
Publ. RIMS, Kyoto Univ.
11 (1975), 21-30

Some Remarks on One-Dimensional

Local Domains

By

Ryoichi NAGASAWA*

Let R be a one-dimensional (noetherian) local domain with field

of quotients Q. Then any ring extension S of R in Q is obtained

as a ring of quotients of some integral extension C of R. Here, if S

is local and if C can be chosen to be finite over R, then we call S an
K-locality.

If R is analytically ramified, then .R does not satisfy the finiteness

condition for integral extensions in Q (cf. [3], p. 122, Exercise 1). In

other words, .R possesses at least one latent singularity with respect to

a certain analytic branch of R which can not be resolved by any quadra-

tic dilatations.

The purpose of this note is to give a necessary and sufficient con-

dition for the finiteness of ring extensions S as .R-modules, and to prove

a characterization of ^-localities by making use of the concept of latent

multiplicity found in [L] and [4] (more detailed accounts of this theory

may be found in [3]).

§0. Terminology and Preliminaries

(0.1) By a ring we mean a commutative noetherian ring with

identity. The maximal ideal of a local ring R is denoted by M(R)

and the multiplicity of R is denoted by e(R).

The integral closure of a ring R in its total quotient ring is called

the normalization of R and denoted by R. A local domain R is said
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to be unibranched if the normalization R has exactly one maximal ideal.

The Henselization of a local ring R is denoted by Rh\ also the

completion of R is denoted by R*. Let R be a local domain. Then

it is known that there exists a one to one correspondence between the

maximal ideals N of R and the minimal prime ideals P of Rh such that

if N corresponds to P, then the normalization of Rh/P is canonically

isomorphic to the Henselization of RN and we have

P = Ker(K* - >(RN)h) (cf. [2], Theorem 6).

If R is a 1 -dimensional local domain, then the similar assertion

holds for the completion R* of R.

(0.2) Let R be a 1-dimensional local domain with field of quotie-
nts Q and let S be an integral domain such that jRc=SpQ. Then S

is a (noetherian) semi-local ring by the theorem of Krull-Akizuki.

For a discrete valuation ring V such that RaVaQ, we define the

latent multiplicity nv(S) of S with respect to V in the following way.

If S<£V, then we put nK(S) = 0.

Suppose that S a V and let O be the ring of quotients of S with

respect to the maximal ideal M(V) n S. Then P = Ker(0*->K*) is

the rank 0 prime ideal of O* which canonically corresponds to V (cf.

(0.1)). Then we define nK(S) = <0*P).

(0.3) We next explain certain terminology and results given in

[1] which will be used later in this note.
Let .R, S, Q be as in (0.2). If S is local and satisfies the following

conditions :

M(R)S = M(S), S/M(S) = R/M(R)

then S is said to be strongly unramified over R. This is equivalent

to saying that S/R is a proper divisible #-submodule of Q/R.

Let M be an Artinian .R-module. Then M has a composition series

of divisible submodules:

where d(M) is the largest divisible submodule of M. Every composition
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series of M has the same number of terms and we denote the number

by LR(M) which we call the divisible length of M. It is easy to see

that L(M) = 0 if and only if M has a finite length. For a exact sequence

of Artinian K-modules:

0 > L >M > N »0,

we have L(M) = L(L) + L(N).

Since an Artinian ^-module is a torsion K-module, we have a

canonical isomorphism: M®RR* = M. Thus M has the structure of

an JR*-module and this structure is unique (cf. [1], Theorem 2.7).

For a divisible submodule D of M. if the annihilator Ann^D)

is a primary ideal associated with some rank 0 prime ideal P of K*5

then D is said to be P-primary and in this case we denote the largest

P-primary divisible submodule of M by M(P). If there exists no P-

primary divisible submodule in M, we put M(P) = 0. Then we have

L(M)=£L(M(P)), where P runs over all rank 0 prime ideals in K*.

Finally, we note the following two facts which may be used tacitly.

(A). K = Q/R is an Artinian K-module and there exists a one to

one, order-preserving, correspondence between the proper divisible sub-

modules D = A/R of K and the rank 0 unmixed ideals / of R* given

by D = K®RI,I = HomR(K,D),A* = R*II, where A is a strongly un-

ramified extension ring of R (cf. [1], Theorem 6.6).

(B). D = K®I is P-primary if and only if / and the zero ideal

of R* have the same primary components except for the P-primary

components, (cf. [1], pp. 126-128)

§1.

Let R be a 1-dimensional local domain and let Q be its field of

quotients. By N(R) we denote the set of integral domains S such

that RaS^Q and by B(R) we denote the set of discrete valuation

rings V in N(R).

Lemma 1.1. Let S e N(R), lei VeB(R) and let P be the rank 0

prime ideal of R* which corresponds to V, Then
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Proof. We first assume that

Let (0) = /nN where / is the P-primary component of the zero

ideal of R* and N:P = N. Put d(S/R) = A/R. Then L(S/A) = Q, hence

S is a finite y4-module. Let J be the rank 0 unmixed ideal of jR*

which corresponds to the divisible submodule A/R and let J = I r n N f

where /' is the P-primary component of J and N':P = N' (since AdV,

J:P^J). Then K®(FnN) is a P-primary divisible submodule of

K = Q/R(cL (0.3), (B)). Let (S/K)(P) = K®(I1 n N) where /j is a P-

primary ideal. Since K®(/' n N^ciK®^! n JV), we have /'c/j. On

the other hand, since

x®(/! n N)ad(s/K)=K®(r n NO,

we have IjC/'. Therefore, we have /!=/' and (S/K)(P) = X®(/' n N).

Since ,4* = £*/J (cf. (0.3), (A)) and

P/J = Ker(^l* - > 7*),

we see that P = P/J is the rank 0 prime ideal of A* which corresponds

to V and /'/«/ is the P-primary component of the zero ideal of A*.

Let

be a saturated chain of P-primary ideals. Then

is a saturated chain of P-primary ideals in A*. Hence we have nv(R)

= t and nv(A) = t-(r-l). Since (S/R)(P) = K®(Ir n AT), we see that

L((S/jR) (P)) = r - 1 = t - (t - (r - 1)) = nv(R) - nv(A) .

We next prove that nv(A) = nv(S).

Let 0 be the ring of quotients of S with respect to the maximal

ideal M(F) n S. Since S is a finite ^4-module, the Henselization Oh of

O is a finite Ah-module. Let
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then we have Ah\P^Oh\P-l^Vh and these three local domains are

1 -dimensional, unibranched, local domains with the same field of quo-

tients (cf. [2] p. 13). It is easy to see that nvh(A
hIPl) = nv(A) and

nVh(OhIP^ = nv(O) = nv(S). Therefore we may assume that A is uni-

branched. Let P' (resp. P") be the unique prime ideal of rank 0 of

A* (resp. 0* = S*) which corresponds to V. Since S is a finite ^4-module

and RdAdSdQ, we see that zSc:A for some zeA,z^Q and since

z is not a zero-divisor in A*, A* and S* have the same total quotient

ring which is equal to A*P> = S*®A*P> = S*P.>.

Hence, we have nv(A) = nv(S) and L((SIR)(P)) = nv(R)--nv(A) = nv(R)

— nv(S). Thus, the assertion is proved in the case SaV.

We next assume that S<£V. Then nv(S) = Q from the definition and

in the above notation, we have J = N', N': P = N'. Then, (S/R)(P)

= K®N and L((S/R)(P)) = t by the similar argument as above. Then

L((S/R) (P)) = nv(R) = nv(K) - nv(S}. Thus the proof is completed. Q. E. D.

Theorem 1.2. Let S e N(R). Then

( 1) nv(S) g wK(l?) for any VE B(K),

(2) S is a finite R-module if and only if

nv(K) = nv(S) for each Fe B(K) .

Proof. (1): The proof is immediate from Lemma 1.1.

(2): Since L(S/fl)=£L((S/K)(P)), L(S/R) = 0 if and only if L((S/R)(P))

= 0 for each rank 0 prime ideal P of R*. By lemma 1.1, L((S/K)(P))

= 0 if and only if nv(R) = nv(S) where P corresponds to VeB(R). Since

L(S/R) = Q if and only if S is a finite module over R, the assertion is

proved. Q. E. D.

§2.

Let R, N(R), B(R) be as in § 1.

If SeN(R) is local and is equal to a ring of quotients of some

finitely generated ring £[a !,..., an~] where ateQ, then S is called an

R-locality. Then, for an R-locality S, there exists an ideal J of R and



26 RYOICHI NAGASAWA

VeB(R) such that S is the quadratic dilatation of R by / with respect

to V (cf. [3] p. 141). Also, we note that for a given ^-locality S, we

can choose the at to be integral over R.

Theorem 2.1. Let S E N(R) and assume that S is local. Let

Pl9...,Pn (resp. Si,-, QJ

be the rank 0 prime ideals of R* (resp. S*). Then:

(1) e(S)^e(R), m^n,

(2) e(K) = e(S) if and only if the following conditions hold:

(a) S is a finite R-module (hence, m = n).

(b) If Pt = Qir\R* for z = l,..., n (by virtue of (a)), then we have

Proof. (1): For Fe B(R) (resp. Fe B(R) such that ScX), let Pv

(resp. Qv) be the rank 0 prime ideal of .R* (resp. S*) which corresponds

to V. Then we have

Qv)ny(S) (cf. [3] (23.5)).

For each VeB(R) such that ScK, we have

and these three local domains have the same field of quotients.

Since R*/PV is complete, S*/QV is a finite module over R*/PV.

Then it is easy to see that e(S*/Qv)<^e(R*/Pv) for each V such that

ScK Since n^SJ^WpCR) by Theorem 1.2, we have

for each F such that ScK Consequently, we have e(S)^e(R).

Thus the proof of (1) is completed.

(2): Assume that e(R) = e(S).

By the proof of (1), we see that

m = n, and e(R*IPv) = c(S*IQr)9

for any VeB(R). Hence, by Theorem 1.2, we see that S is a finite
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R-module.

The converse of (2) is immediate (by virtue of Theorem 1.2) and

we omit the proof. Q. E.D.

Theorem 2.2. The following two stalments are equivalent :

(a) e(R) = e(S) for any R-locality S which is contained in a fixed

Ve B(R).

(b) R is unibranched and R* / P is a discrete valuation ting, where

P is the unique rank 0 prime ideal of R*.

Proof. Assume first that (a) is true. Let x be any element in V

and let T be the ring of quotients of R[x] with respect to the maximal

ideal M(F)nR[x]. Then e(R) = e(T) by our assumption and hence, by

Theorem 2.1, T is integral over jR. Therefore, we see that V is integral

over R, i.e., R is unibranched. Let P be the rank 0 prime ideal of

R* which corresponds to the normalization V=R. Then R*/P and K*

have the same field of quotients and identifying as Fc K*, K* = R*/P[F].

Choose 015,.., ameV such that V* = R*IP[al9...9 aj and put S = R[als...,

am~]. Then S is unibranched. Let Q be the unique rank 0 prime ideal

of S*. Since S*IQ = R*/P[al,...,am']=R*IP[.V]=V*, we have e(S*IQ)=l.

Then, by Theorem 2.1 (2), our assumption implies e(R*/P)=l, i.e.,

R*/P is a discrete valuation ring. Conversely, assume that (b) is true

and let S be an R-locality. Then S is unibranched and letting Q be

the rank 0 prime ideal of S*, we have e(S) = e(S*/Q)nv(S).

Since nv(K) = ny(S) by Theorem 1.2 and R*/P = S*/g by our as-

sumption, we have

e(S) = e(S*IQ)nv(S) = e(R*/PK(R) = e(R) .

Thus the proof is completed. Q.E.D,

Remark. (1) By virtue of the above proof, if the statement (b)

holds for R, we have e(R) = e(S) for any R-locality S,

(2) In our case, e(R) = l implies that R is regular. In general,

let (R, M) be a Macaulay local ring of Krull-dimcnsion d and let n

= dim# /MM/M2. Let r be the number of irreducible components of

an ideal / generated by a system of parameters of R.
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Then it is known that the integer r is an invariant of R and is

equal to dim*/M(7: M)/7. Then we have the following:
e(R) ^n — d+i and the equality holds if and only if

(1) R is regular, or (2) e(R) = r+\.

Proof: First assume that R/M is an infinite field. Then there

exists a system of parameters al9,..,ad of R such that e(R) = length* R/I

where 7 = (al5..., ad) and the at modulo M2 are linearly independent over

RIM (cf. [3], (24.1), (24.3)). Then

e(R) = length* R/I ^ length* R/I + M2

= 1 + length* M/M2 - length* / + M2/M2 = /? - d + 1 .

The equality holds if and only if 7 + M2 = 7, i.e., M2c:7 which im-

plies that I = M or I:M = M. If 7 = M, then .R is regular and if I:M

= M, then we have

e(K) = length* M/I + 1 = length* / : M/7 + 1 = r + 1 .

Next, if R/M is a finite field, then take a transcendental element

x and consider _R(x) = £[>]MI>]. Then, by the validity of the theorem
of transition for R and R(x) (cf. [3], §18, §19), our assertion is also

true in this case. Q. E. D.

Lemma 2.3. Let SeN(R) and VeB(R). Assume that S is local,

Then, nv(K) = nv(S) if and only if there an R-locality T such that

Proof. First, we assume that nv(K) = nv(S). We can easily find
an K-locality R0c:V such that ^0 is unibranched and the normalization

of R0 is equal to V. Put r=£0[S]. Then T is local and since R0

is an .R-locality, T is an S-locality. By Theorem 1.2, we see that nv(R)

= nv(Ro) and nv(S) = nv(T). Consequently, we have nv(Ro) = nv(T) by

our assumption. Since ^0 i§ unibranched, T is a finite module over R0

by Theorem 1.2. Hence we see that T is an ^-locality and ScTcK

Next, we assume that T is an JR-locality such that S c Tc V. Then,

by Theorem 1.2, we see that nv(R) = nv(T) and nv(S) = nv(T\ Hence
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we get that nv(R) = nv(S). Thus the proof is completed. Q.E.D.

Theorem 2.4. Let VeB(R) and SLE N(R) (i = l, 2) and assume that

SjdF (/ = !, 2). Le£ P &e r/ze ra«fc 0 /?rzme ideal of R* which cor-

resqonds to V.

Then, (S1/R)(P) = (S2IR)(P) if and only if there exists TeN(R)

such that T is an Si-locality for z = l, 2 and Ta V.

Proof. Assume first that (SJR)(P) = (S2/R)(P).

Let d(SilR) = AJR(i = \,2). Then S£ is a finite ^-module for

/ = !, 2 and (Al/R)(P) = (A2IR)(P) by our assumption. Therefore, we

may assume that the 5^ are strongly unramified extension rings of R.

By our assumption, the unmixed ideals of rank 0 of .R* which cor-

respond to the Sf have the same P-primary component J. Put K®(J
n N) = S/R where K = Q/R and N is the intersection of the primary com-

ponents of the zero ideal of R* except for the P-primary component.

Then S is a strongly unramified extension ring of R and SciS- for

f = l,2. Since (SJR) (P) = (S/R) (P) from our construction, we see that

nv(Si) = nv(R)-L((SiIR)(P)) = nv(R)-L((S/R)(P)) = nv(S) (i = l,2) by Lem-

ma 1.1. Replacing R by S in Lemma 2.3, we see that there exist S-

localities Tl9 T2 such that S^T^V (1 = 1,2). Let T be the ring of

quotients of C=T1[T2] with respect to the maximal ideal M(F) n C.
Since the Tt are S-localities, T is also an S-locality, hence T is an

^-locality for / = 1 5 2 . Since Tc F, our assertion is proved.

Conversely, assume the existence of a local domain T as above.

Then (Sf/^)(P)c:(T/P)(P) for i = l , 2 and by Lemma 1.1 and Lemma 2.3,

we have

L((St/R) (P)) = nv(R) - nv(St) = nv(R) - nv(T) = L((T/R) (P)) .

Hence, (SJR) (P) = (T/R) (P) for i = 1 , 2. Consequently, we have

) = (S2IK)(P) and the proof is completed. Q.E.D.

Remark. In the above theorem, suppose that R is a homomorphic

image of a two-dimensional regular local ring. Then it is easy to

see that the P-primary ideals of R* are linearly ordered by inclusion.

Hence, in this case, a local domain T as in the above theorem exists
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i and only if nv(S1) = nv(S2).
But this is not true for general case.

Theorem 2.5. Let S e N(K) and suppose that S is local. Then

the following two statements are equivalent:

(a) S is an R-locality.

(b) nv(R) = nv(S) for any VeB(R) such that 5cF.

Proof. The implication (a)=>(b) is an immediate consequence of

Lemma 2.3. Next, assume that (b) holds. Let C be the integral closure

of R in S. Then the ring of quotients of C with respect to the maximal

ideal N=M(S)(}C is integrally closed in S, and hence is equal to S

(cf. [3] (33.1)). Since C is semi-local there exists an element xeN

which is not contained in any maximal ideals of C other than N. Let

T be the ring of quotients of R[x~] with respect to the maximal ideal

M(S)nR[x]. Then, TcS and V(eB(R)) contains S if and only if V

contains T.

By Lemma 2.3 and our assumption, we have

for any VeB(R) such that TcF. Hence, by Theorem 1.2, S is a finite

module over T. Since T is an ^-locality, S is also an ^-locality. Thus

the proof is completed. Q.E.D.
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