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On the Cohomology of the Classifying Spaces
of PSU(4n+2) and PO(4n+2)

By

Akira Kono* and Mamoru MIMURA**

§0. Introduction

The quotients of SU(m) and SO(m) by their centers I',, =
2njy=1

{e m (é?), 0=_<_j<m} and I'2={i<(1)'-.(1)>} are denoted by
PU(m) and PO(2m) respectively.

The purpose of this paper is to determine the module structure of the
cohomology mod 2 of the classifying spaces BPU(4n+2) and BPO(4n+2).

The method is first to determine the E,-term of the Eilenberg-Moore
spectral sequence by constructing an injective resolution for H*(G; Z,),
(G=SU@4n+2)/I',, PO(4n+2)). Then by making use of naturality of
the Eilenberg-Moore spectral sequence we show that the spectral se-
quence with Z,-coefficient collapses for these G.

Our results are

Theorem. As a module
H*(BPU(4n+2); Z,)= Z,[a,, a3, x4+s, YDI/R,

where 1<1<2n and R is an ideal generated by a;y(I), y(I)2+i‘,
=
Xgiy48---0%i,42--Xgi, 48 and yYDy(J)+Zfiy(I).

Theorem. As a module

H*(BPO(4n+2); Z,)) = Z,[ay, X444, Y' (DR,
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where 1 <1<2n and R is an ideal generated by a,y'(I), y'(I)?> +XX4, +4.--
alv1--Xgi,04 and y'(Dy'(N)+2f1y'(I1).

In the above theorems I runs over all sequences of integers (iy,..., i,)
satisfying 1=r<2n and 1Zi;<---<i,=2n. (For details see §5.)

The paper is organized as follows:

In the first section we show that there exists a sort of ‘‘stability”
in H*BG; Z,). §2 is used to calculate H*(Un)/T,; Z,). In §3 we
determine the E,-term of the Eilenberg-Moore spectral sequence, Cotor
HYGiZ2)(Z,, Z,), for G=PO@4n+2), PU4n+2). In the next section,
§4, we show that the Eilenberg-Moore spectral sequence (with Z,-coef-
ficient) collapses for these G. §5 is devoted to showing that the elements
a;’s in the above theorems, namely Theorems 4.9 and 4.12, are in the
trangression image. In the last section, the generators xg,.g and X444
in Theorems 4.9 and 4.12 are shown to be represented by certain
exterior power representations.

Throughout the paper the map BH—BG induced from a homomor-
phism H—G of groups is denoted by the same symbol.

The authors would like to thank N. Shimada for his kind advices.

§1. Quotients of SU(n) and SO(n)

Notation. I, =<(1) o )e U(n) the identity matrix,

C(n)={al,; le)/=1 and aeC},
I,={wl,; w*"=1 and weC}c=C(n).

Then C(n) (resp. I',,) is the center of the unitary group U(n) (resp.
SU(n)). In particular we have the inclusions

1 0
F2=[i< 0’-, >]cSO(2n)cSU(2n).
1

Hereafter we use the following

Notation.
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G(m)=SU(m)|T, for a subgroup I'; of the center I',,
G,(m)=PU(m)=PSU(m)=U(m)/C(m),
G(2n)=G,(2n)=SU(2n)[T,,

PO(2n)=S0(2n)/T, .

Denote by = the natural projections SU(m)—G,(m) and SO(2n)—
PO(2n)
Consider the k-fold diagonal map:

4 SU(m) —> (SU())* —> SU(nk),
4y: SO(n) —> (SO(n))k —> SO(nk),

where 4, is the diagonal embedding:

A 0
Ak(A>=< )
0 4.

For the identity matrix 7, then we have
A(L)=1, and A(-I)=-1,.

So for even n there exist maps G(n)—G(nk) and PO(n)—PO(nk) such
that the following diagrams commute:

SU(n) -4<, SU(nk) SO(n) — SO (nk)
G(n)—— G(nk) PO(n) — PO(nk),

We denote them by the same symbol:
4, G(n) —> G(nk), 4,: PO(n) — PO(nk).
Notation.
C(n, k)=SU(nk)/4,SU(n),

R(n, k)=S0(nk)/4,S0(n).
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So we have fiberings:

1.1) SU(n) 2= SU(nk) 2 C(n, k).
1.2) SO(n) 255 SO(nk) -2~ R(n, k),

Remark 1.3.
(1) C(n, k) is homeomorphic to G(nk)/4,G(n) for I|n.
(2) R(2nm, k) is homeomorphic to PO(2nk)/4,PO(2n).
Now recall from [4] and [5] the following
Proposition 1.4.
1) H*SU((n); Z)=A(us,..., Uzy—1)»
H*(U(n); Z)= AUy, sy Ugp—1)s

where degu,;_,=2i—1 and wu,;_, is universally transgressive with

T(Uy;—1)=c; the i-th universal Chern class.
2 H*(SO0(n); Z,) = A(vy,...s Vy—1),

where degv,_,=i—1 and v;_, is universally transgressive with t(v;_,)=
w; the i-th universal Stiefel-Whitney class.

Then

Proposition 1.5. (1) For any integer k>0 and any prime p with
(k, p=1, we have

H*(C(n’ k)s Zp)EA(22n+ JERRRL) xan—l)

where degXx,;,,=2i+1 and p*Xy;.1=Ujsi41 -
(2) For any odd integer k>0 we have

H*(R(n9 k): ZZ)gA(Em'H’ Enk—l)

where degz;=i and p*z;=v;,.
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Proof. (1) The map 4,: SU(m)—SU(nk) induces a map 4,: BSU(n)
—BSU(nk) which gives the k-fold Whitney sum of complex vector bun-
dles. Thus

(1.6) d¥(c)= X ¢,...c; =ke;+(decomposables).

igtetin=i

For the Serre cohomology spectral sequence with Z,-coefficient {E}-*}
of the fibering

SU(nk) — C(n, k) — BSU(n),

we have

E¥*=Z[cs.., ¢, 1@ A(1t3,..., Uz 1)
and EL*=gr(H*(C(n, k); Z))).
Then it follows from Proposition 1.4 and (1.6) that

d,(1®uy;_)=ke;®1 for 2Zi=sn
and all other differentials are trivial. So we get

Gr(H*(C(n, k); Z)=EL* = EF ¥ 2 A(Ugps15eees Uzpg—1) -

Since (k, p)=1, (1.6) implies that A¥: H*(SU(nk); Z,)—» H*(SU(n); Z,)
is epimorphic, and hence SU(n) is totally non-homologous to zero in
the fibering (L.1). Thus p*: H*(C(n, k); Z,)—» H*(SU(nk); Z,) is mono-
morphic.

(2) is proved quite similarly. Q.E.D.

Theorem 1.7. (1) Let p be a prime, k an integer with (k, p)=1
and lin. Then A¥: H(BG(nk); Z,)—» H{(BG(n); Z,) is isomorphic for
i<2n and monomorphic for i<2n+1.

(2) Let k be an odd integer. Then A¥: H(BPO(2kn); Z,)—H(BPO(2n);
Z,) is isomorphic for i<n—1 and monomorphic for i<n.

Proof. Proposition 1.5 applied with the Serre exact sequence (Prop-
osition 5 of [12]) for the fiberings

C(n, k) —> BG/(n) —> BG(nk)
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R(2n, k) — BPO(2n) — BPO(2nk)
gives the results. Q.E.D.

Notation. For each rational number k, define vy (k) to be the
exponent of p when k is expressed as a product of powers of distinct
primes.

Corollary 1.8. (1) If v, (n)=v,(m), then as algebras there hold
H*(BG(n); Z,)=~H*(BG,(m); Z,)  for +=2min(m, n).
2) If v,(m)=vy(n), then as algebras there hold
H*(BPO(2n); Z,)~H*(BPO(2m); Z,)  for ===min(m, n).

In the below we denote by ¢ the diagonal map in H¥*G; Z))
induced from the multiplication on a group G. Put ¢=(1®#n)o¢, where
n: H*(G; Z")_),-goHi(G; Z,) is the natural projection.

Now we recall from [3] and [5] the following facts:

Proposition 1.9. Let n=p'n’ with (p, n’)=1 and lln. Then
H*(G(n); Z,)=Z,[y]/(y*) @ A(X15e..s R2pr— 15005 X2n=1) 5
where degy=2 and degx,;_,=2i—1.

Proposition 1.9'. There exist generators yeH'(G(4n+2); Z,) and
Xy;41 EH2YG(4n+2); Z,), 2Li<4n+1, such that

) H*(G(4n+2); Z,) = A(y, Y2, Xs5ee0s Xgn+3)s
2 ¢(»)=0, @(x4j+1)=0  for 1=j<2n,
<-5(x4j+3)=x4j+1®y2 for 1=5js2n,
3 Sq* x5y =(k, i—k—1)X3;4 241 -
Remark 1.9". ¢(x4;43+decomp.) #0.

Proposition 1.10. There exist generators ye HY(PO(4n+2); Z,) and
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z,€e H(PO(4n+2); Z,), 2<i<4n+1, such that

m H*(PO(4n+2); Z,)=A(y, 2355 Zan+1) »
) ¢(»)=0, ¢(zo9)=0  for 1=k=2n,

P22+ 1)=22®) for 1=k=2n,
A3) Sqizi=(k—Jj, NZj+x-

Notation. PS(X; p)=the Poincaré series of X over £, ie.,

PS(X: p)= go{rank Hi(X; Z )}t

Using this expression we obtain from Propositions 1.5, 1.9 and 1.10:
PS(G(n): p)-PS(C(n, k): p)=PS(G(nk): p) for (k, p)=1,
PS(PO(2n): 2)-PS(R(n, k): 2)=PS(PO(2nk): 2).

Thus we have

Proposition 1.11. (1) The cohomology Serre spectral sequence with
Z -cocfficient for the fibering G(n)— G(nk)— C(n, k) collapses if (k, p)=
1.
(2) The cohomology Serre spectral sequence with Z,-coefficient for the
fibering PO(2n)—PO(2nk)—R(2n, k) collapses.

Now we choose generators in H¥(G(4n+2); Z,) and H*(PO(4n+2);
Z,) appropriately.

Lemma 1.12. In Proposition 1.9° we may choose generators y,
Xgi11, 251iZ4n+1, of H¥G@n+2); Z,) by wusing the correspondent
generators in H*(G(4n—-2); Z,) and in H*(C(4n—-2,2n+1); Z;) as
follows:

y=A>§n—1°A§n+1—l(y) s
xZH—l=A§n—1°A?n+l—l(X2i+l): 2§z§4n—3,

'Y21+1=A§11—1“p*(f2i+1), 4”_2§i§_4”+1=
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Proof. This is clear from Proposition 1.11. Q.E.D.
Similarly

Lemma 1.13. In Proposition 1.10 we may choose generators y,
z, 2Z8i<4n+1, of H*(PO(4n+2); Z,) by using the correspondent gen-
erators in H¥(PO(4n—2); Z,) and in H¥(R(4n—2, 2n+1); Z,) as follows:

y=A=§n—1°A§pt+1_l(y)’

z

A%n—lc’Agrﬁl_l(zi)’ 2§l§4n_35

i

N

i=4%,-1°p*(z), dn—-2=isdn+1.

Proposition 1.14. (1) In H*(C(4n—2,2n+1); Z,) = A(Xgy—3, Xgn—15
Xgn+1> Xgn+35---) there hold Sq*Xg, 3=Xg,+;1 and Sq*Xg,_1=Xgu+3.
(2) In H*(R(4n—2,2n+1); Z,)=A(Z4y—125 Zan—1> Zans Zan+1s---) there hold

25 =3 23 =z
S5q°Z4y-2=Z4n and Sq*Z4p-1=Zap+1-

Proof. (1) and (2) follow from (3) of Proposition 1.9° and (3) of
Proposition 1.10 respectively. Q.E.D.

Remark. See [9] for the results of the symplectic case.

§2. Quotients of U(n)

In this section let p be a prime and n an integer such that (n, p)=
1. Then obviously

(2.1) H*(BPU(n); Z,)= H¥*(BSU(n); Z,).
The following are easily obtained:
2.2) H*(BC(n); Z,)=Z,[«] with dega=2.

Z,[1] with degt=1 for p=2
(2.3) H*BI,; Z,) =
Z,[n]® A(A) with degu=2, degi=1,

0A=p  for p: odd,
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where 6 is the Bockstein operator.
Consider the cohomology Serre spectral sequence with Z,-coefficient
associated with the fibering:

(2.4) BC(n) - BU(n) —> BPU(n),

where i’ is induced from the natural inclusion C(n)c U(n). The map
i’* is epimorphic since the spectral sequence collapses by (2.2) and
by the fact that H3(BPU(n); Z,)=H3(BSU(n); Z,)=0. Let j:I',=C(n)
be the inclusion. Then

Z,[u] Jor p: odd
(2.5) Imj* >

Z,[t*] for p=2.
Putting i=i'oj and choosing p (or t) suitably we get

u for p: odd
(2.6) i*(c))= [

2 for p=2.

Let {E}-*} be the cohomology Serre spectral sequence with Z -
coefficient associated with the fibering U(n) —=» U(n)/I',— BI',. Since
the generators in H*(U(n); Z,) = A(u,, us,..., U5,—;) are universally
transgressive, they are transgressive with respect to this fibering. In
particular we have

(uy)=1i*(c,)

where 7 is the transgression.
Therefore E4b=0 if a=2, and hence

Q.7 E,~E,

I

[ AD)@A(us, tsy..., Up,—y)  for p: odd
AD® AUz, s, Ugy—1) for p=2.

Proposition 2.8. H*(U(n)/I',; Z) is p-torsion free and hence it
is torsion free.

Proof is left to the reader.
It follows from this proposition
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Theorem 2.9. Let (n, p)=1. Then
H¥UW)T ,; Z,) = A(A, uh,..., s ,—1)
such that

(1) 7 and uY4,_, are universally transgressive (and hence they are

primitive),
(2) degi=1 and deguj;_,=2i—1,
(3) 7n*(us;-1)=uy;—y for the projection n: Um)—-U(n)/l,.

Proof. (1) and (2) follow from (2.7) and the Borel’s theorem
(Theorem 13.1 of [4]). (3) is clear, since n*(u%;-;)# 0 by (2.7) and since
n*(uy;—,) are universally transgressive. Q.E.D.

§3. The E,-term of the Eilenberg-Moore Spectral Sequence

Put A=H*(G(4n+2); Z,) for simplicity and regard 4 as a coalgebra
over Z,, where the coalgebra structure ¢ is given by Proposition 1.9".
Let L be a Z,-submodule of At= ZH‘(G(4n+2) Z,) generated
by {y, ¥%, X4j+1> Xai+3}, 150, j<2n. Let ls L—sL be the suspension.
We express the corresponding elements as sL={a,, as, a4j43, baira}s
1<i,j<2n. Let «: L—»A be the inclusion and 0: A—»L the projection

N

such that foc=1;. Define 8: A»sL by O=so0 and z:sL—»A by i=
tos™1, Consider the tensor algebra T(sL). Denote by I the ideal of
T(sL) generated by Im((@®0)op)oKerf. Put X=T(sL)/I. Then Xz
Zy[ay, as, A4j12, baseal, 151, j< 2n.

The map d=(0®0)o¢poz on sL can be extended over X, since d(I)c
I. Further, d satisfies dod=0 on X. So X is a differential algebra.
Now we construct the twisted tensor product X=A®X with respect

to 0 following Brown (cf. [7], [8] or [13]). Then X=A®X is a dif-
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ferential A-comodule with the differential operator d=1®d+(1®y)o
(1R0®1)c¢d®1, where ¢ is the diagonal structure in A and ¢ is the
multiplication in X. More concretely,

dy=a,, dy*=aj;,
dxsj11=04j42, 1SjS2n,
dX4i43=baiva+X4i4103, 1ZiZn.

Now we define weight in X as follows:

A4: y y? X4j+1 X4i+3
|

X: a; as A4j+2 baiva
weight 0 0 0 1

The weight of a monomial is a sum of the weight of each element.
Put F;={x| weight x<i}. Then

EoX= ‘4 FifF;—,
=AY, ¥2, Xaje1o Xai+3) @ Z3[as, a3, 4540, bayyal,
where the induced differential operator d, is given by
doy=a,, doy*=as, doXsji1=04542, AoXair3=Dbaira.

Thus EyX is acyclic and hence X is acyclic. Namely X=A®X is
an injective resolution for A over Z,. Therefore by definition

H*(X: d)=Cotor4(Z,, Z,).

As described above the differential operator d in X=2Z,[a,, a3, a4+ ,,
bsi+4] is given by

da;=0 for i=2,3,4j+2 (1£j<£2n),
dbyis4=04;4,a3 (1=i<2n).

For simplicity we put P=2Z,[a,;,,;1<j<2n] and Q=Z,[b};4;
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1<i<2n]. Let C be a submodule of X generated by {b§...bin.4;
g=0or 1}. Then as a module

X=Z,[a,]®0®Z,[a;]1®@PR®C.

We remark that as a chain complex, X may be thought of as a tensor
product of (Z,[a,]®Q) with a trivial differential operator d, and
(Z,[a;]®P®C) with a differential operator d; such that d,(a;)=
di(asj+2)=0 and d;(by;+s)=as3a4;.,. Therefore

H(X: d)=H(Z,[a,]1® Q: do) ® H(Z,[a;]1® P® C: d,)
xZ,[a,1® Q@ H(Z,[a;]®PR®C: d,).
For fe PQC there hold d,(f)=a;f for some fe PQC. Then we
define d,: PQC—-P®C by al(f)=_d_‘1z(3_f)_.

Lemma 3.1. The chain complex (P®C: d,) is acyclic.

Proof. Consider the Koszul resolution of the exterior algebra
A(bgis4; 1Zi52n). Q.E.D.

Proposition 3.2. Let feZ,[a;1QP®C. Then d,f=0 iff there exists
an element geZ,[a;]@P®C such that d,(g)=asf, or else f=101®1.

Proof. Sufficiency is clear, since X is a polynomial algebra.

(Necessity) It suffices to prove necessity for an element feZ,®
PRC=P®C. Suppose d,;(f)=0. Then a;f=0, and hence f=0. So
by definition d,(f)=0, from which we deduce that f=1®1®1 or
else by Lemma 3.1 that there is an element geP®C such that
d(g9)=f. Thus asf=d(9). Q.E.D.

Let I=(iy,...,i,) be a sequence of integers satisfying

3.3) 1=r<2n and 15i,<---<i,=2n.
1
We put ,V(I)=73—a(b4u+4---b4i,+4)-

It follows from Proposition 3.2 that a system of generators of
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Kerd over Z,[a,, as, a4j42, b3ival is {1, (D)}, where I runs over all
sequences satisfying (3.3).

Theorem 3.4. For A=H*(G(4n+2); Z,)
Cotord(Z,, Z,)=Z,[a,, a3, x31+5, Y(DI/R,

where X%;,53={b%,4+4} for 1 1 <2n and I runs over all sequences satis-
fying (3.3). Further R is the ideal generated by a;y(l), y(1)2+_2r:1 Xgi,+8
f=

@i vz Xgies and y(Dy(J)+ Eilf,-y(li), where f is a polynomial of
a3, A3, Xg;,48’S-

Remark 3.5. y({i})=a4;+,. For I=(iy,..., 1), (r=2), y(I) can be de-
fined inductively. Put I'=(iy,...,i,_4). Suppose that y(I’)={aLc—i(b4,-l+4
3
c-bgi,_+a)} is defined. Then y(D=y(l', i,)={(bas, +4---b4i,_, +4)0ai,+2F
YIVbyi, 44y =<y(I'), az, a4;,+,>, the Massey product.

Remark 3.6. The relation y(I)y(J)+Zf;y(I,) can be obtained by
calculation on the cochains, since {1, y(I)} is a system of generators
over Z,[a,, as, xg;45]-

Now we consider the case A=H*(PO(4n+2);Z,). By a similar
argument to the before we have X=42Z,{a,, asj., byi+2}/R, 1 Zi, j<2n,
where R is the ideal gencrated by [daxiq, bagsz]+dars1a:, 1Sk=n and
[r, s] for other pairs of generators (r,s) ([x, y]=xy+yx). We definc
weight in X=A®X, the twisted tensor product with respect to 0:

A y 23 Z2i+1
|

X a Azj+1 baivs
weight 0 0 1

Put F;={x| weight x<i} as before. Then
EoX=2F[F;_,

=A)®A(z;3) 22i41) ® Z3[a,, azj4 15 briy ],
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where the induced differential operator is given by dyy=a,, doz,;=
azj+1 and dozy1=by;s,. It shows that EoX and hence X is acyclic.
The differential operator d in X is given by da;=0 for any j and
db,;.,=0a5;11a,. By a similar, although a little bit complicated, cal-
culation to the before, we obtain the following.
For a sequence of integers I=(i,,..., i) satisfying (3.3) we put

V(D) = baty s 2 bai )
2
Theorem 3.7. For A=H*(PO(4n+2); Z,)
COtOl‘A(Zz, Zz);Zz[az, xﬁ_l+4, y’(I)]/R,

where x4 a=b3,,+a3bs., for 1Z1Zn and =0b3%,., for n+1=1

<2n and 1 runs over all sequences satisfying (3.3). Further R is

the ideal generated by a,y'(l), y'(I)*+ Fr_xa,-lﬂ---a%ilﬂ---xair+4 and
=1

Y@y U+ X iy

Remark 3.8. y'({i})=a,;+,, For I=(i,..., 1), y'(I) can also be de-
fined inductively. i.e.,

y(N=<y'"), a,, az;, +,>, where I=(I', i,).
The following results can easily be obtained.
Proposition 3.9.

1) Cotor #'W2n+ 133822y, Z)) 2 Zo[Cy5..s Conr1]s
with degc;=2i.

) Cotor #*W@nt D)l2220(F, Z )= Z,[ay, T,y Conr1] s
with dega’,=2 and degc,=2i.

3 Cotor H*(S04n+2)i22)(Z ), Z,) 2 Z,[ Wy Waseeos Wans2]ls
with degw;=i.

4 Cotor H*Sp2n+13i220(Z ), Z))=Z,[G 1, s G2ns1]

with degG,=4i.
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(5) Cotor M Psp(nt i(Z,, Z)= Zylas, a5, Tavress Tonn ]
with dega}=i and degg;=4i.
(6) Cotor #*SU@n+25:22X(Z ), Z))=Z[C5,--5 Cant1]

with degc;=2i.

§4. Collapsing of the Eilenberg-Moore Spectral Sequence

Let G be a topological group. In 1959 Eilenberg-Moore constructed
a new type of spectral sequence {E/(G), d,} such that

(D E,(G)=Cotor #*6:2:)(Z | Z ),
) E(G)=%rH*BG; Z,).

Furthermore, this spectral sequence satisfics naturality for a homomor-
phism f: G—»G'. We denote by f*: E(G)—E/(G) the induced homomor-
phism.

In this section we will show that the Eilenberg-Moore spectral
sequence collapses for various (G, p). In particular, we will show that
for G=G@n+2) and PO(4n+2) the Eilenberg-Moore spectral sequence
with Z,-coefficient collapses.

The following directly follows from Theorem 2.9:

Proposition 4.1. Let (i1, p)=1. Then the Lilenberg-Moore spectral
sequence collapses for (G, p)=(U(n)/I,, p).

By Kono [9] H*(PSp(2n+1); Z,) is transgressively generated and
hence we have

Proposition 4.2. The Eilenberg-Moore spectral sequence collapses
for (G, p)=(PSp(2n+1), 2).

The following result will be used below. The proof is easy and
left to the reader.

Proposition 4.3, (1) The Lilenberg-Moore spectral sequence col-
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lapses for G=UQ2n+1)/I'5, SO(4n+2), U2n+1), PSp(2n+1), SU(4n+2)
and Sp(2n+1).

(2) The elements ¢; and Ww; in Proposition 3.9 represent c; and w;
respectively. The elements g, and ¢, do q, and ¢, in H*(BG; Z,)
such that m*(c})=c;+(decomp.) and =n*(q;)=gq;+(decomp.), where w is
the covering homomorphism.

For simplicity we use the following

Notation.
A =H*(UQ@2n+1); Z,),
A,=H*(UQ2n+1)|T',; Z,),
A3;=H*(S0(4n+2); Z,),
A,=H*PO0(4n+2); Z,),
B, =H*(Sp(2n+1); Z,),
B,=H*(PSp(2n+1); Z,),
B3;=H*(SU(4n+2); Z,),
B,=H*(G(4n+2); Z,).

Case I. H*(PO(4n+2); Z,).

Consider the commutative diagram
U22n+1) —— SO(4n+2)
U(2n-ll~ D/r, - P0(4n1+ 2)

where m is the projection and i’s are the standard maps (cf. §6).

Lemma 4.4. The elements aeCotor4*(Z,, Z,) and a,e Cotor4+

(Z,, Z,) are permanent cycles and i*(a;)=a}.

Proof. Recall H¥(BZ,; Z,)~Z,[t]. In the commutative diagram
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BU(2n+1) —— BSO(4n+2)

B(UQ2n+1)|Z,) —> BPO(4n+2)

the elements a, and a’ represent the trangression images of t, and hence
they are permanent cycles. For dimensional reason we have i%*(a,)=a)}.
Q.E.D.

The following relations among the elements in Theorem 3.7 and Pro-
position 3.9 are easily checked to be true:

4.5.1) =*(xy,)=w3;+W, where W, is a sum of monomials containing
elements of lower degree,

4.5.2) i*(w,)=¢;+(decomp.), (see §6),
4.5.3) 7*(¢})=¢;+ (decomp.),

4.5.4) n*(ay)=n*(ay)=0.

Therefore

(4.6) i*(xy;)=ci*+y, where vy, is a sum of monomials containing
elements of lower degree.

Let E,(1) be the Eilenberg-Moore spectral sequence with Z,-coef-
ficient for PO(4n+2) and {E,.2), d,} be the cartesian product of the
Eilenberg-Moore spectral sequences of U(2n+1)/, and SO(4n+2), ie.,

E,(2)=Cotor 42(Z,, Z,) x Cotor 43(Z,, Z,) and d,=0

for all r=2. Then the map i*x=n* induces a homomorphism between
the spectral sequences:

E(l) — E(2) for rx2.

Lemma 4.7. i*xn*: E,(1)>E,(2) is injective.
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Proof. Let f; be a sum of monomials containing a, and f, a sum
of those not containing a,. Suppose (i*x=z*)(f;+f,)=0 from which
n*(f1+f)=7n*f,)=0 and hence f,=0 by (4.5.1). Meanwhile (i* x=*)
(fi+/f2)=0 implies i*(f,+f,)=0, which implies i*(f;)=0, and hence f;
=0 by (4.6). Thus i*x=n* is injective. Q.E.D.

Thus we have shown

Theorem 4.8. The Eilenberg-Moore spectral sequence with Z,-
coefficient collapses for G=PO(4n+2).

In fact, Lemma 4.7 indicates that all differentials in E,(1) are trivial.

An immediate corollary is
Theorem 4.9. As a module
H*(BPO(4n+2); Z,) = Z,[a,, x4.4, Y'(D1/R,

where 1Z1=2n,1 runs over all sequences satisfying (3.3) and R is the
ideal generated by a,y'(I), y'(I)2+Zr‘,x4,-1+4...a§ij+1..,x4ir+4 and
=1

Y@y U+ 211y’ d).
Case II. H*(G(4n+2); Z,).
Consider the commutative diagram
Sp(2n+1) —t — SU(4n+2)

I I

PSp(2n+1) — G(4n+2)

where 7 is the projection and i’s are the standard maps.

Lemma 4.4'. The elements a;e Cotor 84(Z,, Z,) and a}e Cotor®x(Z,,

Z,) are permanent cycles and i*(a)=a} for i=2,3.
Proof is similar to that of Lemma 4.4.

The following relations among the elements in Theorem 3.4 and

Proposition 3.9 are easily checked to be true:
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(4.10.1) TH(xg148) =C3142+ 0y,
(4.10.2) n*(g})=q;+(decomp.),
where v, is a sum of monomials containing elements of lower degree,
(4.10.3) n*(a)=n*a))=0 for i=2,3,
4.11) i*(¢3;))=q;+ (decomp.).

Lemma 4.7'. Let feCotorB4(Z,, Z,) such that degf is odd. Then
i*(f)=0 iff f=0.

Proof. i*(x5148)=q131+ Q1

where Q, is a sum of monomials containing elements of lower degree.
So the elements i*(x%,.5), 1=<I<2n, i*ay and i*a, are algebraically inde-
pendent. Q.E.D.

Theorem 4.10. The Eilenberg-Moore spectral sequence with Z,-
coefficient collapses for G=G(4n+2).

Proof. Recall that a, and a; are permanent cycles. All generators
of Cotor B4(Z,, Z,) except a; are of even degree. So d/ () is of odd
degree for ae{y(l), x5,.s}. By naturality i*d (¢)=d,i*(«)=0. Hence by
Lemma 4.7 d(¢)=0. Thus all generators survive into E,. Q.E.D.

Immediate corollaries are
Theorem 4.11. As a module
H*(BG(4n+2); Z,) = Z,[a,, a,, x5,.5, YI)]/R,

where x4;,5={b31+4} for 1Z1Z2n and I runs over all sequences
satisfying (3.3) and R is the ideal generated by asy(I), y(I)®>+ Er:xs,-l,,g

j=1
@420 Xgi,+s and y(Dy()+ zT..fiY(Ii)-

Theorem 4.12. As a module

H*(BPU(4n+2); Z,) = Z,[a,, a3, X545, Y(D]/R
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with the same 1,1 and R as in Theorem 4.11.

§5. Some Generators in H*(BG(4n+2); Z,) and H*(BPO(4n+2); Z,)

Let G be a compact, connected Lie group and H its closed subgroup.
Let EG and EH be the total spaces of the universal G- and H-bundles
respectively. Then the following diagram is commutative:

H— EH— BH

Lol

G > EG B‘G

P

G/H—> BH— BG

Then naturality of the transgression implies

Lemma 5.1. Let k be a commutative field.

(1) If xeH*(G/H; k) is transgressive with respect to the bottom fiber-
ing, then p*(x)e H*(G; k) is universally transgressive.

Q) If xeH*(G; k) is universally transgressive, so is j*(x)e H*(H; k).

(3) Suppose H{(G[H; k)=0 for i<n. Let xeHG;k) and i<n—1.
If j*(x) is universally transgressive, so is x.

Recall the following:

5.2 G(2)=S0(3),

(5.3) H*(SO0(3); Z,)=Z,[al/(a*) where a is wuniversally transgressive.
Now we prove

Proposition 5.4. The elements a and x4, of H*G(4n+2); Z,),
1<j=<2n, are all universally transgressive.

Proof. Proof is induction on n. The case n=0 is clear from
(5.2) and (5.3). Suppose as the inductive hypothesis that the elements
a and x4j4q, 1Sj<2n—1, are universally transgressive in H*(G(4n—2);
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Z,). It follows from Proposition 1.5 and (2), (3) of Lemma 5.1 that
the elements a and Xx4;,, 1Sj<2n—1, are universally transgressive.
Clearly the element Xg,_3 is transgressive with respect to the fibering
C(4n-2,2n+1)-»BG(4n—2)->BG((4n—2)(2n+1)), and hence so is Xg,41,
since Xg,4;=3¢*xg,_3 by Proposition 1.14. Thus by (1) of Lemma 5.1
the elements xg,_; and xg,,, are universally transgressive. Q.E.D.

It follows from (2.2) and (2.3) that H*(BG(2); Z,)~H*(BSO(3);
Z,)x~Z,[a,, a;], where a,=1(a) and az;=1(a?) with dega;=i. As A%,..:
H{(BG(4n+2); Z,) - H(BG(2); Z,) is isomorphic for i<4 by (1) of
Theorem 1.7, we denote by a,=1(a) and a;=t(a?) the generators of
HY{BG(4n+2); Z,)=Z, for i=2,3.

Lemma 5.5. Sqla;=0 and Sq?a;=a,a; in H¥(BG(4n+2); Z,).

Proof. We obtain the above formula by virtue of the Wu formula,
since a; is the inverse image of A4%,,, of the i-th Stiefel-Whitney class.
Q.E.D.

Proposition 5.6. There exist elements ay;,,, 1=j=2n, in H¥(BG(4n+
2); Z,) such that

€)) degayj,=4j+2,
2 Ay 2=T(Xgj41) mod (decomp. ),
(3) a3a4j+2=0'

Proof. Proof is induction on n. The case n=0 is clear from (2.2)
and (2.3). Suppose that the assertion is true for BG(4n—2). By Theo-
rem 1.7 the homomorphism A4%,,, is injective for deg <8n—4e¢+1 with
e=+1. Put a;=4%,_,04%;1(a;) for i<8n—6. Then a; satisfies the
properties (1), (2), (3) by the inductive hypothesis. For the transgression
T of the fibering

(5.7 C(4n—2, 2n+1) —> BG(4n—2) — BG((4n—2)(2n+1))

we put ag,_,=4%,_ 17(Xg,-3). The element xg,_,€H*(GEn+2);Z,)
is not universally transgressive, since it is not primitive by Proposition
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1.9.  So the corresponding element Xg,_; of H*(C(4n—2,2n+1); Z,)
is not transgressive in the fibering (5.7). That is, in the cohomology
Serre spectral sequence {E¥* d,} with Z,-coefficient of (5.7) we have
d;(1®Xg,—1)=0a3®Xg,—3, from which we get a;7(Xs,—3)=0. Applying
4%, we obtain ajag,_,=0. Thus the element ag,_, satisfies (1), (2),
(3). Next, we put

Agn+2=4%4-1°1(Xgy+1) +a259%agn—2+a359 ag,—>.
Then A30g,42=03(Sq*ag,— 2 +a,59%ag, 2 +a35q" ag,-»)
=Sq*(asas,-2)
=0.
So the element ag,,, satisfies (1), (2), (3). Q.E.D.
Quite similarly one can prove

Proposition 5.8. There exist elements a,, ayj.q, 15j<2n, in H*
(BPO(4n+2); Z,) such that

1) dega,=2, dega,j+;=2j+1,
)] a,=1(y), a2j+1'=_'c(zzj), 1=j<2n,
(3) aa3j4+1=0.

Remark 5.9. The elements a; in Theorems 4.9, 4.11 and 4.12 are
thus the transgression images of some generators in H*(G(4n+2); Z,),
H*(PU(4n+2); Z,) or H*(PO(4n+2); Z,). The relations among them
are given in Propositions 5.6 and 5.8.

§6. Exterior Power Representations

To begin with we recall the definition of the exterior power rep-
resentation (p. 90 of [14]).

Let G be a group and k a commutative field. Denote by GL(n, k)
the general linear group. Let A=(a;): G->GL(n, k) be a matrix rep-
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resentation. For a pair of sequences of r integers I=(iy,..., 1) and
J=(ji--+,j,) such that

(%) I1si;<--<i,=n,
1<) < <j,En,
we define

a”(x)=det( a; i () a;,;,(x) for xe@G.

\ a;, j:r(x) ............ a,-r;-r(x)

Definition 6.1. Let 1=<r=n. We define a representation A"(x):
G->GL((7), k) by

AN (x)=

where I and J run over all sequences satisfying (x). We call A® the
exterior power representation of degree r of G.

If G is a topological group and k=R or C and if 4: G— GL(n, k)
is continuous, so is A™, namely, A" is a representation of G.

When G is a compact group and k=C (resp. R), we may suppose

AN G— U(()  (resp. AT G — O((1)

by making use of thc G-invariant Hermitian (resp. Riemannian) metric

(see [2]).

Proposition 6.2. Let G be a subgroup of GL(n, k). Let A:G—

GL(n, k) be an inclusion. For G9x=<—(1) _?) we have AM(x)=

<(1) ?)eGL((';), k) if r is even.
Proof. By definition
(=1 if I=J

azJ(x)=[
0 if I#J. Q.E.D.
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In the below we regard the identity map A: G=U(n)—»U(n) (or
the inclusion A: SU(n)—U(n)) as an n-dimensional complex representation.

Corollary 6.3. Let n be even. Then there exists a map (3 such

that the right diagram commutes:
SU(n) —*=— U((3))
\\>\\\\ /////;:)
G(n) .

Let t, be a generator of H?(BT"; Z) corresponding to the torus

Y

r /i1
g/ 0

T! =k

~

L \0 Ny

Then according to Borel-Hirzebruch (p. 492 of [6]) the total Chern
class c(A(®)) of the second exterior power representation A(2) is given by

1 , ;O§9<2n{cT"c U(n).
I
J

6.4) c(A®)= TI ((+t;+t)eH*(BU(n); Z).
15i<js=n
Remark 6.5. ty+e+1,=0 if G=SU(n).

Let «, 1=i<n, be indeterminates with dega;=1. Express

[T (4+x+a)=p,+--+p,+(higher terms),
15i<jsn
where f, is a homogeneous term of degree k. Denoting by o, the
k-th elementary symmetric function, we have f,=a,0.(ay,..., a,)+(decomp.)

for some integer a.

Lemma 6.6. If n is odd, a; is odd for 2Zi<n.

(A proof will be given at the end of the section.)
Let i: Sp(n)»SU(2n) be the usual inclusion map defined by

) o _.Bij
qij=;+jBij = cij= 5

ij ®ij
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where o, ;, f; ;€C.

Let s; be a generator of H2(BT"; Z) corresponding to the torus

( 1. 0 l
1R € Sp(n) | <T"=Sp(n).

1 ;0560<2m

Then
6.7) i*(tyi_)=s; and i*{t)=—s;.
Consider the composite of the maps
BSp(n) —— BSU(2n) —222, BU((3").
Proposition 6.8. The mod2 reduction of i*c(A(®) is given by
i*c(A2)= IS%_:[jsn(] +st +s4)e H¥(BSp(n); Z,).

Proof.
*c(l(z))—z*( 'I_['S (I+t,+1)) by (6.4)

si<js

= 1511'<[j—"(1+s +s;)4 by (6.7)
= IS,H, "(1+s4+s“) Q.E.D.

Next we consider the commutative diagram:
BSp(2n+1) —i_ BSU(4n+2) 222, BU((4"2))

(6.9) l J /
BPSp(2n+1) - BG(4n+2)

For the mod2 reduction of the Chern class c,;€ H¥(BU((*%2)); Z,)
we put

xg;=AD*(c,) e H3(BG(4n+2); Z,), 2<i<2n+1.
Then by the commutativity of the diagram (6.9)

i*n*ZXSi = i*TC*Z(2)*(ZC4i)
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= i*l(z)*(zc‘h)
= I*c(A?)

= I 1(1+s;‘+s})eH*(BSp(2n+1);ZZ).

1si<ji2n+

Apply Lemma 6.6 and we obtain
i*n*xg;=0s%,..., s34+ 1)+ (decomp.).

Denoting by g¢; the mod2 reduction of the i-th symplectic Pontrjagin

class, we have
i*n*xg,=q?+P,

where P is a sum of monomials containing q; (j<1).
On the other hand, since i*: H"(BSU(4n+2); Z,)—» H™(BSp(2n+1);
Z,) is trivial for m#0 (mod4), we have

i*n*(ay)=i*n*(a;)=i*n*(a,;+,)=0, and hence
P*r*(y(1)=0.
Thus we have shown

Theorem 6.10. There exist non-decomposable elements  Xg;.g€
HE8+8(BG(4n+2); Z,), 1 i <2n, such that i*n*(xg;15)=q%+P, where
P is a sum of monomials containing q; (j<i+1).

Now we turn to the orthogonal case.

Let A: SO(n)—»O(n) be the natural inclusion and regard it as a real
representation. As before we consider its exterior power representation
A2): SO(n)—0((3)). The total Stiefel-Whitney class is then given as

wiA®) =TT (A+4+t),
15i<j<2n

where t; is a generator of H!(B(Z,)"; Z,) corresponding to
[[1 ]

Z2=4l' ...... e ;e=4+1 Y e(Z,)"<0(n).
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Remark. ti 4 +1,=0.
Let i: Un)—>SO(2n) be the inclusion defined by the correspondence

b+e/—1m (lc’ —IC)> Let s; be a generator of H!Y(B(Z}); Z,) cor-

responding to

[
IR
Z,=i ;e==+1

JC(Zz)"CU(n)-

Then
(6.11) i*(ty— ) =1*(ty)=5;.
Let w; be the Stiefel-Whitney class. Then
i*(wy;-1)=0,
i*(w,)=c¢;, the mod2 reduction of the i-th Chern class.
Consider the following commutative diagram
BU(2n+1) —i 5 BSO(4n+2) 22, BO((*"42))

T w 7(2)

-

B(UQRn+1)/T,) —is BPO(4n+2)

where 7 is the natural projection and () the one induced from A(2),
Then

AR w)=*w(®))  with 1=(4137),
i=o0
where w(A(3))= [T  (+t+ty).
15i<j<4n+2

So by Lemma 4.6 we have

1
PR W)= T (+st+sh).
i=o0 18i<jS2n+1
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Thus by a similar argument to the unitary case we have

Theorem 6.12. There exist non-decomposable  elements X4j.4€
H4**4(BPO(4n+2); Z,), 1= j<2n, such that i*n*x,j,4=c2,,+P, where

P is a sum of monomials containing c, (k<j+1).

First we consider the case G=G(4n+2). The projection =: SU(4n+
2)— G(4n+2) induces =*: Cotor B4(Z,, Z,) —» Cotor B3(Z,, Z,) on the
E,-level of the Eilenberg-Moore spectral sequence. By naturality we have

— o ¥p2
¥ xhiv8 =1 D314
=c3;., for 15i<2n,

which survives in the E_(SU@n+2))-term, since E,(SU(4n+2)x
E (SU@n+2)x%grH*(BSU(4n+2); Z,) by Proposition 4.3. On the other
hand, since ¢;;i=i%cy;.,, it follows from Theorem 6.10 that for =*:
H*(BG(4n+2); Z,)~»H*(BSU(4n+2); Z,) we have

T*Xgi48=C3ir2+P'. 1<i<2n,

where P’ is a sum of monomials containing c¢; (j<i+1).
Thus we obtain

Theorem 6.13. The element xj;.g € Cotor B«(Z,, Z,) survives in the
E (G(4n+2)-term and represents xg;,g € H*(BG(4n+2); Z,).

Similarly,

Theorem 6.13'. The element x),,,€Cotor44(Z,, Z,) survives in
the E_(PO(4n+2))-term and represents X,;,,€ H*(BPO(4n+2); Z,).

Proof of Lemma 6.6. Let m be an odd integer. We regard the
identity map A: U(m)— U(m) as an m-dimensional complex representation as
before. Let t, be a generator of H2(BT™; Z) corresponding to the torus

1
T1=J1f eit 0<0<2n }cT"’cU(m).
J
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Then by (6.4) the total Chern class of the exterior representation of

degree 2 of A is given by

(@)= TI_ (I+t+1)eH(BU(m); Z).
1= jsm

si<j=

We will show that the integer a, is odd by taking «;=t; and f;=c,(1(?),
the i-th Chern class of A(2),

Let &% be the Adams operation on representations and ch, the
Chern character. Denote by A? the tensor product A® A.

Lemma 6.14. (1) ch,@2(A)=21ch,(A).
(2) D2N)=4i2—212),
(3) chy(A?)=2mch(4)+(decomp.).

(4) Let m>3. For n=»4 or A2

chy(n)= % ¢,(m)+ (decomp.).

Proof. (1), (2), (3) follow directly from the definition (also see [17]).
(4) follows from the Newton formula. Q.E.D.

By this lemma we have

chy (M) = Lleh,(02) = chy (92 (4))}

=L (2(n=21)chy(2)} + (decomp.)

=(n—2"1Ychy 1)+ (decomp.).
Now by (4) we obtain
¢ (A2 =(n—2"1)¢,(A)+ (decomp.)
=m-2"Ya(ty,..., t,)+(decomp.),

where (n—2i"1) is odd if i=2. Q.E.D.
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