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Some Remarks on One-Dimensional

Local Domains

By

Ryoichi NAGAsawA*

Let R be a one-dimensional (noetherian) local domain with field
of quotients Q. Then any ring extension S of R in Q@ is obtained
as a ring of quotients of some integral extension C of R. Here, if S
is local and if C can be chosen to be finite over R, then we call S an
R-locality.

If R is analytically ramified, then R does not satis{fy the finiteness
condition for integral extensions in @ (cf. [3], p. 122, Exercise 1). In
other words, R possesses at least one latent singularity with respect to
a certain analytic branch of R which can not be resolved by any quadra-
tic dilatations.

The purpose of this note is to give a necessary and sufficient con-
dition for the finiteness of ring extensions S as R-modules, and to prove
a characterization of R-localities by making use of the concept of latent
multiplicity found in [1] and [4] (more detailed accounts of this theory
may be found in [3]).

§0. Terminology and Preliminaries

(0.1) By a ring we mean a commutative noetherian ring with
identity. The maximal ideal of a local ring R is denoted by M(R)
and the multiplicity of R is denoted by e(R).

The integral closure of a ring R in its total quotient ring is called
the normalization of R and denoted by R. A local domain R is said
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to be unibranched if the normalization R has exactly one maximal ideal.

The Henselization of a local ring R is denoted by R?; also the
completion of R is denoted by R*. Let R be a local domain. Then
it is known that there exists a one to one correspondence between the
maximal ideals N of R and the minimal prime ideals P of R" such that
if N corresponds to P, then the normalization of R"/P is canonically
isomorphic to the Henselization of Ry and we have

P=Ker(R* — (Ry)")  (cf. [2], Theorem 6).

If R is a 1-dimensional local domain, then the similar assertion
holds for the completion R* of R.

(0.2) Let R be a 1-dimensional local domain with field of quotie-
nts Q and let S be an integral domain such that R=S&Q. Then S
is a (noetherian) semi-local ring by the theorem of Krull-Akizuki.

For a discrete valuation ring V such that RcV<Q, we define the
latent multiplicity n,(S) of S with respect to V in the following way.

If S¢V, then we put n,(S)=0.

Suppose that ScV and let O be the ring of quotients of S with
respect to the maximal ideal M(V)nS. Then P=Ker(0*-V*) is
the rank O prime ideal of O* which canonically corresponds to V (cf.
(0.1)). Then we define n,(S)=e(0*p).

(0.3) We next explain certain terminology and results given in
[1] which will be used later in this note.

Let R, S, Q be as in (0.2). If S is local and satisfies the following
conditions:

M(R)S=M(S), S/M(S)=R/M(R)

then S is said to be strongly unramified over R. This is equivalent
to saying that S/R is a proper divisible R-submodule of Q/R.

Let M be an Artinian R-module. Then M has a composition series
of divisible submodules:

0=D,D,S----- S D,=d(M)

where d(M) is the largest divisible submodule of M. Every composition
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series of M has the same number of terms and we denote the number
by Lg(M) which we call the divisible length of M. It is easy to see
that L(M)=0 if and only if M has a finite length. For a exact sequence
of Artinian R-modules:

0O—sL—M-—N-—0,

we have L(M)=L(L)+ L(N).

Since an Artinian R-module is a torsion R-module, we have a
canonical isomorphism: M®gR*¥*=M. Thus M has the structure of
an R*-module and this structure is unique (cf. [1], Theorem 2.7).

For a divisible submodule D of M. if the annihilator Anng.(D)
is a primary ideal associated with some rank O prime ideal P of R¥*,
then D is said to be P-primary and in this case we denote the largest
P-primary divisible submodule of M by M(P). If there exists no P-
primary divisible submodule in M, we put M(P)=0. Then we have
L(M)=Y L(M(P)), where P runs over all rank O prime ideals in R¥*.
Finally, we note the following two facts which may be used tacitly.

(A). K=Q/R is an Artinian R-module and therc cxists a one to
one, order-preserving, correspondence between the proper divisible sub-
modules D=A/R of K and the rank 0 unmixed ideals [ of R* given
by D=K®gl, I=Homg(K, D), A¥=R*/I, where A is a strongly un-
ramified extension ring of R (cf. [1], Theorem 6.6).

(B). D=K®I is P-primary if and only if I and the zero ideal
of R* have the same primary components except for the P-primary
components. (cf. [1], pp. 126-128)

§1.

Let R be a 1-dimensional local domain and let Q be its field of
quotients. By N(R) we denote the set of integral domains S such
that Rc=S&Q and by B(R) we denote the set of discrete valuation
rings V in N(R).

Lemma 1.1. Let SeN(R), let VeB(R) and let P be the rank 0

prime ideal of R* which corresponds to V, Then
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ny(R)—ny(S)=Lg((S/R) (P)).

Proof. We first assume that ScV.

Let (0O)=INN where I is the P-primary component of the zero
ideal of R* and N:P=N. Put d(S/R)=A/R. Then L(S/A)=0, hence
S is a finite A-module. Let J be the rank O unmixed ideal of R*
which corresponds to the divisible submodule A/R and let J=I'nN’
where I’ is the P-primary component of J and N’:P=N’ (since AcV,
J:P#J). Then K®UI'NN) is a P-primary divisible submodule of
K=0Q/R (cf. (0.3), (B)). Let (S/R)(P)=K®(I,;nNN) where I, is a P-
primary ideal. Since K®U'NN)cK®(I;nN), we have I'cl{. On
the other hand, since

K®UI;nN)cd(S/R)=K®I'nN"),

we have I,cI’. Therefore, we have I,=I" and (S/R)(P)=K®'n N).
Since A*=R*/J (cf. (0.3), (A)) and

P/J=Ker(4* —> V*),

we see that P=P/J is the rank O prime ideal of 4* which corresponds
to Vand I'/J is the P-primary component of the zero ideal of A*.
Let

[=1, G LG G =l G G, =P
be a saturated chain of P-primary ideals. Then
I'lJEl [J& S]] =P

is a saturated chain of P-primary ideals in A*. Hence we have ny(R)
=t and ny(4)=t—(r—1). Since (S/R)(P)=K®(I.n N), we see that

L{(S/R)(P))=r—1=t—(t—(r—1))=ny(R)—ny(4).

We next prove that n,(4)=ny(S).

Let O be the ring of quotients of S with respect to the maximal
ideal M(V)nS. Since S is a finite 4-module, the Henselization 0" of
O is a finite A"module. Let
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P,=Ker(4" — VM), P,=Ker(0" — V1),

then we have A"/P, cO"P,=V" and these three local domains are
1-dimensional, unibranched, local domains with the same field of quo-
tients (cf. [2] p. 13). It is easy to see that nyu(4"/P)=n,(4) and
nyw(0"/P,)=n,(0)=n,(S). Therefore we may assume that A4 is uni-
branched. Let P’ (resp. P") be the unique prime ideal of rank O of
A* (resp. O*=S*) which corresponds to V. Since S is a finite 4-module
and RcAc=S<Q, we see that zScA for some zeA, z#0 and since
z is not a zero-divisor in A*, A¥ and S* have the same total quotient
ring which is equal to A*p =S*®A*p =S%p..

Hence, we have n,(4)=ny(S) and L((S/R)(P))=ny(R)—ny(A)=n,(R)
—ny(S). Thus, the assertion is proved in the case ScV.

We next assume that S¢& V. Then n,(S)=0 from the definition and
in the above notation, we have J=N', N':P=N'. Then, (S/R)(P)
=K®N and L((S/R)(P))=t by the similar argument as above. Then
L((S/R)(P))=ny(R)=n,(R)—ny(S). Thus the proof is completed. Q.E.D.

Theorem 1.2. Let Se N(R). Then
(1) nu(S)=ny(R) for any Ve B(R),
(2) S is a finite R-module if and only if

ny(R)=ny,(S) for each VeB(R).

Proof. (1): The proof is immediate from Lemma 1.1.
(2): Since L(S/R)=>2 L((S/R)(P)), L(S/R)=0 if and only if L((S/R)(P))
=0 for each rank O prime ideal P of R*. By lemma 1.1, L((S/R)(P))
=0 if and only if n,(R)=n,(S) where P corresponds to Ve B(R). Since
L(S/R)=0 if and only if S is a finite module over R, the assertion is
proved. Q.E.D.

§2.

Let R, N(R), B(R) be as in §1.

If SeN(R) is local and is equal to a ring of quotients of some
finitely generated ring R[a,,...,da,] where a;eQ, then S is called an
R-locality. Then, for an R-locality S, there exists an ideal I of R and



26 RvyoicHr Nacasawa

Ve B(R) such that S is the quadratic dilatation of R by I with respect
to V (cf. [3] p. 141). Also, we note that for a given R-locality S, we
can choose the a; to be integral over R.

Theorem 2.1. Let Se N(R) and assume that S is local. Let

Pi,.., P, (tesp. Qpyeens Q)

be the rank 0 prime ideals of R* (resp. S*). Then:
(1) eS)=e(R), mz=n,
(2) e(R)=e(S) if and only if the following conditions hold:
(a) S is a finite R-module (hence, m=n).
() If P,=0Q;,nR* for i=1,...,n (by virtue of (a)), then we have
e(R*|P)=e(S*/Q,) (i=1,..., n).

Proof. (1): For VeB(R) (resp. Ve B(R) such that ScV), let Py,
(resp. Q) be the rank O prime ideal of R* (resp. S*) which corresponds

to V. Then we have
e(R)=2_c(R*/Py)n, (R), (S)=2e(S*/Q)n(S) (cf. [3] (23.5)).
For each Ve B(R) such that ScV, we have
R¥*[PycS*Qy < V¥,

and these three local domains have the same field of quotients.

Since R*/Py, is complete, S*/Q, is a finite module over R*/P,.

Then it is easy to see that e(S*/Q,)<e(R*/P,) for each V such that
ScV. Since ny(S)<ny(R) by Theorem 1.2, we have

e(S*/Qy)ny(S) = e(R*/Py)ny(R)

for each V such that ScV. Consequently, we have e(S)=Ze(R).
Thus the proof of (1) is completed.

(2): Assume that e(R)=e(S).
By the proof of (1), we see that

m=n, and e(R*/Py)=c(S*/Q), ny(S)=ny(R)

for any VeB(R). Hence, by Theorem 1.2, we see that S is a finite
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R-module.

The converse of (2) is immediate (by virtue of Theorem 1.2) and
we omit the proof. Q.E.D.

Theorem 2.2. The following two statments are equivalent:

(a) e(R)=e(S) for any R-locality S which is contained in a fixed
Ve B(R).

(b) R is unibranched and R*|P is a discrete valuation ring, where
P is the unique rank O prime ideal of R*.

Proof. Assume first that (a) is true. Let x be any element in V
and let T be the ring of quotients of R[x] with respect to the maximal
ideal M(V)n R[x]. Then e(R)=e(T) by our assumption and hence, by
Theorem 2.1, T is integral over R. Therefore, we see that V is integral
over R, i.e., R is unibranched. Let P be the rank 0 prime ideal of
R* which corresponds to the normalization V=R. Then R*/P and V*
have the same field of quotients and identifying as V< V*, V¥=R*/P[V].
Choose ay,..., a,€V such that V*¥=R*/P[a,...,a,] and put S=R[a,...,
a,]. Then S is unibranched. Let Q be the unique rank O prime ideal
of S*. Since S*/Q=R*/P[la,...,a,]=R*/P[V]=V* we have e(S*/Q)=1.

Then, by Theorem 2.1 (2), our assumption implies e(R*/P)=1, i.e.,
R*|P is a discrete valuation ring. Conversely, assume that (b) is true
and let S be an R-locality. Then S is unibranched and letting Q be
the rank 0 prime ideal of S*, we have e(S)=e(S*/Q)ny(S).

Since ny,(R)=n,(S) by Theorem 1.2 and R*/P=S*/Q by our as-
sumption, we have

e(S)=e(S*/Q)ny(S) = e(R*[P)ny(R)=e(R).
Thus the proof is completed. Q.E.D.

Remark. (1) By virtue of the above proof, if the statcmcnt (b)
holds for R, we have e(R)=e(S) for any R-locality S.

(2) In our case, e(R)=1 implies that R is regular. In general,
let (R, M) be a Macaulay local ring of Krull-dimension d and let n
=dimg,y M/M2. Let r be the number of irreducible components of
an ideal I generated by a system of paramcters of R.
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Then it is known that the integer r is an invariant of R and is
equal to dimg,, (I: M)/I. Then we have the following:
e(R)=n—d+1 and the equality holds if and only if

(1) R is regular, or (2) e(R)=r+1.

Proof: First assume that R/M is an infinite field. Then there
exists a system of parameters a;,..., a; of R such that e(R)=lengthg R/I
where I=(ay,..., a;) and the a; modulo M? are linearly independent over
R/M (cf. [3], (24.1), (24.3)). Then

e(R)=lengthy R/I=lengthg R/I+ M?
=1+lengthg M/M? —lengthg I+ M2/M?=n—d+1.

The equality holds if and only if I+M?2=I,ie., M2<=I which im-
plies that I=M or I:M=M. If I=M, then R is regular and if I: M
=M, then we have

e(R)=lengthg M/l + 1 =lengthg [: M[I+1=r+1.

Next, if R/M is a finite field, then take a transcendental element
x and consider R(x)=R[X]y.. Then, by the validity of the theorem
of transition for R and R(x) (cf. [3], §18, §19), our assertion is also
true in this case. Q.E.D.

Lemma 23. Let SeN(R) and VeB(R). Assume that S is local.
Then, ny,(R)=n,(S) if and only if there an R-locality T such that
ScTcV.

Proof. First, we assume that n,(R)=ny,(S). We can easily find
an R-locality Ryc<V such that R, is unibranched and the normalization
of R, is equal to V. Put T=Ry[S]. Then T is local and since R,
is an R-locality, T is an S-locality. By Theorem 1.2, we see that n,(R)
=ny,(Ry) and ny(S)=n,(T). Consequently, we have ny(Ry)=n,(T) by
our assumption. Since R, is unibranched, T is a finite module over R,
by Theorem 1.2. Hence we see that T is an R-locality and ScTcV.

Next, we assume that T is an R-locality such that ScT<V. Then,
by Theorem 1.2, we see that n,(R)=n,(T) and n,(S)=n,(T). Hence
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we get that ny(R)=ny(S). Thus the proof is completed. Q.E.D.

Theorem 2.4. Let VeB(R) and S;e N(R) (i=1, 2) and assume that
S;cV (i=1,2). Let P be the rank O prime ideal of R* which cor-
resqonds to V.

Then, (S{/R)(P)=(S,/R)(P) if and only if there exists Te N(R)
such that T is an Si-locality for i=1,2 and T<V.

Proof. Assume first that (S;/R)(P)=(S,/R)(P).

Let d(S;/R)=A;/R (i=1,2). Then S; is a finite A;module for
i=1,2 and (A4,/R)(P)=(A4,/R)(P) by our assumption. Therefore, we
may assume that the S; are strongly unramified extension rings of R.
By our assumption, the unmixed ideals of rank 0 of R* which cor-
respond to the S; have the same P-primary component J. Put K®(J
N N)=S/R where K=Q/R and N is the intersection of the primary com-
ponents of the zero ideal of R* except for the P-primary component.
Then S is a swongly unramified extension ring of R and ScS§; for
i=1,2. Since (S;/R)(P)=(S/R)(P) from our construction, we see that
ny(Sy) =ny(R) — L((S;/R) (P))=ny(R) — L((S/R) (P))=ny(S) (i=1,2) by Lem-
ma 1.1. Replacing R by S in Lemma 2.3, we see that there exist S-
localities T,, T, such that S;cT,cV(i=1,2). Let T be the ring of
quotients of C=T,[T,] with respect to the maximal ideal M(V)n C.
Since the T; are S-localities, T is also an S-locality, hence T is an
Si-locality for i=1,2. Since Tc<V, our assertion is proved.

Conversely, assume the existence of a local domain T as above.

Then (S;/R)(P)=(T/R)(P) for i=1,2 and by Lemma 1.1 and Lemma 2.3,
we have

L((Si/R) (P)) = ny(R) — ny(Sy) =ny(R) — ny(T) = L(T/R) (P)).

Hence, (S;/R)(P)=(T/R)(P) for i=1,2. Consequently, we have
(S,/R)(P)=(S,/R)(P) and the proof is completed. Q.E.D.

Remark. In the above theorem, suppose that R is a homomorphic
image of a two-dimensional regular local ring. Then it is easy to
see that the P-primary ideals of R* are linearly ordered by inclusion.
Hence, in this case, a local domain T as in the above theorem exists
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i and only if ny(S,)=ny(S,).
But this is not true for general case.

Theorem 2.5. Let SeN(R) and suppose that S is local. Then
the following two statements are equivalent:

(a) S is an R-locality.

(b) np(R)=ny(S) for any VeB(R) such that ScV.

Proof. The implication (a)=>(b) is an immediate consequence of
Lemma 2.3. Next, assume that (b) holds. Let C be the integral closure
of R in S. Then the ring of quotients of C with respect to the maximal
ideal N=M(S)n C is integrally closed in S, and hence is equal to S
(cf. [3] (33.1)). Since C is semi-local there exists an element xeN
which is not contained in any maximal ideals of C other than N. Let
T be the ring of quotients of R[x] with respect to the maximal ideal
M(@S)nR[x]. Then, TcS and V(eB(R)) contains S if and only if V
contains T.

By Lemma 2.3 and our assumption, we have

ny(T)=ny(R)=ny(S)

for any Ve B(R) such that T<V. Hence, by Theorem 1.2, S is a finite
module over T. Since T is an R-locality, S is also an R-locality. Thus
the proof is completed. Q.E.D.

References

[1] Matlis, E., I-dimensional Cohen-Macaulay rings, Lecture Notes in Math. 327,
Springer-Verlag (1973).

[2] Nagata, M., On the theory of Henselian rings II, Nagoya Math. J. 7 (1954),
pp- 1-19.

[3] ————, Local rings, Interscience, New York, 1962.

[4] Northcott, D. G., Some contributions to the theory of 1l-dimensional local rings,
Proc. London Math. Soc., 8 (1958), pp. 388-415.



