Some Remarks on One-Dimensional Local Domains

By

Ryoichi NAGASAWA*

Let R be a one-dimensional (noetherian) local domain with field of quotients Q. Then any ring extension S of R in Q is obtained as a ring of quotients of some integral extension C of R. Here, if Sis local and if C can be chosen to be finite over R, then we call S an R-locality.

If R is analytically ramified, then R does not satisfy the finiteness condition for integral extensions in Q (cf. [3], p. 122, Exercise 1). In other words, R possesses at least one latent singularity with respect to a certain analytic branch of R which can not be resolved by any quadratic dilatations.

The purpose of this note is to give a necessary and sufficient condition for the finiteness of ring extensions S as R-modules, and to prove a characterization of R-localities by making use of the concept of latent multiplicity found in [1] and [4] (more detailed accounts of this theory may be found in [3]).

§0. Terminology and Preliminaries

(0.1) By a ring we mean a commutative noetherian ring with identity. The maximal ideal of a local ring R is denoted by M(R) and the multiplicity of R is denoted by e(R).

The integral closure of a ring R in its total quotient ring is called the normalization of R and denoted by \overline{R} . A local domain R is said

Communicated by S. Nakano, July 9, 1974.

^{*} Mathematical Division of General Education, Kanazawa Institute of Technology, Kanazawa, Japan.

to be unibranched if the normalization \overline{R} has exactly one maximal ideal.

The Henselization of a local ring R is denoted by R^h ; also the completion of R is denoted by R^* . Let R be a local domain. Then it is known that there exists a one to one correspondence between the maximal ideals N of \overline{R} and the minimal prime ideals P of R^h such that if N corresponds to P, then the normalization of R^h/P is canonically isomorphic to the Henselization of \overline{R}_N and we have

$$P = \operatorname{Ker}(\mathbb{R}^h \longrightarrow (\overline{\mathbb{R}}_N)^h)$$
 (cf. [2], Theorem 6).

If R is a 1-dimensional local domain, then the similar assertion holds for the completion R^* of R.

(0.2) Let R be a 1-dimensional local domain with field of quotients Q and let S be an integral domain such that $R \subset S \cong Q$. Then S is a (noetherian) semi-local ring by the theorem of Krull-Akizuki.

For a discrete valuation ring V such that $R \subset V \subset Q$, we define the latent multiplicity $n_V(S)$ of S with respect to V in the following way.

If $S \notin V$, then we put $n_V(S) = 0$.

Suppose that $S \subset V$ and let O be the ring of quotients of S with respect to the maximal ideal $M(V) \cap S$. Then $P = \text{Ker}(O^* \to V^*)$ is the rank 0 prime ideal of O^* which canonically corresponds to V (cf. (0.1)). Then we define $n_V(S) = e(O^*_P)$.

(0.3) We next explain certain terminology and results given in [1] which will be used later in this note.

Let R, S, Q be as in (0.2). If S is local and satisfies the following conditions:

$$M(R)S = M(S), \quad S/M(S) = R/M(R)$$

then S is said to be strongly unramified over R. This is equivalent to saying that S/R is a proper divisible R-submodule of Q/R.

Let M be an Artinian R-module. Then M has a composition series of divisible submodules:

$$O = D_0 \not\subseteq D_1 \not\subseteq \cdots \cdots \not\subseteq D_r = d(M)$$

where d(M) is the largest divisible submodule of M. Every composition

series of M has the same number of terms and we denote the number by $L_R(M)$ which we call the divisible length of M. It is easy to see that L(M)=0 if and only if M has a finite length. For a exact sequence of Artinian R-modules:

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0,$$

we have L(M) = L(L) + L(N).

Since an Artinian *R*-module is a torsion *R*-module, we have a canonical isomorphism: $M \otimes_R R^* = M$. Thus *M* has the structure of an *R**-module and this structure is unique (cf. [1], Theorem 2.7).

For a divisible submodule D of M. if the annihilator $\operatorname{Ann}_{R^*}(D)$ is a primary ideal associated with some rank 0 prime ideal P of R^* , then D is said to be P-primary and in this case we denote the largest P-primary divisible submodule of M by M(P). If there exists no Pprimary divisible submodule in M, we put M(P)=0. Then we have $L(M)=\sum L(M(P))$, where P runs over all rank 0 prime ideals in R^* . Finally, we note the following two facts which may be used tacitly.

(A). K = Q/R is an Artinian *R*-module and there exists a one to one, order-preserving, correspondence between the proper divisible submodules D = A/R of K and the rank 0 unmixed ideals *I* of R^* given by $D = K \bigotimes_R I$, $I = \operatorname{Hom}_R(K, D)$, $A^* = R^*/I$, where A is a strongly unramified extension ring of R (cf. [1], Theorem 6.6).

(B). $D = K \otimes I$ is *P*-primary if and only if *I* and the zero ideal of R^* have the same primary components except for the *P*-primary components. (cf. [1], pp. 126–128)

§1.

Let R be a 1-dimensional local domain and let Q be its field of quotients. By N(R) we denote the set of integral domains S such that $R \subset S \cong Q$ and by B(R) we denote the set of discrete valuation rings V in N(R).

Lemma 1.1. Let $S \in N(R)$, let $V \in B(R)$ and let P be the rank 0 prime ideal of R^* which corresponds to V. Then

$$n_V(R) - n_V(S) = L_R((S/R)(P))$$

Proof. We first assume that $S \subset V$.

Let $(0)=I \cap N$ where *I* is the *P*-primary component of the zero ideal of R^* and N: P=N. Put d(S/R)=A/R. Then L(S/A)=0, hence *S* is a finite *A*-module. Let *J* be the rank 0 unmixed ideal of R^* which corresponds to the divisible submodule A/R and let $J=I' \cap N'$ where *I'* is the *P*-primary component of *J* and N': P=N' (since $A \subset V$, $J: P \neq J$). Then $K \otimes (I' \cap N)$ is a *P*-primary divisible submodule of K=Q/R (cf. (0.3), (B)). Let $(S/R)(P)=K \otimes (I_1 \cap N)$ where I_1 is a *P*primary ideal. Since $K \otimes (I' \cap N) \subset K \otimes (I_1 \cap N)$, we have $I' \subset I_1$. On the other hand, since

$$K \otimes (I_1 \cap N) \subset d(S/R) = K \otimes (I' \cap N'),$$

we have $I_1 \subset I'$. Therefore, we have $I_1 = I'$ and $(S/R)(P) = K \otimes (I' \cap N)$. Since $A^* = R^*/J$ (cf. (0.3), (A)) and

$$P/J = \operatorname{Ker} (A^* \longrightarrow V^*),$$

we see that $\overline{P} = P/J$ is the rank 0 prime ideal of A^* which corresponds to V and I'/J is the \overline{P} -primary component of the zero ideal of A^* .

Let

$$I = I_1 \not\subseteq I_2 \not\subseteq \cdots \cdots \not\subseteq I_r = I' \not\subseteq I_{r+1} \not\subseteq \cdots \cdots \not\subseteq I_t = P$$

be a saturated chain of P-primary ideals. Then

$$I'/J \not\subseteq I_{r+1}/J \not\subseteq \cdots \cdots \not\subseteq I_t/J = \overline{P}$$

is a saturated chain of \overline{P} -primary ideals in A^* . Hence we have $n_V(R) = t$ and $n_V(A) = t - (r-1)$. Since $(S/R)(P) = K \otimes (I_r \cap N)$, we see that

$$L((S/R)(P)) = r - 1 = t - (t - (r - 1)) = n_V(R) - n_V(A).$$

We next prove that $n_V(A) = n_V(S)$.

Let O be the ring of quotients of S with respect to the maximal ideal $M(V) \cap S$. Since S is a finite A-module, the Henselization O^h of O is a finite A^h -module. Let

ONE-DIMENSIONAL LOCAL DOMAINS

$$P_1 = \operatorname{Ker}(A^h \longrightarrow V^h), \quad P_2 = \operatorname{Ker}(O^h \longrightarrow V^h),$$

then we have $A^h/P_1 \subset O^h/P_2 \subset V^h$ and these three local domains are 1-dimensional, unibranched, local domains with the same field of quotients (cf. [2] p. 13). It is easy to see that $n_{V^h}(A^h/P_1) = n_V(A)$ and $n_{V^h}(O^h/P_2) = n_V(O) = n_{V'}(S)$. Therefore we may assume that A is unibranched. Let P' (resp. P") be the unique prime ideal of rank 0 of A^* (resp. $O^* = S^*$) which corresponds to V. Since S is a finite A-module and $R \subset A \subset S \subset Q$, we see that $zS \subset A$ for some $z \in A, z \neq 0$ and since z is not a zero-divisor in A^* , A^* and S^* have the same total quotient ring which is equal to $A^*_{P'} = S^* \otimes A^*_{P'} = S^*_{P''}$.

Hence, we have $n_V(A) = n_V(S)$ and $L((S/R)(P)) = n_V(R) - n_V(A) = n_V(R) - n_V(S)$. Thus, the assertion is proved in the case $S \subset V$.

We next assume that $S \notin V$. Then $n_V(S) = 0$ from the definition and in the above notation, we have J = N', N' : P = N'. Then, (S/R)(P) $= K \otimes N$ and L((S/R)(P)) = t by the similar argument as above. Then $L((S/R)(P)) = n_V(R) = n_V(R) - n_V(S)$. Thus the proof is completed. Q. E. D.

Theorem 1.2. Let $S \in N(R)$. Then

(1) $n_V(S) \leq n_V(R)$ for any $V \in B(R)$,

(2) S is a finite R-module if and only if

$$n_V(R) = n_V(S)$$
 for each $V \in B(R)$.

Proof. (1): The proof is immediate from Lemma 1.1.

(2): Since $L(S/R) = \sum L((S/R)(P))$, L(S/R) = 0 if and only if L((S/R)(P))=0 for each rank 0 prime ideal P of R*. By lemma 1.1, L((S/R)(P))=0 if and only if $n_V(R) = n_V(S)$ where P corresponds to $V \in B(R)$. Since L(S/R) = 0 if and only if S is a finite module over R, the assertion is proved. Q. E. D.

§2.

Let R, N(R), B(R) be as in §1.

If $S \in N(R)$ is local and is equal to a ring of quotients of some finitely generated ring $R[a_1, ..., a_n]$ where $a_i \in Q$, then S is called an R-locality. Then, for an R-locality S, there exists an ideal I of R and

 $V \in B(R)$ such that S is the quadratic dilatation of R by I with respect to V (cf. [3] p. 141). Also, we note that for a given R-locality S, we can choose the a_i to be integral over R.

Theorem 2.1. Let $S \in N(R)$ and assume that S is local. Let

 $P_1, ..., P_n$ (resp. $Q_1, ..., Q_m$)

be the rank 0 prime ideals of R* (resp. S*). Then:

(1) $e(S) \leq e(R), \quad m \leq n,$

(2) e(R) = e(S) if and only if the following conditions hold:

(a) S is a finite R-module (hence, m=n).

(b) If $P_i = Q_i \cap R^*$ for i = 1,..., n (by virtue of (a)), then we have $e(R^*/P_i) = e(S^*/Q_i)$ (i = 1,..., n).

Proof. (1): For $V \in B(R)$ (resp. $V \in B(R)$ such that $S \subset V$), let P_V (resp. Q_V) be the rank 0 prime ideal of R^* (resp. S^*) which corresponds to V. Then we have

 $e(R) = \sum c(R^*/P_V)n_V(R), \quad c(S) = \sum e(S^*/Q_V)n_V(S) \quad (cf. [3] (23.5)).$

For each $V \in B(R)$ such that $S \subset V$, we have

$$R^*/P_V \subset S^*/Q_V \subset V^*$$
,

and these three local domains have the same field of quotients.

Since R^*/P_V is complete, S^*/Q_V is a finite module over R^*/P_V .

Then it is easy to see that $e(S^*/Q_V) \leq e(R^*/P_V)$ for each V such that $S \subset V$. Since $n_V(S) \leq n_V(R)$ by Theorem 1.2, we have

$$e(S^*/Q_V)n_V(S) \leq e(R^*/P_V)n_V(R)$$

for each V such that $S \subset V$. Consequently, we have $e(S) \leq e(R)$. Thus the proof of (1) is completed.

(2): Assume that e(R) = e(S).

By the proof of (1), we see that

$$m = n$$
, and $e(R^*/P_V) = c(S^*/Q_V)$, $n_V(S) = n_V(R)$

for any $V \in B(R)$. Hence, by Theorem 1.2, we see that S is a finite

R-module.

The converse of (2) is immediate (by virtue of Theorem 1.2) and we omit the proof. Q.E.D.

Theorem 2.2. The following two statments are equivalent:

(a) e(R) = e(S) for any R-locality S which is contained in a fixed $V \in B(R)$.

(b) R is unibranched and R^*/P is a discrete valuation ring, where P is the unique rank 0 prime ideal of R^* .

Proof. Assume first that (a) is true. Let x be any element in V and let T be the ring of quotients of R[x] with respect to the maximal ideal $M(V) \cap R[x]$. Then e(R) = e(T) by our assumption and hence, by Theorem 2.1, T is integral over R. Therefore, we see that V is integral over R, i.e., R is unibranched. Let P be the rank 0 prime ideal of R^* which corresponds to the normalization $V = \overline{R}$. Then R^*/P and V^* have the same field of quotients and identifying as $V \subset V^*$, $V^* = R^*/P[V]$. Choose $a_1, \ldots, a_m \in V$ such that $V^* = R^*/P[a_1, \ldots, a_m]$ and put $S = R[a_1, \ldots, a_m]$. Then S is unibranched. Let Q be the unique rank 0 prime ideal of S*. Since $S^*/Q = R^*/P[a_1, \ldots, a_m] = R^*/P[V] = V^*$, we have $e(S^*/Q) = 1$.

Then, by Theorem 2.1 (2), our assumption implies $e(R^*/P) = 1$, i.e., R^*/P is a discrete valuation ring. Conversely, assume that (b) is true and let S be an R-locality. Then S is unibranched and letting Q be the rank 0 prime ideal of S*, we have $e(S) = e(S^*/Q)n_V(S)$.

Since $n_v(R) = n_v(S)$ by Theorem 1.2 and $R^*/P = S^*/Q$ by our assumption, we have

$$e(S) = e(S^*/Q)n_V(S) = e(R^*/P)n_V(R) = e(R)$$
.

Thus the proof is completed.

Remark. (1) By virtue of the above proof, if the statement (b) holds for R, we have e(R) = e(S) for any R-locality S.

(2) In our case, e(R)=1 implies that R is regular. In general, let (R, M) be a Macaulay local ring of Krull-dimension d and let $n = \dim_{R/M} M/M^2$. Let r be the number of irreducible components of an ideal I generated by a system of parameters of R.

Q. E. D.

Then it is known that the integer r is an invariant of R and is equal to $\dim_{R/M}(I:M)/I$. Then we have the following:

 $e(R) \ge n - d + 1$ and the equality holds if and only if

(1) R is regular, or (2) e(R) = r+1.

Proof: First assume that R/M is an infinite field. Then there exists a system of parameters $a_1, ..., a_d$ of R such that $e(R) = \text{length}_R R/I$ where $I = (a_1, ..., a_d)$ and the a_i modulo M^2 are linearly independent over R/M (cf. [3], (24.1), (24.3)). Then

$$e(R) = \operatorname{length}_{R} R/I \ge \operatorname{length}_{R} R/I + M^{2}$$
$$= 1 + \operatorname{length}_{R} M/M^{2} - \operatorname{length}_{R} I + M^{2}/M^{2} = n - d + 1$$

The equality holds if and only if $I+M^2=I$, i.e., $M^2 \subset I$ which implies that I=M or I: M=M. If I=M, then R is regular and if I: M = M, then we have

$$e(R) = \operatorname{length}_R M/I + 1 = \operatorname{length}_R I: M/I + 1 = r + 1$$
.

Next, if R/M is a finite field, then take a transcendental element x and consider $R(x) = R[x]_{M[x]}$. Then, by the validity of the theorem of transition for R and R(x) (cf. [3], §18, §19), our assertion is also true in this case. Q.E.D.

Lemma 2.3. Let $S \in N(R)$ and $V \in B(R)$. Assume that S is local. Then, $n_V(R) = n_V(S)$ if and only if there an R-locality T such that $S \subset T \subset V$.

Proof. First, we assume that $n_V(R) = n_V(S)$. We can easily find an *R*-locality $R_0 \subset V$ such that R_0 is unibranched and the normalization of R_0 is equal to *V*. Put $T = R_0[S]$. Then *T* is local and since R_0 is an *R*-locality, *T* is an *S*-locality. By Theorem 1.2, we see that $n_V(R)$ $= n_V(R_0)$ and $n_V(S) = n_V(T)$. Consequently, we have $n_V(R_0) = n_V(T)$ by our assumption. Since R_0 is unibranched, *T* is a finite module over R_0 by Theorem 1.2. Hence we see that *T* is an *R*-locality and $S \subset T \subset V$.

Next, we assume that T is an R-locality such that $S \subset T \subset V$. Then, by Theorem 1.2, we see that $n_V(R) = n_V(T)$ and $n_V(S) = n_V(T)$. Hence

28

we get that $n_V(R) = n_V(S)$. Thus the proof is completed. Q.E.D.

Theorem 2.4. Let $V \in B(R)$ and $S_i \in N(R)$ (i=1, 2) and assume that $S_i \subset V$ (i=1, 2). Let P be the rank 0 prime ideal of R^* which corresponds to V.

Then, $(S_1/R)(P) = (S_2/R)(P)$ if and only if there exists $T \in N(R)$ such that T is an S_i -locality for i = 1, 2 and $T \subset V$.

Proof. Assume first that $(S_1/R)(P) = (S_2/R)(P)$.

Let $d(S_i/R) = A_i/R$ (i=1, 2). Then S_i is a finite A_i -module for i=1, 2 and $(A_1/R)(P) = (A_2/R)(P)$ by our assumption. Therefore, we may assume that the S_i are strongly unramified extension rings of R. By our assumption, the unmixed ideals of rank 0 of R^* which correspond to the S_i have the same P-primary component J. Put $K \otimes (J \cap N) = S/R$ where K = Q/R and N is the intersection of the primary component. Then S is a strongly unramified extension ring of R and $S \subset S_i$ for i=1, 2. Since $(S_i/R)(P) = (S/R)(P)$ from our construction, we see that $n_V(S_i) = n_V(R) - L((S_i/R)(P)) = n_V(R) - L((S/R)(P)) = n_V(S)$ (i=1, 2) by Lemma 1.1. Replacing R by S in Lemma 2.3, we see that there exist S-localities T_1, T_2 such that $S_i \subset T_i \subset V(i=1, 2)$. Let T be the ring of quotients of $C = T_1[T_2]$ with respect to the maximal ideal $M(V) \cap C$. Since the T_i are S-localities, T is also an S-locality, hence T is an S_i -locality for i=1, 2. Since $T \subset V$, our assertion is proved.

Conversely, assume the existence of a local domain T as above. Then $(S_i/R)(P) \subset (T/R)(P)$ for i=1, 2 and by Lemma 1.1 and Lemma 2.3, we have

$$L((S_i/R)(P)) = n_V(R) - n_V(S_i) = n_V(R) - n_V(T) = L((T/R)(P)).$$

Hence, $(S_i/R)(P) = (T/R)(P)$ for i=1, 2. Consequently, we have $(S_1/R)(P) = (S_2/R)(P)$ and the proof is completed. Q.E.D.

Remark. In the above theorem, suppose that R is a homomorphic image of a two-dimensional regular local ring. Then it is easy to see that the *P*-primary ideals of R^* are linearly ordered by inclusion. Hence, in this case, a local domain T as in the above theorem exists

i and only if $n_V(S_1) = n_V(S_2)$.

But this is not true for general case.

Theorem 2.5. Let $S \in N(R)$ and suppose that S is local. Then the following two statements are equivalent:

- (a) S is an R-locality.
- (b) $n_V(R) = n_V(S)$ for any $V \in B(R)$ such that $S \subset V$.

Proof. The implication (a) \Rightarrow (b) is an immediate consequence of Lemma 2.3. Next, assume that (b) holds. Let C be the integral closure of R in S. Then the ring of quotients of C with respect to the maximal ideal $N=M(S)\cap C$ is integrally closed in S, and hence is equal to S (cf. [3] (33.1)). Since C is semi-local there exists an element $x \in N$ which is not contained in any maximal ideals of C other than N. Let T be the ring of quotients of R[x] with respect to the maximal ideal $M(S)\cap R[x]$. Then, $T \subset S$ and $V(\in B(R))$ contains S if and only if V contains T.

By Lemma 2.3 and our assumption, we have

$$n_V(T) = n_V(R) = n_V(S)$$

for any $V \in B(R)$ such that $T \subset V$. Hence, by Theorem 1.2, S is a finite module over T. Since T is an R-locality, S is also an R-locality. Thus the proof is completed. Q.E.D.

References

- Matlis, E., 1-dimensional Cohen-Macaulay rings, Lecture Notes in Math. 327, Springer-Verlag (1973).
- [2] Nagata, M., On the theory of Henselian rings II, Nagoya Math. J. 7 (1954), pp. 1–19.
- [3] _____, Local rings, Interscience, New York, 1962.
- [4] Northcott, D. G., Some contributions to the theory of 1-dimensional local rings, Proc. London Math. Soc., 8 (1958), pp. 388-415.

30