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§ 0. Introduction

The theory of hyperfunctions has now been flourishing for some

years since its conception by M. Sato [Sato 1959/60 and earlier references

therein]. It is a natural enough exercise to try to extend the theory

and its developments to cover the cases of hyperfunctions and the like

with value in a locally convex (topological vector) space, as has been

done for distributions by their originator L. Schwartz [Schwartz 1957,

1958]. Indeed this is also required for applications [e.g. Ouchi 1972

for the one variable case, Ion in prep.]. The purpose of this note is

to point out that a start may easily be made using the methods of

'soft analysis', to define the sheaf E& of £-valued hyperfunctions for

a Frechet space E and to explore the basic properties of E88.

The methods employed in this note will be used to discuss £-valued

microfunctions in our subsequent papers.

Section 1 contains the facts which need to be recalled concerning

the Dolbeault resolution, and three theorems of Grothendieck on tensor

products which essentially make the proofs go. We also remark that

Palamodov's result on the splitting of the Dolbeault complex over a
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Stein manifold extends to the vector-valued case.

Section 2 contains the required discussion of the pure codimensionali-

ty of Rn, which involves a simple generalization of the Malgrange

Vanishing Theorem, and the resulting definition of E88'.

Section 3 contains a discussion of expressing hyperfunctions as boundary

values of holomorphic functions and section 4 a discussion of hyperfunc-

tions with holomorphic parameters.

References are cited in the form: author followed by the last two

digits of the year of publication.
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§ 1B Preliminaries

Throughout the paper E will denote a quasi-complete separated lo-

cally convex topological vector space. For a discussion of the reasons

for assuming quasi-completeness see [Schwartz 52]. We shall denote

by M a given real analytic manifold with dimRM = m and by X its

complexification, so that dimcX = m. Let us begin by defining our

basic function sheaves.

Definition 1.1. Denote by E£ the sheaf of germs of infinitely

differentiable ( = smooth) functions on X with values in the vector space

E. The space r(SE£) = E£(S) of sections over an open set S will be

endowed with the usual topology of uniform convergence of all derivatives

on compact subsets.

Recall that the definition of smooth E-valued functions given by
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Schwartz as ^(U)eE = S>(U, E) for U open, for E quasi-complete and

separated, is equivalent to the definition £(U, E) = ^(l7)®eE [Schwartz

52 Thm. 1], which for a complete E is in fact <f(LO®£E = ^(t/)®£

since £(U) is nuclear, [ibid, and Treves 67 Thm. 51. 5 Cor.]

Definition 1.2. Denote by E0 the sheaf of germs of holomorphic

functions on X with values in the vector space E. This E0 is a sub-

sheaf of E£ and the space of sections F(17, E@) = E@(U) will be given

the topology induced from that of E#(U).

Recall that the definition of holomorphy for a vector-valued function

can be given in terms of the Cauchy integral (starting from a function

known to be continuous), or by the Cauchy-Riemann equations (starting

from a function known to have partial derivatives, or in particular

thought of as defining a subsheaf of £<f), or as weak holomorphy.

Furthermore these definitions are all equivalent (on the intersection of

their domains) if the space E is quasi-complete, so that the closed con-

vex hull of a compact set in E is also compact [Grothendieck 52].

A property basic for cohomology theory is the following.

Proposition 1.3. The sheaf E$ is soft.

Proof. This is an immediate consequence of the fact that E& is

fine (admits partitions of unity subordinate to it), which, since E£

is obviously an ^-module, is so for exactly the same reason that &

is fine [Gunning and Rossi 65 Chap. VI. A].

Next we remark the exactness of the Dolbeault complex, which, as

a consequence of Prop. 1.3, we now know will give a soft resolution of
E0.

First we must introduce, for non-negative integers p and q, the

sheaves £<^>«) of germs of E-valued differential forms of type (p, q);

a typical element of ES>(p>q\U) for any sufficiently small set 17 open

in X is, in complex local coordinates (z ls...,zm)
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where the sum is over all disjoint ordered subsets of (1,..., m), / = (h,

..., /p) and J = (j\9...,jq) with respectively p and g elements, and the
/7iJ are in E£(U\ and

if p or g be zero the corresponding index 7 or J and form dzI or

dz, are omitted, so £<f(°>°) = V.

Each sheaf £<f (*>>«>, which is locally free of dimension

over £(f, is soft since E# is. Therefore the following is a soft (in

fact, a fine) resolution of E0

0 _ > E0 _ i _ > £<f (0 ,0) _ dp > B ^ ( O . l ) .

where locally

3,(/jd* j) = ^7= i (Bfjl3zj)dzj A dz , .

A fundamental property is that this Dolbeault resolution is exact.

Proposition 1.4 The complex (E&(°>')9 d) is exact, when E is a

quasi-complete separated locally convex space.

Proof. The proof of this fact goes exactly like that for the case
E = C via Cauchy's integral formula, since E being quasi-complete, it

has the compact convex closure property previously mentioned. Follow-

ing Gunning and Rossi, it goes this way.

The assertion is a local one so that we may work without loss

of generality in a neighbourhood of z biholomorphically equivalent to

a connected open set in Cm.

Consider a point z in D. We tackle the first node first. Consider

a germ / in £<^°»0) and suppose 50/=0. Then there exists a smooth

function / defined in some open neighbourhood of z in D, such that /

represents / and 5/=0. Then /, since it satisfies the Cauchy-Riemann

equations, is holomorphic; so / in fact lies in the stalk E(9Z. There-

fore the kernel of the sheaf homomorphism 30 is exactly the subsheaf
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E&c:Eg.

Next consider q>0 and a germ <p in £^ (
Z

0>^ ) , and select some

smooth differential (0, g)-form 9, in E<f ( 0 '« )(/7) for some open neigh-

bourhood U of z, which represents (p. If U is sufficiently small then

dq(p = Q entails dq<p = Q. By the following Dolbeault-Grothendieck lemma,

which is where Cauchy's integral comes in, on a sufficiently small neigh-

bourhood U there is a smooth differential form \l/ in ES'(0^i~1)(U)

such that Sq-i\// = (p. If we put *F for the germ of \j/ at z then dq_i
ll/ = (p.

Since we are dealing with a complex, so that 3qdq^l=Q.> this proves

exactness.

Lemma 1.6. (Dolbeault-Grothendieck)

Let D = DlX"-xDw be a bounded open polyclisc in C'", and let

oj be a smooth E-valued differential form of bidegree (q, p) in an

open neighbourhood U of D. If q>Q and if cco = Q, then there is a

smootli differential form v\ of bidegree ( p , q — i) in D such that co = Sn,.

Proof. [Hormander 66 Theorem 2.3.3]

[Gunning and Rossi 65 Theorem I.D.3]

In terms of some coordinates z = (z lv.., z,,,), co may be written

co= I Wjjdzjhdzj,

where the coefficients \v / f< / are functions in ES>(U).

One proceeds through induction on the number counting from the

left of the differentials dzi9...,dzm9 that may possibly be involved in

the above explicit expression of co. Assume the first k from the left

are involved. We have to prove the assertion for k = m. The as-

sertion for k = 0 is trivially true, for if the expression of a form co of

bidegree (p, q), with g>0, does not need to involve any differentials

dzj9 then co is identically zero and 50 = 0 is also in E^(P^~1)(D).

Assume then / c^ l ; in fact of course k^q if co is not zero. Write

co = dzk A a + /?,

where the forms a and p involve only dz^..,dzk_i. Now the as-

sumption is
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Writing a = ZK,LaKiLdzK A dzL

we see that to satisfy the equation we must have

for j>/c; that is the coefficients aKtL and bKtL are all holomorphic in

the variables zk + 1 , . . . , zm.

Consider any one of the coefficients aKfL and call it / for short

This / is an £-valued smooth function of each variable Zj in an open

neighbourhood Uj of £>/ and is in fact holomorphic in zk+l9...9zm.

There is then a function g smooth in Uj for j^k and holomorphic

there for j>k, and in addition smooth in some open neighbourhood

U'k of Dk which is contained in 17, and such that dg/dzk=f.

The function g may be constructed as follows using Cauchy's

formula. Set u = (zl9...9zk-1) and t; = (zfc+1,..., zm) so that Z = (M, zfc, i;).

Put

gi(z)=gi(u, zk9 v) = (2ntri( /(u, C, ^(C-zJ-^CAdC-
JDfc

This function is obviously smooth in the parameters u and y and holo-

morphic in v. This function is however not necessarily holomorphic

in zk where required. Consider therefore a smoothing function \// in

C00 (17^) such that iKO = l in the neighbourhood l/£ of Dk and ^(0 = 0
outside a disc D£ containing l/^ and contained in Uk, Del&ne

g(u, zkj v) = (2mTl( f(u9 C,
'

It is now clear that g is smooth for z in D. Since C"1 is integrable

on any compact set, one may differentiate under the integral sign so that

dg/dzk= ~ ( 2 n i ) - 8 ( f ( u 9 zfe-C, v
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= (2711)-^ d ( f ( u , f,

=/(n, Zi, y),

using Cauchy's integral formula, which is still valid for E-valued func-

tions. The last equality follows from the fact that \l/(zk)=l and that

i^(Q = 0 on dD'k. Thus the required function g has been explicitly con-

structed.

Replacing each of the coefficients f=aKtL by the corresponding g
= CK,L as constructed in the last paragraph one gets a new differential

form

such that

Sy = dzk A oc + d ,

where the remainder term d involves only c/z l 5 . . . , dzk_i.

Consider now the form

which satisfies 3cp = Q, and note that it involves only the differentials

dz lv.., dzk_1. By the induction hypothesis there is a form % such that

(p = d%, which concludes the proof since

When the space E is Frechet, the use of the Cauchy integral for-

mula may be passed over by using the general tensor product properties

given as Theorems 1.8, 1.9 and 1.10. However, an even more infor-

mative result: the vector-valued generalization of a result of Palamodov

holds [Palamodov 72].

Theorem 1.7. // X is a Stein manifold and E is a quasi-complete

separated locally convex space then the operator dp in the Dolbeault
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complex E£(0>P\X) splits for all ]?>0, that is dp has a right inverse

on Its image. Hence for p^2

Proof. We are again looking at the Dolbeault complex E#(0

which, as has already been noted, is isomorphic to &(°>'\X)®E; the

operator Sp is of the form e£®l where the d% is the scalar one. Pala-

modov's Prop. 5.1 (loc. cit.) shows that d*p splits for p>0 and does not

split for p = Q. Now the splitting of d£ means that there is a right

inverse p for the first map^p)^ in

so that

But then

so that by extension from an equality holding for continuous operators

on a dense subspace

so that Sp has a right inverse too. Thus dp splits whenever d% does.

Theorem 1.8. Let, for i = l,2,ui:Ei-+Fi be continuous linear

maps of locally convex spaces such that UiEt is dense in Ft. Suppose

additionally that u± and u2 are open maps onto the images, that is

that they are topological homomorphisms (homomorphisms of the

category of locally convex spaces).

Then u1&u2' E1®E2^>F1&F2 is a topological homomorphism of

the projectively completed tensor product E±®E2 onto a dense sub-

space of F1®F2. Further, if E± and E2 are metrizable then w1®w2

is actually a surjection.
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Proof. This is Grothendieck 55, Chap. I, §1, no. 2, Prop. 3 or

Treves 67 Prop. 43.9.

Theorem 1.9. Let E± and E2 be locally convex spaces, and let

Ft be a vector subspace of Eh for 1=1,2. If Fl or F2 is a nuclear

space then the natural linear map of Fi®F2 Into E^E2 is an isomor-

phism of topological vector spaces.

Proof. This is Grothendieck 55, Chap. II, § 3, no. 1 Prop. 10, Cor.

These two theorems may be applied to yield the following, which

is stated in categorical language with a view to its cohomological ap-

plications.

Theorem 1.10. Consider the category of Frechet nuclear spaces

where the morphisms are continuous linear maps, and also the category

of projectively completed tensor products of Frechet spaces with metri-

zable locally convex spaces, where the morphisms are tensor products

of some continuous linear map on the Frechet factor and the identity

on the second factor. Let F be a metrizable locally convex space.

Then

E - > E®F

and

Lin(£l3 E2)Bu\ - > u®{ ELin(Ei®F, E2®F)

defines a covariant functor from the first mentioned category to the

second. This functor is exact.

If the space F is nuclear, then it is not necessary that the Frechet

spaces be nuclear and the functor is still exact.

Proof. This theorem is essentially in Grothendieck 54 and is also,

proven slightly differently, in Bungart 64 Thm. 5.3.

We give here for convenience a proof following Grothendieck.

Functoriality is in fact obvious from the definition ; what must be shown

is exactness. Consider a short exact sequence of Frechet nuclear spaces:

0 - >A-L-»B-J>-»C - > 0 (exact) .
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Since g, being a surjection of Frechet spaces is open, by Thm. 1.8 we

have

B®F *®i c®F - » 0 (exact) .

Since / is open onto its image by the assumed exactness at B, by Thm.

1.9 we have

0 - > A®F f®l* B®F (exact) .

Now

and, denoting the closed linear hull by [ ],

= Q or =

by a simple density argument; thus

showing exactness at B®F. So finally as desired we have

0 - > A®F *®±> B®F Mi C®F - » 0 (exact) .

The nuclearity of a space was only used in applying Thm. 1.9,

and for that it is sufficient that F be nuclear. So both assertions of

the theorem are proved.

§2. Pure Codimensionality of Rn with Respect to EG

It is as a result of the pure codimensionality of R" with respect

to the sheaf E0 that one may define hyperfunctions and indeed that

it is natural so to do. Unfortunately in order to get this result as a

deduction from the general results on tensor products, we shall have

to assume that E is Frechet. In order to use Thm. 1.8 and thus Thm.

1.10, E has to be metrizable and in order to be a good space of values
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for holomorphic functions E must be quasi-complete; these two assump-

tions together imply E is Frechet [Treves 67 Prop. 34.3]. We first

recall two generalizations of well-known results.

Theorem 2.1. (Oka-Cartan Theorem B) // Q is a Stein submani-

fold of Cn and E is a Frechet space, then for p^l

where Hp denotes the ordinary cohomology with coefficients in a sheaf.

Proof. We can prove this as in the scalar case by use of the

Dolbeault complex; it is a special case of Theorem 4 of Bishop 62,

or of Theorem B of Bungart 64.

Theorem 2.2. (Malgrange) Let V be an open set in C" and E

be a Frechet space, then for p*£n

Proof. This follows simply, as does the previous theorem, from

the fact that the Dolbeault resolution is a soft resolution of E0 and

so we may calculate the cohomology from it:

0

or

0

But Malgrange's Vanishing Theorem [Malgrange 57 Lemma 3] says the

complex (£(Q>'\V)9S) is exact at <f(0 '">(F), and beyond to the right

of course, so that using Thm. 1.10, we conclude exactness at #(0>n\V)®

E.

We can now proceed to the theorem basic to the theory of hyper-
functions, which is here being treated following Harvey and Komatsu.

[Harvey 66, 69, Komatsu 66, 72]

Definition 2.3. (Sato) Let S be a locally closed subset of a space
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on which there is given a sheaf & '. The subset S is said to be purely

w-codimensional with respect to !F if

0 for

Here the p-ih derived sheaf of J5" with support in S, called by Sato

the sheaf of ^-distributions on S of type J5", is defined as the sheaf

associated to the presheaf obtained from relative cohomology

Theorem 2.4. R" is purely n-codimensional with respect to the

sheaf E0 over Crt, that is for p^n and Q in a basis of the open

sets of Rn with

where V is a complex neighbourhood of O, which contains Q as a

closed subset.

Proof. It is enough to show //£«nF(F, £d?) = 0 for p^n and V

a bounded open set of C". By the excision theorem for relative co-

homology and Grauert's Neighbourhood Theorem we may choose V

to be Stein. Let Q=Rnr\V then. By the long exact sequence of

supported cohomology (Komatsu 66 Thm. 11 ii)

, E(9) - > HP(V\Q, E(9)

(exact) .

If V is Stein, as we have seen, Hp(V, £0) = 0 for Jp>0, so that for
p>2

By the vectorized version of the Malgrange vanishing theorem, Thm.

2.2, we have for p^n + 1
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For n-l>p>Q we already know Hp(V\Q, 0) = 0. This is easily

seen when one notes that by the usual exact sequence,

, 0} - > H*(V, 0) - > Hp(V\Q, 0) - >

(exact) ,

this amounts to Sato's theorem that, for 0^p<n, H&(V, 0) = 0. But

we may use the ordinary Dolbeault resolution

0 - > o - > ^(0,0

to calculate this cohomology; and indeed we may equally use the 'vectorized'

form of this, an E-Dolbeault resolution to calculate HP(V\Q, E0). Now

the modules in this resolution are Frechet spaces and so tensoring by (§)£

is an exact functor. Thus HP(V\Q, E&) vanishes wherever HP(V\Q9 0} does.

Thus as required, for 0<p<w- l HP(V\Q, E^) = 0.

This leaves the tag end of the sequence,

0 - > #£(F, E0) - > H°(V, E(9) - » H°(V\Q, E(9) - > H^(V9
 E0)

to be dealt with. We must show the last term zero, that is

(9(V)®E - > 0(V\Q)®E - > 0 (exact) .

But by the known vanishing of H^(V, 0) when n^=i we have

0(7) - > 0(V\Q) - > 0 (exact) ,

and since it is onto the first restriction map is an epimorphism. The

desired result clearly follows by an application of Thm. 1.10 when n>l .

The case n = l follows at once from Thm. 2.1 and 2.2. Now define

hyperfunctions as the only non-vanishing relative cohomology group.

Definition 2.5. Let £ be a Frechet space. The space of E-valued

hyperfunctions on an open set Q in Rn is defined to be

, E(9)
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where V is an open set in Cn containing Q as a closed .

By the excision theorem [Komatsu 66 Thm. 1.1, i] this definition

does not depend on what particular complex neighbourhood V of Q is

chosen. Now we can prove the analogue of Sato's theorem.

Theorem 2.6. The assignment Q-*E3$(Q) for Q open in Rn and

the natural restriction maps define a sheaf. This sheaf, E&, is flabby.

Proof. This is an immediate consequence, as suggested in Sato

59/60, of Thm. 2.4 and the facts of general sheaf theory stated in

Komatsu 66 Thm. 1.8.

As a matter of fact the Palamodov splitting result of Thm. 1.6 does

give some information in the general case of quasi-complete E.

Proposition 2.7. // V is a Stein complex neighbourhood of Q, and

then

Proof. This is an immediate consequence of Thm. 1.6 and the

canonical long exact sequence of relative cohomology

, E0) - > H'(V, E0) - > H'(V\Q9

(exact) .

§3. Hyperfimctions as Boundary Values

Because of the analogue of the Oka-Cartan theorem, Thm. 2.1,

£-valued hyperfunctions may be viewed as boundary values of holomor-

phic functions in the usual way. Let (y,f ') be a Stein relative cover-

ing of (V, V\Q) where Q is an open set of Rn and F is a complex

neighbourhood of it. (Recall that this means V is an open set of Cn

containing Q as a closed subset). Then since finite intersections of

Stein open sets are still Stein sets, this relative covering is acyclic and
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To choose one specific and useful relative covering, recollect that by

Grauert's Theorem there is an arbitrarily small Stein neighbourhood

V of Q such that V{\Rn = Q [Grauert 58 §3.4]. Then let

and V = {Vl9...,Vn}

-r = ^'u{F0}.

All these sets Vj are Stein so

Hn(^, r"i E(9)

where

For any function / in E&(V$Q) the associated cohomology class is

denoted [/], and then / is termed a defining function of the hyper-

function [/].

Near Rn, V%Q has 2" connected components corresponding to the

possible signs of the imaginary parts of z; they are Ffl(R l l

where rff = {yeRn; V/=l , . . . , n cr/j^O} and a: j^af. (1,..., w)->{ + l, -1}
runs over all such w-tuples of signs. Intuitively speaking, the hyper-
function [/] is the sum of boundary values

Of course the exact meaning of such boundary values has not been made

explicit here, see Komatsu 72 for further discussion. See also Ehrenpreis

61, 70 and Martineau 64 for related topics.

Other coverings may be of more use on particular occasions.

Looking at it from the reverse point of view, giving a collection of

2n E-valued functions each holomorphic in one of the tubes

that is in E&(Rn + ira), defines a class of the cohomology Rn(f ',

where
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^ = ̂ "U {€n}9

and Hj = {y\yj>Q} is a half-space. Thus such a collection of functions
defines a hyperf unction.

§4. Hyperfunctions with Holomorphic Parameters

As should be obvious to the reader most of the Harvey-Komatsu

development of Sato's theory of hyperf unctions generalizes to the case

of values in a Frechet space E. For instance all the statements and
proofs from page 25 up to and including page 31 of Komatsu 72 con-

tinue to hold true with the addition of a presuperscript E to the sheaves
0 and rg$n~r& and with the usual interpretation.

As an example we set out part of the proof of the following theorem
which provides an alternative demonstration of the pure n-codimen-

sionality of Rn in C" with respect to E0.

Take the generic point of C" to be z = (z1?...9 zn).

Let Rj = {zeCn; ZjER} for j = l,...,n

and let R((f)) = C\ and for 0^Jc{l, ..., w}

define R( J) = n {Rj ; j e J} .

Theorem 4.1. R(J) is purely r-codimensional with respect to the

sheaf E0 on Cn, where r is the cardinality of J.

Write E@J® = jer
R(J}(

E(9).

Then for p>0 and every Stein open set V in Cn

Proof. Heuristically one should view the sheaf Eg$J& as that of

germs of functions which are hyperfunctional in the J variables and
holomorphic in the rest.

If r = 0, so J = 0 and R((f)) = Cn, the assertion is Thm. 2.1.
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We shall prove the theorem by induction on r. It is clearly pos-

sible without loss of generality, by relabelling of variables if necessary,

to take J = Jr = {!,,.., r} for r^l ; and in this case let us abbreviate by

R(l, 2,...,r) = R(r)=RrxCn-r. The start of the induction step is

contained in the following lemma.

Lemma 4.2. If Theorem 4.1 holds for some r and for all Stein open

sets V in Cn

then Theorem 4.1 holds for (r+1) and for all such V we have

Proof. For the sake of ease of writing let us set E&Jr(9 = E&r.

Let V be a Stein open set in Cn, then for

For p = 0 this is an assumption. For p^2 it will follow from the

exact sequence of relative cohomology

---- > ffp
Rr+l(V, E@r) - > H'(V, E@r)

(exact) .

For p^l since V and V\Rr+1 are both Stein, by assumption

Now E&r is by definition a sheaf with support in the closed set R(r)

so

Since a point of Cn has a neighbourhood base consisting of Stein

open sets it follows that .R(r + l) is purely 1-codimensional with respect

to E&r. By a result of general sheaf theory [Komatsu 66 Thm. 1.9]
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we have that R(r+l) is purely (r+l)-codimensional with respect to E0.

Thus we have the first assertion of Thm. 4.1 for (r+1). There are

also the isomorphisms [Komatsu 66 Thm. 1.8]

and using these the rest of Thm. 4.1 for (r+1) follows as does the

last assertion of Lemma 4.2.

The induction can proceed if the additional assumption invoked

in lemma 4.2 can be shown to be generally true.

This assumption can however be proved in completely the same

way as is done for the scalar case in Komatsu 72 pp. 29-31, if use

is made of the Hartogs' theorem for E-valued holomorphic functions, see

Komatsu 72 for details.

The arguments just given have a different tone from that of earlier

sections, in that they are in a sense more elementary. The method

also gives an elementary proof of the results of section 2, and conversely

the arguments of section 2 may be used to give the results of this sec-

tion.
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