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Cohomologies of Lie Algebras of Vector Fields
with Coefficients in Adjoint Representations

Hamiltonian Case

By

Yukihiro KANIE*

Introduction

Let M be a smooth manifold, and ^l(M) the infinite dimensional

Lie algebra of all smooth vector fields on M. Let 91 be 9l(M) or a
certain natural subalgebra of it. We arc interested in the cohomology
#*(9l; V) of $1 with coefficients in some representation V9 which is an

invariant of the Lie algebra 21.
In 1968, I. M. Gel'fand and D. B. Fuks began to study the theory

of cohomologies of Lie algebras of vector fields. First, they treated the

case where 2I = 2l(M) and F=M (trivial coefficients). Since then, many
mathematicians studied cohomologies in many cases, for instance [2],

[4], [6] etc. They also treated the case of nontrivial coefficients, but
restricted themselves to the representations induced from some finite
dimensional ones. Their proofs were essentially based upon some finite-
ness of representations.

Meanwhile, in 1973, F. Takens [7] proved that any derivations of
2I(M) is inner. It means that the first cohomology of 2I(M) with
coefficients in its adjoint representation, a natural infinite dimensional
representation, is trivial.

In the present paper, the author treats a symplectic manifold (M, o>)

and the subalgebra 210,(M) consisting of hamiltonian vector fields on M
in this direction. Then he obtains the following results.

Mate Theorem. Let (M, co) be a connected symplectic manifold,

Communicated by H. Yoshizawa, August 5, 1974. Revised September 2, 1974.
* Graduate School, Kyoto University, Kyoto.
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then the first cohomology of Sl^/M) with coefficients in its adjoint

representation, is of dimension 1 or 0, that is,

= 1 or 0.

Moreover, Hl(<&m(M)\ 2IW(M))^R if and only if the symplectic form

co is exact,

Locally, this theorem has a simple feature (Theorem 5) as follows:

Let U be a connected and simply connected open set in R2n, with the

natural symplectic structure co = Idxidyi, then

The proof of Main Theorem can be carried out by elementary

calculations. But to make short some part of the proof, we use Weyl's

results on representations of the symplectic algebra. The elementary

version of that part is outlined also in Section 4.

In §1, we explain some generalities of the first cohomology and

symplectic manifolds. In §2, we prove interesting properties (Proposi-

tions 1 and 4) of hamiltonian vector fields, which play an important role

to prove Theorem 5, a local theorem. Moreover we prove in § 2 that a

derivation of ^(M) is a local operator (Proposition 3). Section 3 is

devoted to the study of derivations of 5Iro(M) in local. In §4, we

complete the proof of Theorem 5. Here we use some knowledge of

formal hamiltonian vector fields. Finally in §5, we give the proof of

Main Theorem.

The author expresses his hearty thanks to Professors T. Hirai, Ta

Morimoto and N. Tatsuuma for their kind advices.

§1. Derivations and JET1 (21; 21)

All manifolds, vector fields, functions etc. are assumed to be of

C°° -class.

Let 51 be a subalgebra of the Lie algebra 8l(M) of all vector fields

on a manifold M, and consider the adjoint representation of 81:

= [*, Y] (X
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where [ , ] is the usual bracket operation of vector fields. The co-

chain complex {C«(Sl; SI), dq} of the Lie algebra SI with coefficients in

its adjoint representation consists of the following:

C«(8l; 8I) = {P: Six ••• xSl - > SI, skew-symmetric ^-linear map},

and for PeC* and Xl9...9 Xq+i eSI,

The homologies {H«(SI; SI), g^O} of this complex are called the

cohomologies of SI with coefficients in its adjoint representation. The

one dimensional cohomology H1(Sl; SI) is interpreted as follows. Since

dP(X, Y) = [X, P(y)]-|T, P(X)]-P([*, 7]) (Jrs YeSl),

for PeC1 , we see that dP = Q means that

that is, 1 -dimensional cocycles are derivations of ST. Moreover since

for QE C°(Sl; SI) = 81, we see that 1 -dimensional coboundaries are inner

derivations of 81. Thus the first cohomology space H1(SI; SI) is the

equivalence classes of the algebra D(Sl) of derivations of SI modulo
its ideal T)*(SI) of inner derivations, or

In the following, we consider a smooth symplectic manifold (M2n, CD),

and the subalgebra SI = SIW(M) of hamiltonian vector fields on M.

A symplectic structure is defined on M2n by a nondegenerate closed

2-form co, that is, con = a* A • • • A co is a volume form of M and dco = 0.

A vector field X is called hamiltonian, if it preserves the symplectic

form o>, and by definition,
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where Lxa> is the Lie derivative of CD by X. To determine the first

cohomology, we must study the structures of SW(M) = 3X2lw(M)) and

§2. Some Properties of W£0(M) and DCO(M)

2.1. In the following, we denote by dv the vector field -~— , and by

X\v the restriction of X on 17.

Proposition 1. Let p be a point of a symplectic manifold M2",

and let X be a hamiltonian vector field on M such that j2(X)(p) = Q,

that is, the 2-jet of each of the coefficient functions of X is zero at p.

Then, there exist a finite number of hamiltonian vector fields F15...,

Yl9 Z1,...,Z / on M, and a neighbourhood U of p in M, such that

and

Proof. Let U be a simply connected open neighbourhood of p,

and let (xl9...,xn9 yl9...9 y^ be a symplectic coordinate system around p

in U, that is,

Since the vector field X is hamiltonian, Lxa> = dixQ) = Q, where

is the interior product of X and CD. Hence the differential form ixco is

closed, and so the restriction ixG>\u is exact by Poincare's lemma. With

respect to the above local coordinates, X and ixo} are written in U as

where /f and gt are functions on U. There exists a function H = H(x, y)
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on 17 such that

Therefore we have for £= l , . . . , n ,

/*(*, y) = Hyi, gt(x, y)=- HXi ,

that is,

X = ±(HyidXi-HXidy) on U.
i=l

This function H is uniquely determined up to constants, so that we may

put H(p) = Q. A function or vector field is called without constant term

if it is zero at the origin of the coordinate system.

In global, any function H on M uniquely determines the hamiltonian

vector field X on M by the formula ixco = dH, because of nondegeneracy

of the symplectic form co. So X may be written as XH. Then the

following formula holds for two functions H and K on M,

Here {H, K} is a function on M called the Poisson bracket of H and

K, which is given in U by local coordinates as

Thus, the proposition follows from the following result on a con-

nected open set (called domain) in a Euclidean space. Q.E.D.

Proposition 2. Let H be a C^-function on a simply connected

domain U in R2n with j3(//)(0) = 0, then there exist a finite number of

C^-functions Kl9...9Kb G l9..., Gj on U, such that

and
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Proof. Since j3(H)(0) = 0, H can be given as a finite sum of func-

tions of the following form:

x\*...x\»y^...y™»f(x9 y)

with £ (/, + m,-)^4, and / a C°° -function on U. Since £ 'i^2> or

i=i i=i
n N

Y, ™>i^2-> we may assume £ / f^2 without loss of generality.
i=l i=l

CASE 1. The case where liQ^2 for some i'0. Let i0 = !9 and put

where

then we have

Moreover j2(X)(0)=J2(G)(0) = 0, because jm^(g)(Q) = 0 and

(/i + Wi) + ai-
i=2 i=l

CASE 2. The case where all /,-gl. Assume that /1 = /2 = 1, then by

means of the following symplectic transformation, this case is reduced

to Case 1 :

I x2 xl x2, y2

(x't=xt, y'i=yt

Q.E.D.
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2.2. Proposition 3. Let D be a derivation of $

is identically zero on some domain U in M, then D(X) vanishes identi-

cally on U.

Proof. Assume that there exists a point p in U such that

0. Let V be a simply connected coordinate neighbourhood of p in U.

Since D(X) is hamiltonian, using symplectic coordinates around p in V9

we can find a function # on V such that D(X)|F = XH, as in the proof

of Proposition 1. Since D(X)(p)^Q, Hx.(p)j=Q or Hy.(p)^Q for some i.

We may assume that Hx.(p)^Q. Let K be a function whose support is

contained in K, and equals to y\ in a smaller neighbourhood F' of p.

Then we have

{H,K}=2yiHXi in K',

and then

Hence

On the other hand, since [X, J(TX] = 0 on M,

0 =

This contradicts our assumption. Q.E.D.

Proposition 4. Let D be a derivation of 9Im(M), and X be a

hamiltonian vector field on M. If j2(X)(p) = Q for some point p of M,
then D(XXp) = 0.

Proof. We can find, by Proposition 1, a neighbourhood U of p,

and hamiltonian vector fields Y lv..9 7Z and Z lv.., Z^eSl^M) such that

^117= Z C^iJ ^i]|l7»
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Then, using Proposition 3, we get

Q.E.D.

Remark 1. Any derivation D of ^(M) can be considered as a

derivation of $tm(U) for any open subset U of M.

In fact, for any point p in 17, by the proof of Proposition 1, we

have a hamiltonian vector field X on M for any Xetytco(U) such that X

equals to X on some neighbourhood of p. Define Dv by Dv(X)(p) =

D(X)(p), then Dv(X)(p) is well defined by Proposition 3, and clearly Dv

is a derivation of 9IW(17).

§3e Inner Derivations of 21^(17)

3.1. In this section, we fix a simply connected domain U of M,

and a coordinate system (xl9...9xn9 yL9...9 ytt) in U for which a> = Zdxidyl

in L7. The conditions that a vector field X on 17 is hamiltonian, is

given as follows:

Theorem 5. Let D be a derivation of the Lie algebra $1̂ (10 of

hamiltonian vector fields on U.

(i) There exists a unique vector field Z (not necessarily hamil-

tonian) on U such that

(ii) Z is uniquely expressed as Z = Z1+Z2s where Zie
(H(0(U) and

for some constant c,
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Note. If c^O, Z2 is not hamiltonian, because LZlco = 2cco in 17.

Let us call a vector field constant or linear if it has only constant

coefficients or linear coefficients respectively.

We construct the vector field Z as a sum of Z(0)
5 Z(1) and Z(2):

Here Z (0> is the constant term of Z, and Z (1> is the linear term of Z

(containing Z2), and finally Z(2) is the remaining term with coefficient

functions of degree ^2, a hamiltonian field.

3.2. Determination of Z(2>

According to the situation, xt is denoted by viy and y£ by I;H|I for

Igi^gt t . To determine Z' = Z ( 1> + Z(2), we will use the following equali-

ties,

/>(aw.)=[z,5j=[Z',aj

Define for all i" and 7, the functions ftj etc. on (7 as

It follows from [<?,,,, 3Kni]=0 for 1, m = [,..., 2n that

and that
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3,,, 5,J)

= S {(d,t(f'mj) - djj'ij))d

Therefore we have for all j, /, in,

(2) dxi(fmj) = 5,m(/v), Bym(fu) = dxi(f'mj), dyi(f'mj) = dym(flj) ,

(3) SXl(ffmJ) = dxjgij), dym(gtj) = dxi(g'mj), dyi(g
r
mj) = 3ym(0{y) .

Since U is simply connected, there are unique functions <PJ and

A/( l^ j^ra) up to constants on U such that

Here we may assume that all <p; and ^ have no constant terms. Put

(4) Z'=-t(9jd
7=1

then we get

Lemma 1. The vector field Z' defined above is hamiltonian modulo

linear terms.

Note. The field Z(2) is determined as the component of Z' with
coefficient functions of degree ^2. The structure of the linear term of
Zr,Z^ = Z'-Zt2\ will be studied in §3.3.

Proof. Since D(dv) is hamiltonian for all i, the equalities (1) hold
for fij9 gtj and also for /Jj, gf

ijt Hence for all /, j, /, we get

and similarly,
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3yt(9ij) = 3xi(9ij) = S
Xj(dn) = 3

yt(9jd *

and further,

From the above equalities, we have

modulo constant terms for all i, j. This means that Z' satisfies, modulo

linear terms, the condition (1) to be hamiltonian. Q.E.D.

33. The Structure of
We have just proved in the preceding paragraph that

and that Z(2> is hamiltonian. However Z(1) is not hamiltonian in gener-

al. Let us study the linear field Z(1> more in detail.

Put D' = D-adZ(2>, then we have

where for all i, k9

«ik=/a(

Then by (4)

(5) Z(1)= -
/c i

Let Xij9 YU and Ztj be the basis of the linear hamiltonian vector

fields, given as

,-.)> A
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YU = xtdyj + Xjdy. ( 1 g / g j <; H) ,

Define the functions aijk etc. on U for all i, j, k by

Then we have the following

Lemma 2. The functions aijk, pijk, yijk, Sijk, %ijk and rjijk are of

degree ^1, whose linear terms are determined by the constants aik,

bik, cik and dik in (5).

Proof. First, we have for all /, /, m,

[dXi* XlrJ-dttdXm9 [dyt, Xlm"]=-dimdyt9

where 8tj is the Kronecker's delta. Applying D1 to these equalities, we

have

(6) tiiZ,(amAk + bmkdy})

= atldxm - bimdyi + E {dxi(xlmk)dxk + dxi(plmk)dyk} ,
k

(7)

= cit8Xm - dimdyi + E {dyt(xlmk)dxk + dyi(plmk)dyk} .
k

Compare the coefficients of dxk and dyk, then we see that the deriva-

tives of the first order in xt and yi of almk and plmk are constants

determined by atj, bip ctj and dtj. Hence we have the assertion for

aijk and pijk.
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By the same arguments, we have also the assertion for yijk, Sijk9

ijk and nw Q.E.D.

Lemma 3. There are the following relations:

ii)

iii) bij = bji for all i,j,

iv) ctj = cji f°r M i ' J -

Proof. If i^l in (6), we have

0 = attdxn - blmdyt + Z [dxfa^d^ + B^P^d
k

and hence

(8) SXi(alfflIB) = - «„, 5,̂ ,) = bim 0V /) -

Pnl / = / in (6), we have

.a^)^ + dx.(pimk)dyk} ,
k

which implies that

(9)

Now if *Vm in (7), we have

and hence
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Similarly for i=m, we get

= c; A, - dudy, + Z {8y.(*n
k

which implies that

(11)
dy.(alik)=-clk

Let us take into consideration the condition (1) that Df(Xtjys are

hamiltonian, then we have from (9) and (10), for m^k,

0 = 3ri(a/Mfc) + dyj[pimi) = amk + dkm9

which means i).
Also we obtain from (9) and (11)9

0 = dxt(*ijj) + dyffijd = *jj - «« + djj - 4- ,

which means ii); and from (8) and (9)9 for i^l,

which means iii); and from (10) and (11), for i^m,

0 = dy.(almm) - dym(almi) = - ca + cu ,

which means iv). Q.E.D0

Remark 1. There is no relation besides i)~iv) among aij9 bip c{j

and dij9 which comes from the condition that D'(V) is hamiltonian,

where V is any one of Xij9 Ytj and Zu. Further more there holds

modulo constant terms, where V is as above.
Now we can describe the structure of Z(1>.
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Lemma 4. The vector field Z(1) is uniquely expressed as

where Z(
1
1) is hamiltonian, and for some constant c,

Proof. Put

Z (1)= - t^/to y)8Xl+g£x, y)dyi},

then from (5), we have for i =!,..., n,

n

Put c = 2~l(aii + dii), which is independent of i by Lemma 3 ii), and
put

Then, the remaining term Z(
1
1) = Z(1) — Z2 is hamiltonian by the equalities

i)^iv) in Lemma 3. One can easily see that the decomposition Z(1) =

Z(
1
1) + Z2 is unique, as far as Z(^ is hamiltonian and Z2 is a scalar

multiple of Zfofl^ + M,,). Q.E.D.

3A Determination of Z<°>.
Let the derivation D" be D" = D-3idZf

9 then by §3.2. we have

Let avfc, )8ii/fc, y0-fc, 5£</ft, C^/c and iyii/k be the constant terms of aijk,

Ptjk> 7ijk> ^ijfcj %tjk an(i fTijfe respectively, then, by Lemma 2, we have for
all i, j, k,



YUKIHIRO KANIE

Moreover ocijk etc. are expressed more simply as follows.

Lemma 58

i) D^X^^ + Pfa,

ii) D"(^) = a^j. + aJ^3

iii) D'&^-fad^-pjd^,

where oq = ocm, & = &«.

Proof. Applying D" to the both sides of the equality

[X ip Xln^\ = dJLXim — 8imXij ,

then we get

(12) + C* A; - ^5,., ZCai™ Afc + Plnfi

= <*ijlSxm ~ Pijmdyt ~~ Vlmidxj + Plmjdyt '

If j^l and i^m in (12), we have

0 = <*ljldXm - Pijmdyt - Xlmfixj + Plmj

which implies that for j^m,

and for H=l,
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Then if j = i and i^m in (12), we have

and hence

Pirni Plml Pmnwi °

Put oq = am, Pi = Piu, then

which is the equality i).

Applying D" also to the both sides of the equality

[X ip )jmj = dji Yim + Ojm in ,

we get

(13) = [afaA. . + ̂ 5^, x^Jm + xmdyi~]

If j=£l and j^m in (13), we obtain

and hence for all /, /7i, /,

Then put i^j = m = l in (13), we obtain

which implies, by the symmetry of dijk in i and j, that
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Hence we have

D"( yy) = 5wdyj + dijtdyi = Kt8yj

for all i, j, which is the equality ii).
Apply D" to the both sides of the equality

Then we get the equality iii) by the same arguments as for ii). Q.E.D.

Thus we have the hamiltonian vector field Z(0)
5 given as

(14)

with constants ai5 fa in Lemma 5, such that for any linear hamiltonian

vector field V

However this condition determines Z(0) by the following lemma.

Lemma 6. Let V be a constant (hamiltonian) vector field with

IV, Xij']=Q for all ij, then we have that F=0.

Proof. Put

then we have

0 = [F9Zl7] = a^-feA-'

and hence ^ = ̂  = 0, for all i, Q.E.D.

3.5. Thus we know the vector field Z
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as (4), (5) and (14) such that D(F) = [Z, V] for all V with coefficient
functions of degree gl. Then we must show that D is adZ for all
hamiltonian vector fields on U. This is established by the following

Lemma 7. Assume that a derivation D vanishes at any X such that

the coefficient functions of X are of degree <£1. Then D is identically

zero on

To prove this, we use the following.

Lemma 8. Under the assumption of Lemma 7, D(X) = Q9 if all

coefficient functions of X are of degree 2.

The proof of this lemma will be given in §4.

Proof of Lemma 7. Let X 691^(17), then we can show that D(X)(p)

= 0 for any point pel/. In fact, there is a decomposition of X at p,

X = Xl+X2 such that the coefficient functions of Xl are polynomials of

degree ^2, and j2(X2)(p) = Q. Then by Lemma 8 and Proposition 4, we
have

D(X)(p) = D(Xl)(p) + D(X2}(p) = 0 .

Q.E.D.

§4. Relations to the Formal Lie Algebras

4.1. It is known by T. Morimoto [9] that the derivation algebra
of the following irreducible transitive Lie algebra (TLA) g of infinite type:

(for definition, see [5] for example) has the subspace of outer derivations,

of dimension 1. In other words, H1 (?!„(»); 8̂ (11)) sR, where Sljii)

is the Lie algebra of formal hamiltonian vector fields on R2n at the

origin (for definition, see [3] for example). By some techniques used
to prove the above formal theorem, we have another approach to the
determination of Z(0), and a proof of Lemma 8.

The constant hamiltonian vector fields form a Euclidean vector
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space (abelian Lie algebra) F0 of dimension 2n, and the linear hamil-

tonian fields form a vector space F^s^Fo), with the natural structure

of Lie algebra. Before Lemma 5, we have already proved that D"(Fi)c:

VQ. The natural representation of sp(2w; R) on R2" is irreducible, and

is given in terms of vector fields as X(dv) = [dv, X~\9 where XeVl^

sp(2n;R) and ^eFo^R2".

Thus the linear map (derivation) D" from V^ to F0 is a 1-cocycle

of sp(2n; R) with coefficients in the above representation. Apply to

D" the fundamental vanishing theorem for nontrivial irreducible represen-

tations of (finite dimensional) semi-simple Lie algebras (cf. [1]). Then

we get a unique vector VQ e F0 such that

D"(X) = (dv0)(X) = X(vQ) = [Z<°>, X] (X e Fx) .

Here, Z(0) is the vector field corresponding to the vector u0, and ex-

pressed according to the formula in [1] as follows:

(It is not easy to obtain the explicit formula (14) of Z(0) from the

above expression of it.)

4.2. Proof of Lemma 8.

The hamiltonian vector fields of homogeneous degree 2, also form a

vector space F2 = sp(F0)
(1), the first prolongation of F1 = sp(F0). The

natural representation of Fx on F2 is given in terms of vector fields as

X(Y) = [Y,X] for ZeFi and 7e F2. Then it is known by H. Weyl [8]

that this representation is irreducible.

As in the proof of Lemma 2, we have D(F2)c:F0. From the assump-

tion of Lemma 8, we see that D([X, YJ) = [_X9 D(Y)] for X e F j and

Ye F2. Then the following diagram is commutative:

adZ Q (XeVJ.
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This implies that kerD is stable under ad (F^-actions. Since ker£>^{0}

clearly, it follows from the irreducibility of the representation that

ker£>=F2, that is D = 0 on V2. Q.E.D.

Remark 1. This proof is simple and short, but is based upon Weyl's

work [8]. We have another proof by elementary calculations. Let us

sketch it here.

Take a basis Xijk, Yijk, Zijk and Wijk of V2, as

- x{ykdy. ,

Wijk =

Define the functions aijkl etc. on U by

Then all these functions are constants as in the proof of Lemma 2.

Moreover these constants are zero. In fact, firstly we obtain that aijkl =

dijkl = dijkl = Q for all i,j,k,l, by applying D to the both sides of the

equality

and by the symmetry of dijkl in z, j9 k,

Secondly we obtain that b'ijkl = cijkl = c f
i j k l = Q, by applying D to the

equality

[^mwj Yijk] = ^nk^ijm + ^mk^ijn »

and by the symmetry of cijkl in /, j, k.
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Finally we get that a'ijkl = bijkl = Q, by applying D to the equality

[Zmn, Xjjk~] = dni Ymkj + Snj- Ymki + Smi Ynkj + dmj Ynki ,

and by the symmetry of bijkl in i,j.

Thus we have that D = 0 on V2.

§5. The Cohomology

5.1. In the preceding two sections, we proved Theorem 5, a local

theorem. The following one follows immediately from it,

Theorems'.

Now we will give a global theorem on M. Before that, we show a

global version corresponding to Theorem 5.

Proposition 6. Let (M, CD) be a symplectic manifold, and D a

derivation of hamiltonian vector fields 5JW(M) on M. Then there exists

a vector field Z on M such that

D(X) = [Z, XJ for all Xe ^(M) .

Proof. Take an atlas {17,, <pt: l/,-»R211} of M such that each U,

is a simply connected domain. Then, by Theorem 5 i) and Remark 1

in § 2, we have on each Ut a vector field ZUt such that DV.(X) = [Z^., X]

for any XeSlJl/,). It follows from ^i^n^^l^n^ and the
uniqueness that Zl7.|u.nt7j. = Zt/j.|u.nuj.. Hence there is a vector field

Ze3l(M) such that ZlUg = ZUt for each Ui and that D(X) = [Z, X] for

any ZeSIw(M). Q.E.D.

Let U be a simply connected domain, and (xl9...9xn9 yl9...9 yj a

symplectic coordinate system such that ct)\u=Zdxidyi. Then, by Theorem

5 ii), the above vector field Z is represented as Z = ZIV + Z2U on L75

where Zltfe8lro(l7) and Z2£/ = c5](^Al + ̂ 3yi) for some constant c.

Then we have the following

Proposition 7. // M is connected, the constant c is independent of

the choice of U and (xl9...,xH9 yi,...,yj.



COHOMOLOGIES OF LlE ALGEBRAS 759

Proof. Since M is connected, it is sufficient to show that the con-

stant c is invariant under any symplectic coordinate transformations of U.

CASE 1. (Translations). Let new coordinates (xi9 yt) be

where ab bt are real constants. Then

Since any constant vector field is hamiltonian, the constant c is

left invariant.

CASE 2. (Linear transformations). We prove that the constant c

is left invariant under any general linear transformation, not necessarily

symplectic.

Take an element g = (gtj) in GL(2n\ R) and put

Then

and hence

i

CASE 3 (General case). We may assume by Case 1 that a symplectic

coordinate transformation <p has no constant terms. Then the inverse

(p"1 has also no constant terms. The vector fields Z and Zi are trans-

formed into hamiltonian ones by means of q>, and the linear term of

the expression S^S^-hy^) in terms of new coordinates depends only
i

on the linear parts of the transformations cp and cp~l. Hence we see

by Case 2 that the constant c is invariant under <p, because the higher

terms sum up to hamiltonian vector fields by Theorems, Q.E.D.
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Corollary8 Let Z and c be as above, then Lz(D = 2co} on M.

Proof. We see that for any U,

on U.

Q.E.D.

5.2. Now we can prove our main results.

Theorem 8. Let (M, CD) be a connected symplectic manifold. Then

the first cohomology of the Lie algebra ^(M) with coefficients in its

adjoint representation is of dimension I or 0, that is,

)^R or 0.

Proof. We can define the homomorphism

which assigns to a derivation D e DW(M) a constant c by Proposition 7.

Let us show that ker0 = !Dj,(M). This means that

SJD^R or 08

Let D and D' be two derivations such that <£(£)) = <£(D') = c, and put

D = D-D', then <j&(D) = 0. By Remark 1 in §2 and Theorems, D is

inner on any sufficiently small simply connected domain U, that is, there

exists a unique hamiltonian vector field Zv such that D|t/ = ad(Z£7).

From the uniqueness in Theorem 5, and by the same arguments in the

proof of Proposition 6, there exists a unique vector field Z whose restric-

tion Z|[, is equal to Zv for each such U. Clearly Z is hamiltonian,

and D(X) = [Z,X] for all XeSIJM). Hence we have that ker 0

On the other hand, the converse inclusion: D^(M)c=ker09 is clear.

Q.E.D.

Theorem 9. Assume that the symplectic from CD of M is exact, or

there exists a 1-form 9 on M such that d0 = CD. Then
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Proof. Let W be a vector field corresponding to 9 with respect

to eo, that is, iwco = 9. Then

a> = dO = diwa> =

and hence W is not hamiltonian. On the other hand,

L[Wrfx]G0 = LwLxa> — LxLwa> = — Lxa) = 0

for all XeSlaXM), then [W, X] e $lco(M). Therefore ad FF is an outer

derivation of 5lro(M). Q.E.D.

Theorem 10. Assume that the symplcclic form a) of M is not exact.

Then

f/1(aiol(M);9Ia,(M)) = 0.

Proof. Let D be a derivation of $lw(M). Then by Proposition 6,

there is a unique vector field Z e 2l(M) such that D = ad Z, and by

Corollary of Proposition 7, Lzco = cco for some constant c. Assume that

CT^O, then a) = c~id(izco), or co is exact. Hence c = 0, that is, Z is

hamiltonian. Thus all derivations of $lco(M) are inner. Q.E.D.

Summarizing these results, we get the following Main Theorem.

Main Theorem. Let (M2", CD) be a connected symplectic manifold,

then

dimff1(«fl,(M);2Ifl,(Af))=l or 0.

Moreover, H^IJM); SI^M^^R if and only if the symplectic
form a) is exact.

Remark 1. Let M be a manifold attached with a volume form i

or a contact form c. Then, in stead of $lw(M), we have a natural sub-

algebra S21T(M) or 2lc(M) consisting of vector fields which preserves T

or c respectively. It is interesting to obtain the analogous results for

these subalgebras. If n = l, the above Main Theorem gives the result

for SIT(M) where M is a 2-dimensional smooth manifold.
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Remark 2. The condition of continuity is absent in the definition

of cochains of $IW(M) with coefficients in its adjoint representation, but

from the above results all cocycles are continuous.
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Added in proof. The author was informed of the following work by

the referee;

Avez, A., Lichnerowicz, A. and Diaz-Miranda, A.9 Sur Falgebre des

automorphismes infinitesimaux d'une variete symplectique, J. Differ-

ential Geometry 9 (1974), 1-40.

This paper contains essentially the same result as our main theorem,

but the method of its proof is different from ours.


