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Cohomologies of Lie Algebras of Vector Fields
with Coeflicients in Adjoint Representations
Hamiltonian Case

By

Yukihiro KANIE®

Introduction

Let M be a smooth manifold, and 9I(M) the infinite dimensional
Lie algebra of all smooth vector fields on M. Let 2 be A(M) or a
certain natural subalgebra of it. Wec arc intercsted in the cohomology
H*(A; V) of U with coefficients in some representation V, which is an
invariant of the Lie algebra 9.

In 1968, I. M. Gel'fand and D. B. Fuks began to study the theory
of cohomologies of Lie algebras of vector fields. First, they treated the
case where W=A(M) and V=R (trivial coefficients). Since then, many
mathematicians studied cohomologies in many cases, for instance [2],
[4], [6] etc. They also treated the case of nontrivial coefficients, but
restricted themselves to the rcpresentations induced from some finite
dimensional ones. Their proofs were essentially based upon some finite-
ness of representations.

Meanwhile, in 1973, F. Takens [7] proved that any derivations of
M(M) is inner. It means that the first cohomology of U(M) with
coefficients in its adjoint representation, a natural infinite dimensional
representation, is trivial.

In the present papecr, the author treats a symplectic manifold (M, w)
and the subalgebra U, (M) consisting of hamiltonian vector fields on M
in this direction. Then he obtains the following results.

Main Theorem. Let (M, w) be a connected symplectic manifold,
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then the first cohomology of W, (M) with coefficients in its adjoint
representation, is of dimension 1 or 0, that is,

dim H!(A,(M); U, (M))=1 or 0.

Moreover, H' (U, (M); U, (M))=R if and only if the symplectic form
w is exact.

Locally, this theorem has a simple feature (Theorem 5) as follows:
Let U be a connected and simply connected open set in R2", with the
natural symplectic structure w=2ZXdx;dy;, then

H' (A, U); A (U))=R.

The proof of Main Theorem can be carried out by elementary
calculations. But to make short some part of the proof, we use Weyl’s
results on representations of the symplectic algebra. The elementary
version of that part is outlined also in Section 4.

In §1, we explain some generalities of the first cohomology and
symplectic manifolds. In §2, we prove interesting properties (Proposi-
tions 1 and 4) of hamiltonian vector fields, which play an important role
to prove Theorem 5, a local theorem. Moreover we prove in §2 that a
derivation of %, (M) is a local operator (Proposition 3). Section 3 is
devoted to the study of derivations of U, (M) in local. In §4, we
complete the proof of Theorem 5. Here we use some knowledge of
formal hamiltonian vector fields. Finally in §5, we give the proof of
Main Theorem.

The author expresses his hearty thanks to Professors T. Hirai, T.
Morimoto and N. Tatsuuma for their kind advices.

§1. Derivations and H!(U; A)

All manifolds, vector fields, functions etc. are assumed to be of

C=-class.
Let A be a subalgebra of the Lie algebra A(M) of all vector fields
on a manifold M, and consider the adjoint representation of 2:

@XXY)=[X, Y] (X, YeW),
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where [ , ] is the usual bracket operation of vector fields. The co-
chain complex {C94(U; A), d1} of the Lie algebra A with coefficients in
its adjoint representation consists of the following:

CiU; W={P: Ax--- x A —> A, skew-symmetric g-linear map},

and for PeC? and X,,..., X 4, €¥,
q+1 iy
(d9P)(X 15 Xgi1)= i;l(_n' X, P(Xqyeees Xipeos Xg41)]

+ Z(_I)H‘JP([X” XJ]’ le--) Xia-'-s Xja-"a Xq+1)'

i<j

The homologies {H4(U; A), =0} of this complex are called the
cohomologies of A with coefficients in its adjoint representation. The
one dimensional cohomology H!(U; A) is interpreted as follows. Since

dP(X, Y)=[X, P(Y)]-[Y, P(X)]-P([X, YD) (X, Ye¥),
for Pe C!, we see that dP=0 means that
P(LX, YD=[P(X), Y]+[X, P(Y)],
that is, 1-dimensional cocycles are derivations of UA. Moreover since

@O)XX)=[X,0] (XeW),

for Qe CO(U; A=A, we see that 1-dimensional coboundaries are inner
derivations of %A. Thus the first cohomology space H(U; A) is the
equivalence classes of the algebra D(UA) of derivations of A modulo
its ideal D¥(A) of inner derivations, or

HY(U; W= DEA)/DIA).

In the following, we consider a smooth symplectic manifold (M?27, w),
and the subalgebra A=A, (M) of hamiltonian vector fields on M.
A symplectic structure is defined on M2 by a nondegenerate closed
2-form w, that is, w"=wA---Aw is a volume form of M and dw=0.
A vector field X is called hamiltonian, if it preserves the symplectic
form w, and by definition,

A, (M)={X e AM); Lyo=0},
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DL(M) =D (U (M)).

where Lyw is the Lie derivative of w by X. To delermine the first

cohomology, we must study the structures of D, (M)=D(U,(M)) and

§2. Some Properties of A (M) and D (M)
Xy the restriction of X on U.

2.1. In the following, we denote by J, the vector field 0 and by

Proposition 1. Let p be a point of a symplectic manifold M?32",

and let X be a hamiltonian vector field on M such that j2(X)(p)=0,
that is, the 2-jet of each of the coefficient functions of X is zero at p.

Then, there exist a finite number of hamiltonian vector fields Yi,...,
and

Y, Zy,....,Z, on M, and a neighbourhood U of p in M, such that

1
Xw:ig.1 LY, Zi]]Ua

J (P =j'(Z)(p)=0

(1gigh).
Proof. Let U be a simply connected open neighbourhood of p,
and let (xq,..., Xy Vi,---» V) D€ a symplectic coordinate system around p
in U, that is,

o= Z‘_l dx;dy;.

Since the vector field X is hamiltonian, Lyw=dixw=0, where iyw

is the interior product of X and w. Hence the differential form iyw is

closed, and so the restriction ixwy is exact by Poincaré’s lemma. With
respect to the above local coordinates, X and iyw are written in U as

X =3 {5 10 +0(%, 12y}
ixw=$ {fiCe, dyi=gix, y)dxy

where f, and g; are functions on U. There exists a function H=H(x, y)
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on U such that
ixo=dH=Y3 (H.dx+H,dy).
i=1

Therefore we have for i=1,..., n,

fi(x’ y)':Hyia gi(x9 y)=—ng5

that is,
X=Y (H,3,—H.,8,) on U.
i=1

This function H is uniquely determined up to constants, so that we may
put H(p)=0. A function or vector field is called without constant term
if it is zero at the origin of the coordinate system.

In global, any function H on M uniquely determines the hamiltonian
vector field X on M by the formula iyw=dH, because of nondegeneracy
of the symplectic form . So X may be written as Xy. Then the
following formula holds for two functions H and K on M,

[Xu X=X _(n.x)-

Here {H, K} is a function on M called the Poisson bracket of H and
K, which is given in U by local coordinates as

{H’ K} = igl (HxiK}’i - HJ’ini) *

Thus, the proposition follows from the following result on a con-
nected open set (called domain) in a Euclidean space. Q.E.D.

Proposition 2. Let H be a Cx®-function on a simply connected
domain U in R?" with j3(H)(0)=O0, then there exist a finite number of
C»-functions K,..., K;, Gy,..., G, on U, such that

H= iﬁ {Ki, G} »

and

JAE)0)=j2(G)0)=0  (1=ig]).
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Proof. Since j3(H)(0)=0, H can be given as a finite sum of func-
tions of the following form:

xpxpy i yinf(x, y)

with Z"‘, (l;+m)=4, and f a C=-function on U. Since f [,=2, or
i=1 i=1

iZ::l m; =2, we may assume él ;=2 without loss of generality.
Case 1. The case where [;; =2 for some i,. Let ip=1, and put
K=x1, G=xit=2[] xlyrig(x, »).
where

1 ("
g =?g yTf(x, y)dy,
0

then we have
{k, G} =3x’1‘i12x.“y%""gyl(x, ¥)
=xitxpry L yief(x, ).
Moreover j2(K)(0)=j2(G)(0)=0, because j™(g)(0)=0 and
3 (tm)+(=2)+(mi+ D=3 (+m)—123.

Case 2. The case where all [;<1. Assume that [;=I,=1, then by
means of the following symplectic transformation, this case is reduced
to Case 1:

[xll=\/§_1(xl+x2)a Yi=y271y1+y2),

Xy =4/271(x; = Xy), Yo =2"1(y1—¥2),

————

X =X, yi=y;  (i23).

Q.E.D.
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2.2. Proposition 3. Let D be a derivation of U, (M). If XeU (M)
is identically zero on some domain U in M, then D(X) vanishes identi-
cally on U.

Proof. Assume that there exists a point p in U such that D(x)(p)#
0. Let V be a simply connected coordinate neighbourhood of p in U.
Since D(X) is hamiltonian, using symplectic coordinates around p in V,
we can find a function H on V such that D(X);,=Xpy, as in the proof
of Proposition 1. Since D(X)(p)#0, H,(p)#0 or H,(p)#0 for some i.
We may assume that H,(p)#0. Let K be a function whose support is
contained in V, and equals to y? in a smaller neighbourhood V' of p.
Then we have

{H, K}=2y,H,, in V',
and then
{H, K},,=2H, +2yH,,, .

Hence
X grxy(p)= —H,(p)0x, % 0.
On the other hand, since [X, X¢]=0 on M,
0=D([X, Xx1)(p)=[D(X), X)(p)+[X, D(X)](p)
=X_ {H,K}(P) .

This contradicts our assumption. Q.E.D.

Proposition 4. Let D be a derivation of U, (M), and X be a

hamiltonian vector field on M. If j2(X)(p)=0 for some point p of M,
then D(X)(p)=0.

Proof. We can find, by Proposition 1, a neighbourhood U of p,
and hamiltonian vector fields Yi,..., ¥; and Z,,..., Z,e A, (M) such that

X|U=i1§1 [Yi’ Zi]IUs

JXP)=j'Z)p=0 (A=ig]).
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Then, using Proposition 3, we get
D(X)(p)= D(ZLY, ZD)(P)
=2([D(Y), Z:)(p)+LY:, D(Z)I(p)=0.
Q.E.D.

Remark 1. Any derivation D of UA,(M) can be considered as a
derivation of A, (U) for any open subset U of M.

In fact, for any point p in U, by the proof of Proposition 1, we
have a hamiltonian vector field X on M for any X e ,(U) such that X
equals to X on some neighbourhood of p. Define D, by Dy(X)(p)=
D(X)(p), then Dy(X)(p) is well defined by Proposition 3, and clearly Dy
is a derivation of AU (U).

§3. Inner Derivations of U (U)

3.1. In this section, we fix a simply connected domain U of M,
and a coordinate system (x,..., X, Yi5-.-» ¥p) in U for which o=2Zdxdy,
in U. The conditions that a vector field X on U is hamiltonian, is

given as follows:
X=3 (0 Dot 015 1)) € UV

(1) <;—_>a'c_,(f:) = ayi(gj)ﬂ ay,(ft) = ayi(fj)z axj(gi) = axi(gj)

(1<i, j<n).

Theorem 5. Let D be a derivation of the Lie algebra U, (U) of
hamiltonian vector fields on U.
(i) There exists a unique vector field Z (not necessarily hamil-

tonian) on U such that
D(X)=[Z,X] (XeUyU)).

(ii)) Z is uniquely expressed as Z=Z,+Z,, where Z,eU, (U) and

for some constant c,
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. n
Z,= 0}:'1 (Xi0x,+¥i0,,) -
i=

Note. If ¢#0, Z, is not hamiltonian, because L,,w=2cw in U.

Let us call a vector field constant or linear if it has only constant
coefficients or linear coefficients respectively.

We construct the vector field Z as a sum of Z(®), Z(1) and Z(2):

Z=ZO 4 ZD 472,

Here Z(® is the constant term of Z, and Z(!) is the linear term of Z
(containing Z,), and finally Z(?) is the remaining term with coefficient
functions of degree =2, a hamiltonian field.

3.2. Determination of Z(2)

According to the situation, x; is denoted by v;, and y; by v;,, for
12ign. To determine Z'=ZM+42Z2), we will use the following equali-
ties,

D@,)=102,0,1=[2",0,] (I1=sis2n).

Define for all i and j, the functions f;; etc. on U as

D@,)= 3 (fibs, +910y).
)2

DE@)=E, (fis0s,+9i,,)-
It follows from [0, 0, 1=0 for I, m=1,..., 2n that
0=D([0x,> 0, ) =[D(0x), 0,1+ [0, D(9x,)]
= 2400 () = O, J10)0s,+ (O Gm) = 0, (9100} »
0=D([0,,, 9,,])

= ? {0 (fin )= 0y, S0+ (05(Gm ) — 0,.(910)0y } »

and that
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0=D([0,, 9,,])
= %l {0y (f 1)) =03, (f 1005, + (0(gin ) — 0y,.(91))0; } -
Therefore we have for all j, [, m,
2 O =0x,(f1y), 0y, (fi)=0x(f0p)s O (fri)=0,,(f1;),
3 0x(Gmi) = 05,0917)>  03,.(91)=0x(Gmj)» 0y (91m;)=0,,(91;)-

Since U is simply connected, there are unique functions ¢; and
Y;(1<j=<n) up to constants on U such that

O (@) =fij» O,(0p)=f1;>
%W )=gij O, (by)=gi;.
Here we may assume that all ¢; and {; have no constant terms. Put
© Z==3 (00:,+V,0,),
then we get
[z, 9,1=D(,) (1=is2n).

Lemma 1. The vector field Z' defined above is hamiltonian modulo

linear terms.

Note. The field Z(? is determined as the component of Z’ with
coefficient functions of degree =2. The structure of the linear term of
Z',ZM=7'—Z), will be studied in §3.3.

Proof. Since D(0,) is hamiltonian for all i, the equalities (1) hold
for f;;, g;; and also for f7;, g;;. Hence for all i, j, I, we get

0 (f1) 20, (i) L0,,(fi) R0, (5,
ayl(fgj) = ay,-(f;j) = ay,(f;i) =ay;(f’ji) H

and similarly,

05,(9:) 20,091 L0, (910 20,390,
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0,(9:)=0:(91)=0x(91:)=0,(9 ) »
and further,
0u (fip B0, (iDL -0,(9.:0F ~ 0,950,
Oy(fi) = 0:(f1)) = —0,,91) = —0,(g5) -
From the above equalities, we have
= 95=95 fi;+95:=0,

modulo constant terms for all i,j. This means that Z’ satisfies, modulo
linear terms, the condition (1) to be hamiltonian. Q.E.D.

3.3. The Structure of Z(1),
We have just proved in the preceding paragraph that

D@,)=[7', 8,1=[Z™", 8,1+[Z», 8,] (1gig2n),

and that Z(?) is hamiltonian. However Z(1) is not hamiltonian in gener-
al. Let us study the linear field Z(1 more in detail.
Put D'=D-—adZ(), then we have

D’(axi) = kgl ((l ikaxk + bikayk) b}
Dl(ayi) = kgl (cikaxk + d;kayk) )

where for all i, k,

a3 =f1(0), byx=gu0), cyu=fi(0), dy=9i(0).

Then by (4)
Q) ZM=— ; {zi:(aikxi+cikyi)axk+ 2 (bax;+dyy)o,,} -
Let X;;, Y; and Z;; be the basis of the linear hamiltonian vector

fields, given as

Xij'—‘xiax,—yjay.- (lélsjén)’
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Y, =x0, +x;0, (1sisj=n),
Z;j=yi0x,+Yi0x, (Isisj=n).
Define the functions & etc. on U for all i, j, k by
D'(X;)= %(&i 50t Bijk0y) »
D'(Y;)= %(T’i 10+ 0:110,) 5
D'(Z;p)= %(E 110, +11:10y,) -
Then we have the following

Lemma 2. The functions @, Bijis Fijio Oijis Sijic and 7y are of
degree <1, whose linear terms are determined by the constants ay,
by, ¢y and dy in (5).

Proof. First, we have for all i, I, m,

[ax;’ le] =5tlax,,.’ [ayp le] =- 5imay, s

where d;; is the Kronecker’s delta. Applying D’ to these equalities, we
have )

(6) 6il;‘:(amkaxk +b,i0y,)

=[D'(0x); Xim]+ [0y, D'(X;)]

= 80, = bimOy, + {0 OO+ O (Bimi) 0y} »
Q)] - 5:»:%: (el +dudy,)

= Cy0y,, = Aim0y, + :[, {05,010+ 0y (Brna) 0y} -

Compare the coefficients of 9, and d,,, then we see that the deriva-
tives of the first order in x; and y; of &, and B, are constants
determined by a;;, b;j;, ¢;; and d;;. Hence we have the assertion for

% and Bijk'
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By the same arguments, we have also the assertion for 7, Ot
Eijl. and 7. Q.E.D.

Lemma 3. There are the following relations:

i) a;+d;=0  (ix]),

ii) ag+dy=a;;+d;;,

i) b;j=by for all 1i,j,
iv) C;j=Cji for all 1i,j.

Proof. If i#1 in (6), we have
0 = ailaxm - bimayl + ; {ax.(&lmk)ﬁxk + ax;(ﬁlmk)ayk} ’
and hence

(8) ax,(almm) =—=djpa ax;(ﬁlml) = bim (1 # ]) .

Put i=1I in (6), we have
;(a,,,kaxk + b,0y,)
== Bindy + 0 Ean) et O Brni)}
which implies that
(O Cliram) = A — Az
€) | OxGlim) =i~ (k#m),

[ ax;(ﬁimk) = bmk (k # I) .

Now if i2m in (7), we have
0 = cilaxm - dimayl + % {ayi(almk)axk + ayi(ﬁlmk)ayk} 9
and hence

(1 0) ay;(&lmm) =—Cy ayi(ﬁlml) = dim (l # 'n) .
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Similarly for i=m, we get

- ; (c0x, +dyd,,)
= Cy0x,— d;i0y, + Zk: {0,,(01) 05, + 0, (Bri)0y,} »

which implies that
ayi(Bziz) = dii —dy,
1y {
ay.-(&lik) =—Ck (k#1).

Let us take into consideration the condition (1) that D'(X;;)’s are
hamiltonian, then we have from (9) and (10), for m#k,

0 = a.V((&imk) + ayk(Bimi) = amk + dkm!

which means i).
Also we obtain from (9) and (11),

0=0,(5;)+0, (Bij)=a;;—ay+d;;—dy,
which means ii); and from (8) and (9), for i#l,
0=05,(Bimt) = O, (Bim) = bism— b
which means iii); and from (10) and (11), for i#m,
0=0,,(%m) — Oy, Gm) = — Car+Cy3
which means iv). Q.E.D.

Remark 1. There is no relation besides i)~iv) among a;;, b;;, c;;
and d;;, which comes from the condition that D’(V) is hamiltonian,
where V is any one of X, Y, and Z;. Further more there holds

D'(V)=[z™, V],

modulo constant terms, where V is as above.
Now we can describe the structure of Z(1),
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Lemma 4. The vector field ZV) is uniquely expressed as
ZW=zZV+7Z,,

where Z\V) is hamiltonian, and for some constant c,
Z,= cié':l (05,4 ¥:0,,) -
Proof. Put
2= =3 (£ Y)0s i3 1)y}
then from (5), we have for i=1,..., n,

fix, y)=j'2='1 (ajix;+c;iy))s

gix, y) =J§1 (bjix;+d;y;).

Put c¢=2"1(a;+d;), which is independent of i by Lemma 3 ii), and
put

Zy=c3 (xi0,+yi0y) .

Then, the remaining term Z{"=Z()—Z, is hamiltonian by the equalities
i)~iv) in Lemma 3. One can easily see that the decomposition Z(1)=
ZV+Z, is unique, as far as Z{! is hamiltonian and Z, is a scalar
multiple of > (x;0,,+ y:0,,). Q.E.D.

3.4. Determination of Z(0),
Let the derivation D” be D"=D—adZ’, then by §3.2. we have
D"(0,)=0 (1ig2n).

Let ok Bijis Vijis Oijio Sije and ;5 be the constant terms of &g,
Biji> Tiji> Oijo Cijr and 7, respectively, then, by Lemma 2, we have for

all i, j, k,

D”(Xij) = %(o{uka)k + ﬁijkayk) 5
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D'(Y;)= %(7.’ inOxe T 0ijk0y,) >
D"(Z;j)= ;(éijkaxk'i' Nijk0y,) -
Moreover o;; etc. are expressed more simply as follows.
Lemma 5.
i) D'(X;j)=00,,+ B;0,,,
i) D(Y,)=ad,,+0,,
i)  DZj)=—Pi0x,—BiOx,»
where o =0, fi= ;.
Proof. Applying D" to the both sides of the equality

[Xij’ le:l = 6leim - 6ilej P

then we get
1 Ek: (%O, + Pinicy,) — 5im§k:(°‘zjkaxk +B1js0y,)
= [;2:(“:’ #10x+ Biji0y,)s X105, — YuOy,1
(12) + [xi0, iy 10y %:((xlmkaak + Buniy)]

=010, ~ BijmOy, — %miOx , + Bim 0y, -
If j#![ and i#m in (12), we have
0=0;;,0x,,— BijmOy, — %imiOx ; + BimjOs>
which implies that for j+#m,
=0 (j#I),
and for i#l,

.Bijm=0 (i?é’”)'
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Then if j={ and i#m in (12), we have
LimmOspy T+ BimiOy, = %110, + BimiOy, »

and hence

i = %y = Xjji

ﬁimi = ﬁlml = ﬂmmm .

Put o;=0a;;, ;=P then
D"(X;j)=0;;0x,+ Biji0y,=%:0x,+ B0y,

which is the cquality i).
Applying D" also to the both sides of the cquality

[Xij3 Ylm] = (sjl Yi:n + (sjm Yil ’
we gCt
5jl%('yimkaxk + 6imk0yk) + 5jm%(?ilk0xk + 5ilkayk)
(13) = [aiaxj—{'ﬂjay,’ xlay,,.+xmay1]

+ [xia.xj - J)jaJ!,’ %(')’hnl‘axh -+ (Slmkayh)]

= 0,0,0y,. + 0 j®i0y, — VimiOx , + Opuny Oy -
If j#1 and j#m in (13), we obtain
0= —PimiOx,; + O1jly, >
and hence for all [, m, i,
Yimi=0,
Oy =0 (J#m, D).

Then put i# j=m=1 in (13), we obtain

0

Jji%yi»

225,-1-,‘6},,‘ = zaia” + 6
k

which implies, by the symmctry of d;; in i and j, that
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o4 =0;;;=05,

Hence we have
D"(Y;;)=6;;;0,,+ 0;;i0y, = “iaw +a;0

Ji%i JVyio

for all i, j, which is the equality ii).
Apply D” to the both sides of the equality

[Xij! Zlm] == 5ilem_ 5imzjl .
Then we get the equality iii) by the same arguments as for ii). Q.E.D.

Thus we have the hamiltonian vector field Z(%), given as
(14) ZO=3 (0~ Bidy)
i=1

with constants «;, f; in Lemma 5, such that for any linear hamiltonian
vector field V

[Z©O), V]=D"(V).
However this condition determines Z(°) by the following lemma.

Lemma 6. Let V be a constant (hamiltonian) vector field with
[V, X;;1=0 for all i, j, then we have that V=0.

Proof. Put
V= ;l (a5, +bd,)  (a» bieR),
then we have
0=[V, X;;1=a;0,,—b;0,,,
and hence a;=5;=0, for all i. Q.E.D.

3.5. Thus we know the vector field Z

Z=Z(0)+Z(1)+Z(2)’
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as (4), (5) and (14) such that D(V)=[Z, V] for all V with coefficient
functions of degree <1. Then we must show that D is adZ for all
hamiltonian vector fields on U. This is established by the following

Lemma 7. Assume that a derivation D vanishes at any X such that
the coefficient functions of X are of degree <1. Then D is identically
zero on A (U).

To prove this, we use the following.

Lemma 8. Under the assumption of Lemma 7, D(X)=0, if all
coefficient functions of X are of degree 2.

The proof of this lemma will be given in §4.

Proof of Lemma 7. Let X eW,(U), then we can show that D(X)(p)
=0 for any point peU. In fact, there is a decomposition of X at p,
X=X,+X, such that the coefficient functions of X,; are polynomials of

degree <2, and j2(X,)(p)=0. Then by Lemma 8 and Proposition 4, we
have

D(X)(p)=D(X)(p)+ D(X,)(p)=0.

Q.E.D.

§4. Relations to the Formal Lie Algebras

4.1. It is known by T. Morimoto [9] that the derivation algebra
of the following irreducible transitive Lie algebra (TLA) g of infinite type:

g=V2”+sp(V)+5P(V)(1)+ +§p(V)(P)+... ,

(for definition, see [5] for example) has the subspace of outer derivations,
of dimension 1. In other words, H'(U,(n); A,(n))=R, where A, (n)
is the Lie algebra of formal hamiltonian vector fields on R2" at the
origin (for definition, see [3] for example). By some techniques used
to prove the above formal theorem, we have another approach to the
determination of Z(9), and a proof of Lemma 8.

The constant hamiltonian vector fields form a Euclidean vector
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space (abelian Lie algebra) V, of dimension 2n, and the linear hamil-
tonian fields form a vector space V;=~sp(V,), with the natural structure
of Lie algebra. Before Lemma 5, we have already proved that D"(V))c
Vo. The natural representation of sp(2m; R) on R?" is irreducible, and
is given in terms of vector fields as X(0,)=[@,, X], where XeV,x
sp(2n; R) and d,e VoxR27,

Thus the linear map (derivation) D” from V; to V, is a 1-cocycle
of sp(2n; R) with coefficients in the above representation. Apply to
D" the fundamental vanishing theorem for nontrivial irreducible represen-
tations of (finite dimensional) semi-simple Lie algebras (cf. [1]). Then
we get a unique vector v, € V, such that

D"(X)=(dvo)(X)=X(v))=[Z(”, X]  (XeV1).

Here, Z(® is the vector field corresponding to the vector v, and ex-
pressed according to the formula in [1] as follows:

ZO=2n+ D712+ 272Xy, D'(X)1+ 2 (Y, D'(Z:)]
+Zij, D"(Y)D) +471 2LV, D"(Zi)]+[ 23, D'(Yi)D} -

(It is not easy to obtain the explicit formula (14) of Z) from the

above expression of it.)

4.2. Proof of Lemma 8.

The hamiltonian vector fields of homogeneous degree 2, also form a
vector space V,=sp(Vy)(D, the first prolongation of V,=sp(V,). The
natural representation of ¥V, on V, is given in terms of vector fields as
X(Y)=L[Y, X] for XeV, and YeV,. Then it is known by H. Weyl [§]
that this representation is irreducible.

As in the proof of Lemma 2, we have D(V,)<V,. From the assump-
tion of Lemma 8, we see that D([X, Y])=[X, D(Y)] for XeV, and
YeV,. Then the following diagram is commutative:

Vz-—L)Vo
aXm Q JadX (XevV,)).

Vz—-——)Vo
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This implies that kerD is stable under ad(V;)-actions. Since ker D3 {0}
clearly, it follows from the irreducibility of the representation that
kerD=V,, that is D=0 on V,. Q.E.D.

Remark 1. This proof is simple and short, but is based upon Weyl’s
work [8]. We have another proof by elementary calculations. Let us
sketch it here.

Take a basis X;j, Y, Z;j, and W of V,, as

Xiji= XX 0, — X; Y10y —X; Y10y,
Yju =Xk i0x,+ XY j0x,— iV iy, »
Z;5x=Y:iY 0+ Y iViOx; + YiViOx, »
Wij=x:x

0y X %0y, + XXy«

Define the functions a;;, etc. on U by

D(X; ;)= ;(am,ax, +ai119,)
D(Y,;)= IZ(bijklax, + bt 110y
D(Z;j)= ;(cijklaxx + ¢ 110y »

D(W)= ;(duktax, +d} 110y,

Then all these functions are constants as in the proof of Lemma 2.
Moreover these constants are zero. In fact, firstly we obtain that a;;,=
dijy=d}j;=0 for all i,j, k, I, by applying D to the both sides of the
equality

Xk Yond = 0 Wi+ 6, Wi »

and by the symmetry of dj;,; in i, j, k.
Secondly we obtain that bj;,=c;;u=cij,;=0, by applying D to the
equality

[Z s Yisd=0mZijm+ OuiZijn>»

and by the symmetry of ¢;;, in i, j, k.
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Finally we get that a};,,=b,;;,=0, by applying D to the equality
[Z s X1ji]= 00 Youicj + O Youki + Opmi Yoy + Omj Yo »

and by the symmetry of b;;,; in i, j.
Thus we have that D=0 on V,.

§5. The Cohomology H! (A, (M); A, (M))

5.1. In the preceding two sections, we proved Theorem 5, a local
theorem. The following one follows immediately from it.

Theorem 5. H(A,(U); U, (VU))~R.

Now we will give a global theorem on M. Before that, we show a
global version corresponding to Theorem 5.

Proposition 6. Let (M, w) be a symplectic manifold, and D a
derivation of hamiltonian vector fields U, (M) on M. Then there exists
a vector field Z on M such that

D(X)=[Z, X1 for all XeUA (M).

Proof. Take an atlas {U,, ¢;: U;—»R2"} of M such that each U,
is a simply connected domain. Then, by Theorem 5 i) and Remark 1
in §2, we have on each U; a vector field Z,, such that Dy(X)=[Zy, X]
for any XeU, (U). It follows from Dy,,, and the
uniqueness that Zy,|,.ny,=Zu,lpiny,. Hence there is a vector field
ZeUAM) such that Zy =Zy, for each U; and that D(X)=[Z, X] for
any X € A, (M). Q.E.D.

nt=DUj|Uint

Let U be a simply connected domain, and (Xi,..., Xy, Vis--s V) @
symplectic coordinate system such that wy=2dx;dy; Then, by Theorem
5 ii), the above vector field Z is represented as Z=Z;y+Z,; on U,
where Z,;e¥U,(U) and Z,y=c3(x;0,,+y0,) for some constant c.
Then we have the following '

Proposition 7. If M is connected, the constant c is independent of
the choice of U and (Xqi,..., Xps Y1se-» Vu)-
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Proof. Since M is connected, it is sufficient to show that the con-
stant ¢ is invariant under any symplectic coordinate transformations of U.
Case 1. (Translations). Let new coordinates (X;, y;) be

X;=x,—a, yi=yi—b (I=isn),
where a;, b; are real constants. Then

(X0, + y:i0,)= ;(xiaxl + .05.) + ;(aiai; +b,05,).

Since any constant vector field is hamiltonian, the constant c¢ is
left invariant.

Casg 2. (Linear transformations). We prove that the constant ¢
is left invariant under any general linear transformation, not necessarily
symplectic.

Take an element g=(g;;) in GL(2n; R) and put

_ 2
Ui=z

J

gijv, (1<i=2n).
1

n

Then
0y, = JZ%(E )05, = ;g ji05, >
and hence
%000= 2@ a3 :05)
= Jz’léﬂﬁlaﬁj = %‘,5,6,—,1 .

CAsE 3 (General case). We may assume by Case 1 that a symplectic
coordinate transformation ¢ has no constant terms. Then the inverse
@~ ! has also no constant terms. The vector fields Z and Z, are trans-
formed into hamiltonian ones by means of ¢, and the linear term of
the expression 3 (x;0,,+)0,) in terms of new coordinates depends only
on the linear p;u'ts of the transformations ¢ and ¢~!. Hence we see
by Casc 2 that the constant ¢ is invariant under ¢, because the higher
terms sum up to hamiltonian vector fields by Theorem 5. Q.E.D.
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Corollary. Let Z and c be as above, then Lyw=2cw on M.
Proof. We see that for any U,

Ly,wo=L;, w=2cw on U.
Q.E.D.

5.2. Now we can prove our main results.

Theorem 8. Let (M, w) be a connected symplectic manifold. Then
the first cohomology of the Lie algebra W, (M) with coefficients in its

adjoint representation is of dimension 1 or 0, that is,
Hi(U, (M); A (M)=R or 0.
Proof. We can‘ define the homomorphism
¢: Do(M) — R,

which assigns to a derivation De®, (M) a constant ¢ by Proposition 7.
Let us show that ker ¢="Di(M). This means that

HY(A(M); A (M)=D,/Di~R or 0.

Let D and D’ be two derivations such that ¢(D)=¢(D')=c, and put
D=D-D', then ¢(D)=0. By Remark1 in §2 and Theorem 5, D is
inner on any sufficiently small simply connected domain U, that is, there
exists a unique hamiltonian vector field Z, such that Dj,=ad(Zy).
From the uniqueness in Theorem 5, and by the same arguments in the
proof of Proposition 6, there exists a unique vector field Z whose restric-
tion Z,; is equal to Z, for each such U. Clearly Z is hamiltonian,
and D(X)=[Z, X] for all Xe¥U, (M). Hence we have that ker ¢
= Di(M).

On the other hand, the converse inclusion: Di(M)cker¢, is clear.

Q.E.D.

Theorem 9. Assume that the symplectic from w of M is exact, or
there exists a 1-form 0 on M such that d0=w. Then

HY (U, (M); A (M) =R.



ConoMoLoGIEs OF Lit ALGEBRAS 761

Proof. Let W be a vector field corresponding to 6 with respect
to w, that is, ipw=0. Then

w=d0=dlww=wa s
and hence W is not hamiltonian. On the other hand,
L["/,Xlw = LwLXa) - LxLWw = — wa = 0

for all Xe¥U (M), then [W, X]eU, (M). Therefore ad W is an outer
derivation of 2, (M). Q.E.D.

Theorem 10. Assume that the symplectic form o of M is not exact.
Then

HY(U,(M); U, (M))=0.

Proof. Let D be a derivation of U, (M). Then by Proposition 6,
there is a unique vector field ZeA(M) such that D=adZ, and by
Corollary of Proposition 7, L,w=cw for some constant c. Assume that
c#0, then w=c 'd(iyw), or w is exact. Hence c¢=0, that is, Z is
hamiltonian. Thus all derivations of 2 (M) are inner. Q.E.D.

Summarizing these results, we get the following Main Theorem.

Main Theorem. Let (M?", w) be a connccted symplectic manifold,
then

dim H'((M); A (M))=1 or O.

Moreover, H!(,(M); U, (M))=R if and only if the symplectic
form w is exact.

Remark 1. Let M be a manifold attached with a volume form =
or a contact form ¢. Then, in stead of A, (M), we have a natural sub-
algebra WA(M) or A (M) consisting of vector fields which preserves 1
or ¢ respectively. It is interesting to obtain the analogous results for
these subalgebras. If n=1, the above Main Theorem gives the result
for W (M) where M is a 2-dimensional smooth manifold.
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Remark 2. The condition of continuity is absent in the definition

of cochains of A, (M) with coefficients in its adjoint representation, but
from the above results all cocycles are continuous.
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