Flows Associated with Ergodic Non-Singular Transformation Groups

By

Toshihiro HAMACHI,* Yukimasa OKA** and Motosige OSIKAWA*

§0. Introduction

In this paper we shall give a nice invariant for the weak equivalence of ergodic non-singular transformation groups. It is a one-parameter ergodic non-singular flow associated with an ergodic non-singular transformation group. Since in 1960 an example of an ergodic non-singular transformation without σ -finite invariant measures was given in Ergodic theory [16], the structure and the classification of ergodic non-singular transformations have been studied by many authors ([2], [4], [5], [6], [7], [8]~[11] and [13]). Among these works, Krieger's weak equivalence theory is fundamental in the classification problem of ergodic nonsingular transformation groups without σ -finite invariant measures. This classification is closely connected with the classification of type III factors in the theory of von Neumann algebras ([15]).

The Tomita-Takesaki theory of generalized Hilbert algebras ([18]) plays important roles in the analysis of type III factors. Using this theory, A. Connes [3] introduced algebraic invariants — the S-set S(M) and the T-set T(M) — for a factor M and obtained a classification of type III factors. M. Takesaki [19] introduced the dual action of the modular automorphism group and obtained the structure theorem of type III factors. In the classification problem of ergodic non-singular transformation groups G, W. Krieger [10] and the present authors [6] introduced invariants r(G) and T(G) respectively, both of which are

Communicated by H. Araki, August 5, 1974.

^{*} Department of Mathematics, College of General Education, Kyushu University, Fukuoka.

^{**} Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka.

32

closely related to the existence problem of σ -finite invariant measures. The invariant r(G) and T(G) are nothing but the S-set and T-set of the group measure space construction factor M_G of G. They are also corresponding to the Araki-Woods invariant $r_{\infty}(M_G)$ and $\rho(M_G)$ [[1]) of the factor M_G in the case of an infinite product type transformation group G.

By the metrical properties of the associated flows, we can obtain much more informations about non-singular transformation groups. The T-set is the point spectrum of the associated flow and the S-set is illustrated by only the periodic motion of the associated flow. It is shown by Krieger's skew-product method ([9]) that any ergodic measurable measure preserving flow is realized as the associated flow of an ergodic non-singular transformation group. We study the weakly equivalent classes of the product $G \times G'$ of ergodic non-singular transformation groups by using its associated flow and we introduce a new class (type III^{Γ}) of non-singular transformation groups of type III. Also we can obtain examples of ergodic non-singular transformation groups G of type III satisfying that $G \times G$ is not weakly equivalent with G. We show the Araki-Woods characterization theorem of the asymptotic ratio set and the ρ -set in the sense of weak equivalence of non-singular transformation groups. By a characterization of a dissipative non-singular flow, we give another proof of the existence of an invariant measure under the condition $T(G) = \mathbb{R}$ ([6]).

Professor H. Araki showed us that Takesaki's dual action ([19]) of the modular automorphism group of the group measure space construction factor is realized by the associated flow. Professor W. Krieger informed us that he introduced a non-singular flow for an ergodic nonsingular transformation and proved the one-to-one correspondence between the weak equivalence of ergodic non-singular transformations and the strong equivalence of flows ([12]).

§1. Preliminaries

Let $(\Omega, \mathfrak{F}, P)$ be a Lebesgue measure space. Two measures μ and ν on the measurable space (Ω, \mathfrak{F}) are equivalent $\mu \sim \nu$, when $\mu(A)=0$ if and only if $\nu(A)=0$, $A \in \mathfrak{F}$. A 1-1 mapping g from Ω onto itself is

a non-singular transformation if it is bi-measurable (i.e. $g^{-1}\mathfrak{F} \subset \mathfrak{F}$ and $g\mathfrak{F} \subset \mathfrak{F}$) and $Pg \sim P$ where $Pg(A) = P(gA), A \in \mathfrak{F}$. Let G be a countable group of non-singular transformations of $(\Omega, \mathfrak{F}, P)$. A measure μ defined on (Ω, \mathfrak{F}) is G-invariant if $\mu g = \mu, g \in G$ and a measurable function $f(\omega)$ is G-invariant if $f(g\omega) = f(\omega), g \in G$, a.e. ω . G is ergodic if every G-invariant function on $(\Omega, \mathfrak{F}, P)$ is a constant a.e. We denote by [G] the group of all non-singular transformations g of $(\Omega, \mathfrak{F}, P)$ satisfying that there exist measurable sets $A_n \in \mathfrak{F}, n=1, 2,...$ and non-singular transformations $g_n \in G, n=1, 2,...$ such that $\Omega = \bigcup_{n=1}^{\infty} A_n$ (disjoint) and $g\omega = g_n \omega$, a.e. $\omega \in A_n, n=1, 2,...$ The group [G] is said to be the full group of G. Two countable non-singular transformation groups G and G' of $(\Omega, \mathfrak{F}, P)$ and $(\Omega', \mathfrak{F}', P')$ respectively, are called weakly equivalent if there exists a bi-measurable 1-1 mapping φ from Ω onto Ω' such that $\varphi[G]\varphi^{-1} = [G']$ and $P \sim P'\varphi$.

Let us now define the ratio set r(G) and the T-set T(G) of a countable non-singular transformation group G of $(\Omega, \mathfrak{F}, P)$. The ratio set r(G) is the closure of the set of all positive numbers r satisfying that for any $\varepsilon > 0$ and any measurable set A with P(A) > 0 there exists a measurable subset B of A with P(B) > 0 and $g \in G$ such that $gB \subset A$ and $re^{-\varepsilon} < \frac{dPg}{dP}(\omega) < re^{\varepsilon}, \omega \in B([10])$, and the T-set T(G) is the set of all real numbers t satisfying that there exists a measurable function $\exp i\xi(\omega)$ such that $\exp i\{\xi(g\omega) - \xi(\omega)\} = \exp it \log \frac{dPg}{dP}(\omega), g \in G$, a.e. ω ([6]). The set $r(G) \setminus \{0\}$ is a multiplicative subgroup of positive numbers and T(G) is an additive subgroup of **R**. These two sets are invariants for the weak equivalence.

For a countable ergodic non-singular transformation group G of $(\Omega, \mathfrak{F}, P)$ a pair (μ, H) is said to be an admissible pair of G if μ is a σ -finite measure equivalent with P and if H is an ergodic subgroup consisting of μ -preserving transformations of [G]. The set $\Delta(\mu, H) = \{r>0 | \text{ for any } \varepsilon>0$ there exists $g \in [G]$ such that $P(re^{-\varepsilon} < \frac{d\mu g}{d\mu}(\omega) < re^{\varepsilon}) > 0\}$ is a closed multiplicative subgroup of \mathbf{R}_+ if (μ, H) is an admissible pair of G. This set is independent of the choice of an admissible pair ([6]).

For a countable ergodic non-singular transformation group G of $(\Omega, \mathfrak{F}, P)$ we consider the following cases:

(a) There exists an equivalent σ -finite invariant measure μ , or equivalently (μ , G) is an admissible pair of G.

(b_{λ}) There exist an admissible pair (μ , H) and $0 < \lambda < 1$ such that $\Delta(\mu, H) = \{\lambda^n | -\infty < n < \infty\}.$

(c) There exists an admissible pair (μ, H) such that $\Delta(\mu, H) = (0, \infty)$.

(d) There is no admissible pair.

These cases are exclusive and exaustive.

Definition ([6]). Let G be a countable ergodic non-singular transformation group of $(\Omega, \mathfrak{F}, P)$. (1) We say that G is of type III if G has no equivalent σ -finite invariant measures. (2) We say that G is of type III_{λ}, $0 < \lambda < 1$, III₁ or III₀ accordingly as the case (b_{λ}), (c) or (d) happens.

Note that the type of G is an invariant under the weakly equivalent relation and that if G is of type III₁ then for any null set $N \in \mathfrak{F}$ the set $\{\log \frac{d\mu g}{d\mu}(\omega) | g \in G, \omega \notin N\}$ contains at least two rationally independent real numbers.

§2. The Associated Flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$

Definition 1. A one-parameter group $\{U_s\}_{-\infty < s < +\infty}$ of non-singular transformations of $(X, \mathfrak{B}_X, \mu_X)$, which we call simply a non-singular flow, is measurable if the mapping $\mathbb{R} \times X \ni (s, x) \rightarrow U_s x \in X$ is measurable.

Let G be a countable non-singular transformation group acting on a Lebesgue measure space $(\Omega, \mathfrak{F}, P)$. We denote by \tilde{G} the group of following non-singular transformations \tilde{g} on $(\Omega \times \mathbb{R}, \mathfrak{F} \times \mathfrak{B}(\mathbb{R}), dP \times du)$;

$$\tilde{g}(\omega, u) = \left(g\omega, u + \log \frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega)\right), \quad g \in G.$$

Let $\zeta(\tilde{G})$ be the measurable partition ([17]) generated by all \tilde{G} -invariant measurable sets. For $-\infty < s < +\infty$, put $T_s(\omega, u) = (\omega, u+s), (\omega, u) \in \Omega \times \mathbb{R}$. Since $\{T_s\}_{-\infty < s < +\infty}$ commutes with \tilde{G} , we can define the factor flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ of $\{T_s\}_{-\infty < s < +\infty}$ on the quotient space $\Omega \times \mathbb{R}/\zeta(\tilde{G})$.

34

 $\tilde{T}_s(-\infty < s < +\infty)$ is a non-singular transformation with respect to any σ -finite measure equivalent with the image measure of $dP \times du$ and $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is a measurable flow.

Definition 2. We call the factor flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ the non-singular flow associated with the non-singular transformation group G or simply the associated flow of G.

We note that the associated flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ of G is ergodic if and only if G is ergodic.

Definition 3. Non-singular flows $(X, \mathfrak{B}_X, \mu_X; \{U_s\}_{-\infty < s < +\infty})$ and $(Y, \mathfrak{B}_Y, \mu_Y; \{V_s\}_{-\infty < s < +\infty})$ are mutually strongly equivalent if there exists a bi-measurable 1-1 mapping ψ from X onto Y such that $\mu_X \sim \mu_Y \psi$ and for all $-\infty < s < +\infty$, $\psi U_s x = V_s \psi x$, a.e.x.

We note that the strong equivalence among ergodic non-singular flows is the same as the metrically isomorphic equivalence if they admit finite equivalent invariant measures.

Theorem 1. If ergodic non-singular transformation groups $(\Omega, \mathfrak{F}, P; G)$ and $(\Omega', \mathfrak{F}', P'; G')$ are mutually weakly equivalent, then their associated flows are mutually strongly equivalent.

Proof. Let φ be a bi-measurable 1-1 mapping from Ω onto Ω' such that $\varphi[G]\varphi^{-1} = [G']$ and $P \sim P'\varphi$. Put $\psi(\omega, u) = (\varphi\omega, u + \log \frac{dP'\varphi}{dP}(\omega))$. Then ψ is a 1-1 mapping from $\Omega \times \mathbf{R}$ onto $\Omega' \times \mathbf{R}$ and satisfies that for $-\infty < s < +\infty, \ \psi T_s(\omega, u) = T'_s \psi(\omega, u)$, a.e. $(\omega, u) \in \Omega \times \mathbf{R}$. It is enough to show that $f(\psi(\omega, u))$ is a \tilde{G} -invariant measurable function for any \tilde{G}' invariant measurable function $f(\omega', u)$. For $g \in [G]$ and $g' = \varphi g \varphi^{-1} \in [G']$,

$$\begin{split} f\Big(\psi\Big(g\omega,\,u+\log\!\frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega)\Big)\Big) &= f\Big(\varphi g\omega,\,u+\log\!\frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega)+\log\!\frac{\mathrm{d}P'\varphi}{\mathrm{d}P}(g\omega)\Big)\\ &= f\Big(g'\varphi\omega,\,u+\log\!\frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega)+\log\!\frac{\mathrm{d}P'g'\varphi}{\mathrm{d}Pg}(\omega)\Big)\\ &= f\Big(g'\varphi\omega,\,u+\log\!\frac{\mathrm{d}P'g'}{\mathrm{d}P'}(\varphi\omega)+\log\!\frac{\mathrm{d}P'\varphi}{\mathrm{d}P}(\omega)\Big) \end{split}$$

Toshihiro Hamachi, Yukimasa Oka and Motosige Osikawa

$$= f\left(\tilde{g}'\left(\varphi\omega, u + \log\frac{\mathrm{d}P'\varphi}{\mathrm{d}P}(\omega)\right)\right)$$
$$= f(\psi(\omega, u)). \qquad Q. E. D.$$

Definition 4. Let $(X, \mathfrak{B}_X, \mu_X; \{U_s\}_{-\infty < s < +\infty})$ be a non-singular flow. A real number t belongs to the set $\sigma(\{U_s\})$, which is called the point spectrum of $\{U_s\}_{-\infty < s < +\infty}$, if there exists a measurable function $\exp i\xi(x)$ such that for all $-\infty < s < +\infty$

$$\exp i\xi(U_s x) = \exp its \cdot \exp i\xi(x), \qquad \text{a.e. } x.$$

Theorem 2. Let G be a countable non-singular transformation group and $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ be its associated flow. Then the T-set is $T(G) = \sigma(\{\tilde{T}_s\})$.

Proof. Let $t \in T(G)$. Then

$$\exp i\{\xi(g\omega) - \xi(\omega)\} = \exp it \log \frac{dPg}{dP}(\omega), \qquad g \in G, \qquad \text{a.e. } \omega,$$

for some measurable function $\exp i\xi(\omega)$. If we put $f(\omega, u) = \exp i\{tu - \xi(\omega)\}$, then $f(\omega, u+s) = \exp its f(\omega, u)$ and

$$f\left(g\omega, u + \log\frac{dPg}{dP}(\omega)\right) = \exp\{-i\xi(g\omega)\}\exp it\left(u + \log\frac{dPg}{dP}(\omega)\right)$$
$$= \exp itu \cdot \exp\{-i\xi(\omega)\}$$
$$= f(\omega, u), \quad g \in G, \quad \text{a.e.}(\omega, u).$$

Conversely, let $t \in \sigma({\tilde{T}_s})$. Then

$$\exp i\eta(\omega, u+s) = \exp its \cdot \exp i\eta(\omega, u), \qquad -\infty < s < +\infty,$$

for some \tilde{G} -invariant measurable function $\exp i\eta(\omega, u)$. If we put $\exp \{-i\xi(\omega)\} = \exp i\eta(\omega, 0)$, then

$$\exp i\{\xi(g\omega) - \xi(\omega)\} = \exp it \log \frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega), \quad g \in G, \quad \text{a.e.}\omega. \quad Q. E. D.$$

Theorem 3. Let $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ be the non-singular flow associ-

36

ated with an ergodic countable non-singular transformation group G of $(\Omega, \mathfrak{F}, P)$. Then

(1) G admits an equivalent σ -finite invariant measure if and only if $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is strongly equivalent with the translation

$$\mathbf{R} \ni u \to u + s, \qquad -\infty < s < +\infty,$$

(2) G is of type III_{λ} ($0 < \lambda < 1$) if and only if $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is strongly equivalent with the periodic flow $[0, -\log \lambda) \ni u \rightarrow u + s \pmod{-\log \lambda}$, $-\infty < s < +\infty$,

(3) G is of type III_1 if $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is the trivial flow, and the converse is true under the assumption that G is a cyclic group, and (4) G is of type III_0 if and only if $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is an ergodic, aperiodic and conservative flow, under the assumption that G is a cyclic group.

Proof. (1) Let μ be an equivalent σ -finite G-invariant measure. Then the measurable partition $\zeta(\tilde{G})$ is equal to $\{\Omega \times \{u\}; u \in \mathbf{R}\}$ since $\tilde{G} = \left\{\tilde{g}; \tilde{g}(\omega, u) = \left(g\omega, u + \log \frac{d\mu g}{d\mu}(\omega)\right) = (g\omega, u), g \in G\right\}$. So the factor flow of $\{T_s\}_{-\infty < s < +\infty}$ is the translation on **R**. Conversely let ψ be a bimeasurable 1–1 mapping from $\Omega \times \mathbf{R}/\zeta(\tilde{G})$ onto **R** such that $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ commutes with the translation on **R** under the mapping ψ , and π be the canonical mapping from $\Omega \times \mathbf{R}$ onto $\Omega \times \mathbf{R}/\zeta(\tilde{G})$. For the measurable partition $\{\pi^{-1}\circ\psi^{-1}(u); u \in \mathbf{R}\}$ of $\Omega \times \mathbf{R}$ it holds that for almost all $\psi^{-1}(u)$ and for almost all $\omega, \pi^{-1}\circ\psi^{-1}(u)$ intersects $\{\omega\} \times \mathbf{R}$ in exactly one point $(\omega, u - \psi(\pi(\omega, 0)))$ from the assumption. Denote for a fixed cross section $\pi^{-1}\circ\psi^{-1}(u), d\mu(\omega) = \exp\{-u + \psi(\pi(\omega, 0))\}dP(\omega)$. Notice that a ω function $-u + \psi(\pi(\omega, 0))$ is measurable. Then the equivalent measure μ is G-invariant. Indeed, since $\tilde{g}(\omega, u - \psi(\pi(\omega, 0))) = \left(g\omega, u - \psi(\pi(\omega, 0)) + \log \frac{dPg}{dP}(\omega)\right) \in \pi^{-1}\circ\psi^{-1}(u)$, we have $\psi(\pi(g\omega, 0)) = \psi(\pi(\omega, 0)) - \log \frac{dPg}{dP}(\omega)$, a.e. $\omega, g \in G$. Therefore

$$d\mu(g\omega) = \exp\{-u + \psi(\pi(g\omega, 0))\}dP(g\omega)$$
$$= \exp\{-u + \psi(\pi(\omega, 0)) - \log\frac{dPg}{dP}(\omega)\}dP(g\omega)$$

TOSHIHIRO HAMACHI, YUKIMASA OKA AND MOTOSIGE OSIKAWA

 $= \exp \{-u + \psi(\pi(\omega, 0))\} dP(\omega)$ $= d\mu(\omega).$

(2) Let (μ, H) be an admissible pair of type III_{λ} (0< λ <1). Then the measurable partition $\zeta(\tilde{G})$ is $\{\bigcup_{-\infty < n < +\infty} \Omega \times \{u - n \log \lambda\}; 0 \leq u < 0\}$ $-\log \lambda$, since H is ergodic and $\tilde{h}(\omega, u) = (h\omega, u), h \in H$ and since for almost all ω and for any integer *n* there exists $g \in G$ such that $\log \frac{d\mu g}{d\mu}(\omega)$ = $n \log \lambda$ (Section 6 of [6]). Therefore $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is the periodic flow $[0, -\log \lambda) \ni u \rightarrow u + s \pmod{-\log \lambda}, -\infty < s < +\infty$. Conversely let ψ be a bi-measurable 1-1 mapping from $\Omega \times \mathbf{R}/\zeta(\tilde{G})$ onto $[0, -\log \lambda)$ such that $\psi T_s(\omega, u) = \psi(\omega, u) + s \pmod{-\log \lambda}$, a.e. (ω, u) . Then for almost all $\psi^{-1}(u)$ and for almost all $\omega, \pi^{-1} \circ \psi^{-1}(u)$ intersects each set $\{\omega\} \times$ $[-n\log\lambda, -(n+1)\log\lambda), -\infty < n < +\infty,$ in exactly one point. For a fixed u, the function $f(\omega) = \inf \{v; v \ge 0 \text{ and } (\omega, v) \in \pi^{-1} \circ \psi^{-1}(u) \cap (\{\omega\} \times \mathbb{R})\}$ is measurable. We define an equivalent measure $d\mu(\omega) = \exp\{-f\}(\omega)dP(\omega)$. \tilde{G} acts ergodically on each ergodic component $\pi^{-1} \circ \psi^{-1}(u)$. Let \tilde{H} be the induced transformation group of this action on the set $\{(\omega, f(\omega))\}$; $\omega \in \Omega$. Then *H* is ergodic and μ -preserving and $\frac{d\mu g}{d\mu}(\omega) \in \{\lambda^n; -\infty < 0\}$ $n < +\infty$ }, $g \in G$, a.e. ω .

(3) Let (μ, H) be an admissible pair of a non-singular transformation group G of type III₁. If $f(\omega, u)$ is a \tilde{G} -invariant measurable function, then for almost all $(\omega, u), f(h\omega, u) = f(\omega, u), h \in H$. From the ergodicity of H, $f(\omega, u) = f(u)$, a.e. (ω, u) and so for almost all (ω, u) , $f(u + \log \frac{d\mu g}{du}(\omega))$ = $f(u), g \in G$. Let $\Gamma = \{t \in \mathbb{R}; f(u+t) = f(u), a.e. u\}$ then Γ is a subgroup of **R** and contains at least two rationally independent real numbers by the definition of type III₁. Thus Γ is a dense subgroup. Therefore f(u) = constant, a.e. u. Conversely let G be a cyclic group and let G be ergodic. Then for any set $A \in \mathfrak{F}$ with positive measure, any positive number r and any positive number ε , there exist a measurable subset $\tilde{B} \subset A \times [-\varepsilon, \varepsilon]$ with positive measure and $g \in G$ such that $\tilde{g}\tilde{B}$ $\subset A \times [\log r - \varepsilon, \log r + \varepsilon]$. Put $B = \{\omega \in A; (\omega, u) \in \tilde{B} \text{ for }$ some u. Then P(B) > 0, $gB \subset A$ and $r \exp\{-2\varepsilon\} < \frac{dPg}{dP}(\omega) < r \exp 2\varepsilon$, $\omega \in B$. Therefore the ratio set is $r(G) = [0, +\infty)$. By Theorem 2.8 of [10], G is of type III₁.

(4) Since an ergodic and dissipative non-singular flow on a Lebesgue space is metrically isomorphic with the translation on \mathbb{R} , (4) follows from (1), (2) and (3) in the case that G is a cyclic group. Q.E.D.

Problem. Is G of type III_1 if \tilde{G} is ergodic, without the assumption that G is a cyclic group?

Theorem 4. Let $(\Omega, \mathfrak{F}, P; G)$ be of type III_1 with an admissible pair (P, H) and $(X, \mathfrak{B}_X, \mu_X; \{U_s\}_{-\infty < s < +\infty})$ be a measurable ergodic measure preserving flow and let $G_{\{U\}} = \{g_{\{U\}}; g \in G\}$ where

$$g_{\{U\}}(\omega, x) = (g\omega, U_{-\log \frac{dPg}{dP}(\omega)}x), \qquad g \in G$$

Then the associated flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ of the ergodic non-singular transformation group $G_{\{U\}}$ is metrically isomorphic with $\{U_s\}_{-\infty < s < +\infty}$.

Proof. Let $f(\omega, x, u)$ be a $\tilde{G}_{\{U\}}$ -invariant bounded measurable function. Then $f(h\omega, x, u) = f(\omega, x, u)$, $h \in H$, a.e. (ω, x, u) and the ergodicity of H implies $f(\omega, x, u) = f(x, u)$, a.e. (ω, x, u) . So we have for almost all (ω, x, u) , $f\left(U_{-\log \frac{dPg}{dP}(\omega)}x, u + \log \frac{dPg}{dP}(\omega)\right) = f(x, u)$, $g \in G$. Let $\Gamma = \{t \in \mathbb{R} | f(U_{-t}x, u+t) = f(x, u)$, a.e. $(x, u)\}$. Then Γ is a subgroup of \mathbb{R} and contains at least two rationally independent real numbers by the definition of type III₁. Thus Γ is a dense subgroup and it follows from Lemma 2 (2) of Section 4 that for any $-\infty < s < +\infty$ $f(U_{-s}x, u+s) = f(x, u)$, a.e. (x, u). Conversely a $\{U_{-s} \times \tau_s\}_{-\infty < s < +\infty}$ -invariant measurable function is $\tilde{G}_{\{U\}}$ -invariant, where $\tau_s u = u + s$, $u \in \mathbb{R}$, $-\infty < s < +\infty$, and then $\zeta(\tilde{G}_{\{U\}}) = \Omega \times \zeta(\{U_{-s} \times \tau_s\})$. Since $\{U_s\}_{-\infty < s < +\infty}$ is a measurable flow, for $E \in \mathfrak{B}_X$ the set

$$\{(U_{-s}x, s); x \in E, -\infty < s < +\infty\} = \{(x, s); U_{-s}x \in E, -\infty < s < +\infty\}$$

is $\{U_{-s} \times \tau_s\}$ -invariant and measurable in $X \times \mathbb{R}$. For a countably separating base $\{E_n\}_{n \ge 1}$ of $(X, \mathfrak{B}_X, \mu_X)$, $\{\pi(\{U_{-s}x, s\}; x \in E_n, -\infty < s < +\infty\})\}_{n \ge 1}$ is a countably separating base of $X \times \mathbb{R}/\zeta(\{U_{-s} \times \tau_s\})$, where π is the canonical mapping from $X \times \mathbb{R}$ onto $X \times \mathbb{R}/\zeta(\{U_{-s} \times \tau_s\})$. Therefore the measurable partition $\zeta(\{U_{-s} \times \tau_s\})$ is given by $\{\{(U_{-r}x, r); -\infty < r < +\infty\}; x \in X\}$. We define a mapping ψ from $\Omega \times X \times \mathbb{R}/\zeta(\tilde{G}_{\{U\}})$ onto X by $\psi(\Omega \times \{(U_{-r}x, r); -\infty < r < +\infty\}) = x$. The mapping ψ is bi-measurable 1-1 and satisfies

$$\psi(\Omega \times \{(U_{-r}x, r+s); -\infty < r < +\infty\})$$
$$= U_s \psi(\Omega \times \{(U_{-r}x, r); -\infty < r < +\infty\}), \qquad -\infty < s < +\infty.$$

Therefore the associated flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ is metrically isomorphic with $\{U_s\}_{-\infty < s < +\infty}$ under the mapping ψ . Q.E.D.

We note that, in the case that G of Theorem 4 is a cyclic group of type III₁, $G_{\{U\}}$ is of type III₀ if an ergodic measure preserving flow $\{U_s\}_{-\infty < s < +\infty}$ is aperiodic and conservative, and that furthermore if $\{U_s\}_{-\infty < s < +\infty}$ is a weakly mixing flow then $T(G_{\{U\}}) = \{0\}$ (cf. [3], [6]).

Let $(\Omega, \mathfrak{F}, P; G)$ be of type $III_{\lambda}, 0 < \lambda < 1$, and $n_g(\omega)$ be an integervalued function such that $\frac{dPg}{dP}(\omega) = \lambda^{n_g(\omega)}$ and let $(X, \mathfrak{B}_X, \mu_X; U)$ be an ergodic measure preserving transformation. W. Krieger ([11]) constructed an ergodic non-singular transformation group $G_U = \{g_U; g \in G\}$ where $g_U(\omega, x) = (g\omega, U^{n_g(\omega)}x)$. It is easy to show that the associated flow of G_U is metrically isomorphic with the flow built under the constant function $-\log \lambda$ with the basic transformation U. From this it follows that for ergodic finite measure preserving transformations U and V, G_U is weakly equivalent with G_V if and only if U is metrically isomorphic with V ([9]).

§3. The Joint Flow and the Product of Non-Singular Transformation Groups

Let $\{U_s\}_{-\infty < s < +\infty}$ and $\{V_s\}_{-\infty < s < +\infty}$ be measurable non-singular flows acting on Lebesgue spaces $(X, \mathfrak{B}_X, \mu_X)$ and $(Y, \mathfrak{B}_Y, \mu_Y)$, respectively. Let $\{U_s \times I\}_{-\infty < s < +\infty}$ be a flow defined by $(U_s \times I)(x, y) = (U_s x, y)$. Since $\{U_s \times I\}_{-\infty < s < +\infty}$ commutes with $\{U_s \times V_{-s}\}_{-\infty < s < +\infty}$, we can define the factor flow of the flow $\{U_s \times I\}_{-\infty < s < +\infty}$ on the quotient space $X \times Y/$ $\zeta(\{U_s \times V_{-s}\})$ and denote it by $\{(U, V)_s\}_{-\infty < s < +\infty}$. $\{(U, V)_s\}_{-\infty < s < +\infty}$ is a measurable non-singular flow with respect to the image measure of $\mu_X \times \mu_Y$ on $X \times Y/\zeta(\{U_s \times V_{-s}\})$. **Definition 4.** We call $\{(U, V)_s\}_{-\infty < s < +\infty}$ the joint flow of $\{U_s\}_{-\infty < s < +\infty}$ and $\{V_s\}_{-\infty < s < +\infty}$.

We note that $\{(U, V)_s\}_{-\infty < s < +\infty}$ is strongly equivalent with $\{(V, U)_s\}_{-\infty < s < +\infty}$ and that $\sigma(\{(U, V)_s\}) = \sigma(\{U_s\}) \cap \sigma(\{V_s\})$.

Theorem 5. Let $G \times G' = \{g \times g'; g \in G, g' \in G'\}$ be the product nonsingular transformation group of countable non-singular transformation groups G and G', where $g \times g'(\omega, \omega') = (g\omega, g'\omega'), \omega \in \Omega, \omega' \in \Omega'$. Then the associated flow of $G \times G'$ is strongly equivalent with the joint flow of each associated flows.

Proof. We define a mapping ψ from $\Omega \times \mathbf{R} \times \Omega' \times \mathbf{R}$ onto $\Omega \times \Omega' \times \mathbf{R}$ as follows

$$\psi(\omega, u, \omega', u') = (\omega, \omega', u + u').$$

Since

$$\tilde{g} \times \tilde{g}'(\omega, u, \omega', u') = \left(g\omega, u + \log \frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega), g'\omega', u' + \log \frac{\mathrm{d}P'g'}{\mathrm{d}P'}(\omega')\right)$$

and

$$\widetilde{g \times g'}(\omega, \omega', u) = \left(g\omega, g'\omega', u + \log \frac{\mathrm{d}Pg}{\mathrm{d}P}(\omega) + \log \frac{\mathrm{d}P'g'}{\mathrm{d}P'}(\omega')\right),$$

we have

$$\psi \cdot (\tilde{g} \times \tilde{g}') = \widetilde{g \times g'} \cdot \psi, \qquad g \in G, \quad g' \in G'.$$

Hence ψ induces a mapping from the product space of the quotient spaces $(\Omega \times \mathbf{R}/\zeta(\tilde{G})) \times (\Omega' \times \mathbf{R}/\zeta(\tilde{G}'))$ onto the quotient space $\Omega \times \Omega' \times \mathbf{R}/\zeta(\tilde{G} \times G')$. Since $\psi(\omega, u+s, \omega', u'-s) = (\omega, \omega', u+u')$ and $\psi(\omega, u+s, \omega', u') = (\omega, \omega', u+u'+s)$, ψ induces a strongly equivalent mapping between the joint flow of the associated flows of G and G' and the associated flow of $G \times G'$. Q.E.D.

Definition 5. For a countable additive subgroup Γ of **R**, a countable ergodic non-singular transformation group G is of type III^{Γ} if the

associated flow $\{\tilde{T}_s\}_{-\infty < s < +\infty}$ of G is ergodic finite measure preserving and if it has the pure point spectrum Γ .

We note $III_{10g\lambda}^{2\pi} = III_{\lambda}$, and $III^{\{0\}} = III_{1}$ (in case of cyclic group) by Theorem 3 and von Neumann's theorem that ergodic finite measure preserving flows with the same pure point spectrum are mutually metrically isomorphic ([14]).

Theorem 6. (1) Let G be of type III^{Γ} and G' be any countable ergodic non-singular transformation group. Then $G \times G'$ is of type $III^{\Gamma \cap T(G')}$.

(2) Let G and G' be countable ergodic non-singular transformation groups whose associated flows have finite invariant measures. Then $G \times G'$ is of type $III^{T(G) \cap T(G')}$.

Proof. The proof follows from the next lemma.

Lemma 1. (1) Let $(X, \mathfrak{B}_X, \mu_X; \{U_s\}_{-\infty < s < +\infty})$ be an ergodic finite measure preserving flow which has the pure point spectrum and $(Y, \mathfrak{B}_Y, \mu_Y; \{V_s\}_{-\infty < s < +\infty})$ be an ergodic non-singular flow. Then the joint flow $\{(U, V)_s\}_{-\infty < s < +\infty}$ is ergodic finite measure preserving and has the pure point spectrum $\sigma(\{U_s\}) \cap \sigma(\{V_s\})$.

(2) Let $(X, \mathfrak{B}_X, \mu_X; \{U_s\}_{-\infty < s < +\infty})$ and $(Y, \mathfrak{B}_Y, \mu_Y; \{V_s\}_{-\infty < s < +\infty})$ be ergodic finite measure preserving flows. Then the joint flow $\{(U, V)_s\}_{-\infty < s < +\infty}$ is ergodic finite measure preserving and has the pure point spectrum $\sigma(\{U_s\}) \cap \sigma(\{V_s\})$.

Proof. If μ_X is a $\{U_s\}_{-\infty < s < +\infty}$ -invariant finite measure and if μ_Y is a finite measure, $\{(U, V)_s\}_{-\infty < s < +\infty}$ preserves the image measure of $\mu_X \times \mu_Y$ on the quotient space $X \times Y/\zeta(\{U_s \times V_{-s}\})$. There exist measurable functions $\exp i\xi_t(x)$ for $t \in \sigma(\{U_s\})$ such that $\exp i\xi_t(U_s x) = \exp its$. exp $i\xi_t(x)$ and measurable functions $\exp i\eta_t(y)$ for $t \in \sigma(\{V_s\})$ such that $\exp i\eta_t(V_s y) = \exp its \cdot \exp i\eta_t(y)$. Since

$$\exp i\xi_t(U_s x) \exp i\eta_t(V_{-s} y) = \exp its \cdot \exp i\xi_t(x) \times \exp\{-its\} \exp i\eta_t(y)$$
$$= \exp i\xi_t(x) \exp i\eta_t(y)$$

for $t \in \sigma(\{U_s\}) \cap \sigma(\{V_s\})$, $\exp i\zeta_t(x) \exp i\eta_t(y)$ is a $\{U_s \times V_{-s}\}_{-\infty < s < +\infty}$ -invariant function.

We will show that the set of all $\{U_s \times V_{-s}\}_{-\infty < s < +\infty}$ -invariant square integrable functions are generated by $\{\exp i\zeta_t(x) \exp i\eta_t(x); t \in \sigma(\{U_s\}) \cap \sigma(\{V_s\})\}$. Let f(x, y) be a bounded $\{U_s \times V_{-s}\}_{-\infty < s < +\infty}$ -invariant measurable function and assume

$$\langle f(\cdot, \cdot), \exp i\xi_t(\cdot)\exp i\eta_t(\cdot)\rangle_{L^2(\mu_X \times \mu_Y)} = 0$$

for $t \in \sigma(\{U_s\}) \cap \sigma(\{V_s\})$. Define

$$\hat{f}_t(y) = \langle f(\cdot, y), \exp i\xi_t(\cdot) \rangle_{L^2(\mu_X)}, \quad y \in Y$$

for $t \in \sigma(\{U_s\})$. Then we have

$$\begin{aligned} \hat{f}_t(V_s y) &= \langle f(\cdot, V_s y), \exp i\xi_t(\cdot) \rangle_{L^2(\mu_X)} \\ &= \langle f(U_s, y), \exp i\xi_t(\cdot) \rangle_{L^2(\mu_X)} \\ &= \langle f(\cdot, y), \exp i\xi_t(U_{-s}, \cdot) \rangle_{L^2(\mu_X)} \\ &= \langle f(\cdot, y), \exp \{-its\} \cdot \exp i\xi_t(\cdot) \rangle_{L^2(\mu_X)} \\ &= \exp \{its\} \hat{f}_t(y), \qquad t \in \sigma(\{U_s\}). \end{aligned}$$

Since $\{V_s\}_{-\infty < s < +\infty}$ is ergodic, we have

$$\hat{f}_t(y) = \begin{cases} c_t \exp i\xi_t(y) & \text{if } t \in \sigma(\{U_s\}) \cap \sigma(\{V_s\}) \\ 0 & \text{if } t \in \sigma(\{U_s\}) \setminus \sigma(\{V_s\}), \end{cases}$$

where c_t is a constant. Hence we have

$$\hat{f}_t(y) = 0,$$
 a.e. y ,

for any $t \in \sigma(\{U_s\})$ from the assumption on f.

Next consider the case (2) and take a measurable bounded function $\xi(x)$ which is orthogonal to every $\exp i\xi_t(x)$, $t \in \sigma(\{U_s\})$. Defining $\hat{f}_{\xi}(y) = \langle f(\cdot, y), \xi \rangle_{L^2(\mu_X)}$, we will see $\hat{f}_{\xi}(y) = 0$, a.e. y. Indeed

$$\begin{split} \hat{f}_{\xi}(V_{s}y) &= \langle f(\cdot, V_{s}y), \xi \rangle_{L^{2}(\mu_{X})} \\ &= \langle f(U_{s}, y), \xi \rangle_{L^{2}(\mu_{X})} \\ &= \langle f(\cdot, y), \xi(U_{-s}, y) \rangle_{L^{2}(\mu_{X})}. \end{split}$$

From Stone's spectral decomposition theorem,

$$\xi(U_s:) = \int_{-\infty}^{\infty} \exp is\lambda \cdot dE(\lambda)\xi.$$

Then

$$\hat{f}_{\xi}(V_s y) = \int_{-\infty}^{\infty} \exp is\lambda \cdot d < f(\cdot, y), \ E(\lambda)\xi(\cdot) >_{L^2(\mu_X)} \cdot d < f(\lambda)\xi(\cdot) >_{L^$$

We put $dF(\lambda) = d < f(\cdot, y)$, $E(\lambda)\xi(\cdot) >_{L^2(\mu_X)}$. This measure is non-atomic since $\xi(\cdot)$ is orthogonal to all eigenfunctions of $\{U_s\}_{-\infty < s < +\infty}$. Therefore

$$\frac{1}{s} \int_0^s |\hat{f}_{\xi}(V_s y)|^2 ds = \iint \frac{\exp is(\lambda' - \lambda)}{s(\lambda' - \lambda)} dF(\lambda) dF(\lambda'), \quad \text{a.e. } y.$$

The right term converges to 0 as $s \to \infty$ by Lebesgue's convergence theorem. Since $\{V_s\}_{-\infty < s < +\infty}$ is ergodic finite measure preserving, from Birkhoff's pointwise ergodic theorem we have $\hat{f}_{\varepsilon}(y)=0$, a.e. y.

Thus for almost all y, f(x, y) is orthogonal to any \mathfrak{B}_X -measurable bounded function and so f(x, y) = 0, a.e. (x, y). This means that the all $\{U_s \times V_{-s}\}_{-\infty < s < +\infty}$ -invariant square integrable functions are generated by $\{\exp i\zeta_t(x)\exp i\eta_t(y); t \in \sigma(\{U_s\}) \cap \sigma(\{V_s\})\}$ and that $\{(U, V)_s\}_{-\infty < s < +\infty}$ has the pure point spectrum $\sigma(\{U_s\}) \cap \sigma(\{V_s\})$. Q. E. D.

Corollary 1 (cf. [1]). Let G_{λ} be of type III_{λ} ($0 < \lambda < 1$) and G be a cyclic ergodic non-singular transformation group. Then

(1) G is of type $III_{\lambda^{1/k}}$ for some integer k or is of type III_1 if $G_{\lambda} \times G$ is weakly equivalent with G, and

(2) $G_{\lambda} \times G$ is of type III_{λ} if and only if $\frac{2\pi}{\log \lambda} \in T(G)$.

Proof. The proof is clear from Theorem 6.

Corollary 2 ([6]). Let U and V be ergodic finite measure preserving transformations of $(X, \mathfrak{B}_X, \mu_X)$ and $(Y, \mathfrak{B}_Y, \mu_Y)$ respectively and let G be an ergodic non-singular transformation group of type III_{λ} ($0 < \lambda < 1$). Then $G_U \times G_V$ is of type III_{λ} if and only if $U \times V^{-1}$ is ergodic, where G_U is the ergodic non-singular transformation group whose definition is given in Section 2.

Proof. We have
$$T(G_U) = \frac{2\pi}{\log \lambda} \sigma_U$$
 and $T(G_V) = \frac{2\pi}{\log \lambda} \sigma_V$, where σ_U is

the point spectrum set of U, that is the set of all $t \in \mathbb{R}$ such that there exists an $L^2(\mu_X)$ -function ξ satisfying $\xi(Ux) = \exp 2\pi i t \cdot \xi(x)$, a.e. x. By Theorem 6, $G_U \times G_V$ is of type III_{λ} if and only if $\sigma_U \cap \sigma_V = Z$. By Lemma 1, $\sigma_U \cap \sigma_V = Z$ if and only if $U \times V^{-1}$ is ergodic.

§4. A Remark on the Existence of an Invariant Measure

In [6] we showed the existence of an invariant measure under the condition that the T-set $T(G) = \mathbf{R}$. It is a measure-theoretical proof of the Connes' theorem for von Neumann algebras ([3]).

Here we give another proof of this theorem by using the associated flow.

Lemma 2. Let $\{U_s\}_{-\infty < s < +\infty}$ be a measurable non-singular flow of a probability space (X, \mathfrak{B}, μ) . Then

(1)
$$\int \left| f(U_s x) \sqrt{\frac{\mathrm{d}\mu U_s}{\mathrm{d}\mu}(x)} - f(U_{s_0} x) \sqrt{\frac{\mathrm{d}\mu U_{s_0}}{\mathrm{d}\mu}(x)} \right|^2 \mathrm{d}\mu(x) \to 0$$

as $s \rightarrow s_0$ for $f \in L^2(X, \mathfrak{B}, \mu)$.

(2)
$$\int |h(U_s x) - h(U_{s_0} x)|^2 d\mu(x) \to 0$$

as $s \rightarrow s_0$ for $h \in L^{\infty}(X, \mathfrak{B}, \mu)$.

Proof. (1) We put $\alpha(s, x) = \frac{d\mu U_s}{d\mu}(x)$ and for N > 0, $\alpha_N(s, x) = \alpha(s, x)$ if $0 < \alpha(s, x) \le N$ and $\alpha_N(s, x) = N$ if $\alpha(s, x) > N$ which are (s, x)-measurable functions. We denote by \mathbf{U}_s the unitary operator $(\mathbf{U}_s f)(x) = f(U_s x) \sqrt{\frac{d\mu U_s}{d\mu}(x)}$. For |s| < 1 and $f \in L^{\infty}(X, \mathfrak{B}, \mu)$ with |f(x)| < C,

$$\begin{split} \|\mathbf{U}_{s}f(x) - f(x)\|_{L^{2}(\mu)} &= \int_{0}^{1} \|\mathbf{U}_{s+u}f(x) - \mathbf{U}_{u}f(x)\|_{L^{2}(\mu)} \mathrm{d}u \\ &\leq 2C \int_{-1}^{2} \|\sqrt{\alpha(u, x)} - \sqrt{\alpha_{N}(u, x)}\|_{L^{2}(\mu)} \mathrm{d}u \\ &+ \int_{0}^{1} \|f(U_{s+u}(x))\sqrt{\alpha_{N}(s+u, x)} - f(U_{u}(x))\sqrt{\alpha_{N}(u, x)}\|_{L^{2}(\mu)} \mathrm{d}u \end{split}$$

For any $\varepsilon > 0$ there exists N such that

$$\int_{-1}^{2} \|\sqrt{\alpha(u, x)} - \sqrt{\alpha_{N}(u, x)}\|_{L^{2}(\mu)} \mathrm{d} u < \varepsilon.$$

From Fubini's theorem

$$\int_{0}^{1} \|f(U_{s+u}(x))\sqrt{\alpha_{N}(s+u, x)} - f(U_{u}(x))\sqrt{\alpha_{N}(u, x)}\|_{L^{2}(\mu)} du$$

$$\leq \left\{ \int d\mu(x) \int_{0}^{1} |f(U_{s+u}(x))\sqrt{\alpha_{N}(s+u, x)} - f(U_{u}(x))\sqrt{\alpha_{N}(u, x)}|^{2} du \right\}^{\frac{1}{2}}.$$

From the Riemann-Lebesgue theorem

$$\int_0^1 |f(U_{s+u}(x))\sqrt{\alpha_N(s+u,x)} - f(U_u(x))\sqrt{\alpha_N(u,x)}|^2 \mathrm{d}u \to 0$$

as $s \rightarrow 0$, a.e. x. Therefore from Lebesgue's convergence theorem

$$\int \mathrm{d}\mu(x) \int_0^1 |f(U_{s+u}(x)) \sqrt{\alpha_N(s+u, x)} - f(U_u(x)) \sqrt{\alpha_N(u, x)}|^2 \mathrm{d}u \to 0$$

as $s \rightarrow 0$. Since U_s is a unitary operator,

$$\|\mathbf{U}_{s}f-f\|_{L^{2}(\mu)}\to 0 \quad \text{as} \quad s\to 0$$

for any $f \in L^2(X, \mathfrak{B}, \mu)$. (2) For $h \in L^{\infty}(X, \mathfrak{B}, \mu)$ with |h(x)| < C,

$$\|h(U_{s+s_0}x) - h(U_{s_0}x)\|_{L^2(\mu)}$$

$$\leq \|h(U_{s+s_0}x) - \mathbf{U}_s h(U_{s_0}x)\|_{L^2(\mu)} + \|\mathbf{U}_s h(U_{s_0}x) - h(U_{s_0}x)\|_{L^2(\mu)}$$

$$\leq C \|1 - \mathbf{U}_s \cdot 1\|_{L^2(\mu)} + \|\mathbf{U}_s h(U_{s_0}x) - h(U_{s_0}x)\|_{L^2(\mu)}.$$

From (1),

$$||h(U_s x) - h(U_{s_0} x)||_{L^2(\mu)} \to 0$$
 as $s \to s_0$.

Q. E. D.

Proposition 1. Let $\{U_s\}_{-\infty < s < +\infty}$ be a measurable ergodic nonsingular flow of a Lebesgue measure space (X, \mathfrak{B}, μ) . If $\sigma(\{U_s\}) = \mathbb{R}$, then $\{U_s\}_{-\infty < s < +\infty}$ is metrically isomorphic with the translation on **R**.

Proof. The proof is similar to the one of Theorem 3 of [6] and we use the well-known lemmas quoted in [6]. First we show that there exists a (t, x)-measurable function $\exp i\xi(t, x)$ such that for $-\infty < s < +\infty$

(*)
$$\exp i\xi(t, U_s x) = \exp ist \cdot \exp i\xi(t, x), \quad \text{a.e.}(t, x)$$

We may assume that μ is a probability measure. Let Γ be the set of all complex valued measurable functions with absolute value 1 on (X, \mathfrak{B}, μ) and Γ_0 be the set of constant functions of Γ . Γ is a complete separable metric space under the relative $L^2(\mu)$ -topology on Γ . Under the multiplication, Γ is a topological group with respect to this topology and Γ_0 is its closed subgroup. From Lemma 5 ([6]) there exists a Borel subset B of Γ that intersects each coset of the quotient space Γ/Γ_0 in exactly one point. We denote by π the canonical mapping from Γ onto Γ/Γ_0 and denote by $\pi|_B$ the restriction to B. For each $-\infty$ $<s < +\infty$ and $E \in \mathfrak{B}$ we denote by $\tau_{s,E}$ a function

$$\exp i\,\xi(\cdot)\Gamma_0 \to \int_E \exp i\,\{\xi(U_s x) - \xi(x)\}\,\sqrt{\frac{\mathrm{d}\mu U_s}{\mathrm{d}\mu}(x)}\mathrm{d}\mu(x)$$

defined on Γ/Γ_0 . Since

$$\left| \int_{E} \left\{ \exp i\{\xi'(U_s x) - \xi'(x)\} - \exp i\{\xi(U_s x) - \xi(x)\} \right\} \sqrt{\frac{\mathrm{d}\mu U_s}{\mathrm{d}\mu}(x)} \mathrm{d}\mu(x) \right|$$
$$\leq 2 \left(\int |\exp i\xi'(x) - \exp i\xi(x)|^2 \mathrm{d}\mu(x) \right)^{\frac{1}{2}},$$

the function $\tau_{s,E} \circ \pi|_B$ defined on *B* is continuous under the relative $L^2(\mu)$ topology on *B*. Let \mathfrak{E} be the smallest σ -algebra of Γ/Γ_0 such that every function $\tau_{s,E}, -\infty < s < +\infty, E \in \mathfrak{B}$, is measurable. We prove that \mathfrak{E} has a countably separating base. It is enough to show that for a countably separating base $\{E_n\}_{n \ge 1}$ of \mathfrak{B} and a countable dense set *K* of *R*, \mathfrak{E} is generated by $\tau_{s,E_n}, s \in K, n \ge 1$. From Lemma 2, for $s \in \mathbb{R}$ and $E \in \mathfrak{B}$ there exist $s_n \in K$ and E_{m_n} such that

$$\tau_{s_n, E_m}(\exp i\xi(\cdot)\Gamma_0) \to \tau_{s, E}(\exp i\xi(\cdot)\Gamma_0), \quad \text{as} \quad n \to \infty.$$

Since $\tau_{s,E} \circ \pi|_B$, $-\infty < s < +\infty$, $E \in \mathfrak{B}$ is continuous, $\pi|_B$ is measurable

under the σ -algebra generated by the relative $L^2(\mu)$ -topology of B and the σ -algebra \mathfrak{E} . From Lemma 7 ([6]) the inverse mapping $\pi|_{\overline{B}}^{-1}$ is also measurable. For each $t \in \mathbb{R}$, let Γ_t be the set of all \mathfrak{B} -measurable solution $\exp i\xi(\cdot)$ of the equation, for $-\infty < s < +\infty$, $\exp i\xi(U_s x) = \exp its$. $\exp i\xi(x)$, a.e. x. Then Γ_t is a coset in Γ/Γ_0 . By α we denote a mapping $t \to \Gamma_t$ from \mathbb{R} into Γ/Γ_0 . Since the function

$$\tau_{s,E} \circ \alpha(t) = \int_{E} \exp its \sqrt{\frac{\mathrm{d}\mu U_{s}}{\mathrm{d}\mu}(x)} \mathrm{d}\mu(x)$$

is t-continuous for each $-\infty < s < +\infty$, $E \in \mathfrak{B}$, the mapping α is measurable. For each $E \in \mathfrak{B}$ we denote by γ_E the function $\exp i\xi(\cdot) \rightarrow \int_E \exp i\xi(x)d\mu(x)$ defined on *B*. The function γ_E is continuous under the $L^2(\mu)$ -topology. Since α , $\pi|_B^{-1}$ and γ_E are all measurable, the function $\gamma_{E^\circ}\pi|_B^{-1\circ\alpha}(t) = \int_E \exp i\xi_t(x)d\mu(x)$ is t-measurable for each $E \in \mathfrak{B}$, where $\exp i\xi_t(\cdot) = \pi|_B^{-1}\Gamma_t$. From Lemma 3.1 of [20], there exists a (t, x)-measurable function $\exp i\xi(t, x)$ such that for almost all t, $\exp i\xi(t, x) = \exp i\xi_t(x)$ holds except a x-null set. Then $\exp i\xi(t, x)$ satisfies the equation (*). For a fixed $x_0 \in X$ the function

$$\exp i\bar{\xi}(t, x) = \exp i\{\xi(t, x) - \xi(t, x_0)\}$$

belongs to the coset Γ_t and satisfies for almost all x

$$\exp i\bar{\xi}(t+\tau, x) = \exp i\bar{\xi}(t, x) \cdot \exp i\bar{\xi}(\tau, x), \qquad \text{a.e.} (t, \tau).$$

From Lemma 9 ([6]) there exists a real measurable function $\xi(x)$ such that for almost all x

$$\exp i\xi(t, x) = \exp it\xi(x),$$
 a.e. t.

Since $\exp i\xi(t, \cdot) \in \Gamma_t$, for $-\infty < s < +\infty$ and for almost all x

$$\exp it\xi(U_s x) = \exp its \cdot \exp it\xi(x),$$
 a.e. t.

Therefore we have for $-\infty < s < +\infty$

$$\xi(U_s x) = \xi(x) + s, \qquad \text{a.e. } x.$$

Then the flow $\{U_s\}_{-\infty < s < +\infty}$ is metrically isomorphic with the transla-

tion on **R** under the mapping $x \rightarrow \xi(x)$ from X onto **R**. Q.E.D.

Remark. If $\{U_s\}_{-\infty < s < +\infty}$ is not necessarily ergodic, then $\{U_s\}_{-\infty} < s < +\infty$ is metrically isomorphic with a flow $(x_0, u) \rightarrow (x_0, u+s), -\infty < s < +\infty$, defined on a measure space $X_0 \times \mathbf{R}$ under the same condition of Proposition 1.

Corollary ([6], Theorem 3). Let G be a countable non-singular transformation group. If the T-set $T(G) = \mathbf{R}$, then G admits an equivalent σ -finite invariant measure.

Proof. The proof follows from Theorem 2, Proposition 1 and Theorem 3.

References

- [1] Araki, H. and Woods, E. J., A classification of factors, *Publ. RIMS, Kyoto Univ.*, 4 (1968), 51-130.
- [2] Arnold, L. K., On *o*-finite invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 85–97.
- [3] Connes, A., Une classification de facteurs de type III, Ann. Sci. École. Norm. Sup., 6 (1973), 133-252.
- [4] Hajian, A. B., Ito, Y. and Kakutani, S., Invariant measures and orbits of dissipative transformations, Advances in Math., 9 (1972), 52-65.
- [5] Hamachi, T., Equivalent measures on product spaces, Mem. Fac. Sci. Kyushu Univ., 27 (1973), 335-341.
- [6] Hamachi, T., Oka, Y. and Osikawa, M., A classification of ergodic non-singular transformation groups, Mem. Fac. Sci. Kyushu Univ., 28 (1974), 113–133.
- [7] Hill, D., σ-finite invariant measures on infinite product spaces, Trans. Amer. Math. Soc., 153 (1971), 347–370.
- [8] Krieger, W., On non-singular transformations of a measure space I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 83-91, 98-119.
- [9] On hyperfinite factors and non-singular transformations of a measure space, *preprint*.
- [10] On the Araki-Woods' asymptotic ratio set and non-singular transformations of a measure space, *Lecture notes in Math.*, 160 (1970), 158-177.
- [11] ——— On a class of hyperfinite factors that arise from null-recurrent Markov chains, J. Functional Analysis, 7 (1971), 27–42.
- [12] ----- On ergodic flows and isomorphism of factors, preprint.
- [13] Moore, C. C., Invariant measures on product spaces, Fifth Berkley Symposium on Math. Stat. and Prob. (1967), 447-459.
- [14] von Neumann, J., Zur operatoren Methode in der klassischen Mechanik, Ann. of Math., 33 (1932), 587-642.
- [15] von Neumann, J., On rings of operators, III, Ann. of Math., 41 (1940), 94-161.

- [16] Ornstein, D. S., On invariant measures, Bull. Amer. Math. Soc., 66 (1960), 297– 300.
- [17] Rohlin, V. A., On the fundamental ideas of a measure theory, Mat. Sb., 25 (67) (1949), 107-150=Amer. Math. Soc. Transl., 71 (1952).
- [18] Takesaki, M., Tomita's theory of modular Hilbert algebras, Lecture notes in Math., 128 (1970).
- [19] _____ Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
- [20] Mackey., G. W. A theorem of Stone and von-Neumann, Duke Math. J., 16 (1949), 313-326.