence with \mathbb{Z}_p -coefficient for the fibering $G_l(n) \to G_l(nk) \to C(n, k)$ collapses if (k, p) = 1

(2) The cohomology Serre spectral sequence with \mathbb{Z}_2 -coefficient for the fibering $PO(2n) \rightarrow PO(2nk) \rightarrow R(2n, k)$ collapses.

Now we choose generators in $H^*(G(4n+2); \mathbb{Z}_2)$ and $H^*(PO(4n+2); \mathbb{Z}_2)$ appropriately.

Lemma 1.12. In Proposition 1.9' we may choose generators y, x_{2i+1} , $2 \le i \le 4n+1$, of $H^*(G(4n+2); \mathbb{Z}_2)$ by using the correspondent generators in $H^*(G(4n-2); \mathbb{Z}_2)$ and in $H^*(C(4n-2, 2n+1); \mathbb{Z}_2)$ as follows:

$$y = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{*-1}(y) ,$$

$$x_{2i+1} = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{*-1}(x_{2i+1}), \qquad 2 \le i \le 4n-3 ,$$

$$x_{2i+1} = \Delta_{2n-1}^{*} \circ p^*(\bar{x}_{2i+1}), \qquad 4n-2 \le i \le 4n+1 .$$

Proof. This is clear from Proposition 1.11.

Q.E.D.

Similarly

Lemma 1.13. In Proposition 1.10 we may choose generators y, z_i , $2 \le i \le 4n+1$, of $H^*(PO(4n+2); \mathbb{Z}_2)$ by using the correspondent generators in $H^*(PO(4n-2); \mathbb{Z}_2)$ and in $H^*(R(4n-2, 2n+1); \mathbb{Z}_2)$ as follows:

$$y = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{*-1}(y),$$

$$z_i = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{*-1}(z_i), \qquad 2 \le i \le 4n-3,$$

$$z_i = \Delta_{2n-1}^* \circ p^*(z_i), \qquad 4n-2 \le i \le 4n+1.$$

Proposition 1.14. (1) In $H^*(C(4n-2, 2n+1); \mathbb{Z}_2) \cong \Lambda(\bar{x}_{8n-3}, \bar{x}_{8n-1}, \bar{x}_{8n+1}, \bar{x}_{8n+3},...)$ there hold $Sq^4\bar{x}_{8n-3} = \bar{x}_{8n+1}$ and $Sq^4\bar{x}_{8n-1} = \bar{x}_{8n+3}$. (2) In $H^*(R(4n-2, 2n+1); \mathbb{Z}_2) \cong \Delta(\bar{z}_{4n-2}, \bar{z}_{4n-1}, \bar{z}_{4n}, \bar{z}_{4n+1},...)$ there hold $Sq^2\bar{z}_{4n-2} = \bar{z}_{4n}$ and $Sq^2\bar{z}_{4n-1} = \bar{z}_{4n+1}$.

Proof. (1) and (2) follow from (3) of Proposition 1.9' and (3) of Proposition 1.10 respectively. Q.E.D.

Remark. See [9] for the results of the symplectic case.

§ 2. Quotients of U(n)

In this section let p be a prime and n an integer such that (n, p) = 1. Then obviously

(2.1)
$$H^*(BPU(n); \mathbf{Z}_p) \cong H^*(BSU(n); \mathbf{Z}_p).$$

The following are easily obtained:

(2.2)
$$H^*(BC(n); \mathbb{Z}_p) \cong \mathbb{Z}_p[\alpha]$$
 with $\deg \alpha = 2$.

(2.3)
$$H^*(B\Gamma_p; \mathbf{Z}_p) \cong \begin{cases} \mathbf{Z}_2[t] & \text{with } \deg t = 1 \text{ for } p = 2 \\ \mathbf{Z}_p[\mu] \otimes \Lambda(\lambda) & \text{with } \deg \mu = 2, \deg \lambda = 1, \end{cases}$$
$$\delta \lambda = \mu \quad \text{for } p \colon odd,$$

where δ is the Bockstein operator.

Consider the cohomology Serre spectral sequence with Z_p -coefficient associated with the fibering:

$$(2.4) BC(n) \xrightarrow{i'} BU(n) \longrightarrow BPU(n),$$

where i' is induced from the natural inclusion $C(n) \subset U(n)$. The map i'^* is epimorphic since the spectral sequence collapses by (2.2) and by the fact that $H^3(BPU(n); \mathbb{Z}_p) = H^3(BSU(n); \mathbb{Z}_p) = 0$. Let $j: \Gamma_p \subset C(n)$ be the inclusion. Then

(2.5)
$$\operatorname{Im} j^* \cong \left\{ \begin{array}{ll} \mathbf{Z}_p[\mu] & \text{for } p \colon odd \\ \mathbf{Z}_2[t^2] & \text{for } p = 2 \end{array} \right.$$

Putting $i = i' \circ j$ and choosing μ (or t) suitably we get

(2.6)
$$i^*(c_1) = \begin{cases} \mu & for \ p: \ odd \\ t^2 & for \ p = 2. \end{cases}$$

Let $\{E_r^*, *\}$ be the cohomology Serre spectral sequence with \mathbf{Z}_p -coefficient associated with the fibering $U(n) \xrightarrow{\pi} U(n)/\Gamma_p \longrightarrow B\Gamma_p$. Since the generators in $H^*(U(n); \mathbf{Z}_p) \cong \Lambda(u_1, u_3, ..., u_{2n-1})$ are universally transgressive, they are transgressive with respect to this fibering. In particular we have

$$\tau(u_1) = i^*(c_1)$$

where τ is the transgression.

Therefore $E_3^{a,b}=0$ if $a \ge 2$, and hence

(2.7)
$$E_3 \cong E_\infty \cong \begin{cases} \Lambda(\lambda) \otimes \Lambda(u_3, u_5, ..., u_{2n-1}) & \text{for } p : \text{ odd} \\ \Lambda(t) \otimes \Lambda(u_3, u_5, ..., u_{2n-1}) & \text{for } p = 2. \end{cases}$$

Proposition 2.8. $H^*(U(n)/\Gamma_p; \mathbb{Z})$ is p-torsion free and hence it is torsion free.

Proof is left to the reader.

It follows from this proposition

Theorem 2.9. Let (n, p)=1. Then

$$H^*(U(n)/\Gamma_n; \mathbf{Z}_n) \cong \Lambda(\bar{\lambda}, u_3, ..., u_{2n-1})$$

such that

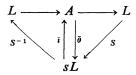
- (1) $\bar{\lambda}$ and u'_{2i-1} are universally transgressive (and hence they are primitive),
- (2) $\deg \bar{\lambda} = 1$ and $\deg u'_{2i-1} = 2i 1$,
- (3) $\pi^*(u'_{2i-1}) = u_{2i-1}$ for the projection $\pi: U(n) \to U(n)/\Gamma_p$.

Proof. (1) and (2) follow from (2.7) and the Borel's theorem (Theorem 13.1 of [4]). (3) is clear, since $\pi^*(u'_{2i-1}) \neq 0$ by (2.7) and since $\pi^*(u'_{2i-1})$ are universally transgressive. Q. E. D.

§3. The E_2 -term of the Eilenberg-Moore Spectral Sequence

Put $A = H^*(G(4n+2); \mathbb{Z}_2)$ for simplicity and regard A as a coalgebra over \mathbb{Z}_2 , where the coalgebra structure $\overline{\phi}$ is given by Proposition 1.9'.

Let L be a \mathbb{Z}_2 -submodule of $A^+ = \sum_{i>0} H^i(G(4n+2); \mathbb{Z}_2)$ generated by $\{y, y^2, x_{4j+1}, x_{4i+3}\}, 1 \le i, j \le 2n$. Let $s: L \to sL$ be the suspension. We express the corresponding elements as $sL = \{a_2, a_3, a_{4j+2}, b_{4i+4}\}, 1 \le i, j \le 2n$. Let $c: L \to A$ be the inclusion and $\theta: A \to L$ the projection



such that $\theta \circ \iota = 1_L$. Define $\overline{\theta} \colon A \to sL$ by $\overline{\theta} = s \circ \theta$ and $\overline{\iota} \colon sL \to A$ by $\overline{\iota} = \iota \circ s^{-1}$. Consider the tensor algebra T(sL). Denote by I the ideal of T(sL) generated by $\operatorname{Im}((\overline{\theta} \otimes \overline{\theta}) \circ \overline{\phi}) \circ \operatorname{Ker} \overline{\theta}$. Put $\overline{X} = T(sL)/I$. Then $\overline{X} \cong \mathbb{Z}_2[a_2, a_3, a_{4i+2}, b_{4i+4}]$, $1 \le i, j \le 2n$.

The map $\overline{d} = (\overline{\theta} \otimes \overline{\theta}) \circ \overline{\phi} \circ \overline{\tau}$ on sL can be extended over \overline{X} , since $\overline{d}(I) \subset I$. Further, \overline{d} satisfies $\overline{d} \circ \overline{d} = 0$ on \overline{X} . So \overline{X} is a differential algebra. Now we construct the twisted tensor product $X = A \otimes \overline{X}$ with respect to $\overline{\theta}$ following Brown (cf. [7], [8] or [13]). Then $X = A \otimes \overline{X}$ is a differential algebra.

ferential A-comodule with the differential operator $d=1\otimes \overline{d}+(1\otimes \psi)\circ (1\otimes \overline{\theta}\otimes 1)\circ \phi\otimes 1$, where ϕ is the diagonal structure in A and ψ is the multiplication in \overline{X} . More concretely,

$$dy = a_2$$
, $dy^2 = a_3$,
 $dx_{4j+1} = a_{4j+2}$, $1 \le j \le 2n$,
 $dx_{4i+3} = b_{4i+4} + x_{4i+1}a_3$, $1 \le i \le n$.

Now we define weight in X as follows:

$$A: \qquad y \qquad y^2 \qquad x_{4j+1} \qquad x_{4i+3}$$
 $\bar{b}\downarrow$ $\bar{X}: \qquad a_2 \qquad a_3 \qquad a_{4j+2} \qquad b_{4i+4}$ weight $0 \qquad 0 \qquad 0 \qquad 1$

The weight of a monomial is a sum of the weight of each element. Put $F_i = \{x \mid \text{weight } x \leq i\}$. Then

$$E_0 X = \sum_{i} F_i / F_{i-1}$$

$$\cong \Lambda(y, y^2, x_{4i+1}, x_{4i+3}) \otimes \mathbf{Z}_2 [a_2, a_3, a_{4i+2}, b_{4i+4}],$$

where the induced differential operator d_0 is given by

$$d_0y = a_2$$
, $d_0y^2 = a_3$, $d_0x_{4j+1} = a_{4j+2}$, $d_0x_{4i+3} = b_{4i+4}$.

Thus E_0X is acyclic and hence X is acyclic. Namely $X = A \otimes \overline{X}$ is an injective resolution for A over \mathbb{Z}_2 . Therefore by definition

$$H^*(\overline{X}: \overline{d}) = \operatorname{Cotor}^A(\mathbf{Z}_2, \mathbf{Z}_2).$$

As described above the differential operator \bar{d} in $\bar{X} = \mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{4i+4}]$ is given by

$$\overline{d}a_i = 0$$
 for $i = 2, 3, 4j + 2$ $(1 \le j \le 2n)$,
 $\overline{d}b_{4i+4} = a_{4i+2}a_3$ $(1 \le i \le 2n)$.

For simplicity we put $P = \mathbb{Z}_2[a_{4j+2}; 1 \le j \le 2n]$ and $Q = \mathbb{Z}_2[b_{4i+4}^2; j \le 2n]$

 $1 \le i \le 2n$]. Let C be a submodule of \overline{X} generated by $\{b_{\S^1}^{e_1}...b_{\P^{e_n}+4}^{e_n}; \epsilon_i=0 \text{ or } 1\}$. Then as a module

$$\overline{X} \cong \mathbb{Z}_2[a_2] \otimes Q \otimes \mathbb{Z}_2[a_3] \otimes P \otimes C$$
.

We remark that as a chain complex, \overline{X} may be thought of as a tensor product of $(\mathbb{Z}_2[a_2] \otimes \mathbb{Q})$ with a trivial differential operator d_0 and $(\mathbb{Z}_2[a_3] \otimes P \otimes C)$ with a differential operator d_1 such that $d_1(a_3) = d_1(a_{4i+2}) = 0$ and $d_1(b_{4i+4}) = a_3a_{4i+2}$. Therefore

$$H(\overline{X}: \overline{d}) \cong H(\mathbf{Z}_2[a_2] \otimes Q: d_0) \otimes H(\mathbf{Z}_2[a_3] \otimes P \otimes C: d_1)$$

$$\cong \mathbf{Z}_2[a_2] \otimes Q \otimes H(\mathbf{Z}_2[a_3] \otimes P \otimes C: d_1).$$

For $f \in P \otimes C$ there hold $d_1(f) = a_3 \bar{f}$ for some $\bar{f} \in P \otimes C$. Then we define $\bar{d}_1 \colon P \otimes C \to P \otimes C$ by $\bar{d}_1(f) = \frac{d_1(f)}{a_3}$.

Lemma 3.1. The chain complex $(P \otimes C: \overline{d}_1)$ is acyclic.

Proof. Consider the Koszul resolution of the exterior algebra $\Lambda(b_{4i+4}; 1 \le i \le 2n)$. Q. E. D.

Proposition 3.2. Let $f \in \mathbb{Z}_2[a_3] \otimes P \otimes C$. Then $d_1 f = 0$ iff there exists an element $g \in \mathbb{Z}_2[a_3] \otimes P \otimes C$ such that $d_1(g) = a_3 f$, or else $f = 1 \otimes 1 \otimes 1$.

Proof. Sufficiency is clear, since \overline{X} is a polynomial algebra.

(Necessity) It suffices to prove necessity for an element $f \in \mathbb{Z}_2 \otimes P \otimes C \cong P \otimes C$. Suppose $d_1(f) = 0$. Then $a_3 \bar{f} = 0$, and hence $\bar{f} = 0$. So by definition $\bar{d}_1(f) = 0$, from which we deduce that $f = 1 \otimes 1 \otimes 1$ or else by Lemma 3.1 that there is an element $g \in P \otimes C$ such that $\bar{d}_1(g) = f$. Thus $a_3 f = d_1(g)$. Q.E.D.

Let $I = (i_1, ..., i_r)$ be a sequence of integers satisfying

$$(3.3) 1 \leq r \leq 2n \quad and \quad 1 \leq i_1 < \dots < i_r \leq 2n .$$

We put
$$y(I) = \frac{1}{a_3} \overline{d}(b_{4i_1+4}...b_{4i_r+4}).$$

It follows from Proposition 3.2 that a system of generators of

Ker \overline{d} over $\mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{4i+4}^2]$ is $\{1, y(I)\}$, where I runs over all sequences satisfying (3.3).

Theorem 3.4. For $A = H^*(G(4n+2); \mathbb{Z}_2)$

$$Cotor^{A}(\mathbf{Z}_{2}, \mathbf{Z}_{2}) \cong \mathbf{Z}_{2}[a_{2}, a_{3}, x'_{8l+8}, y(l)]/R$$

where $x_{8l+8}' = \{b_{4l+4}^2\}$ for $1 \le l \le 2n$ and I runs over all sequences satisfying (3.3). Further R is the ideal generated by $a_3y(I)$, $y(I)^2 + \sum_{j=1}^r x_{8i_1+8}' \cdots a_{4i_j+2}^2 \cdots x_{8i_r+8}'$ and $y(I)y(J) + \sum_i f_i y(I_i)$, where f is a polynomial of a_2, a_3, x_{8i_r+8}' 's.

Remark 3.5. $y(\{i\}) = a_{4i+2}$. For $I = (i_1, ..., i_r)$, $(r \ge 2)$, y(I) can be defined inductively. Put $I' = (i_1, ..., i_{r-1})$. Suppose that $y(I') = \{\frac{1}{a_3} \overline{d}(b_{4i_1+4} ... b_{4i_{r-1}+4})\}$ is defined. Then $y(I) = y(I', i_r) = \{(b_{4i_1+4} ... b_{4i_{r-1}+4}) a_{4i_r+2} + y(I') b_{4i_r+4}\} = \langle y(I'), a_3, a_{4i_r+2} \rangle$, the Massey product.

Remark 3.6. The relation $y(I)y(J) + \Sigma f_i y(I_i)$ can be obtained by calculation on the cochains, since $\{1, y(I)\}$ is a system of generators over $\mathbb{Z}_2[a_2, a_3, x'_{8I+8}]$.

Now we consider the case $A=H^*(PO(4n+2); \mathbb{Z}_2)$. By a similar argument to the before we have $\overline{X}=\mathbb{Z}_2\{a_2, a_{2j+1}, b_{2i+2}\}/R$, $1 \le i, j \le 2n$, where R is the ideal generated by $[a_{2k+1}, b_{2k+2}] + a_{4k+1}a_2$, $1 \le k \le n$ and [r, s] for other pairs of generators (r, s) ([x, y] = xy + yx). We define weight in $X=A \otimes \overline{X}$, the twisted tensor product with respect to $\overline{\theta}$:

Put $F_i = \{x \mid \text{ weight } x \leq i\}$ as before. Then

$$E_0 X = \sum F_i / F_{i-1}$$

$$\cong \Lambda(y) \otimes \Lambda(z_2, z_{2i+1}) \otimes \mathbf{Z}_2 \lceil a_2, a_{2i+1}, b_{2i+2} \rceil,$$

where the induced differential operator is given by $d_0y = a_2$, $d_0z_{2j} = a_{2j+1}$ and $d_0z_{2i+1} = b_{2i+2}$. It shows that E_0X and hence X is acyclic.

The differential operator \overline{d} in \overline{X} is given by $\overline{d}a_j = 0$ for any j and $\overline{d}b_{2i+2} = a_{2i+1}a_2$. By a similar, although a little bit complicated, calculation to the before, we obtain the following.

For a sequence of integers $I = (i_1, ..., i_r)$ satisfying (3.3) we put $y'(I) = \frac{1}{a_2} \overline{d}(b_{2i_1+2}...b_{2i_r+2})$.

Theorem 3.7. For $A = H^*(PO(4n+2); \mathbb{Z}_2)$

$$Cotor^{A}(\mathbf{Z}_{2}, \mathbf{Z}_{2}) \cong \mathbf{Z}_{2}[a_{2}, x'_{4l+4}, y'(I)]/R$$
,

where $x'_{4l+4} = b_{2l+2}^2 + a_2 b_{4l+2}$ for $1 \le l \le n$ and $= b_{2l+2}^2$ for $n+1 \le l \le 2n$ and I runs over all sequences satisfying (3.3). Further R is the ideal generated by $a_2y'(I)$, $y'(I)^2 + \sum_{j=1}^r x'_{4i_1+4} \cdots a_{2i_j+1}^2 \cdots x'_{4i_r+4}$ and $y'(I)y'(J) + \sum_i f'_i y'(I_i)$.

Remark 3.8. $y'(\{i\}) = a_{2i+1}$, For $I = (i_1, ..., i_r)$, y'(I) can also be defined inductively. i.e.,

$$y'(I) = \langle y'(I'), a_2, a_{2i_r+1} \rangle$$
, where $I = (I', i_r)$.

The following results can easily be obtained.

Proposition 3.9.

- (1) Cotor $H^*(U(2n+1); Z_2)(Z_2, Z_2) \cong Z_2[\bar{c}_1, ..., \bar{c}_{2n+1}],$ with $\deg \bar{c}_i = 2i$.
- (2) $\operatorname{Cotor}^{H^*(U(2n+1)/\Gamma_2; \mathbf{Z}_2)}(\mathbf{Z}_2, \mathbf{Z}_2) \cong \mathbf{Z}_2[a'_2, \bar{c}'_2, ..., \bar{c}'_{2n+1}],$ with $\deg a'_2 = 2$ and $\deg \bar{c}'_i = 2i.$
- (3) $\operatorname{Cotor}^{H^*(SO(4n+2); \mathbf{Z}_2)}(\mathbf{Z}_2, \mathbf{Z}_2) \cong \mathbf{Z}_2[\overline{w}_2, \overline{w}_3, ..., \overline{w}_{4n+2}],$ with $\operatorname{deg} \overline{w}_i = i$.
- (4) $\operatorname{Cotor}^{H*(Sp(2n+1); \mathbf{Z}_2)}(\mathbf{Z}_2, \mathbf{Z}_2) \cong \mathbf{Z}_2[\bar{q}_1, \dots, \bar{q}_{2n+1}],$ with $\operatorname{deg} \bar{q}_i = 4i$.

(5)
$$\operatorname{Cotor}^{H^*(PSp(2n+1); \mathbf{Z}_2)}(\mathbf{Z}_2, \mathbf{Z}_2) \cong \mathbf{Z}_2[a'_2, a'_3, \bar{q}'_2, \dots, \bar{q}'_{2n+1}],$$
with $\deg a'_i = i$ and $\deg \bar{q}'_i = 4i$.

(6)
$$\operatorname{Cotor}^{H^*(SU(4n+2); \mathbf{Z}_2)}(\mathbf{Z}_2, \mathbf{Z}_2) \cong \mathbf{Z}_2[\bar{c}_2, ..., \bar{c}_{2n+1}],$$
with $\operatorname{deg} \bar{c}_i = 2i$.

§4. Collapsing of the Eilenberg-Moore Spectral Sequence

Let G be a topological group. In 1959 Eilenberg-Moore constructed a new type of spectral sequence $\{E_r(G), d_r\}$ such that

(1)
$$E_2(G) \cong \operatorname{Cotor}^{H^*(G, \mathbf{Z}_p)}(\mathbf{Z}_p, \mathbf{Z}_p),$$

(2)
$$E_{\alpha}(G) \cong \mathscr{G}rH^*(BG; \mathbf{Z}_n)$$
.

Furthermore, this spectral sequence satisfies naturality for a homomorphism $f: G \to G'$. We denote by $f^*: E_r(G') \to E_r(G)$ the induced homomorphism.

In this section we will show that the Eilenberg-Moore spectral sequence collapses for various (G, p). In particular, we will show that for G = G(4n+2) and PO(4n+2) the Eilenberg-Moore spectral sequence with \mathbb{Z}_2 -coefficient collapses.

The following directly follows from Theorem 2.9:

Proposition 4.1. Let (n, p) = 1. Then the Eilenberg-Moore spectral sequence collapses for $(G, p) = (U(n)/\Gamma_p, p)$.

By Kono [9] $H^*(PSp(2n+1); \mathbb{Z}_2)$ is transgressively generated and hence we have

Proposition 4.2. The Eilenberg-Moore spectral sequence collapses for (G, p) = (PSp(2n+1), 2).

The following result will be used below. The proof is easy and left to the reader.

Proposition 4.3. (1) The Eilenberg-Moore spectral sequence col-

lapses for $G = U(2n+1)/\Gamma_2$, SO(4n+2), U(2n+1), PSp(2n+1), SU(4n+2) and Sp(2n+1).

(2) The elements \bar{c}_i and \bar{w}_i in Proposition 3.9 represent c_i and w_i respectively. The elements \bar{q}'_i and \bar{c}'_i do q'_i and c'_i in $H^*(BG; \mathbf{Z}_2)$ such that $\pi^*(c'_i) = c_i + (\text{decomp.})$ and $\pi^*(q'_1) = q_i + (\text{decomp.})$, where π is the covering homomorphism.

For simplicity we use the following

Notation.

$$\begin{split} A_1 &= H^*(U(2n+1); \ Z_2) \,, \\ A_2 &= H^*(U(2n+1)/\Gamma_2; \ Z_2) \,, \\ A_3 &= H^*(SO(4n+2); \ Z_2) \,, \\ A_4 &= H^*(PO(4n+2); \ Z_2) \,, \\ B_1 &= H^*(Sp(2n+1); \ Z_2) \,, \\ B_2 &= H^*(PSp(2n+1); \ Z_2) \,, \\ B_3 &= H^*(SU(4n+2); \ Z_2) \,, \\ B_4 &= H^*(G(4n+2); \ Z_2) \,. \end{split}$$

Case I. $H^*(PO(4n+2); \mathbb{Z}_2)$.

Consider the commutative diagram

$$U(2n+1) \xrightarrow{i} SO(4n+2)$$

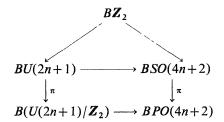
$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$U(2n+1)/\Gamma_2 \xrightarrow{i} PO(4n+2)$$

where π is the projection and i's are the standard maps (cf. § 6).

Lemma 4.4. The elements $a'_2 \in \text{Cotor}^{A_2}(\mathbf{Z}_2, \mathbf{Z}_2)$ and $a_2 \in \text{Cotor}^{A_4}(\mathbf{Z}_2, \mathbf{Z}_2)$ are permanent cycles and $i^*(a_2) = a'_2$.

Proof. Recall $H^*(B\mathbf{Z}_2; \mathbf{Z}_2) \cong \mathbf{Z}_2[t]$. In the commutative diagram



the elements a_2 and a'_2 represent the trangression images of t, and hence they are permanent cycles. For dimensional reason we have $i^*(a_2) = a'_2$. Q.E.D.

The following relations among the elements in Theorem 3.7 and Proposition 3.9 are easily checked to be true:

(4.5.1) $\pi^*(x'_{4i}) = \overline{w}_{2i}^2 + W_i$, where W_i is a sum of monomials containing elements of lower degree,

(4.5.2)
$$i^*(\overline{w}_{2i}) = \overline{c}_i + (\text{decomp.}), \text{ (see § 6)},$$

(4.5.3)
$$\pi^{*}(\bar{c}'_{i}) = \bar{c}_{i} + (\text{decomp.}),$$

$$\pi^{\sharp}(a_2) = \pi^{\sharp}(a_2') = 0.$$

Therefore

(4.6) $i^*(x'_{4i}) = \bar{c}'_{i}^{2} + \gamma_{i}$, where γ_{i} is a sum of monomials containing elements of lower degree.

Let $E_r(1)$ be the Eilenberg-Moore spectral sequence with \mathbb{Z}_2 -coefficient for PO(4n+2) and $\{E_r(2), d_r\}$ be the cartesian product of the Eilenberg-Moore spectral sequences of $U(2n+1)/\Gamma_2$ and SO(4n+2), i.e.,

$$E_r(2) = \operatorname{Cotor}^{A_2}(\mathbf{Z}_2, \mathbf{Z}_2) \times \operatorname{Cotor}^{A_3}(\mathbf{Z}_2, \mathbf{Z}_2)$$
 and $d_r = 0$

for all $r \ge 2$. Then the map $i^* \times \pi^*$ induces a homomorphism between the spectral sequences:

$$E_r(1) \longrightarrow E_r(2)$$
 for $r \ge 2$.

Lemma 4.7. $i^* \times \pi^* : E_2(1) \to E_2(2)$ is injective.

Proof. Let f_1 be a sum of monomials containing a_2 and f_2 a sum of those not containing a_2 . Suppose $(i^* \times \pi^*)(f_1 + f_2) = 0$ from which $\pi^*(f_1 + f_2) = \pi^*(f_2) = 0$ and hence $f_2 = 0$ by (4.5.1). Meanwhile $(i^* \times \pi^*)(f_1 + f_2) = 0$ implies $i^*(f_1 + f_2) = 0$, which implies $i^*(f_1) = 0$, and hence $f_1 = 0$ by (4.6). Thus $i^* \times \pi^*$ is injective. Q.E.D.

Thus we have shown

Theorem 4.8. The Eilenberg-Moore spectral sequence with \mathbb{Z}_2 -coefficient collapses for G=PO(4n+2).

In fact, Lemma 4.7 indicates that all differentials in $E_r(1)$ are trivial. An immediate corollary is

Theorem 4.9. As a module

$$H^*(BPO(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, x'_{4l+4}, y'(I)]/R$$

where $1 \le l \le 2n$, I runs over all sequences satisfying (3.3) and R is the ideal generated by $a_2y'(I)$, $y'(I)^2 + \sum_{j=1}^r x_{4i_1+4} \dots a_{2i_j+1}^2 \dots x_{4i_r+4}$ and $y'(I)y'(J) + \sum_i f_i'y'(I_i)$.

Case II. $H^*(G(4n+2); \mathbb{Z}_2)$.

Consider the commutative diagram

$$Sp(2n+1) \xrightarrow{i} SU(4n+2)$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$PSp(2n+1) \xrightarrow{i} G(4n+2)$$

where π is the projection and i's are the standard maps.

Lemma 4.4'. The elements $a_i \in \text{Cotor }^{B_A}(\mathbb{Z}_2, \mathbb{Z}_2)$ and $a_i' \in \text{Cotor }^{B_2}(\mathbb{Z}_2, \mathbb{Z}_2)$ are permanent cycles and $i^*(a_i) = a_i'$ for i = 2, 3.

Proof is similar to that of Lemma 4.4.

The following relations among the elements in Theorem 3.4 and Proposition 3.9 are easily checked to be true:

(4.10.1)
$$\pi^{\sharp}(x_{8l+8}') = \bar{c}_{2l+2}^2 + v_l,$$

(4.10.2)
$$\pi^{\sharp}(\bar{q}_{i}') = \bar{q}_{i} + (\text{decomp.}),$$

where v_l is a sum of monomials containing elements of lower degree,

(4.10.3)
$$\pi^{\sharp}(a_i) = \pi^{\sharp}(a_i') = 0 \quad \text{for} \quad i = 2, 3,$$

(4.11)
$$i^*(\bar{c}_{2i}) = \bar{q}_i + (\text{decomp.}).$$

Lemma 4.7'. Let $f \in \text{Cotor } B_4(\mathbf{Z}_2, \mathbf{Z}_2)$ such that $\deg f$ is odd. Then $i^*(f) = 0$ iff f = 0.

Proof.
$$i^*(x'_{8l+8}) = \bar{q}'_{l+1}^2 + Q_l$$
,

where Q_l is a sum of monomials containing elements of lower degree. So the elements $i^*(x'_{8l+8})$, $1 \le l \le 2n$, i^*a_3 and i^*a_2 are algebraically independent. Q. E. D.

Theorem 4.10. The Eilenberg-Moore spectral sequence with \mathbb{Z}_2 -coefficient collapses for G = G(4n+2).

Proof. Recall that a_2 and a_3 are permanent cycles. All generators of Cotor ${}^{B_4}(\mathbf{Z}_2, \mathbf{Z}_2)$ except a_3 are of even degree. So $d_r(\alpha)$ is of odd degree for $\alpha \in \{y(I), x'_{8l+8}\}$. By naturality $i^{\sharp}d_r(\alpha) = d_r i^{\sharp}(\alpha) = 0$. Hence by Lemma 4.7' $d_r(\alpha) = 0$. Thus all generators survive into E_{∞} . Q.E.D.

Immediate corollaries are

Theorem 4.11. As a module

$$H^*(BG(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3, x'_{8l+8}, y(I)]/R$$

where $x_{8l+8}' = \{b_{4l+4}^2\}$ for $1 \le l \le 2n$ and I runs over all sequences satisfying (3.3) and R is the ideal generated by $a_3y(I)$, $y(I)^2 + \sum_{j=1}^r x_{8i_1+8} \cdots a_{4i_j+2}^2 \cdots x_{8i_r+8}$ and $y(I)y(J) + \sum_i f_i y(I_i)$.

Theorem 4.12. As a module

$$H^*(BPU(4n+2); \mathbf{Z}_2) \cong \mathbf{Z}_2[a_2, a_3, x'_{8l+8}, y(l)]/R$$

with the same l, I and R as in Theorem 4.11.

§5. Some Generators in $H^*(BG(4n+2); \mathbb{Z}_2)$ and $H^*(BPO(4n+2); \mathbb{Z}_2)$

Let G be a compact, connected Lie group and H its closed subgroup. Let EG and EH be the total spaces of the universal G- and H-bundles respectively. Then the following diagram is commutative:

$$\begin{array}{cccc} H & \longrightarrow & EH & \longrightarrow & BH \\ \downarrow^j & & \downarrow & & \downarrow \\ G & \longrightarrow & EG & \longrightarrow & BG \\ \downarrow^p & & \downarrow & & \parallel \\ G/H & \longrightarrow & BH & \longrightarrow & BG \end{array}$$

Then naturality of the transgression implies

Lemma 5.1. Let k be a commutative field.

- (1) If $x \in H^*(G/H; k)$ is transgressive with respect to the bottom fibering, then $p^*(x) \in H^*(G; k)$ is universally transgressive.
- (2) If $x \in H^*(G; k)$ is universally transgressive, so is $j^*(x) \in H^*(H; k)$.
- (3) Suppose $H^i(G/H; k) = 0$ for i < n. Let $x \in H^i(G; k)$ and i < n-1. If $j^*(x)$ is universally transgressive, so is x.

Recall the following:

(5.2)
$$G(2) = SO(3)$$
,

(5.3) $H^*(SO(3); \mathbb{Z}_2) = \mathbb{Z}_2[a]/(a^4)$ where a is universally transgressive.

Now we prove

Proposition 5.4. The elements a and x_{4j+1} of $H^*(G(4n+2); \mathbb{Z}_2)$, $1 \le j \le 2n$, are all universally transgressive.

Proof. Proof is induction on n. The case n=0 is clear from (5.2) and (5.3). Suppose as the inductive hypothesis that the elements a and x_{4j+1} , $1 \le j \le 2n-1$, are universally transgressive in $H^*(G(4n-2);$

 \mathbb{Z}_2). It follows from Proposition 1.5 and (2), (3) of Lemma 5.1 that the elements a and x_{4j+1} , $1 \le j \le 2n-1$, are universally transgressive. Clearly the element \bar{x}_{8n-3} is transgressive with respect to the fibering $C(4n-2, 2n+1) \to BG(4n-2) \to BG((4n-2)(2n+1))$, and hence so is \bar{x}_{8n+1} , since $\bar{x}_{8n+1} = Sq^4x_{8n-3}$ by Proposition 1.14. Thus by (1) of Lemma 5.1 the elements x_{8n-3} and x_{8n+1} are universally transgressive. Q.E.D.

It follows from (2.2) and (2.3) that $H^*(BG(2); \mathbb{Z}_2) \cong H^*(BSO(3); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3]$, where $a_2 = \tau(a)$ and $a_3 = \tau(a^2)$ with $\deg a_i = i$. As Δ_{2n+1}^* : $H^i(BG(4n+2); \mathbb{Z}_2) \to H^i(BG(2); \mathbb{Z}_2)$ is isomorphic for $i \leq 4$ by (1) of Theorem 1.7, we denote by $a_2 = \tau(a)$ and $a_3 = \tau(a^2)$ the generators of $H^i(BG(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2$ for i = 2, 3.

Lemma 5.5.
$$Sq^{1}a_{3}=0$$
 and $Sq^{2}a_{3}=a_{2}a_{3}$ in $H^{*}(BG(4n+2); \mathbb{Z}_{2})$.

Proof. We obtain the above formula by virtue of the Wu formula, since a_i is the inverse image of Δ_{2n+1}^* of the *i*-th Stiefel-Whitney class. Q. E. D.

Proposition 5.6. There exist elements a_{4j+2} , $1 \le j \le 2n$, in $H^*(BG(4n+2); \mathbb{Z}_2)$ such that

(1)
$$\deg a_{4j+2} = 4j+2,$$

(2)
$$a_{4i+2} \equiv \tau(x_{4i+1}) \mod (\text{decomp.}),$$

$$a_3 a_{4i+2} = 0.$$

Proof. Proof is induction on n. The case n=0 is clear from (2.2) and (2.3). Suppose that the assertion is true for BG(4n-2). By Theorem 1.7 the homomorphism $\Delta_{2n+\epsilon}^*$ is injective for $\deg \leq 8n-4\epsilon+1$ with $\epsilon=\pm 1$. Put $a_i=\Delta_{2n-1}^*\circ \Delta_{2n+1}^{*-1}(a_i)$ for $i\leq 8n-6$. Then a_i satisfies the properties (1), (2), (3) by the inductive hypothesis. For the transgression τ of the fibering

$$(5.7) C(4n-2, 2n+1) \longrightarrow BG(4n-2) \longrightarrow BG((4n-2)(2n+1))$$

we put $a_{8n-2} = \Delta_{2n-1}^* \tau(\bar{x}_{8n-3})$. The element $x_{8n-1} \in H^*(G(4n+2); \mathbb{Z}_2)$ is not universally transgressive, since it is not primitive by Proposition

1.9'. So the corresponding element \bar{x}_{8n-1} of $H^*(C(4n-2, 2n+1); \mathbb{Z}_2)$ is not transgressive in the fibering (5.7). That is, in the cohomology Serre spectral sequence $\{E_r^{*,*}, d_r\}$ with \mathbb{Z}_2 -coefficient of (5.7) we have $d_3(1 \otimes \bar{x}_{8n-1}) = a_3 \otimes \bar{x}_{8n-3}$, from which we get $a_3 \tau(\bar{x}_{8n-3}) = 0$. Applying Δ_{2n-1}^* we obtain $a_3 a_{8n-2} = 0$. Thus the element a_{8n-2} satisfies (1), (2), (3). Next, we put

$$a_{8n+2} = A_{2n-1}^* \circ \tau(\bar{x}_{8n+1}) + a_2 Sq^2 a_{8n-2} + a_3 Sq^1 a_{8n-2}.$$
 Then
$$a_3 a_{8n+2} = a_3 (Sq^4 a_{8n-2} + a_2 Sq^2 a_{8n-2} + a_3 Sq^1 a_{8n-2})$$
$$= Sq^4 (a_3 a_{8n-2})$$
$$= 0.$$

So the element a_{8n+2} satisfies (1), (2), (3).

Q.E.D.

Quite similarly one can prove

Proposition 5.8. There exist elements a_2 , a_{2j+1} , $1 \le j \le 2n$, in H^* $(BPO(4n+2); \mathbb{Z}_2)$ such that

(1)
$$\deg a_2 = 2$$
, $\deg a_{2i+1} = 2i+1$,

(2)
$$a_2 = \tau(y), \quad a_{2i+1} \equiv \tau(z_{2i}), \quad 1 \le j \le 2n,$$

(3)
$$a_2 a_{2i+1} = 0$$
.

Remark 5.9. The elements a_i in Theorems 4.9, 4.11 and 4.12 are thus the transgression images of some generators in $H^*(G(4n+2); \mathbb{Z}_2)$, $H^*(PU(4n+2); \mathbb{Z}_2)$ or $H^*(PO(4n+2); \mathbb{Z}_2)$. The relations among them are given in Propositions 5.6 and 5.8.

§6. Exterior Power Representations

To begin with we recall the definition of the exterior power representation (p. 90 of [14]).

Let G be a group and k a commutative field. Denote by GL(n, k) the general linear group. Let $A = (a_{ij}): G \rightarrow GL(n, k)$ be a matrix rep-

resentation. For a pair of sequences of r integers $I=(i_1,...,i_r)$ and $J=(j_1,...,j_r)$ such that

(*)
$$1 \leq i_1 < \dots < i_r \leq n,$$

$$1 \leq j_1 < \dots < j_r \leq n,$$

we define

$$a_{IJ}(x) = \det \left(\begin{array}{ccc} a_{i_1j_1}(x) & \dots & a_{i_rj_1}(x) \\ \vdots & & \vdots \\ a_{i_1j_r}(x) & \dots & a_{i_rj_r}(x) \end{array} \right) \quad \text{for} \quad x \in G.$$

Definition 6.1. Let $1 \le r \le n$. We define a representation $A^{(r)}(x)$: $G \to GL(\binom{n}{r}, k)$ by

$$A^{(r)}(x) = \bigcup_{\underline{J}} \left(\dots a_{IJ}(x) \right)$$

where I and J run over all sequences satisfying (*). We call $A^{(r)}$ the exterior power representation of degree r of G.

If G is a topological group and $k=\mathbb{R}$ or \mathbb{C} and if $A: G \to GL(n, k)$ is continuous, so is $A^{(r)}$, namely, $A^{(r)}$ is a representation of G.

When G is a compact group and $k=\mathbb{C}$ (resp. R), we may suppose

$$A^{(r)}: G \longrightarrow U(\binom{n}{r})$$
 (resp. $A^{(r)}: G \longrightarrow O(\binom{n}{r})$)

by making use of the G-invariant Hermitian (resp. Riemannian) metric (see [2]).

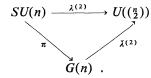
Proposition 6.2. Let G be a subgroup of GL(n, k). Let $A: G \rightarrow GL(n, k)$ be an inclusion. For $G \ni x = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ we have $A^{(r)}(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in GL(\binom{n}{r}, k)$ if r is even.

Proof. By definition

$$a_{IJ}(x) = \begin{cases} (-1)^r & \text{if} \quad I = J \\ 0 & \text{if} \quad I \neq J \end{cases}.$$
 Q.E.D.

In the below we regard the identity map $\lambda: G = U(n) \rightarrow U(n)$ (or the inclusion $\lambda: SU(n) \rightarrow U(n)$) as an *n*-dimensional complex representation.

Corollary 6.3. Let n be even. Then there exists a map $\bar{\lambda}^{(2)}$ such that the right diagram commutes:



Let t_k be a generator of $H^2(BT^n; \mathbb{Z})$ corresponding to the torus

$$T^{1} = \left\{ \underbrace{k} \begin{pmatrix} 1 & & 0 \\ & \ddots & & 0 \\ & & 1 & e^{i\theta} & \\ & & & 1 \\ 0 & & & 1 \end{pmatrix}; 0 \leq \theta < 2\pi \right\} \subset T_{n} \subset U(n).$$

Then according to Borel-Hirzebruch (p. 492 of [6]) the total Chern class $c(\lambda^{(2)})$ of the second exterior power representation $\lambda^{(2)}$ is given by

(6.4)
$$c(\lambda^{(2)}) = \prod_{1 \le i < j \le n} (1 + t_i + t_j) \in H^*(BU(n); \mathbf{Z}).$$

Remark 6.5.
$$t_1 + \cdots + t_n = 0$$
 if $G = SU(n)$.

Let α_i , $1 \le i \le n$, be indeterminates with $\deg \alpha_i = 1$. Express

$$\prod_{1 \le i < j \le n} (1 + \alpha_i + \alpha_j) = \beta_1 + \dots + \beta_n + \text{(higher terms)},$$

where β_k is a homogeneous term of degree k. Denoting by σ_k the k-th elementary symmetric function, we have $\beta_k = a_k \sigma_k(\alpha_1, ..., \alpha_n) + (\text{decomp.})$ for some integer a_k .

Lemma 6.6. If n is odd, a_i is odd for $2 \le i \le n$.

(A proof will be given at the end of the section.)

Let $i: Sp(n) \rightarrow SU(2n)$ be the usual inclusion map defined by

$$q_{ij} = \alpha_{ij} + j\beta_{ij} \mapsto c_{ij} = \begin{pmatrix} \alpha_{ij} & -\bar{\beta}_{ij} \\ \beta_{ii} & \bar{\alpha}_{ii} \end{pmatrix},$$

where $\alpha_{i,j}$, $\beta_{i,j} \in \mathbb{C}$.

Let s_i be a generator of $H^2(BT^n; \mathbb{Z})$ corresponding to the torus

$$T^{1} = \left\{ \begin{array}{c} i \\ i \\ 0 \end{array} \right. \begin{array}{c} 1 \cdot \cdot \cdot \\ 1 \cdot e^{i\theta} \\ 0 \cdot \cdot \cdot \\ 1 \end{array} \right. \begin{array}{c} \in Sp(n) \\ \vdots \\ 0 \le \theta < 2\pi \end{array} \right\} \subset T^{n} \subset Sp(n).$$

Then

(6.7)
$$i^*(t_{2i-1}) = s_i \quad and \quad i^*(t_{2i}) = -s_i.$$

Consider the composite of the maps

$$BSp(n) \xrightarrow{i} BSU(2n) \xrightarrow{\lambda^{(2)}} BU((\frac{2}{2}^n)).$$

Proposition 6.8. The mod 2 reduction of $i*c(\lambda^{(2)})$ is given by

$$i^*c(\lambda^{(2)}) = \prod_{1 \le i \le j \le n} (1 + s_i^4 + s_j^4) \in H^*(BSp(n); \mathbb{Z}_2).$$

Proof.

$$i*c(\lambda^{(2)}) = i*(\prod_{1 \le i < j \le 2n} (1 + t_i + t_j))$$
 by (6.4)

$$= \prod_{1 \le i < j \le n} (1 + s_i + s_j)^4$$
 by (6.7)

$$= \prod_{1 \le i < j \le n} (1 + s_i^4 + s_j^4).$$
 Q. E. D.

Next we consider the commutative diagram:

(6.9)
$$BSp(2n+1) \xrightarrow{i} BSU(4n+2) \xrightarrow{\lambda^{(2)}} BU((^{4n+2}))$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$BPSp(2n+1) \xrightarrow{i} BG(4n+2)$$

For the mod 2 reduction of the Chern class $c_{4i} \in H^{8i}(BU((^{4n+2}_{2})); \mathbb{Z}_{2})$ we put

$$x_{8i} = \bar{\lambda}^{(2)*}(c_{4i}) \in H^{8i}(BG(4n+2); \mathbb{Z}_2), \qquad 2 \leq i \leq 2n+1.$$

Then by the commutativity of the diagram (6.9)

$$i^*\pi^*\Sigma x_{8i} = i^*\pi^*\bar{\lambda}^{(2)*}(\Sigma c_{4i})$$

$$\begin{split} &= i^* \lambda^{(2)*}(\Sigma c_{4i}) \\ &= i^* c(\lambda^{(2)}) \\ &= \prod_{1 \le i < j \le 2n+1} (1 + s_i^4 + s_j^4) \in H^*(BSp(2n+1); \mathbb{Z}_2). \end{split}$$

Apply Lemma 6.6 and we obtain

$$i*\pi*x_{8i} = \sigma_i(s_1^4, ..., s_{2n+1}^4) + (\text{decomp.}).$$

Denoting by q_i the mod 2 reduction of the *i*-th symplectic Pontrjagin class, we have

$$i*\pi*x_{8i} = q_i^2 + P$$
,

where P is a sum of monomials containing q_i (j < i).

On the other hand, since i^* : $H^m(BSU(4n+2); \mathbb{Z}_2) \to H^m(BSp(2n+1); \mathbb{Z}_2)$ is trivial for $m \not\equiv 0 \pmod{4}$, we have

$$i^*\pi^*(a_2) = i^*\pi^*(a_3) = i^*\pi^*(a_{4j+2}) = 0$$
, and hence $i^*\pi^*(y(I)) = 0$.

Thus we have shown

Theorem 6.10. There exist non-decomposable elements $x_{8i+8} \in H^{8i+8}(BG(4n+2); \mathbb{Z}_2), 1 \le i \le 2n$, such that $i*\pi*(x_{8i+8}) = q_{i+1}^2 + P$, where P is a sum of monomials containing q_j (j < i+1).

Now we turn to the orthogonal case.

Let $\lambda \colon SO(n) \to O(n)$ be the natural inclusion and regard it as a real representation. As before we consider its exterior power representation $\lambda^{(2)} \colon SO(n) \to O((\frac{n}{2}))$. The total Stiefel-Whitney class is then given as

$$w(\lambda^{(2)}) = \prod_{1 \le i \le j \le 2n} (1 + t_i + t_j),$$

where t_i is a generator of $H^1(B(\mathbf{Z}_2)^n; \mathbf{Z}_2)$ corresponding to

$$\mathbf{Z}_{2} = \left\{ \underbrace{i}_{i} \middle| \begin{array}{c} 1 \\ \ddots \\ 1 \\ \cdots \\ 1 \\ \end{array} \middle| \begin{array}{c} \vdots \\ 1 \\ \vdots \\ 1 \\ \end{array} \middle| \vdots \\ \varepsilon = \pm 1 \\ \right\} \subset (\mathbf{Z}_{2})^{n} \subset O(n).$$

$$t_1 + \cdots + t_n = 0$$
.

Let $i: U(n) \to SO(2n)$ be the inclusion defined by the correspondence $b+c\sqrt{-1} \mapsto \begin{pmatrix} b & -c \\ c & b \end{pmatrix}$. Let s_i be a generator of $H^1(B(\mathbf{Z}_2^n); \mathbf{Z}_2)$ corresponding to

$$\mathbf{Z}_{2} = \left\{ \underbrace{i}_{0} \left(\begin{array}{c} 1 \\ \ddots \\ 1 \\ \cdots \\ 1 \\ \vdots \\ 1 \end{array} \right) ; \varepsilon = \pm 1 \right\} \subset (\mathbf{Z}_{2})^{n} \subset U(n) .$$

Then

(6.11)
$$i^*(t_{2i-1}) = i^*(t_{2i}) = s_i.$$

Let w_i be the Stiefel-Whitney class. Then

$$i^*(w_{2i-1})=0$$
,

 $i^*(w_{2i}) = c_i$, the mod 2 reduction of the *i*-th Chern class.

Consider the following commutative diagram

$$BU(2n+1) \xrightarrow{i} BSO(4n+2) \xrightarrow{\lambda^{(2)}} BO((^{4n+2}))$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$B(U(2n+1)/\Gamma_2) \xrightarrow{i} BPO(4n+2)$$

where π is the natural projection and $\bar{\lambda}^{(2)}$ the one induced from $\lambda^{(2)}$. Then

$$i^*\pi^*\bar{\lambda}^{(2)*}(\sum_{i=0}^l w_i) = i^*(w(\lambda^{(2)}))$$
 with $l = \binom{4n+2}{2}$,

where $w(\lambda^{(2)}) = \prod_{1 \le i < j \le 4n+2} (1 + t_i + t_j).$

So by Lemma 4.6 we have

$$i^*\pi^*\bar{\lambda}^{(2)*}(\sum_{i=0}^l w_i) = \prod_{1 \le i < j \le 2n+1} (1 + s_i^4 + s_j^4).$$

Thus by a similar argument to the unitary case we have

Theorem 6.12. There exist non-decomposable elements $x_{4j+4} \in H^{4j+4}(BPO(4n+2); \mathbb{Z}_2), 1 \le j \le 2n$, such that $i^*\pi^*x_{4j+4} = c_{j+1}^2 + P$, where P is a sum of monomials containing $c_k (k < j+1)$.

First we consider the case G = G(4n+2). The projection $\pi: SU(4n+2) \to G(4n+2)$ induces $\pi^*: \operatorname{Cotor}^{B_4}(\mathbb{Z}_2, \mathbb{Z}_2) \to \operatorname{Cotor}^{B_3}(\mathbb{Z}_2, \mathbb{Z}_2)$ on the E_2 -level of the Eilenberg-Moore spectral sequence. By naturality we have

$$\pi^* x'_{8i+8} = \pi^* b^2_{4i+4}$$

$$= c^2_{2i+2} \quad \text{for} \quad 1 \le i \le 2n,$$

which survives in the $E_{\infty}(SU(4n+2))$ -term, since $E_2(SU(4n+2))\cong E_{\infty}(SU(4n+2))\cong \mathcal{G}rH^*(BSU(4n+2); \mathbb{Z}_2)$ by Proposition 4.3. On the other hand, since $q_{i+1}=i^*c_{2i+2}$, it follows from Theorem 6.10 that for π^* : $H^*(BG(4n+2); \mathbb{Z}_2) \to H^*(BSU(4n+2); \mathbb{Z}_2)$ we have

$$\pi^* x_{8i+8} = c_{2i+2}^2 + P'$$
. $1 \le i \le 2n$,

where P' is a sum of monomials containing c_i (j < i+1).

Thus we obtain

Theorem 6.13. The element $x'_{8i+8} \in \text{Cotor } ^{B_4}(\mathbb{Z}_2, \mathbb{Z}_2)$ survives in the $E_{\infty}(G(4n+2)\text{-term})$ and represents $x_{8i+8} \in H^*(BG(4n+2); \mathbb{Z}_2)$.

Similarly,

Theorem 6.13'. The element $x'_{4i+4} \in \text{Cotor }^{A_4}(\mathbb{Z}_2, \mathbb{Z}_2)$ survives in the $E_{\infty}(PO(4n+2))$ -term and represents $x_{4i+4} \in H^*(BPO(4n+2); \mathbb{Z}_2)$.

Proof of Lemma 6.6. Let m be an odd integer. We regard the identity map $\lambda: U(m) \to U(m)$ as an m-dimensional complex representation as before. Let t_k be a generator of $H^2(BT^m; \mathbb{Z})$ corresponding to the torus

$$T^1 = \left\{ \underbrace{k} \left(\begin{array}{c} 1 \\ \ddots \\ 1 \\ e^{i\theta} \\ 1 \\ \ddots \\ 1 \end{array} \right) 0 \leq \theta < 2\pi \right\} \subset T^m \subset U(m).$$

Then by (6.4) the total Chern class of the exterior representation of degree 2 of λ is given by

$$c(\lambda^{(2)}) = \prod_{1 \le i < j \le m} (1 + t_i + t_j) \in H^*(BU(m); \mathbb{Z}).$$

We will show that the integer a_k is odd by taking $\alpha_i = t_i$ and $\beta_i = c_i(\lambda^{(2)})$, the *i*-th Chern class of $\lambda^{(2)}$.

Let Φ^k be the Adams operation on representations and ch_q the Chern character. Denote by λ^2 the tensor product $\lambda \otimes \lambda$.

Lemma 6.14. (1)
$$ch_q\Phi^2(\lambda) = 2^q ch_q(\lambda)$$
.

- (2) $\Phi^2(\lambda) = \lambda^2 2\lambda^{(2)}$.
- (3) $ch_q(\lambda^2) = 2mch_q(\lambda) + (decomp.)$.
- (4) Let $m \ge 3$. For $\eta = \lambda$ or $\lambda^{(2)}$

$$ch_q(\eta) = \frac{(-1)^q}{(q-1)!} c_q(\eta) + (\text{decomp.}).$$

Proof. (1), (2), (3) follow directly from the definition (also see [1]). (4) follows from the Newton formula. Q.E.D.

By this lemma we have

$$\begin{split} ch_i(\lambda^{(2)}) &= \frac{1}{2} \{ ch_i(\lambda^2) - ch_i(\Phi^2(\lambda)) \} \\ &= \frac{1}{2} \{ 2(n - 2^{i-1})ch_i(\lambda) \} + (\text{decomp.}) \\ &= (n - 2^{i-1})ch_i(\lambda) + (\text{decomp.}) \,. \end{split}$$

Now by (4) we obtain

$$c_i(\lambda^{(2)}) = (n - 2^{i-1})c_i(\lambda) + (\text{decomp.})$$

= $(n - 2^{i-1})\sigma_i(t_1, ..., t_n) + (\text{decomp.}),$

where $(n-2^{i-1})$ is odd if $i \ge 2$. Q.E.D.

References

- [1] Adams, J. F., Vector fields on spheres, Ann. Math., 75 (1962), 603-632.
- [2] Adams, J. F., Lectures on Lie groups, (1969), Benjamin.
- [3] Baum, P. F. and Browder, W., The cohomology of quotients of classical groups, *Topology*, 3 (1965), 305–336.
- [4] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts, Ann. Math., 57 (1953), 115-207.
- [5] Borel, A., Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
- [6] Borel, A. and Hirzebruch, F., Characteristic classes and homogeneous spaces, I. Amer. J. Math., 80 (1958), 459-538.
- [7] Brown, Jr. E. H., Twisted tensor products, I, Ann. Math., 69 (1959), 223-246.
- [8] Iwai, A. and Shimada, N., A remark on resolutions for Hopf algebras, Publ. RIMS of Kyoto Univ., 1 (1966), 187-198.
- [9] Kono, A., On cohomology mod 2 of the classifying spaces of non-simply connected classical Lie groups J. Math. Soc. Japan, 27 (1975), (to appear).
- [10] Rothenberg, M. and Steenrod, N. E., The cohomology of classifying spaces of H-spaces, (mimeographed notes).
- [11] Rothenberg, M. and Steenrod, N. E., The cohomology of classifying spaces of H-spaces, Bull. AMS, 71 (1965), 872–875.
- [12] Serre, J-P., Homologie singulière des espaces fibrés, Ann. Math., 54 (1951), 425-505.
- [13] Shimada, N. and Iwai, A., On the cohomology of some Hopf algebras, Nagoya Math. J., 30 (1967), 103-111.
- [14] Yokota, I., Groups and representations, (1973), Shōkabō (in Japanese).