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On Deformations of Solutions of Involutlve
Partial Differential Equations
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Introduction

Let E, F be real analytic vector bundles over a real analytic compact

manifold M and D: F(E)-+r(F) a real analytic polynomial differential

operator satisfying D(0) = 0. Let s(i) be a parametrized family of cross

sections of E, where t moves in some neighborhood of 0 in a euclidean

space. We say that s(i) is a deformation of the solution 0 if s(0) = 0

and D(s(0) = 0. In the present paper, we will show the existence of

deformations of the solution 0 under some conditions. Namely, let L

be the linearized differential operator of D at 0 and assume: (1) the

equation D(s) = 0 is involutive, (2) L is elliptic, (3) H1(M9 0) = 0, where

0 is the solution sheaf of the equation L(s) = 0. Then we can prove

that there is a deformation 5(0 which is complete at t = 0 in an ap-

propriate sense. (Theorem 1, 2)

We would like to point out the analogy between the above result

and a theorem in [3] on the existence of deformations of complex

structures. In fact, the arguments proceed along almost the same line

as in [3].

In § 1, we prove some propositions which are needed in the later

sections. In §2, we construct the deformation s(0 and prove its com-

pleteness in §3.

Finally the author wishes to express his hearty gratitude to Professor

N. Tanaka for his constant encouragement and valuable suggestions dur-

ing the preparation of this paper.

Communicated by S. Nakano, September 3, 1974.
* Graduate School, Kyoto University, Kyoto.
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§1. Differential Equations

We always assume real analyticity, so that the subscription "real

analytic" will be omitted.

Let 7i : E-*M, p: F-»M be vector bundles over a compact manifold

M and D: F(E)-^F(F) a differential operator of order k, not necessarily

linear 3 satisfying D(0) = 0, where F(E) (resp. F(F)) denotes the linear

space of all C°°-difFerentiable cross sections of E (resp. F). Let Jk(E)

denote the jet bundle of order k of E. There is a unique fiber preserv-

ing map (p: Jk(E)-+F such that D(s) = <p°jk(s). We define pl(cp): Jk+1(E)-+

J^F), the first prolongation of (p, by P1((p)(jk+l(s))=j1((p(jk(sy)). For

(7G/XF), let A = (p~1(ff) and AW = pl(q>Yl(jl(a)). A^ is called the

first prolongation of A. Let n:Jk+1(E)-+M and nk: Jk+1(E)->Jk(E) be

natural projections.

We denote by T* = T*M the cotangent bundle of M and by SfeT*

the /c-tuple symmetric product of T*. There is a natural vector bundle

morphism /: SkT*®E-»Jk(E) and the sequence

0 - > SkT*®E -U Jk(E) " fc -> > Jfc_ !(£) - > 0

is exact, (cf. [7]) Let n*(SkT*®E) be the vector bundle over Jk(E)

induced by n. We define i+: n*(SkT*®E)->T(Jk(E)) as follows; for

(p, a)e7r%Sfcr*®£) where peJk(E) and aeSfcT*®JE,

We have the exact sequence;

0 _> W*(S*T*®£) -^ T( Jt

. g is a family ofLet F(^) = {i;6T(^)|(7rfe_1)^ = 0} and g = i*

vector spaces over ^4 and is called the symbol of A.

Definition 1. The differential equation D(s) = cr is said to be involu-

tive at peA if there is a neighborhood U of p in Jfc(E) which satisfies

the following two conditions;
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(1) the rank of q> is constant on U,

(2) let A=AnU and A(i) = {qeA^^\nkqeU}, then A is an involutive

differential equation in the sense of [2], that is, A (resp. ^(1)) is

a fibered submanifold of Jk(E) (resp. Jk+l(EJ) and nk: A^^-^A is a

fibered manifold and moreover g\x is involutive.

Further, if the equation D(s) = a is involutive at any peA, then we

simply say that D(s) = o is involutive.

Note that in this definition, nk: A
(1^-*A is actually an affine bundle,

and that its associated vector bundle is nothing but the first prolongation

0 < x > of g. See [2] for the details.

Let D: r(E)->jT(F) be as above. The linearization L of D at 0 is

defined by L(s) = -4~D(ts) for seF(E). L: F(£)-»r(F) is a linear
at r=o

differential operator of order k. Let (/?#: Jk(E)-+F be the differential of

(p along jfc(0), that is, (p*(p) = —j-(p(tp) - Obviously we have L =dt r=-o

<p*°jk-

Proposition 1. // D(.s) = 0 /s involutive at jk(Q), the linear equation

Ls = Q is also involutive.

Proof. Let U be a neighborhood of jfe(0) in Definition 1 and A =

Af}U, where A = (p~l(0). Let ^ = ̂ ;1(0) and ^(1) = p1(^*)~10'1(0)).
Remark that peJk(E)x can be naturally considered as an element of

Tj*(Q)Jk(E). Under this identification, peJk(E) is contained in R if

and only if p is tangent to A. Let p1 (</?)* be the differential of pl((p)

along jfc+1(0)- It is easy to see that P1(^)# = p1(^*). Let Pf be a small

neighborhood of xeM and Ji^l^^^xR' a local trivialization of

Ji(F). Let p1(^>) = (i^1,..., I/TJ) be the coordinates of p1^) in this triviali-

zation. Although the rank of pl(cp) is not necessarily constant, we can

choose functions \l/il9...9\l/ilf such that ^ = .-.=^,=0 are regular defining

equations of ,1(1) in a neighborhood of 7*+1(0) and the others are written
r

in the form iA/=Z fi^i^ where /-k is a function defined in a neighbor-
fc=i

hood of Jx+l(®)> (To show this, recall that the first prolongation gW

of g is the vector bundle associated with the affine bundle A(l)-*A, and

express this fact by the coordinates of cp and their derivatives.) Therefore

peJfc+1(£) is an element of #(1> if and only if p is tangent to ^1>.

Since nk: A^^-^A is a fibered manifold, .R(1) and R are vector bundles
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and nk: R
(1)-+R is surjective. Moreover we can naturally identify the

symbol of R with that of A on jk(0), so that R is involutive. Q.E.D.

In general, let L: r(£)-»r(F) be a linear differential operator of

order k such that L = cp°jk. For 0-eF(F), we put R(G) = <P~I(O) and

Proposition 2. // the equation L(s) = 0 is involutive., the inhomogene-

ous equation L(s) = a is involutive if and only if n: R(a)(l^-*M is

surjective,

Proof. The "only if" part is trivial. Assume that n: .R(0-)(1)-»M

is surjective. Then n: ]R(o-)(1)-»M is an affine bundle whose associated

vector bundle is H(0)(1). From the commutative diagram

M

it follows that n: R(a)-+M is also surjective, so n: R(a)-*M is an affine

bundle whose associated vector bundle is ^(0). Note nk: R(Q)(1)-*R(Q)

is surjective by the assumption, so that nk: ^(<7)(1)-»jR(V) is also surjective

affine bundle map. Since the symbol of R(cr) is the same as that of

R(Q), it follows that R(e) is involutive. Q.E.D.

Let 0 be the sheaf of germs of all C°° -differentiate solutions of

the equation L(s) = 0 and a a real analytic cross section of F,

Proposition 3. // the equation L(s) = <7 is involutive and H1(M,

<9) = 0, there exists a global solution of the equation L(s) = &.

Proof. By Cartan-Kahler theorem, there is a covering ^r = {C7a}

of M and cross sections sa over Ua such that L(sa) = <7. We have L(sa —

Sp) = 0 on [7a n Up, and hence the assignment

is a 1-cochain of 0. It is easily seen that this is a cocycle. Since

Hl(<%, 0)-*Hl(M, 0) is injective, we have Hl(W9 <9) = 0. Therefore
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there are cross sections s'x of 0 over Ux such that sa — Sp = Sp — s'a. Then

s0 = 5a + s; is a global solution of the equation L(s) = a. q.e. d.

Finally we mention a class of differential operators. Let D be a

non-linear operator such that D = cp°jk. Define cp^eS^ Jfc(E)*)®F by

v wi,...,^-^, at^fy
00

For creF( Jk(E)\ (p(a) = £ (^(cr,..., <r) is the formal Taylor expansion of

9 at jfc(0). The right hand converges in each fiber if cr is sufficiently

close to yfc(0). Define D": F(£)x -• xF(£)-»F(F) by D"(sl9..., *„) =

Definition 2. D is called a polynomial differential operator of degree

n if J> = 0 for ^>n.

§2. The Construction of Deformations

As in the beginning of § 1, let D: F(F)-»F(F) be a non-linear opera-

tor of order fc such that D(0) = 0 and D = cp°jk. Let L be the lineariza-

tion of D at 0 and 6? the solution sheaf of the equation L(5) = 0.

Let s(f) be a parametrized family of cross sections of E, where t

moves in some neighborhood of 0 in a euclidean space and s(t) depends

real analytically on t. We say that 5(0 is a deformation of the solution

0 if s(0) = 0 and D(s(0) = 0.

We can prove

Theorem I. Assume the followings:

(1) D is a polynomial operator of degree n,

(2) the equation D(s) = Q is involutive at jfe(0),

(3) L is elliptic and H1(M9 <9) = 0.

Then there exists a deformation s(t) such that

(4) / moves in a neighborhood of 0 in Rm, where m = dimH°(M9

(5) the linear mapping

1 ^K"^
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is bijective.

Proof. The proof will be divided into two steps.

a. (Existence of formal solutions) We want to construct homogene-

ous polynomials sr(t) of tl9...9tm of degree r with coefficients in F(E)

such that wr(0 = 5i(0 + s2((H ----- t-sr(0 satisfies

(2.1), D(ur(i)) = Q modr+1

where we mean, for any polynomial \l/(t) of tl9...,tm, by i/r(f) = 0 modf r+1

that \l/(i) contains no terms of degree :gr.

Let £!,...,£,„ be a basis of the vector space H°(M, 0) and set

It is obvious that Mi(0 = si(0 satisfies (2.1)!. It should be noticed that

each %t is an analytic cross section. Suppose that s^t),..., sr(t) are

already determined in such a way that the coefficients of sf(f) are analytic

cross sections. Then we have to construct sr+1(f) satisfying

(2.2) 0(iiP(0 + Sr+i(0) = 0 modP+2 .

Let Df* = (p*l°jk be the operator defined in §1. Clearly we have

D A = L and D° = D(0) = 0. Let /yr+1(0 be the homogeneous element of

degree r+1 of D(ur(t)). We get

«r(0v-., «r(0)
M=l

Hence (2.2) is equivalent to

(2.3) L(s,

We will show that the differential equation (2.3) is involutive. Let p(f)

be a homogeneous polynomial in tl9...9tm of degree r+1 with coefficients

in the vector space Jk(E)x over xeM. The formal version of (2.3) is



INVOLUTIVE PARTIAL DIFFERENTIAL EQUATIONS 769

or

(2.4) <p(p(i) +75(wr(0)) = 0 mod r+2 .

Let U be a sufficiently small neighborhood of x and p"1([/)

a local trivialization of f. Let <p = ((pl9...,(pl) be the coordinates of <p

in this trivialization. Since the rank of <p is constant, we may assume

that <?!,..., <PI' is independent in a neighborhood of j*(0). Hence there

are functions *Fa such that (pa(p)=lfa((p1(p),....> <pv(p)) for / '<«<;/ if p

is sufficiently close to jj(0). Let (p = ((p l5..., tpr), which is considered as

a map from «//<(£)!(/ into a subbundle of F^. Since cp* is surjective,

there is a homogeneous polynomial p(0 such that

0 mod / ' * 2 .

Then it follows from the above arguments that (2.4) holds for this p(f).

Although the rank of p1^) is not constant, by the arguments in the

proof of Proposition 1, we can similarly show that there is a homogene-

ous polynomial p'(f) of degree r+1 with coefficients in Jk+i(.E)x such

that

(2.5) pH^Xp'CO+Ji-^KCO^^o modr+2 .

Remark that (2.5) is equivalent to

Since the equation L(s) = 0 is involutive, in view of Proposition 2, it

follows that (2.3) is involutive.

Finally by Proposition 3, there is a global solution of (2.4) and

further the ellipticity of L implies that it is analytic. This completes

our inductive construction of s(f).

bB (Proof of convergence) We introduce the norm ||s||p+<r of SG

F(E) (or seF(F)) for a positive integer p and 0«r<l by a well-known

method. That is, let {Ut} be a finite covering of M and {xl9...,xn}

a coordinate system on Ut. (Recall that M is compact) We write s

in the form s = ZsAe^ where {eA} is a set of linearly independent local

cross sections of E (or F). Let
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^OOl +8UP

where dr means a partial derivative of order r and the "sup" is extended

over all points x, y e Ui9 all indices A and all partial derivatives 8r, dp.

For p>k, we have

(2.6) ll^(s1,.,^)||p_fc+ff^c||Sl||p+<T...||s,||p+(T

where k is the order of D.

Let s be a global solution of the equation L(s) = s' for s'eF(F).

It is known that the ellipticity of L implies the estimate (cf. [1])

(2.7) Wl,+.£c(l|s||o+l|s'll,-t+.).

Moreover by the arguments similar to section 4 of [3], it follows that

there exists a solution s" such that the next estimate holds:

where c± is independent of s'.

Let a denote a multi-index (a !,..., am) and consider a formal power

series

with coefficients sxeF(E) (or eF(FJ) and a power series a(t)=Zaat*. We

indicate by ||s||,+XO<fl(0 that ||sa||p+ffgaa.
We will make use of the power series introduced in [3]. That is,

let

We have

(2.9)

Now we proceed to the proof of convergence. First remark that
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from (2.8), there is a global solution sr+1(i) of (2.3) such that

(2.10) l|sr+1||p

Let s(0 = s1(0 + s2(0 + s3(0+*"> where each sr+1(0 is the solution of
(2.3) satisfying (2.10). We want to show

(2.11) \\s\\P+J®*A(t).

By letting a sufficiently large, we may suppose ||Millp+ f f(0^^(0- We
will show (2.11) by induction. Assume

(2.12) l | K P l l p + a(0^(0.

Since D(ur(t)}=^ D^(ur(t),...,ur(t)) and rjr+l(t) is the homogeneous part

of degree r+1 of D(ur(t)\ we get from (2.6), (2.9) and (2.12)

n /i-

-£-) A(t).
0 /

Choosing b so that rc."£ f-?-Y<l> we get finally from (2.10)
M= i \ ^ /

This completes the proof of (2.11).

Therefore the series

converges in || ||p+<r for sufficiently small t, so that s(r) is differentiate

of class Cp and real analytic in t. Finally we must prove that s(t) is

real analytic. This can be shown as follows; in the first place, since

Jk(E) is naturally imbedded in J ± ( J k - 1(£)), we can find a certain first

order differential operator D; on J^^E) such that the equation D(s) = 0

is equivalent to the equation D/(jfc~1(s)) = 0. That is, for a local cross

section s of E, D(s) = 0 if and only if D'(jfc~1(s)) = 0. (Df may be defined

only locally, but it suffices for our purpose.) We assert that the lineari-

zation of D' at j*""1^) is elliptic. In fact, this is easily seen by direct
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calculations in local coordinate systems. Let us complexify the bundle

E and the operator D'. We can suppose that s(f) is defined for complex

numbers t. Then s(t) is a solution of the differential equation

dit

The linearization of this equation at jk~1(s(fj) is elliptic if t is sufficiently

close to 0, and hence we see that s(t) is real analytic, (cf. [6]) This

completely proves the theorem. Q.E. D.

§3e The Completeness of *(*) at t = Q

The notations being the same as in §2, in this section we show the

completeness of s(f) at f = 0.

Let s(t) be an arbitrary deformation, where t moves in a neighbor-

hood of 0 in Rw.

Definition 3. s(f) is said to be complete at r = 0 if for any deforma-

tion s'(w), where u moves in a neighborhood of 0 in R", there exists

a real analytic map / from a neighborhood V of 0 in Rn into Rm such

that/(0) = 0 and s'(u) = s(f(u)) for ueV.

In the next theorem, we do not assume that D is a polynomial

operator.

Theorem 2. Let s(t) be a deformation such that the natural map-

ping

\ oti /t=o

is surjective. Then s(t) is complete at t=Q.

Proof. As the proof of Theorem 1, we first construct / formally,

next prove its convergence.

a* Let s'(u) be any deformation. We want to construct / such that
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(3.1), s'(u) = s(f(u)) modi/'+1

for any r. Let s(t)=^sat
<x and sf(u)=^s'^up be the Taylor expansions

of s(0 and s'(u). We put sp(0 = Z sat
a and s'r(u)= X -^i**, where

|a| = r |0| = r
|a| = a1 + a2 + - - -+a m and \P\=Pi+P2+ — +Pn- Similarly we write / in

00

the form /(w) = Z /«M^ = Z /X10» which we must construct such that (3. l)r
ft r=l

holds. Let //? = (//?,...,//?') be the coordinates of fp. (3.1)P is clearly
equivalent to

(3.2)r ^ *i(ti) s ̂  Si( Z /») mod W^+ 1 .

We denote by lf the multi-index whose /-component is 1 and others are
n

0. Then (3.2)j means that sf
lt = ̂  sl.f\.. Since ^i. is an element of

j= i
H°(M, 0) and {slj}j=l generate //°(M, 6)), we can find /^ which satis-

fy this equation.

Suppose that fl(u\...9fr(u) are already constructed. We must de-
r

termine /r+1(w) which satisfies (3.2)r+1. Substituting X fM f°r ^ we
i=i

develop t* in w as follows;

Obviously cr^ = 0 if |J5|<|«| or if |a| = l and |j8| = r+l. It is easy to

see that (3.2)r+1 is equivalent to

Z s'fu'= Z
^| = r+l " |jS|=r+r+l

or

(3.3) ^-Z^^=Z^i,./^ IPI =i-+1.
a i

We now prove that the left hand in (3.3) is contained in H°(M, ©).

In the first place, we get from (3.2),.

(3.4) *i=Zv?
a

for \P\£r. Let {alv.., aM} be multi-indices and set a = a1 + ---+a / l . Since

t* = t*l...t<x>*, it is easily shown that
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(3.5) of= 1 \ n\-°K
P i+— +PM-P

We remark that a similar equation to (2.3) holds for s(t) and s'(u).

Since J7r+1(0 in (2.3) is the homogeneous element of degree r+1 of

D(
1=1 /i^l i=l

= £ Z
a,j* a i+— +a

l«i |*r

it follows that

(3.6) L(O=-Z Z
/i^2 a i+—+

for |a| = r+l. Similarly we have

(3.7) £ (^)=~Z Z
Ml; 2 /Bi+-+jB

Let us return to the equation (3.3). We get from (3.4) ~ (3. 7)

E

This shows that L(s£— Zsacr?) = 0- Hence we can find /j which satisfy
a

(3.3). This completes our inductive construction of f ( u ) .

Note that we can choose a basis of H°(M, 0) between { s l i } f = 1 . For

simplicity, let [ s l i } f l l be a basis. Then we can suppose in the construc-

tion of /i that/i = 0 for i>m'.

b. Let < 9 > be a metric in E and define an inner product of

r(E) by

(s, s') = \ < s(x), s'(x) > dv
JM

L
where du is a volume element of M. Let ||s||=(s, s)2 be the norm of
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seF(E). Since the inner product restricted to H°(M, 0) is positive

definite and {s1.}f=l is a basis of H°(M, (9), there is a constant c such

that

(Remark that /« = 0 for k>m') Further, by Cauchy's inequality and

simple calculations, we can suppose that

(3.9) \

\\s'\\(u)4A0(u)

where

Let A(u) be the power series A0(u) in which the constant a0, fc0
i

are replaced by a, fr and assume that 2 /Kw)^^(w) f°r any ^- We have
r=l

Let Ax denote the coefficient of t* in ^0(0- Then we get from (3.3),
(3.8)

We may suppose that aQ<a, b0<b, and hence we can replace A0(u) by

-Q-A(u) in (3.10). It is easily shown that we can choose b such that

r+l
This shows that ^ f\(u)^A(u\ so that we have fk(u)<^A(u) by induc-
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tion. Therefore f ( u ) converges in a sufficiently small neighborhood of

0 and we complete the proof. Q.E.D.
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