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Some Remarks on the Abstract Cauchy Problem

By

Nobuhiro SANEKATA*

1. Introduction

This paper is concerned with the abstract Cauchy problem

ACP

' u(0) = x

for a linear operator A (with domain D(A) and range R(AJ) in a Banach

space X.

Let Te(0, oo], xeX and u(i) = u(t; x); [0, T)-»^. Then u(f) is call-

ed a solution to (ACP; A, T, x) if u(f) is strongly continuously dif-
ferentiable in 1 e [0, T), u(t) e D(A) for fe[0, T) and u(0 satisfies ACP.

If there is no ambiguity, we use abbreviations (ACP; T, x), ,4CP instead

of (ACP; A, T, x). If, in addition, T=oo and u(t) satisfies, for a fixed
coeR,

(1.1) Htt (OII + l|w f(OII=0(e^) as t— .00 ,

then ti(0 is called a solution to (ACPm; A, x)((ACPm
m, x), ACPm). Let

Y be a linear subspace of X. Then we say that (ACP; A, T9 Y)((ACP;

T9 Y), ACP) is well posed if for every x e Y there is a unique solution

to ACP. Also, we say that (ACP0; A9 Y)((ACPm', Y), ACPJ is well
posed if for every x e Y there is a unique solution to ACP^.

In [12], Phillips gave a characterization of infinitesimal generators
of (C0) semigroups in terms of (ACP; A, oo, D(^4)) well posedness. The
main purpose of this paper is to show that (ACP; A, T, D(Ak+1))(or
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G4CPW; A, D(Ak+1J)) well posedness leads to the conclusion that A

e G(k, T) (or A e G^k)). Definitions of the classes G(k, T) and Gw(k)
are given later. The classes G(k, T) and GJJk) are introduced by Oharu
[10] and it is proved in [10] that the class G(0, oo) (= WG£[)(/c)) is just

CO

the same as the class of infinitesimal generators of (C0) semigroups.

The class W G(/c, T) (or W Gm(k)) is the same as the class of infinitesi-
fc.T to,k

mal generators of regular distribution semigroups (or exponential dis-

tribution semigroups). See [10], [11], and Theorem 1.3 of this paper.
In this sense, this paper may be considered as an extension of [12].
Correctly speaking, our results is as follows.

Main Theorem. Let A be a densely defined closed linear operator

with nonvacuous resolvent set p(A), and let Te(0, oo] and

// (ACP\ A, T, D(Ak+1)) is well posed, then A satisfies

(I) p(A) contains a half line {AeR;A^a> 0 } for some o>0eR,

(II) for every re(0, T) there is a C t>0 such that

for every xeD(Ak).

k
Here jR(A; A) denotes the resolvent of A at Aep(A), and \\x\\k= ^ \\AJx\\,

Theorem 1.2. Let A be a densely defined closed linear operator

with nonvacuous resolvent set p(A), and let coeR and keZ+ . //

^i A, D(Ak+1)) is well posed, then A satisfies

p(A) contains the half plane {/le C; Re/l>o>},

there is an M>0 such that

for every xeD(Ak),keC with Re/l>co and weN.

Henceforth a linear operator A will be called a regular operator
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if it is densely defined closed and the resolvent set is nonvoid. We

shall denote by G(k, T) (or Gw(/c)) the set of all regular operators satisfy-

ing (I) and (II) (or (I J and (II J). It is proved in [10] that, if A

e G(/c, T) (or A e Gw(/c)), the exponential formula

(E) u(t'9x)=\\ml-—A x
H-»OO \ n /

converges for x e D(Ak) and t e [0, T) (or t ̂  0), and for x E D(Ak+1),

u(t\ x) of (E) gives the unique solution to (ACT; A, T, x) (or (ACPm\

A, x)). Therefore, we have: Let A be a regular operator. Then (ACP;

A,T,D(Ak+i})(or(ACPco',A,D(Ak+lJ)) is well posed if and only if

AeG(k,T)(or AeGm(k)).

The relationship between classes G(/c, T) and Gw(/c), and the class

of infinitesimal generators of distribution semigroups is studied in [10]

and [11]: (\) A is the infinitesimal generator of a regular distribution

semigroup (R. D. S. G.) if and only if for every Te(0, oo) there is a

fc(T)eZ+ such that A e G(/c(T), T). (2) A is the infinitesimal generator

of an exponential distribution semigroup if and only if A e Gw(/c) for

some co e R and k e Z+.

Our second purpose is to reform "if" part of (1).

Theorem 1.3. // AeG(kJT) for some /ceZ+ and Te(0, oo],

then A is the infinitesimal generator of an R. D. S. G.

Detailed explanations concerning R. D. S. G. will be seen in [3],

[4], [8], [10], [11], [16], and [17].

This paper consists of five sections. Section 2 contains fundamental

lemmas which are based on the closed graph theorem. These lemmas

are used throughout this paper. In Section 3, we prove Theorem 1.2.

The proof is easy because of (1.1). We prove (Iro) and then we show
(•oo

the relation &(A; A)x = \ e~^u(t\ x)dt. (IIW) follows from this relation.
Jo

However, in the proof of Main Theorem, this relation may not be

employed. Because it is not assumed that ACP is well posed in the

sense of semigroup (see [13; p. 396] and [7; Chap. 1]) or ACP is

Hadamard correct (see [9] and Theorem 1.2 of this paper), and so

the growth order of the solution u(t) of ACP is not necessarily estimated
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as (1.1). Also, ACP considered in Main Theorem does not necessarily

become well posed in the sense of semigroup (see [12] and [14]).

Therefore, we must employ another approach. In Section 4, we show

that the resolvent set of the regular operator A contains a logarithmic

region if ACP is well posed. An estimate for the resolvent of A is given

under the same assumptions. See Proposition 4.1. As a consequence

of Proposition 4.1 and [8], we obtain Theorem 1.3. Proposition 4.1

is also used in the proof of Main Theorem. Finally, in Section 5,

we complete the proof of Main Theorem.

In the preparation of this paper, the author received many valuable

suggestions and constant encouragement from Professor H. Sunouchi

and Professor I. Miyadera. My thanks also go to Professor K. Kojima

and Professor S. Oharu. Without their advice and interests in this
work this paper could not be accomplished.

2. Preliminaries

In this paper, R denotes the real line, and C denotes the complex

plane. Re A and ImA denote the real part and the imaginary part of

AeC respectively. N = {1, 2,...} and Z+ = Nu{0}. Let / be an interval

and let Y be a Banach space. We denote by CJ(I: Y) the set of all

7-valued j-times continuously differentiate functions defined on /.

C(/; 7) denotes the set of all continuous functions. If there is no

ambiguity, we write CJ(Y). Let A be a closed linear operator in a

Banach space X. p(A) and R(k\ A) denote the resolvent set and the
resolvent of A respectively. D(Aj) is often considered as a Banach space

j
with respect to the norm \\x\\j= ]£ M'x||; A°x = x. This Banach space

will be denoted by [DG4-0]. Let Te(0, oo] and coeR. We shall

consider C([0, T); [D(A)J) as a Frechet space Z endowed with the

system of seminorms { sup ||u(0lli; ?e(0, T)}. Also, we denote by
O^f^T

Z0, the Banach space consists of all elements weC([0, oo); [D(A)1)

such that supe~t{0\\u(i)\\1<co. The norm of Zm is by definition

supe-f<°|iw(01ir. Let fceZ+. If (ACP', A, T9 D(Ak+1J) is well posed,
r^o

{17(0} denotes the set of linear operators which assign each xeD(Ak+1)

the solution u(t\ x)=U(t)x of ACP, If (ACP(0; A, D(Ak+i)) is well
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posed, U(t)x is changed to mean the solution of ACPW. We call {U(t)}

the solution operators for ACP (or ACP^).

Now, we note that, (ACP^l A, D(Ak+1)) is well posed if and only

if (ACPv+n.; A + a)', D((A + w')k+l)} is well posed. This implies that

one may consider as o»0 in Theorem 1.2. Therefore, we consider as

co>0 whenever it is assumed that ACPW is well posed. This remark

is used in the proof of Lemma 2.1.

Lemma 2.1. Let A be a closed linear operator. If (ACP; T9

D(Ak+1J) or (ACPm\ D(Ak+lJ) is well posed, then for every jeN and

xeD(Ak+J+l), we have U(f)xeD(A^ U(-)xe&(X) and

Proof. We shall prove the case j = l. The general case is proved

by induction. For every xeD(Ak+2), we have (d/dt)U(t)Ax = AU(t)Ax.

Integrating this equation on [0, f], and using the closedness of A, we

have

(2.1) V(t)Ax = Ax+ AU(s)Axds = Az(t),
Jo

rt
where z(t) = x+\ U(s)AxdsED(A). It is easy to see that (dldi)z(i) =

Jo
U(t)Ax = Az(t) and z(0) = x. Therefore, z(t) is the solution to ACP.

In the case of ACP^, we have to show that the solution z(t) satisfies

(1.1). But, since co>0 and \\U(s)Ax\\^MeSf° for some M>0, we have

= 0(eta>\ as t - > o o .

Thus z(t) is the solution to ACPm. Therefore, in either case, we have

z(i)=U(t)x, by the uniqueness of the solution, and by (2.1), we have

U(t)Ax = AU(t)x.

Lemma 2.2. Let A be a closed linear operator with

(a) // (ACP\ r, D(Ak+l)) is well posed, then for every ie(0, T),

there is an M t>0 such that
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(2.2)

for every Je[0, T] and xeD(Ak+1).

(b) // (ACP^ D(Ak+1)) is well posed, then there is an M>0

such that

(2.3) || 17(0*11 ̂ M*'«||x||k

for every t^Q and xeD(Ak+1).

Proof. We prove (a). It is easy to see that the linear operator

x^U(-)x9 defined on [D(Ak+1J] with range Z, is a closed operator.

Therefore, x*-+U(-)x is continuous by the closed graph theorem. Let

A.0Ep(A) and xeD(Ak+1), and put y = R(A0i A)x. Then, by Lemma 2.1,

we have

11*7(0*11 = \\Vo- A)U(t)y\\ ^ const. \\U(t)y\\i,

where constant is independent of t and x. Since £/(•) is continuous,

for every te(0, T), we have

for *e[0, t]. This shows (2.2).

We can prove (b) in a same way as (a), if we replace Z with Zw.

Lemma 2.3. Let A be a regular operator. Then D(Am) is dense

in [D(^4")] for every m>n, m, neN.

Lemma 2.3 is proved in [10; Lemma 2.7].

Lemmas 2.2 and 2.3 show that, if A is a regular operator, we can

extend {17(0} uniquely to a family of operators defined on D(Ak) with

range X satisfying (2.2) (or (2.3)) for all xeD(Ak) and *e[0, T] (or *

^0); this extended family will be denoted by the same symbol {U(i)},

also it will be called the solution operators for ACP (or ACP^). More-

over, we see that (7(0* is strongly continuous in t e [0, T) (or t^ 0)
for every xeD(Ak).
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3. Proof of Theorem 1.2

Throughout this section, let A be a regular operator, and let coeR

and keZ+. Suppose that (ACP^ A, D(Ak+l)) is well posed, and let

{17(0} be the solution operators for ACP^. We define

for Re A > CD and xeD(Ak).

Lemma 3.1. K0(A) has a unique extension to a bounded linear

operator •; £/ns extended operator will be denoted by

Proof. Let A0ep(^) and xeD(Ak+1\ and put

K* (f ) = (A0 - yl)w C/(OJR(A0 ; A)kx for 0 ̂  m ̂  fc .

Then we have

s1{
i=0 j = 0\ J
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+ S1(A0-WA0M)'+1x,
i=0

where f l. J denotes the binomial coefficient. Therefore, by Lemma 2.2,

we have

This completes the proof of Lemma 3.1.

Proof of Theorem 1.2. For xeD(Ak+1) and ReA>co, we have (A

— ̂ )£0(A)x = £0W(A~^)*=:;c- Therefore, by Lemmas 2.3 and 3.1, (A
— A)R(X)x = x holds for every xeJ£ and R(X)(k — A)x = x holds for

every xeD(A). This implies (/J. Furthermore, we have

-*' 17(0* d*o

for ReA>o) and xeD(Ak). Therefore, by Lemma 2.2, we have

\\R(l; A)"x\\ = (-i)"-1

(n-1)!

1

M

This completes the proof of Theorem 1.2.

4. The Resolvent Set and the Resolvent of A

Throughout this section, let A be a regular operator and let Te(0,

oo] and /ceZ+. The main purpose of this section is to prove the

following

Proposition 4.L // (^CP; A, T, D(Ak+1)) is well posed, then the

resolvent set of A contains a region Q of the form
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(4.1) fi = {AeC; ReA^a1log|ImA|+£1 , ReA^coJ U {AeR; A^wJ ,

where al5 jSt, awd a^ are positive numbers, and for AeO, £/?e resolvent

of A satisfies

(4.2)

As a consequence of Proposition 4.1 and [8] 5we obtain

Corollary 4.2. Suppose that (ACP; A, T, D(Ak+1)) is well posed,

then A is the infinitesimal generator of an R. D. S. G.

Using Corollary 4.2, we obtain Theorem 1.3.

Proof of Theorem 1.3. Suppose that AeG(k9 T). Then, by [10; Th.

2.8], (ACP', T, DG4fc+1)) is well posed. Therefore, Theorem 1.3 follows
from Corollary 4.2.

To prove Proposition 4.1, we need two lemmas; Lemmas 4.3 and

4.4. Now, we denote by /)(/) the usual Schwartz space on the open

interval /. Let <peD(— oo, T) be a function satisfying <p(t) = l on [0,

(5] and <p(t) = Q on [26, T), where 2(5 6 (0, T), and put (p^ = e~^(p. Sup-

pose that 04 CP; T, D(Ak+1)) is well posed, and let {U(t)} be the solu-

tion operators for ACP. We define

for xeD(Ak) and ReA^O.

Lemma 4.3. -R0W
 nas a unique extension to a bounded linear

operator R(X). Moreover, we have

for some C>0.

Proof. Let A0ep(,4) and xeD(,4k+1), and put

•l/(OK(A0; ,4)fcx for Ogm</c. Then we have
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O i=0

where (p^ is the j-th derivative of <p^ Since || l/(OjR(A0 ;

for t e [0, 2d], we have

k2dg const. (1 + W)
o

This completes the proof of Lemma 4.3.

Let xeD(Ak+1). Then we have (A.-A)RQ(X)x = R0(X)(A,-A)x = (

+ Q0(A))x, where

Lemma 4.4. Qo(X) has a unique extension to a bounded linear

operator Q(A). Moreover we have

for some C>0, and for every A in a half plane of the form {AeC;

Proof. Let lQep(A) and xeD(Ak+1). Then, since (p'(t)eD(5, T),

we have

; A)kxdt

j = 0\ / i=0
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This implies that Q0(%) can be uniquely extended to a bounded linear

operator g(A), and since <p(i+l)eD(d, 26), we have

^ const. (1

for every A with Re/L^o>1>0, and for every xeX.

Proof of Proposition 4.1. By Lemmas 4.3 and 4.4, we have

for x e X ,
(4.3)

I R(X) (A - A)x = (1 + eW)x for x e

If II2W II ^1/2, then 1+Q(A) is invertible and (l+QCA))'1 is a bounded
linear operator satisfying ||(l + Q(A))"1||g2. Therefore, Lemmas 4.3 and

4.4, and (4.3) implies that

and for /le£20, we have

g; const, (l + |A|)fc.

On the other hand, region Q0 contains a region Q of the form (4.1).

This completes the proof of Proposition 4.1.

5. Proof of Main Theorem

Throughout this section, we assume the hypotheses of Main Theorem.

Note that, by Proposition 4.1, the resolvent set of A contains a region
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Q of the form (4.1), and for Ae£, the resolvent of A satisfies (4.2).

Therefore, condition (I) is already shown.
Now, let {U(f)} be the solution operators for ACP. For any

T0e(0, T) and xeD(Ak+1)9 we have

A* -~r U(i)xdt
««

= e~^° I/(TO)X -

If /I e Q, we have

; A)x = Ar [7(0^ dt + e~
Jo

for every xeD(Ak). Let T and e be any positive numbers such T0>(1

+ e)T. Take, a>max{al5 (k + 2)/(i0 — (l + 8)i)}, jS>jS1? co2>niax(a)1, ^} and

?j0 = exp((cQ2— j8)/a) (>1), and let F = r1ur2 be a contour of the form

oriented from the lower to upper half plane. Here, al5 f$l9 and G>!

are positive numbers mentioned in (4.1), and i denotes the imaginary

unit. Note that FcQ. By Cauchy's integral formula, we have

for A>a>2. Hence, we have
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for every neN, l>a>2 and xeD(Ak).

Lemma 5.1. There is an M >0 such that

for all xeD(Ak), neN and A>0.

Proof. By Lemma 2.2, there is an M = MTO>0 such that || 17(0* II

<; Mil* ||fe. Therefore, we have

Lemma 5.2. For every ee(0, 1), ?/i^re is a C£>0 swc/?

for £ = £ + H7er, n/Ae[0, T], /I^co0

Proo/. For every ee(05 1), there is a <5 = <5£e(0, 1/2] such that

for te [0,5]. Therefore, we have

10-F A
(5.1)

' for f/Ae[0, 5] and n/Ae[0, T] .

In the case when <U/A>5, we have

AK-F1

S\ri\

for C=^ + i»?er1. Therefore, if Kl-CC/A))- 1 1 >1, C = { + i»»6r1, n/Ae[0,

T] and « e N, we have
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(1 TJ- J 5if JT-. p j

<^a log |>? |+ j8 VA</=v ^ i i r i ; =v

-(a °*M )
Hence, we have

(5.2)

On the other hand, we have

10-4)- 1--

(5 3} }

• for C = ^2 + ^ e^2j A^co0 (>2co2)

L and n/A e [0, T] .

Combining (5.1), (5.2) and (5.3), we get Lemma 5.2.

Proof of Main Theorem. By Lemma 5.2, we have

H/2||^Jr*-«'°^^^

In view of Lemma 2.2, (4.2) and the definition of r, we have

-i/o

Combining this estimate for I2 and Lemma 5.1, we have
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for some C>0 which is independent of xeD(Ak). Since t is an arbitrary

number in (0, T), we have (II). This completes the proof of Main Theo-

rem.

References

[ 1 ] Beals, R., On the abstract Cauchy problem, J. Functional Analysis, 10 (1972),
281-299.

[ 2 ] - , Semigroups and abstract Gevery spaces, J. Functional Analysis, 10

(1972), 300-308.
[ 3 ] Chazarain, J., Problemes du Cauchy abstraits et applications a quelques prob-

lemes mixtes, J. Functional Analysis, 7 (1971), 386-446.
[4] Fujiwara, D., A characterization of exponential distribution semigroups, J.

Math. Soc. Japan, 18 (1966), 267-274.
[ 5 ] Hille E. and Phillips, R. S., Functional Analysis and Semigroups, Amer. Math.

Soc. Colloq. PubL, 31 (1957).
[ 6 ] Komura, T., Semigroups of operators in a locally convex space, J. Functional

Analysis, 2 (1968), 258-296.
[7] Krein, S. G., Linear differential equations in Banach spaces (in Russian), Nauka,

1967.
[8] Lions, J., Les semi-groups distributions, Portugal. Math., 19 (1960), 141-164.
[9] Miyadera, I., Oharu, S. and Okazawa, N., Generation theorems of semi-groups

of linear operators, PubL RIMS, Kyoto Univ., B (3) (1972), 509-555.
[10] Oharu, S., Semigroups of linear operators in a Banach space, Pub I. RIMS,

Kyoto Univ., 7 (2) (1971), 205-260.
[11] - 9 Eine Bemerkung zur Charakterisierung der Distributionenhalbgruppen,

Math. Ann., 204 (1973), 189-198.
[12] Phillips, R. S., A note on the abstract Cauchy problem, Proc. Nat. Acad. Sci.

U.S.A., 40 (1954), 244-248.
[13] Sunouchi, H., Convergence of semi-discrete difference schemes of Cauchy prob-

lems, Tohoku Math. J., 22 (1970), 394-408.
[14] Sanekata, N., A note on the abstract Cauchy problem in a Banach space,

Proc. Japan Acad., 49 (1973), 510-513.
[15] - , On the abstract Cauchy problem, Kokyuroku, RIMS, Kyoto Univ.,

184 (1973), 63-75 (in Japanese).
[16] Ushijima, T., Some properties of regular distribution semigroups, Proc. Japan

Acad., 45 (1969), 224-227.
[17] - ^ On the generation and smoothness of semigroups of linear operators,

J. Fac. Sci., Univ. Tokyo, Sect. IA, 19 (1) (1972), 65-127.
[18] Yosida, K., Functional Analysis, Springer, Berlin, 1965.




