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On Solutions of Initial-Boundary Problem
1for ut=uxx+-

l-u
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§1. Introduction and Theorem

Various works [1], [2], [3] have been published on the blowing-

up of solutions of the Cauchy problem and the initial-boundary value
problem of nonlinear partial differential equations. Blowing-up means
that the solutions of these problems become infinite in a finite time.

The objective of the present paper is to introduce the concept of
quenching which has more general sense than blowing-up and to find

some sufficient conditions for quenching of the solutions of the following
initial-boundary value problem for u = u(t, x\ f>0 , xe(05 /),

(1.la) nt = uxx + T^7, />0, A'6(0, /),

(Lib) u(t, 0) = «(f, 0-0, *>0,

(Lie) H(0,x) = 0, xe (0 , / ) ,

where / is a positive constant. The above initial-boundary value problem
(1.1 a ̂ c) is denoted by IVP. Our study may be said to be more
illustrative than general, since we restrict ourselves to mixed problems of

serailinear heat equations with space dimension one. Nevertheless, we
hope that our results will give an insight into a more general situation.

The nonlinear perturbation — O'?^l) in (1.1 a) is locally Lipschitz

continuous. Thus IVP has a unique solution which may be local in t.
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The present problems came to our attention in connection with the

diffusion equation generated by a polarization phenomena in ionic con-

ductors [4].

We shall define quenching for the solutions of the initial value

problems.

Definition 1. Let u = u(t, x) be the solution of the initial value

problems which are defined in £>0, xeQ. Q means Rm which stands

for the m-dimensional Euclidean space or the bounded domain in Rm.

We shall say that u quenches if \\ut\\c becomes infinite in a finite

time where ||-||c denotes the maximum norm over Q.

In order to clarify the nature of quenching, let us take some ex-

amples.

Example 1. a being constant, the solution of the initial value prob-

lem for u = u(f), t>Q,

du l , t>0
dt l-u

11(0) = GC,

is u = l+^/(l-(z)2-2t, if a>1 and u = l-^(l-Qi)2-2t, if oc<l. In both

cases, we see quenching at t = ^ ~°^ —

Example 2, Let a be as above. The solution of the initial-boundary

value problem for u = u(t, x), £>0, xe(0, I),

ux(t,0) = ux(t, 0 = 0,

tt(0,jc) = a, xe(0, 0

is the same as above.

Example 3, Blowing-up in the initial value problems means quench-
ing.
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As our main result, we have

Theorem. In the IV P, suppose l> 2-^/2. Then the solution of the

IVP quenches.

The present paper has two sections apart from this section. In

§2, we shall give a Lemma. §3 is devoted to the proof of our Theorem.

§ 2. Lemma

As a preparation for the proof of Theorem we state the following

lemma. Henceforce, let u = u(t, x) be the solution of IVP.

Lemma. In the IV P, suppose l>2^/2 . Then u reaches 1 in a

finite time at x=-y.

Proof:

1st Step. We show that u(t, x) is increasing in t for every x in

(0, /) as long as u exists. In fact, putting v = ut, we have

(2.1) v t = vxx+ _!2 '*»

f<f,0) = t<f, 0 = 0,

and

i>(0, x) = l, xe(0, I) as long as u exists.

We notice that v is a solution of the linear parabolic equation (2.1)

and is non-negative on the "parabolic boundary". Thus v is non-

negative everywhere, which implies the required monotonicity of u.

2nd Step. The solution u1=u1(t, x) of the initial-boundary value

problem for u = u(t, x)9

ti(f, 0) = w(f, l) = 0,

tt(0,x) = 0, xe(0, 0
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converges its stationary solution i^(x) = y- /(/ — x) (0 < x < /) as f ->H-oo.

Thus «! crosses 1 in a finite time if

Suppose that u does not reach 1 in a finite time if l>2^/2. Then

IVP has a global solution, i.e., u satisfies O g w g l in (0, /) x [0, + oo)

by virtue of the monotonicity of w. Comparing u with ul9 we get u^ul

in (0, /) x [0, + oo ) since - — r^l in O^A^l . This contradicts the
1 — A

assumption. We shall denote the time when u reaches 1 by t=TQ.

3rd Step, u satisfies (i) ux(t, 0)>0 by virtue of positivity of u;

(ii) ux(t, -~-J = 0 since w is symmetric with respect to ^=y-. Putting n =

uX9 we have

7r(/,0)>0, 7 t / , - - = 0, /e[0, T0) ,

and

Repeating the same argument as in 1st Step, we see that

(2.2) TC = !/,(*,

Combining (2.2) and (ii), we get that w takes its maximum at x = -j-

for any t e [0, T0). This completes the proof.

§3e Proof of Theorem

1st Step

La) Put /t = /j(0 = wf, " in [0, T0). ^ satisfies

(3.1) = in
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for sufficiently small e(>0) since uxx(t, -y-J^O in [0, T0). Put 71
1 = T0-e

and ^£ = (0, /) x [Tj, T0). Comparing /*(f) with v = v(/) = 1 - <J~2jT0-1

in [T19 TO), we get

(3.2) ji^v, in [7\, T0)

since v satisfies (see Example 1)

dv _ I fe=rT T \
^T"T=1T' ^ L ^ i ^ o J

and

lim v(f) = 1.

(3.2) implies that there exists the domain DE in which u satisfies

Denote the complement of Dc by Ec and put E^^^n |(o, y")x [Tl9 T0)|

and ^2) = ££n |(y, /)x[T1? T0)l. For D£? there may be two cases:

Case (a) DE has no interior points, i.e., there holds

O n ri ' ro).
Case (b) DE has interior points.

For the case (a), u quenches obviously. Henceforce we consider only

the case (b).

l.b) Denote the boundary between DE and E(
E° by x = sW(t) (te[Tl9 T0))

for 1 = 1,2. Then x = s(i)(0 satisfies

(i) lim^>(f)=J- ;
t~*T0 *

(ii) ii^f, s^(f)).s(0(f)=- t t jcje(f,s(0(t)), teCTi, T0) where s<')(j) means

for i = l, 2. In fact, there holds
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(3.3) M = V on jc = s(i)(f), ?e[T1?T0)8

Differentiating both sides of (3.3) and using (3.3), we get

1(3.4) ut(t,

By virtue of (1.1 a) on x = s(i)(0 and (3.3) we have (ii).
l.c) Obviously we have the following inequalities

and

2nd Step.

2. a) Let p = p(t,x) be -̂ 77- - IT in D£ and -71 - y2~ in EE. Then the
— —

IT
I)

solution vl=vl(t, x) of the initial-boundary value problem for v = v(t, x)

in Qe,

n

15 x) = /?(x) = fif(r1, x)>05

exists and satisfies 0<u1^t; in ^£ by virtue of (3. 5 a) and the maximum

principle (cf. 1st Step in the proof of Lemma).

2.b) Put W=W(t, x)=^T0-t'V1. Denoting W in De by W^\ we have
^(.i) in DB. Furthermore it should be noted that W(t, x)>0 in

3rd Step.
3. a) We shall deal with the following initial-boundary value problem

for V= V(t, x) in (- oo, + oo) x [rlf T0).

(3.6 a) Vt = Vxx in (- a), +cx))x [Tl9 T0)
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(3.6 b) V=WW in DE

(3.6c) V=JT-p(x), xe [0,8^(^)0(3^(^,1]

(3.6 d) F=0, *e(-oo, 0)U( / , +00).

In what follows we impose on the solution V(t, x) the following condi-
tions at infinity: V(t, x) and Vx(t9 x) are bounded as x-» + oo uniformly
with respect to t in [Tl9 T0). We see the solution W= W(t, x) of (3.6)
uniquely exists. Uniqueness of W is shown by Holmgren's theorem.
Using the Green's function

is represented by

, x;

fsco
(3.7) +\

Jo

K(t, 0; T,

e[r1; T0).

Also in s ( 2 )(f)<x< + oo, te [Tj, T0), we have the similar expression as
(3.7).
(3.b) Using the positivity of ft, W and maximum principle, we have

in (-00, +oo)x[T l 5 T0).

Thus from (3.6) and (3.5b) we see

W(t, x)^W(t, x)>0 in QE,

4th Step. We claim that

lim ftt9-t-*TQ
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On the contrary, we suppose that

lim

which implies that 0 — W(t , x) ̂  W(t , x) ̂  0 in QE by the strong maximum

principle [5]. This is a contradiction. Thus we get that

wt -
lim *^ = lim v(t, 4-}^ lim Vl(t, 4r }= lim ,\ ' 2 = + oo
- - z - " - —dt

This completes the proof.
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