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Eigenfunction Expansions for Symmetric Systems

of First Order in the Half-Space R%*

By

Seiichiro WAKABAYASHI*

§0. Introduction

The eigenfunction expansion theory for partial differential operators
has been investigated by many authors. T. Carleman [1], A.Ya. Povzner
[10] and T. Ikebe [2] treated the Schrodinger operator —A+g(x) in the
whole 3-dimensional Euclidean space R3. Especially Ikebe gave an
explicit eigenfunction expansion in terms of distorted plane waves. For
—4 in an exterior domain of R3, the first result from Ikebe’s point
of view was obtained by Y. Shizuta [13] (see also Ikebe [3]) and the
result is generalized by N. A. Shenk II [12] to the higher dimensional
case. K. Mochizuki [8] derived the eigenfunction expansions in terms
of distorted plane waves for symmetric systems in an exterior domain
of R" and J.R. Schulenberger and C.H. Wilcox [11] in the whole
space R". An other approach to spectral representations for the opera-
tors associated with the wave equation and symmetric hyperbolic systems
in an exterior domain in R” is developed by P.D. Lax and R.S.
Phillips [6]. As for the eigenfunction expansions for more general
partial differential operators there are important works by F.E. Browder,
L. Girding, F. 1. Mautner and others.

In this paper we shall derive eigenfunction expansions associated
with the stationary problems in the half-space R% for symmetric hyper-
bolic systems with constant coefficients. We note that this problem can-
not be treated as a perturbation of the whole space problem. In fact,
our theory is a generalization of the sine and cosine transformations in
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the L2 space on the positive half-line which are eigenfunction expansions

for

d2
dx?
Let R" denote the n-dimensional Euclidean space. Denote by x
the generic point of R"” and write x'=(x,...,X,—1). We shall also
denote by R7 the half-space {x=(x', x,)eR"; x,>0} and by ¢ the
time variable. Let L be a first order symmetric hyperbolic operator

with constant coefficients:

0

_ ;0
0.1) L_I—E— 6

TfM=

where I is the identity matrix of order N and the A; are NxN con-
stant Hermitian matrices.

We consider the mixed initial and boundary value problem in R%
for the operator L:

0.2) LTu(t, x)1=1(t, x), t>0, xeR},
(0'3) u(oa x) = uo(x)s X e Ri s
0.4) Bu(t, x)|x,=0=0, t>0,

where u(t, x), f(t, x) and wuy(x) are vector-valued functions whose values
lie in the N-dimensional complex space CN¥ and B is an IxN constant
matrix with rank [, which stipulates [ linear homogeneous relations
between the components of u on the boundary x,=0.

. Replacing u(t, x) and f(t,x) in (0.2) by e*v(x) and —iei**g(x),
respectively, we obtain the corresponding stationary problem:

0.5) (A—kDv(x)=g(x), xeR}%,
(0.6) Bu(x)],,=0=0,
where
1 & 0
©7) 4= 24y,

Our aim is to expand an arbitrary function in L2(R%) by means of
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the generalized or improper eigenfunctions for the self-adjoint operator
associated with this problem under some suitable conditions of L (or A)
and B. In order to state our assumptions on the operators A and B,
let us now recall some basic notations and terminology about hyperbolic
mixed problems. For more details in this subject, see, for example,
Courant and Hilbert book and Lax and Phillips [6].

Let p(4,n) be the characteristic polynomial associated with the
operator L:

(0.8) p(4, m)=det (A — A1),
where 1 denotes a generic point of the real dual space =" of R" by

the duality x=x,1,+ - +x,1, and

(0.9) A= 3 1;4;.
The polynomial p(4, 1) has a factorization

(0.10) p(4, M)=Q (4, m)"...Q (4, m)"e,

where the factors Q(4, n) are distinct homogeneous polynomials in (4,
n), irreducible over the complex number field C. Since the coefficient
of AV in p(4,n) is 1, the factors are unique, apart from their order,
by requiring the coefficient of the highest power of A in each Qi (4, n)
be 1. Put

(O 1 l) Q(;“! '1)=Q1(]" U)Qq(i, 77) .

Definition 0.1. The operator L is said to be uniformly propagative
if the roots A;(n), 1<j=<pu, of the equation Q(4, n)=0 in A satisfy the
following conditions where u is the order of Q(4,7n): (1) The roots
Ai(n) are all distinct for every n with [g|=1. Thus we may assume
that the A,(n) are enumerated in the following way.

(0.12) A()>25(n)> -+ > A (m) -

(2) A root function Afn) vanishes for some real n#0 if and only
if it vanishes identically.
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Wilcox [15] gave an elegant characterization of this class of sym-
metric hyperbolic operators. For a uniformly propagative operator,
the eigenvalues of A(n) for n#0 have constant multiplicity.

(0.13) p(, M)=(A=24:m)"*...(A=2A, ()", vy + - +v,=N.

From the enumeration (0.12) it follows that the roots A;(n) are C=
functions of 5 in E"\{0} and positively homogeneous of degree 1. Fur-
ther we have

(0.14) Am)=—2y—j+1(—n) and v;=v,_;;4, j=L..,u.

We consider only the case n=2. Hence by the condition (2) we have
for n#0

(0.15) (> > A1) > 0> Ay (1) > wov > A 1)
if u=2p is even, and

0.16)  Ay(m)>->A,M >4, 1(M=0>2,15(M)> > A;5,41(),
if u=2p+1 is odd.

The Ix N matrix B in (0.6) defines a linear operator of CV¥ into
C! (under the respective canonical bases).

Definition 0.2. The linear operator defined above is called boundary
operator and denoted by the same letter B. The kernel {{eC¥; B{=0}
is called boundary space and denoted by # or kerB. A boundary
operator B (or space &%) is said to be conservative or energy preserving
if the quadratic form A4,{-{ associated with A4, is zero on 4, that is,

0.17) ALl=0 for all (e®,
where {-{’ denotes the scalar product ¢, +---+{yC4 for ¢, ¢’ eCN.

Under this condition we can easily see that every solution u(t,
e L?*(R%) of the mixed problem (0.2)-(0.4) with f=0 satisfies the
following energy equality which expresses the conservation of energy:

(0.18) flu(z, Newn)= ”uo(')”Lz(R';) .
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This equality immediately assures uniqueness for the solution and con-
tinuous dependence on the initial data. But the above condition does
not guarantee existence of the solution. Indeed, we cannot expect a
solution to exist if too many boundary conditions are imposed, that
is, if fewer boundary conditions would guarantee the uniqueness of the
solution. To guarantee general existence of the solution, we require the
following concept.

Definition 0.3. A boundary space % is called maximally conserva-
tive if & cannot be enlarged to a larger linear space over which the
quadratic form A,{-{ is still everywhere zero. Since the boundary space
% is larger when we impose fewer conditions, the boundary operator
B then is called minimally conservative.

The following lemma due to Lax and Phillips [6] give a complete
description of all maximally conservative subspaces of C¥ with respect
to the quadratic form A4,{- of signature zero.

Lemma 0.4 ([6], p.199). Let S be a symmetric NxN matrix
of signature zero, and denote by 2 and A the N2 dimensional sub-
spaces spanned by the eigenvectors corresponding to the positive and
negative eigenvalues, respectively. Then S is positive and negative
definite over 2 and &, respectively. Let ei,...,ef;, be any orthonor-
mal basis in 2 with respect to S and ej,..., ey, be any orthonormal
basis in A& with respect to —S. Then

0.17) S¢L=0

for all { in the subspace # spanned by e}+eq,...,ef+ek,, and &
is maximal with respect to this property. Conversely, every % which
has property (0.17) maximally can be constructed in this way.

From now on we shall assume that the hyperplane x,=0 is not
characteristic for L, i.e., the matrix A, is non-singular. We define

(0.19) M(E =45 01="S, €4,

where A is a complex parameter and ¢ is the generic point of E"L,
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From the hyperbolicity of L it follows that the eigenvalues of M(&; 2)
are never real when ImA#0 and £eZ""!. Since the eigenvalues of
M(¢; A) are (multivalued) continuous functions of (&, 1) this implies that
the number of roots with positive imaginary part, counted according
to multiplicity, is constant when ImA>0 (resp. InA<0) and ¢eZ""1.
If the operator A is elliptic in the sense that A(x) is non-singular for
all non-zero ne X", the matrix M(£; 0) has the same property for non-
zero £eZ"" 1. We denote by E*(&; 1) (resp. E-(¢; A)) the subspace of
C¥ spanned by all the ordinary and generalized eigenvectors of M(&; )
corresponding to eigenvalues with positive (resp. negative) imaginary part
and call it the positive (resp. negative) eigenspace of M(&; A). Then we
have

(0.20) E*(&; D@E(&; H=C

when ImA#0 and £eZ" 1. If the operator A is elliptic we have further
(0.21) dim E*(£; 2)=dim E~(¢; ) =-=m (n22)

for ImA#0 and e E"1,

Definition 0.5. A boundary operator B is called coercive for an
operator A if there exists a positive constant C such that

0.22) 2 |22 scaavi+ion

for all functions ve CH(R%T)!’ which satisfy the boundary condition
Bv|,, -¢=0. Here |v| denotes the L? norm of v over R1.

The following lemma is also due to Lax and Phillips [6].

Lemma 0.6 ([6], p. 202). The boundary operator B is coercive
for A=—ll.— ilAj-é—i— if and only if the following condition are satisfied:
i= i
(i) I=Nj2.
(i) £ nE*(&; 0)={0} for any non-zero £eE"1,

1) CTRY) ={veC=R7?); Supp v is bounded}.
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Here | is the number of column vectors of B.
Now we state precisely the assumptions that we impose on L and B:

(L.1) The operator L is uniformly propagative.

(L.2) The operator A is elliptic.

(L.3) The multiplicity of the real roots of Q(4, n)|,=(n=0 with respect
to t is not greater than two for every £e€Z""1 and real 1#0. Moreover
the equation has at most only one couple of real double roots for
every (&, 1)#(0, 0).

(B.1) The boundary operator B is minimally conservative.

Remark 1. The condition (L.2) implies that the matrices A4; are
non-singular and that u and N are even. Hence we put p=2p and
N=2m.

Remark 2. The condition (B.1) implies that l=%sm.

The differential operator A defines a non-bounded linear operator
o/ in L2(R}) with domain

D(at)={v(x); ve CT(RY), Bu(x)|s,=0=0}.

o/ is closable and we denote by A its closure. Then A is a self-
adjoint operator in L2(R%). Moreover if we assume that £ nE¥(;
0)={0} for any non-zero ¢éeZ""!, the domain D(A) of the operator A
is the set {v(x)e H'(R%); Bu(x)|,,-o=0}, where H!(R}) denotes the
space of vector-valued functions whose derivatives of order <1 belong
to L2(RY) and Bo(x)|,,-, is interpreted as the trace of Bu(x) on the
hyperplane x,=0. These were proved by Lax and Phillips [5].

Let G(x, y; A) be the Green function for (A—AI), ImA+#0, which
will be constructed in §3 according to M. Matsumura [7]. G(x, y; A)
is defined in R} xR} x{C\R} and C= function of (x, y) outside the
diagonal in R%Y xR}. We extend G(x, y; 1) over R" with respect to
y by defining G(x, y; A)=0 for xeR%, y¢R? and ImA#£0. Then for
xeR} and ImA#0, G(x, y, 1) is a temperate distribution of y. Now
we put, for xeR%, neZ" and ImA#0,
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0.23)  ¥i(x, n; H=F[G(x, y; DI A m—HPim), 1=j=2p,

where #[f(y)](n) denotes the conjugate Fourier transform of a tem-
perate distribution f(y) and P;(n) the orthogonal projection of CV
onto the eigenspace corresponding to the eigenvalue A;(n) of the matrix
A(n). We can show that for all xeR} and almost all neZ" ¥Y#(x,
n=¥(x, n; A;(n)£i0) (=al—i>lgl+ Y, n; A;(n) L ie)) exists and satisfies

(0.24) AT, M) =AM ¥F(x, 1),
(025) BT‘/i(xs r’)lxn=0=0

Thus the ¥#(x,n) are (improper) eigenfunctions for the system
{4, B} and therefore for the operator A in LZ2(RY).

Under our assumptions we need generally new eigenfunctions cor-
responding to the real zeros of the Lopatinski determinant defined in
§2 in order to derive the eigenfunction expansions for our problem.
If we assume in addition to the conditions (L.1)-(L.3) and (B.1) that
(L.1)" the operator L is strictly hyperbolic, and that (B.2) E*(¢; k)n &
={0} for every £e€Z""! and every real k with [{|+|k|#0, then our
expansion theorem is stated by the following form.

Theorem 0.7. Under the conditions (L.1)', (L.2), (L.3), (B.1) and
(B.2), we have the following:

(i) For all fe L2 (R}

(0.26) se)= 5 ¥56 mFsen,
(0.27) Fron={ ¥t (s,

Here the above integrals are taken in the sense of the limit in the mean.

() feD@A) if and only if JHn). AmiFmePmLAE)={fe
L2E"); P, f()=f(n)}, LSj<2p. Then we have

(0.28) anNe= % | 2m¥see niodn,
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(0.29) ANFEM=2mS$0).

From our proof of the above expansion theorem we can see that
o(A)=0,(A)=R!, where o(A) and o,(A) denote the spectrum and
the absolutely continuous spectrum of A, respectively. Moreover we can
obtain explicit representations of the eigenfunctions W¥(x,#). Let
@%: L2(R})—L%(Z") be the mappings defined by

(0.30) oif=f*  for all feL?*R%), 1=<j<2p.
Put

2p
(0.31) o= Y o%.

=1

Then we can prove that the @} and ®* are (partial) isometries and
give explicitly the ranges of ®¥ and ®*.

Under the conditions (L.1)-(L.3) and (B.l) we shall prove the
expansion theorem in §6. Further we shall also show that the condition
(L.2) can be removed in the last section.

The plan of the remainder of this paper is as follows: In §1,
we study some behaviors of the eigenvalues with respect to the parameter
(¢, ) and construct continuous bases of the positive and negative eigen-
spaces E*(¢; 1) of M(&;2). In §2 some behaviors of the Lopatinski
determinant in the neighborhood of the zeros are studied. In §3 the
Green function G(x, y; A) of the operator A—AI is constructed and
a representation of its partial Fourier image is given. In §4 improper
eigenfunctions for A are defined. A construction of the spectral family
of A by means of the improper eigenfunctions is given in §5 and is
applied in §6 to prove the expansion theorem. Some examples are
given in §7.

§1. Eigenvalues of M(§; 1) and Continuous Bases of E*(&; )

We shall construct the Green function G(x, y; A) for the operator
A—AI (ImA#£0) in the form
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(11) G(x’ J’§/1)=E(x—y; ;“)_Ec(x9 y;/l)y

where E(x; 4) is the fundamental solution of A=Tl. i A J.£ in the
= .
free space R”, defined by ! !

n

(1.2) E(x; A)=@2n) 2#[(A(m)—21)71].

On the other hand E/(x, y; ), called compensating kernel, will be
obtained as a solution of the following boundary value problem:

(1.3) (A,—ADE(x, y; ))=0,  x, yeR", Imai#0,
(14) BEc(x9 Vs ’1)|x,.=O=BE(x_y; /l)lx,.=0 .

Taking formally partial Fourier transforms with respect to x'=(x,...,
x,—1) in (1.3) and (1.4), we obtain the first order system of ordinary
differential equations depending on parameters (&, A):

(1.5) (—ll-——dflx——M(é;/l)>Ec(f, X ¥3A)=0, x,>0, EeE" 1,

(16) BEc(qua 07 Vs A’):'grx'[BE(x—ya /l)l,\',,=0] s

where E (&, x,, y; )=F [E x, y;A)]. In order to construct the solutions
and to investigate their properties, we first study some behaviors of the
eigenvalues of M(&; A) and construct continuous bases of the positive
and negative eigenspaces EX(&; 1) of M(&; ).

Eigenvalues of the matrix M(§; 2)

Let k° be a non-zero real and £°eZ""1. Assume that the matrix
M(&°; k°) has a real eigenvalue ¢°. From the relation

(L.7) p(4, &, o)=det (Al — A(¢, o)) =det(—4,)det (eI —M(&; 1))

and the definition (0.11) of Q(4, & o) we have Q(k°, &°, 6°)=0. Then
there exists in the enumeration (0.12) a unique number r, 1Zr<u (=2p),
such that k°=4,¢% 6°). We know that the A, 6) are real-valued
analytic functions of real variables n=(¢ o) in E"\{0}. We consider
A=72,¢, o) in a neighborhood of the point (£°, 6°) and extend the real
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variable ¢ to the complex variable z. By the assumption (L.3) the real
root a® of Q(k°, £°, 6)=0 is either simple or double. This implies

(1.8) (i) ar(go ¢®)#0 or (ii) r(go ¢°)=0 and iﬁr(@,aO)#o.

In the first case where ¢° is simple, there exists by the implicit function
theorem an analytic function t=1t(£; 1) defined in a neighborhood of
(€% 69) such that A=A(¢&, ©(&; A), 6°=1(E9; k°) and the value <(&; k)
is real for real k. 7(£; 1) is an eigenvalue of the matrix M(£; A) with
multiplicity v, and a simple root of Q(4, & t)=0. Moreover (&; 4)
is not real for non-real A. Thus Imz(¢; ) is always either positive
or negative for ImA>0 and the same for ImA<0. Write t=1t%(¢; 4)
or t=1"(£; A1) according as Imzt(&; A)>0 or Imzt(£; 1)<0. Let W be
a sufficiently small neighborhood of £°eZ""! and put

(1.9) AF(k%)={AeC; [Re A—k°| <5, 0< +Tm A <5}.

Then t=1%(é; 1) or t7(£;A) is analytic in  Wx AF(k®) (Wx A5(k°))
and continuous in Wx A5(k%) (Wx A;(k%)),2> where & is chosen suf-
ficiently small. Moreover, making use of the Taylor expansion in =z
of 2,(¢, 1) about the point o:

(1.10) e = § e GhE -0y,

we can show that

(1.11) 1111;: T&%(%T) 6'1'(6, ©(¢; k) #0,

where k is real.

Next let us consider the case (ii) of (1.8) where ¢° is a double
root. From the implicit function theorem there exists a unique real-
valued analytic function o=0(¢) in a neighborhood W of £° which satis-
fies

(1.12)

6(€))=0 and ¢°=0(£9).

2) AiR)={icC; |Re A—k*| <5, 0< +Im 2<3}.
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Regarding A&, t) as a function of 7 with parameters £ we expand it
in a Taylor series centered at the point o=0(&)

(113) A=4(E D=2, 0(8) + oy T (&, a(©) T =a()2 + .

From this there exists by an inverse function theorem in analytic func-
tion theory an algebraic function t(£;4) in A defined in a neighbor-
hood of (&9, k°) which satisfies

(1.14) A=2(E, 185 ), 6°=7(£% k°) and KkO=2,¢° ¢°).

t=1(£; A) is represented by a development in a Puiseux series of the
form

(1.15) t—a(f)= ﬁ (&), t=(A—-2,(, 0(6)))%, 0!1(6#}/#

J=1 FEY) (&, a(8) -
Define t%(&; 2) and 77(¢; A) by the branches of ©(£; A) such that Imt*(¢;
A)>0 and Imt (&; A)<0 for ImAs#0, respectively. The validity of
these definitions follows from the fact that Im7(¢; A) has the same sign
as Im(x,(&)t). Then t+(¢&; 1) and 77(¢; A) are analytic in Wx A§ (k%) (W
x A5(k®)) and continuous in Wx A§(k®)(Wx A5(k%)). Moreover t%(¢&;
J) and 77(¢; 1) are eigenvalues of the matrix M(&; 1) in Wx AF(k°)
(Wx A5(k%)) and their multiplicities are equal to v, respectively, unless
t(€; A)=1"(€; A). In this case, from the development (1.13), we also
obtain

. Imi _
(1.16) =T (T
ImA#0

where k=21,(&, a(&)).

Lemma 1.1. Let us consider the case (ii) of (1.8). Let A=k+tie.
In a sufficiently small neighborhood of (£°, k°)

(L17) Ll 122 D—o @I Clal,

SIS ITE D=1 (& DIl
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hold.3) Moreover the following inequalities hold:
(i) If ©%(&; k) are real, then
(1.18) (Ret%(¢; A —a(8)) (Ret7(£; H)—0a(£) =0,
(1.19) el S | ImeE(Es D) S Ce o]
(i) If T£(&; k) are not real, then

m(z*(&; ) —a(&))] Z—;—I (& D=0 ()] .

Proof. (1.17) follows from (1.15). (1.19) follows from (1.13) and
the fact that %mgmeri(c;A)—a(§)|§cm if T£(&; k) are real. (1.18)

follows from the fact that sgn(Ret(&; A)—a(&))=sgnRe(o,(&)) if t*(&; k)
are real. The assertion (ii) is obvious. Q.E.D.

Since the matrices A; are Hermitian, the eigenvalues of the matrix
M(&; 2) coincide with the complex conjugate of those of the matrix
M(&; 7). Let 19,...,t9, be the roots of Q(k°, &9 7)=0 (counted ac-
cording to multiplicity). Then the number of the non-real roots of
Q(k®, €9, 7)=0 is even. Thus that of its real roots is also even. Let
t=1,(€; 1) be the functions defined in a neighborhood of (£°, k) which
correspond to the real roots 7%, respectively. Then the condition (L.2)
implies that for ImA>0 (ImA<0) the number of 1,({; A) with positive
imaginary part is equal to that of 74£; A) with negative imaginary part.
We can rewrite the above 7;(¢; 1) in Wx AF(k®)(Wx A5(k®)) as

(1.20) (&5 Dy (5 A, TT(ES Dy (85 D)

where 2p is equal to the number of the real roots 79 and t#(¢; 4)
are taken to be +Imti(¢;4)>0 for ImA>0(ImA<0). The 7¥(¢; A),
1<j<p, are analytic in Wx AF(k®)(Wx A5(k°)) and continuous in W
x A§(k®)(Wx A5(k®)). Moreover there exist continuous functions t#(¢; 4),
p+1=j<p, defined in Wx AF(k®)(Wx A5(k®)) such that the 7$(£°; k°)

3) Here and in sequal C denotes a positive constant.
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are the non-real roots of Q(k°, £9, 1)=0, the t}(£; A) are roots of Q(4,
¢, 1)=0 and +Imt%(; 1)>0. Thus we obtain the 2p roots of Q(J, &, 7)
=0 in Wx A{(k®)(Wx A5(k%)):

(1.21) (&5 Ay 15 (E5 D), ha(E5 A, (85 D),
LFU(ST0 NI (S R (S0 N (SO B

where T3(£0; k°),..., TE(£0; k°) are real and 7%, ,(£0; k°),..., TE(E0; kO)
are not real. Let ¥; be the multiplicities of the eigenvalues t3(¢; 4)
(1Zj<p, Imi#0) of M(&; ). By the condition (L.3) Q(k°, £°, 1)=0
has at most only one couple of real double roots. Thus when Q(k°,
&9, 1)=0 has real double roots we may assume without loss of generality
that

(1.21) 7185 k) =11(&%; k°)

is the real double root.

Construction of continuous bases of the positive

and negative eigenspaces E*(§; 4)

Slightly modifying a construction in [7], we construct a system
of vectors which satisfy the following properties:

@O hW& D AZjsp, 15k=V) and hi(€; 4) (po+1=jSm) are de-
fined and continuous in Wx A%(k%) and are linearly independent, where
Do =k§p:l V-

(i) h5(&; N (A=jsp, 1=k<7¥; are eigenvectors corresponding to
eigenvalues 7%(¢; A) of the matrix M(&; A).

(i) {h7(&5 A, hf (€ D} 1sjsmisksvporisism 18 @ basis of the

positive eigenspace E*(&; 1) in Wx AF(k°).

First let us define {h}(&; D}pg+1<j<m We choose a basis {h9},,
+1=j=m Of the subspace E*(£°; k°) of C?™ generated by all root vectors
corresponding to eigenvalues 7}, ,(£%; k°),..., 75(&°; k°) of M(&°; k°) and
put

(L22)  KjE D=5 | (1= M(E; D) h3ds, po+15j5m,
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where p, is a simple closed curve enclosing only the eigenvalues ;. ,(¢;
2., TH(£; A) and away from the real axis. Next let us define {h}(¢;

1£1<p, such that
(1.23) kO =2,(E%, 7F(E°; k).
The rank of a projection

(124) P& o1& M= | (T= A 51(E5 D)1 d2,

2T J|a1=al=8
is equal to the multiplicity v,; of the eigenvalue A, (1) of A(y), which
is also equal to #,. Thus there exists a set of ¥, column vectors hj(¢; 1),
1=k<7, of the matrix P, (&, ©f(¢; 4)) which are linearly independent

in Wx A3(k°). From the equation
(1.25) (75 DI —=M(E; D)Pry(&, 1 (&5 A))
=—A; (AT = A, T (&5 D)Pry(&, (85 H)=0

it follows that h}i(&; 1), 1<k=7, are eigenvectors corresponding to t}(¢;
24). The equation (1.25) is easily proved by the following

Lemma 1.2, Let T(k) be a matrix-valued analytic function in
neighborhood of 1=0, u(x) (1=j<s) its eigenvalues and I a small
circle enclosing only p,(0) with multiplicity v for k=0. Put

P)= 5| (C=T)aL,

() =ob | (€= 00— T0) 1t

Then P(x) and D(x) are analytic in k. Further if T(k)=T(k)* for
real k, then D(k)=0. Thus ({—T(x))"* has a simple pole in { at

{=p,(x) and P(x) is a projection onto the proper eigenspace.

Remark. In [4] more precise results are proved (see, Theorem
1I-1.10, e.t.c., in [4]).
We have constructed a basis of E*(&; 1) satisfying (i), (i) and (iii).
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Moreover our construction shows that these vectors are analytic in
Wx A§(k°). Similarly we can construct {h%, hf} defined in Wx A;(k°)
satisfying (i), (ii) and (iii) and {h7,, hy} for the negative eigenspace
E~(&; 2). When Q(k°, £° 7)=0 has a real double root t3(£°; k%)=
77(€%; k%), we may assume that

(1.26) 1,05 k) =h7,(E% k%),  1=usv,.

For simplicity we sometimes rewrite {h}}i<j<pi1<k<s, in the form

h} 15500

§2. Behavior of Lopatinski Determinant in the Neighborhood
of the Zeros

Consider the system of ordinary differential equations depending on
the parameters (£, 1) e ="~ ! x (C\R):
1 d

@1) (45— M(& DU, € D=0, x,>0,

with the boundary condition
(2.2) BU(0, &; V)=g.

The question first arise is: what are the condition on B in order
that for any geCm™ the boundary value problem (2.1), (2.2) has one
and only one solution U(x,, £; A) which is temperate in x, (or belonging
to L2(R1)). Noting that M(£; 1) has no real eigenvalues for non-real
A, a solution U(x,, &; 1) of (2.1) is temperate in x, if and only if U(O,
&; A)e E*(¢; ). Thus our problem turns to find the conditions on B
so that for any geC™ the linear equation BU(0, &; A)=g has a unique
solution in E*(&; A).

Here we define the Lopatinski determinant A(¢; A) by using the
basis {h¥(; A)}1<j<m constructed in the previous section:

(2.3) A(g; A)=det(Bhi(; 2),..., Bhy(&; 4)).

We defined this locally, but we can define it globally in Z""1xC*%\
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{(0, 0)} (E""' xC~\{(0, 0)}) making use of a suitable C* partition of
unity.

Lemma 2.1. Let A be non-real and £eZ""!'. Then the following
propositions are equivalent:
(1) For any geCm™ there exists a unique solution U(x,, £; 1) of (2.1)
and (2.2) which is temperate in x,.
(2) The linear operator B is a one-to-one mapping of E*(£; 1) onto C™.
() l=m and A nE*; A)={0}, i.e., BDEY(; )=C?™, where %=
ker B.
4 A(¢; H#0.

Lemma 2.2. If the boundary matrix B is conservative for L=I—‘z—

ot
—iA <or for A=+2Aj%), ie., AL(=0 for every (e =XkerB,
then % nE*(&; A)={0} holds for every non-real A and EeZ""' and,
therefore, A(E; 2)#0.

Lemma 2.3. Let |&|+|k|#0, where k is real. Then we have
(1) A,h-g=0 for any h, g€ E*(¢; k).
(2) A,hrg=0 for any he E*(¢; k) and any g e E°(&; k).
(B) (@) AhiE; k+i0) hi(E; k£i0)=0 for 1<), I<m, j#1.
(i) A,h%(E; k+i0)-hF(E; k+£i0)=0 for the eigenvectors hi(£; k4 i0),
1<j=7,, corresponding to a real double root, ie., for h},(&;
k+i0), 1Sp<7?,.
(it) A,h}(&; k+i0)h}(E; k+i0)>0,
Aht (&5 k—i0)ht,(E; k—i0)<O,

for the eigenvectors h%,(¢; k+i0), 1Su<¥;, corresponding to each
real simple root v}(¢; k+i0), 25 j<p.
Here E°(&; k) denotes the linear subspace spanned by the eigenvectors
corresponding to all the real eigenvalues of M(&; k).

Lemmas 2.1, 2.2 and 2.3 are proved in [7] when L is strictly

hyperbolic. In our case we can also prove the above lemmas in the

same way.
h

Now put ¢,=70,...,0, k1J, 0,.,0eCm, 1=h<m. Let us consider
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(2.4) (Bhi(¢; ktie),..., Bhi(&,; kiis))(C_l,,>=e,,,
émh

where 0<&<¢e°. Then we have

(2.5) Cunlé: kiia)=—A—-(é_—}c—i—_—i8—)det(Bh‘{(f; k+ie),...
1
cees €pyeres BEE(E; k£ iE)).

In order to estimate C,(¢; k+ig) we prepare the following three lemmas.

Lemma 2.4 (Schur). Let A=(a;) be an NxN positive definite
Hermitian matrix and B=(b;;) an N x N non-negative definite Hermitian
matrix. Then

(2.6)

1
1

SM=

_ N
; ibiitl;zh igl b;|Ci|?

holds for any { e CVN, where h is the smallest eigenvalue of A.

Proof. Using the existence of a unitary matrix T such that A
=T(31‘-,2 )T*, one can easily prove this lemma (see, [9]). Q.E.D.
N

Lemma 2.5. Let A be non-real and (eZ""!. If the boundary
matrix B is conservative for A, then the following inequality holds
for the temperate solution U(x,, &; 1) of the equations (2.1) and (2.2):

Q.7 (ImA)ZS:w(x,,, £; D)|2dx,<Clg|?,

where C is a constant independent of (£, X) which varies in a bounded
set of E"1x CHE"1xC).

This lemma is also proved in [7].
Put

2.8) 0% D= | (eT-M(&; 2)d,

2.9 S & D= | ersn(ar—M(E; ) 1ae,
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where y, is the simple closed curve defined in §1. Then we have
(2.10) Q(&; MS(x,, & H=S(x,, & N=0Q(&; A)etM(&:xn

=eMEDQE; N)=S(x,, & VA& D),
and, therefore,

(2.11) R(Q(E; ) =R(S(x,, $; )+
is generated by {h}(&; A)}py+1<j<m Thus we put

(2.12) S(rp & DWGE D= 3 fulen & DUFE D for po+1<jsm.
=Po

Lemma 2.6. Lct x,>0 and (¢, 1) be in a neighborhood of (&°, k).

(i) The fulx, & A) are continuous in (x,, &, A) and the inequalities
(213) |f;’k(xn’ éa /‘{)léce_dx", P0+1—_<—.J, ké’”a

hold, where 2d=dis(y., RY).

(i) Put F=(fy). Then F is a (m—py)x(m—py) matrix and non-
singular. In particular F(O,é;l):[,n_mE((])'..(l)

Proof. (i) The rank of the projection (I—Q(¢; A)) is equal to (m
+po). Hence it has (m+p,) linearly independent column vectors at
(&, A)=(&% k°). By continuity they are also linearly independent in
a neighborhood of (£° k). Let vy(¢; A), ISj<m+p,, be these column
vectors. Therefore we get

mtk

v

oy det(Vqyeny Upapgs Abos1se-sSAT, ooy BY)

(2.14) f (x 9€;A)= > “m+Pg> R ERERT) Jjo s Ity
JR det(V gseevs Upmtpgs Apgt 15e-s Fiy)

Since the denominator of the right-hand side of (2.14) does not vanish,
the functions f(x,, &; 4) are continuous in (x, £, A). The inequalities
(2.13) immediately follow from the estimates of Shi(¢; A).

(ii)) Suppose that detF(x,, &; A)=0 for some (x,, &; A), i.e., there
exists (dpy+ 15 s ) #(0,...,0) such that f d;fu(x,, & 4)=0 for py+1
<k<m. Then, e

4) R(T) denotes the range of 7.
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348G & D& D= 3 difuhi
+1 j k=Po+1

Jj=Po

= 3 (3 dfphi=0.

k=Po+1 j=Po
This contradicts the linear independence of
S(xp &5 DJ(E; H=MEDRE(E; L),  po+lSjs=m.
Thus the assertion (ii) follows. Q.E.D.

Now we can estimate C,(&; k+ie).

Lemma 2.7. Let ¢>0 and (¢ ktie) be a point in a neighborhood
of (€9 k®). Then the following inequalities hold:

Q2.15)  |Cu(&; ktie) SClIm o (& k+ie)2fe for 1<I<p,,

where t5,y(&; k+ie) is the eigenvalue of M(E; k+ig) corresponding to
each vector hj(&¢; k+ie).

(2.16) ICu(é; ktie))=Cle  for pot+l=l=m.

Proof. Let Uy(x,, &; 1) be the temperate solution of (2.1) with the
initial value U,0, &; A)= f Cu(&; Hhi(E; A). Then it is represented as
=1

29 i+ .
Ux &5 D= 2 Cul&; Dettraw D hE(E; 2)

S L5 Cules Dulr & DRE D).

k=Po+1 I=Pgo+

By Lemma 2.4 we obtain the inequality

. . & |Ciu(E; M)|2
SO th(xna f, i)lzdxng')’(ie){:z’l m

T3 CulEs Dfuln & Dldx, |,

k=Pg+1 SO l=Po+1

where y(4¢) is the smallest eigenvalue of the Gram matrix (h}‘-ﬁ)
and ImA=+s&. Note that
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| 3 Cules Dfuls & 2= T CulFFCon,

k=Po+1 I[I=Po+

[eo]
and that S FF*dx, exists and is positive definite. Thus we have
0

S 00 cute Dl & DPRanzy 3 1CuE P2,

k=Po+1 J0 I[=Po+

where y’ is a positive constant. Then from Lemma 2.5 the assertion of
the above lemma follows. Q.E.D.

Lemma 2.8. Assume that the operator L satisfies the conditions
(L.1)~(L.3) and the matrix B satisfies the conditions (B.1) and (B.2).
Moreover let |E|+]|k|#£0. If the Lopatinski determinant A(¢; k+i0)
vanishes, then Q(k, &, 1)=0 have a real double root in 1.

Lemma 2.9. Assume that the operator L satisfies the conditions
(L.1), (L.2) and (L.3) and that the matrix B satisfies the conditions
(B.1) and (B.2). Moreover let £°eZ""! and k®eR with |E°+|k°|#0,
and suppose that Q(k°, £° 1)=0 has a real double root in 1. Then we

have the development

@.17) 4 D= £ B G- o@)?
in a neighborhood of (¢°, k) and
@.18) IBo(E0)+ 110 %0,
where k®=1,&°, T1(&%; k%)), i.e., r=mn(l).

These two lemmas are also proved in [7].

Remark. These lemmas are used only to prove Theorem 0.7 where
eigenfunctions corresponding to boundary waves do not appear in the
expansion formula.

For our purpose we need to study some properties of zeros of
the Lopatinski determinant A(&; A).

Lemma 2.10. Put
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P& A=A +a,(HA +---+a(l),

where the aj(&) are analytic in a complex domain V. Then there exists
an analytic function D(E) (£0) in V such that the roots of p(&; 2)=0
with respect to ) have constant multiplicities for ¢ in V={£eV; D(£)#0}
and are analytic functions of ¢ in V.

Proof. We apply the Euclidean algorithm to p(£; 4) and %’—(5; A)

as polynomials of A. Put
P& A)=q,(&; i)g—ﬁ(f; ) +r(&; )=q,(8; Mro(&; M) +r(&5 ),

where q,(&; 4), ri(é; 4) are polynomials in A and the order I, of r,(¢; )
is less than [—1. Write

ri(€; N=a (DA +a (DA + - +ay,(§), aro(8)#O0.
Moreover, put
ri-1(&; A=4q;4,(&; Dri&; /1)+Vj+1(3f§ A, i=12,..,

where the qi¢;4) and ry(&; ) are polynomials in A and the order
Liv; of rjy1(&; 4) is less than the order [; of ri(¢; 7). Write

ri&; D=a;0(OAb +a; (O™ + - +ay (8), a;0(8) #0, if ry&; )#0.

Then there exists a number «, which is less than [—1, such that r,,,(¢;
A)=0 and ri&; M)#0 for 0= j<a. We may write a;o(), ISj<a, as

a;o(&)= b;(¢)

c ,(é) ’
where b;(£) and ci({) are analytic in V. Put

D(&)=b1()---by($) -

Then for each fixed (e V={feV; D(¢)#0} the greatest common divisor
of p(¢; A) and %(5; A) is r(&; ). Thus

pE; D)=ra(&; mE; 1), (& D=ru(& Dn(Es 1), for Ee V.
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It is easy to see that p(¢; A)=0 has just [—I, distinct roots for &e¥
and that the totality of the distinct roots of p(£; A)=0 is the totality
of the roots of m(£; )=0 for ¢eV. This implies that m(£; A)=0 has
only simple roots for each eV and that the roots of m(¢; 2)=0 (or
p(&; 2)=0) are (multi-valued) analytic functions in V. Let 4,(%),...,
Ag(€) be the distinct roots of p(¢; A)=0, where B=I-I,. Here we
consider the A(&) locally with respect to £&. Then we have

00 (6 e PG D) _ & (D)
o IS D= @ = BG4

where the A;(¢) are analytic. Further the A;£) are equal to the mul-
tiplicities of the roots A,¢). It is clear that V is connected. Therefore
the A ¢) are constant for e Q.E.D.

Lemma 2.11. (i) For each fixed EeZE" ' the zeros of A(E; 1) in
C™ (C) are all real and the number of the zeros is finite. (i) A(E;
k+i0)=0 if and only if A(E; k—i0)=0. (iii) There exist real-valued
continuous functions ky(&),..., k(&), which are defined on open sets
Dy,..., Dy(Dy>:-2D,), respectively, and a closed null set N(c=E"1)
such that the totality of non-vanishing zeros of the Lopatinski deter-
minant A(&; A) is the set {ki{(&)}jcq.zep.y for any EéN, k(E)#ki(&) for
teD;nD; and i#j, and the k(&) are positively homogeneous of degree
1.

Remark. The Lopatinski determinant A(¢; 1) is defined only on Z"!
x CH(E"1xC7). We shall often regard A(¢; 1) as a function to be
continued analytically across the real axis into ZE""!xC (EZ""1xC™").
However, A4(¢; 2) does not coincide with the Lopatinski determinant
in 8 1xC(E"!xC*). Thus Lemma 2.11 does not give any informa-
tion about the zeros of A(£; 1) in C~(C™).

Proof. A(&; k+i0)=0 if and only if there exists (C%,..., CL)#(0,...,
0) satisfying (= i CEhf(é;k+i0)e#. From Lemma 2.3 it follows
that C¥=0 for ﬁ::lélgpo. On the other hand Q(k, & 1)=0 has only
real simple roots with respect to t when |k| is sufficiently large. Then
if Cizl‘; CEhf(&; k+i0) belongs to &, all the C¥ must vanish, There-
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fore A(¢; k+i0)#0, if |k| is sufficiently large. Thus from analyticity of
A(&; 2) with respect to A (or t=(1—4,(¢, o-(f)))fl) we see that the number
of the zeros of the Lopatinski determinant A(¢; ) is finite. This proves
the assertion (i). The assertion (ii) is easily verified. The assertion
(iii) can be proved by Lemma 2.10 and Weierstrass’ preparation theorem.
In fact, let x,,..., k, be the (real) distinct roots of A(£%; A)=0 for fixed
0 in E"1, |E%=1. Moreover it suffices to consider the case where
the Lopatinski determinant A(&; 1) is defined in =" !xC*. If O(x;,
£9, 1)=0 has no real double roots, then 4(¢; 2) is analytic in Wx A3(x;)
and can be continued analytically across the real axis in a complex neigh-
borhood of (&9 «;). Thus applying Weierstrass’ preparation theorem
to A4(¢; A), we have

A& D= +a, (AT + - +ay (8))q,(85 4)

in a small neighborhood of (£°, k;), where the a;;(¢) are analytic in ¢
and a,.j(§°)=(—1)i( L )/cj-, and q,(¢; 7) is analytic in (£; 1) and q,(¢; 4)#0
in the above neighborhood. It follows from Lemma 2.10 that there
exist functions k(&),..., ky(¢) defined in a real neighborhood W, of &°
and an open set Wy(<W,) such that the k,(¢) are the zeros of A(¢; A)
in Ay(x;)® for each ¢ in W, and analytic in W,, k,(&)#k,(&) for each
& in W, and Wy\W, is a closed null subset of W,. Since

Im k() = (k& —k®)}  for & in W,,

Imk,(¢) is analytic in W,. Thus if Imk(£) does not vanish identically
in a component W, of W,, Imk,(¢) is non-zero for almost every ¢ in
W,. Define W, by removing the set {¢eW,;Imk,(&)=0 (k(%)=0)}
from W, if Imk(&)#0 (£,(5)£0). Let W, be a component of W,.
Then we have, by modifying the enumeration of the k(&)

k(@) <ky (&)< <ky ),
Imk,,,(6)<0,..., Imky()<0, for &eW,.

Here we note that Wo\ﬁfo is a closed null set of W, and that W, is

5) Ay(c)={A€C; |Re(A—r)| <0, |Im(2—r)| <3}
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an open connected set of =""!. Next let us consider the case where
Q(x;, £° 7)=0 has real double roots. Moreover it suffices to consider
the case where the Lopatinski determinant A(&; t2+ A&, o(&))) is defined
in Wx{teC;Ret=0 and Im:=0}, where t=(1-4(¢, 0(6)))% and
;=A% 0(£°). Then A(E; t244,(&, 0(£))) can be continued analytically
to a complex neighborhood of (£° 0). Thus applying Weierstrass’
preparation theorem to A(¢; t2+4,(&, 0(£))) we also have

(2.19) A& 2+ 2(E, a@)=(t"r+a, (Ot 4 +a,, ()g,(E;5 1)

in a small neighborhood of (% 0), where the a;(&) are analytic in ¢
and a;;(é°)=0, and ¢q;(¢;t) is analytic in (&, f) and q;(&; H)#0 in the
above neighborhood. It follows from Lemma 2.10 that there exist func-
tions t,(£),..., tg(&) defined in a real neighborhood W, of £° and an open
set Wo(c=W,) such that the 1,(¢) are the zeros of A(¢; t24 (&, a(%)))
in A 0) for each ¢ in W, and analytic in W, t(&)#1,(&) for each ¢
in W, and Wy\W, is a closed null subset of W,. Since

Im£,(8) =6 =L(D}, Ret,() =1 {6, +1,(D)} for Ee Wy,

Imt,(¢) and Ret,(¢) are analytic in W,. Thus if Im¢(£)#0 (Ret(£)#£0)
in a component W, of W,, Imt,(&) (Ret,(£)) does not vanish for almost
every ¢ in W,. Define WO by removing the set {£e W,;Im¢,(£)=0

(Ret,(§)=0)} from W, if Imt,(£)#0 (Ret,(£)#£0). Let W, be a compo-
nent of VLI‘/O and put

(2.20) Q={teC; Imt<0 or Ret<0}, w=00.9

Then we have, by modifying the enumeration of the t,(¢&),
tl(é)r"s tq(é)ea% tq+1(£)5---: tﬂ(é)ega
k(&)< <k ),

where k(&)=t,(6)2+A(&, 0(¢), 1<v<q. Thus we can define a system

6) 0S denotes the boundary of S.
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{k,®,..., Es(é)(c)} of continuous functions in E"~!\N such that {k,(%), ..,
Es(g)(i)} is the totality of non-vanishing real zeros of the Lopatinski deter-
minant 4(; 1) for é¢N and N is a closed null set of Z""!. Here
the number s(£) (=0) depends on &£ However s(t) is constant in a

-

small neighborhood of each &eZ""!\N, therefore in each component of
Er=1\N, and Sups(§) is finite. Hence we put s—Sups(é) and D,={¢

Ev-1\N; s(f)>§v} k,(&)=k,(&) in D,, 1<v<s. This proves the assertion
(111). Q.E.D.

Remark. From the proof of Lemma 2.11 it follows that for any
EO¢ N there exist a small neighborhood W (<=Z""1\N) and J (>0) such
that A(¢; A)=0 has no roots in

U {ieC; 0< |k, (&)~ A<}

Jje{v;éeDy}

for every & in W. Moreover we note that NcZE" 1\ \SJ D, and N

= U 0D,. Also we note that the k;(¢) do not vanish for feD although
A(?,‘ 0) may identically vanish.

Define
(2.21) N={(¢, k)eE" 1 xR; Q(k, &, 1)=0 has real
double roots with respect to t},
(2.22) Ni={nez"; (& 1meN}, 1=j22p,
(2.23) 4,={€eDy; ¢ k(&)eN}, 1=v<s.

N is a null set of 2" !xR and the N; are null sets of Z". Further

we have the following

Lemma 2.12. (i) The k(&) are analytic in D,.
(ii) The 04, are null sets of E" 1.

Proof. The assertion (i) follows from the proof of Lemma 2.11.
We observe that £ed; if and only if k(&)=4,¢ a(§)), where o(f) is
defined in §1. Thus the assertion (ii) easily follows from analyticity of

A&, a(8)). Q.E.D.
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Put

(2.24) N=Nu a4, (a null set of 5"1).
y=1

Next let us consider the Cj(&; A) defined by (2.5). The following
lemma immediately follows from Lemma 2.7.

Lemma 2.13. Let £°¢NU x_s/ 4, and kO=ky(,°) for a fixed v.
Then we have the following: =

(i) When t3y(E% k%) is a real simple root of Q(k°, &9, 7)=0,
that is, 1=1=Zpo,

[Cu(&; MISC for (& 4) in Wx AF(k®)(Wx A5(k?)).
(i) When t},y(£°; kO) is non-real, that is, po+1=I1<m,

C

[Cu(&5 2) | éM"_kv(éW

Jor (&, ) in Wx AF(k°)(Wx A5(k°)).

Here and in sequel W denotes a small neighborhood of &° in E"1
and 6 (>0) is chosen sufficiently small.

Proof. From Lemma 2.7 we have

|(A—k(E)C(&; )~)|A=k\,(§) +i:=C[Im T;(l)(é ; k(&) 1'0)]71 .

This implies the above lemma. Q.E.D.

Lemma 2.14. Let &%e€4,\04, and k°=k,(£°) for a fixed v. Then
we have the following:

(i) When 15,y (E%; k°) is a real double root of Q(k°, &9, 1)=0,
that is, 1159,

C _for (&, 2) in Wx AZ(kO)Wx A5(k0)).
[A—k,(O)]?

(i) When 15,y(E°%; k°) is a real simple root of Q(k°, &9, 1)=0,
that is, ¥, +1=1=p,,

[Cu(&; D)=

|Ciu(&é; DISC for (& 1) in Wx A§(k®)(Wx A5(k°)).
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(ili) When 7},(£°; k°) is non-real, that is, po+1=I1<m,
|Cules DI S iy Jor (6 ) in WX AGHROW X A(K)).

Here k(&)=A,&, a(&)) in W.

Proof. The assertions (i) and (iii) immediately follow from Lemma
2.7. The assertion (ii) is proved by showing that t=(1—A4,(¢, a(f))%=0
is not a pole of Cu(&; 2+, a(§) for each EeW, ¥, +1Z1<p,,
which will be shown in the proof of Lemma 2.16 for more complicate
case. Q.E.D.

Next we investigate the behavior of Cy(¢; 1) in a neighborhood
of NxR. Here we assume for simplicity that the Lopatinski deter-
minant A(¢; ) is defined in Z"1xC*. First we consider the case
where £%e N, 4(€°; k°)=0 and (£°, k)¢ N. Then it suffices to consider
Cu(&; 1) for ¢ in each component W, constructed in the proof of
Lemma 2.11. Let ky(&),..., k(&) be the zeros of A(¢;2), continued
analytically, in A4 (k°) for each e W, Then we can assume without
loss of generality that

kO=ky(E0) =+ =ky(£%), ki(&)<--<k O,
Imk,.1(6)<0,..., Imky(&)<0,  for ¢ in W,.
We note that {El(g),...,kq(g)} is contained in {k;(&)};cveen,; for EeW,.

Lemma 2.15. Assume that &%¢ N, A(E°; k%)=0 and (£°, k°)¢N.
Then we have the following:

(i) When t},y(E°; k) is a real simple root of Q(k°,&°, 7)=0,
that is, 1<1=Z po,

~ 1
Ca@nls ¥ YO L for € 2) in Wox A30k).

e A=k (0]

(i) When ;7;)(&%; k°) is non-real, that is, py+1=1<m,

B
CuE DIS £ =+ 6 for 62 in Wox A3(K).
J= J
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Proof. By Weierstrass’ preparation theorem, more precisely Spéth’s
theorem, C,(&; A) is written in the form

Pa(&5 4) )
CulE: D=g(&; DEXGLI+C(E: ),
where q(&; 4), C(&; 1), pi(&; 1) and p,(E; A) are analytic in Wx A4(k°),
q(&; 4) is bounded away from zero, p,(£;4) and p,(¢; ) are polynomials
with respect to A, that is, pseudo-polynomials, and degp,(£; 2)>degp,(&;
A). Thus, decomposing 2i(E ) into a sum of partial fractions, we have

pi(&; 4)

91(6) 5 U d;,() .
Cute; D=a@ N 5 Gt 2, E G dy res D

for (&, A) in Wy x A4k°).

In fact, it follows from Lemma 2.7 that A=k (¢), I<j<gq, are at most
simple poles of C,(&; ). Moreover Lemma 2.7 implies that

lgj(€)| = l(/l—lz,-(é))Cn,(é; M= =k, ()= =C[Im<t (1)('5 k,(ﬁ)'l“ 10)]2 in Wo s

Therefore,

i 3 d;.(8)

(2.25) P& Al=] X 3 (G—Fk,6)

Cu(és4) ﬁ: ngé) _ G
g€ 2) & O—k(&) g h)

C[ImT (1)(5 l)]

+C for (¢, A) in Wyx AF(k°),

where ImA=¢. We rewrite Fy(€; 4) in the form

a0 R = 1T 0K § o HO

where y, =7, +--+rs_;—1. Put

k(a)=Re Eﬁ(é)—ialm El,(é), a=1,...,7,,
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where y,=r ., +-+rs Then, from (2.25) and (2.26) it follows that

z (&)
v=—y, (1 +a)v( - llmkp(é))v

B—-1 B
= 1'I+1|k(a)~l€j(c)l’1

Jj=4q

~ 1
C[Im7+(z)(f§ k(a))]?
8 { allm,(2)| +C} ‘

. . 1 . .
Since the matrix (———) is non-singular, we have
(1+a)/1za S_S_Yz &
—“Y1SV=Trg

@2 14@Is S cmk@r T 1Ko -k

=g+

{CUmr;;(,)(é; k(a))]?

< — <y<
a|Imk, ()| +C}’ Ti=V=Tg

Let us divided {g+1,..., f—1} into two parts for fixed &e W, as follows:
For u;, 1<j<b, k, (&) satisfy the relations

- lTm (&) < [1m E,,(6)| Salm By(2)]

alky(&)— k, () < |Tm (ky(&) + K, ()],

and for uj, b+1Zj<p—1—g, k, (&) do not satisfy at least one of
these relations, where o is a fixed large positive integer. We also rewrite
Fy(&; A) in the following form:

rs d,(%) p-i-a vy d, (6)

b i —ru; . __FvibJ
Fp(&; /1)=jl;11 (A—k, (&))" v=§y3(l"kp(5))v + i vgl (/1-"’2,,1.(5))" s

where y;=r,, +---+r, —1. Then, from (2.26) and (2.27),

(2.28) |d,,(O)|=] ijI1 A=k, (O s (= kg Fi(E5 Dlizrpey

B-1~4q

= ldrp(é)j!bl . (A— Eu,-(f))_'“-' la=ks(0)

< 3 Clm k@ 1T 1k@)~F, (O

x {CIm t3,,(&; K(@)]2 +C|Im Ey(&)]} .
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Here we have used the inequalities

k(@)= ko (O)]
18D RS < b+1SjSp—1—¢
RO~k = bT1=ish

Noting that for ImA=0 and 15j<bh

lk(a) =k, (O] _

=C,
12—k, (O] =
it follows from (2.28) that
b ~ru . a’ﬁ(é)
LGk G

2 C|Imk e 1 - 1 -
s § Soma N Clim 0¢: K+ climby 1)

. EENTE
C[Iml';p(l)lif(ﬂé)f(é))]z+C’ for Imi>0.

IA

Observe that the above constants C’s are independent of ¢ in W,. Put

5(£)

(- )= ;- 110~k hr"—_‘t—
(& D=Fu@ A= L=k O G g @y

Then F{})(&; A) is also estimated as follows:

1
+ . 2
|F£,P(é;A)lgCUm‘mg(f’mz +C, e=Im2>0.

In fact, for 1=<1<p,

N[

[lmf(z)(é kﬂ(f))]z C Ce
RO = ok

IIA

C[Im T (z)(f A)]? 2

Thus we can estimatejlf[] (A—E,,I(é))"",- ( ,l—dlrfﬁ_(lT()é)')ﬁ_‘T by applying the
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o b S N6
above argument and, inductively, j];'[1 (A=K, (&) =k (&))"

v=r;—2,...,1. Put

F%ﬁ)(é; A=Fu(&: D)= J']fll (4= E"j(é))_ruj x 21 (_/%;

Then we have

N

+ .
|F{ER (&5 A)| §C[Im Tray(e; Dl +C, e=Im1>0,
g

and A=ky(¢) is no pole of F{s)(¢; 1). Apply the same argument for
F39)(&; 2) replacing k(&) by k,_,(¢). Repeating the above argument,
we conclude

~——_ 1
) £ Clm t5,)(¢; k()12
IFIh(éa l)l§j=§+l |;L_k_,(é)| ,Im/1>0,

and, therefore,

~ . 1

- Clim g, (¢ K017

=g+ M_E,(f” +C, for (&; 1) in Wox AF(k°).

Lemma 2.15 easily follows from this. Q.E.D.

Next let us consider C,(¢; 1) in the case where £%e N, A(£°; k9)=0
and (£9 k°)eN. Then it suffices to estimate C,(¢;4) for ¢ in each
component W, constructed in the proof of Lemma 2.11. Thus Ilet
11(8),--., 15(E) be the zeros of A(¢; t2+4,(E, 0(£))), continued analytically,
in 4 ,30) for each EeW,. Then we can assume without loss of gen-
erality that

1(E0) =" =14(£)=0, 1;,(),.... 1€,
tgr1(E)ens 14(E)€Q  for & in W,.

Moreover, since t;(£),..., t5(¢) are distinct in W, we may assume that
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t,(6)=0 and 1}(&)#0,2<j<q, in W, We observe that {k,(¢),..., k(&)}
is contained in {k;(&)}e(r:een,;» Where k(&) =t,5)%+ A&, o(&)).

Lemma 2.16. Assume that ¢°e N, A(€°; k°)=0 and (&9, k%eN.
Then Cy(&; A) is decomposed into a sum of Jy(&; A), 1Zj<p, which
satisfy the following estimates in Wqx A$(k°):

(1) In the case where t;;)(E%; k°) is a real double root of Q(k°, E°,
1)=0, that is, 115V,

(1) when t1(¢; k+i0) is real, A=k+ie,

ClImk (&) |2
A=k ,O)]

, - Cle )2
le(és }-)Ié |t| L{(k—lr(i, O'(f)))z+|tj(£)l4}3/8+ﬁj

C C .
T +,,ll]’ ==,

2

|11(£§l)|§—%,

HERE

(ii) when i(¢; k+i0) is non-real,

& D1 s tmet s {2 stenr A=
e J

(2) In the case where 1}, (£°; k°) is a real simple root of Q(k°, &9, 1)
=0, that iS, G1+1§l§p0,

Cle&)1? 4 p S
(& o2+ 1@ T ATI=E & 137

& DS =5

C .
+W|_B’ 25j=B,

IJ:1(&; DI=C.

(3) In the case where t};)(%; k°) is non-real, that is, py+1=<I<m,

_ C C
A VRN (X () LAY R TR
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Here 0 is an arbitrary positive constant less than L and Bi=1 (f

2
Imk,(£)<0), =0 (if Imk(£)>0).

Proof. By Spith’s theorem Cj(¢; 12+ A&, o(£))) is written in the
form

CulE: 12+ 1,(&, o)) =q(&: DEAE DL C&i 1) in Wx 443(0),
where gq(&; 1), C(&; 1), py(é;¢) and p, (£;f) are analytic in Wx A 5(0),
q(¢; t) is bounded away from zero, p,(£; t) and p,(&; t) are polynomials
with respect to ¢ and degp,(&; t)>degp,(¢; t). Put

o CuED CED 4 @)
FalS D=0y —q&n ~ 21,02

where
g (=2 =t (OHCu&; 1)/q(&; Dle=e,0 -

Then we have by Lemma 2.7

g, (Ol = CLImt}y(&; 1,(8)? + A&, a(€)+ i0)]2

and

1
229) [Fy(&;0)] s PTG LELE SONE ¢ 14guw,

where ¢=Im#2>0. In fact, the following estimates hold for t¢QUw
and 1159, 1Sj=q:
(1) Let ti(¢&; Ej(£)+i0) be non-real.

@A) If Imti(é; k+i0)#£0, A=k+ie=1t2+1,(£, 0(E)),

19,6 _ ClIm t%(&; H)]? _

1
COm t5(&; D12 1,1 <1y,
ST QS 15@D.
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(i) If Imti(; k+i0)=0,

2|gj(f)|2 < C‘tj(é)l% 1
=2 = (1144 11,06) 192

< Cley&)1?
112 {(k=2,(2, 0(E))+82 + [1,(D)] 4} 218

A

(s Clm =it A)ﬁ)_

€
(2) When Im<i(¢; k(&)+i0)=0,

lgi(&)
R FGHI

Here we have used Lemma 1.1 and the relation f%lﬂglmr{(é; A =ClY
when Im<t{(&; k+i0)#0. Moreover we have used the inequality |t
+t(OIZC{Jtl+ ()]} in the case (1) (ii) which follows from the fact
that largt—arg(it,-(é))@—ﬁ—. (2.29) follows from the above estimates
and Lemma 2.7. Removing a closed null set from W, if necessary,
we may assume that —1(&)#£() in W, if 15j<q and q+1<i<p.
In the case where —t({)=1(£) in W, for some j and i we can easily
modify our proof. Since Fy(&;t)= pa(&:1) _ Zq: g(c) has no poles

pi(&50) =2 —1(8)?
on w\{0}, Fy,(¢; t) can be written in the following form:

4 d. B r, d.v

F[h(f;t);—j;l t';'ltff% e (t—ltj(é)))v ’

To unify the treatment we rewrite —t;(¢) instead of t;({) in the remainder
of this proof, 1=j<gq. Hence, t;({)=0 and t}({)eQ, 2<j<p. Moreover
put r;=1,15j<q. For teQUw define d(t)=dis(t, w) and r(f)ew in
such a way that |¢t—r(f)|=d(f). Then let us divide {l,...,f—1} into
two parts for fixed £ W, as follows: for u; 1=jsb, t,(¢) satisfy the
relations

(2.30) L d(2,,(6) £d(15(8) £ad(1,,(€)

uy
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(2.31) altp(8) — 1, () = d(25(2)) +d(2, (),

and for u;,, b+1<j<p—1, do not satisfy at least one of these relations,
where o is a fixed large positive integer. We rewrite F,(¢;f) in the
form

= L, d,(&)
(2.32) th(i,t)—Jl;Il(t 719) V=Zw(t 3

where y;=ry+--+rs_;—1. Put
Ha)=1(ts(8)) +awd(t(8)), a=1,...,7,,

where w=e# and Y2=ry+---+rg Substituting t=#(a) in (2.32) and
using (2.29), we obtain

]

d,(8) v
2 (D) =1, &) | = H [#(a)—2;()]

V=E=71

ClIm 20, (&5 #a)? + 4n(E, o(E))]3
N O +cf,

t(a)—t5(¢) 1 1 , :
where y,=—-2 "F > From — =>C>0, a#ad’, the matrix
Vo= 1 D)= 1,(8) Vo Vo
< Iv) is non-singular. Therefore we have
Ya/15asv,

—71Sv=rp

4.@IS Z, € 1 14a)~ 11+ dy(@)”

ClIm 20 (; 1@)? + (&, a(@)]F
< {F R +c}.

We also rewrite F,(&; t) in the following form:

Fu&s 0= =t @17 ¥ 20
bt " d, (©)
RGN Nk

where y;=r, +--+r, —1. By the same argument as in the proof of
Lemma 2.15 we obtain
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&’ﬁ(é)

b
(2'33) |G(&; )| = ‘jl;ll (t"t"j(é)) u, (T—Tﬁ(m

< ¥ Cd (15(£))* ‘{C[Imf say(&s @) +4,(¢, o)1
=1 [t—15(8)["e 125(S) ]

+ Cd(ey(©)}

Cd(tp(f))"“ Om t,(&; ()% + 4.8, 0’(5)))]2
[e—125(E) [ |24(E) ]

Here we have also used the relation
Im #(a)? = a2d(t,())? +/2 ad(t,(E)|r(t4(&))] -

First let us consider |G(&;1)| for (&, A)e Wox A(k°) (t& QU w) in the
case where r;=2.

(1) Let 1<I<v,.

(i) If Imt7(¢; k+i0)#0,

1
16 01 5 TSI wy@=0 or 2101 < 1))

1
Cllm t3(&; 4)]?
—he] (5©1=201 and 1) £0).

(i) If Imt{(¢; k+i0)=0 and Imt{(&; r(t4(8)* + A&, a(£))+i0)#0,

1G(E; 0 <— Clan(e)
|12k =2,(&, () +2+ |1,(8) |4}

<§cnmrgazn%)

(i) If Imt{(¢; k+i0)=0 and Imti(¢; r(tx(E))* + A4, a(£))+i0)=0,
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1G(E; 1) € — Clip(@)*
1812 {(k = 1,(2, 6(0)))? +&* + |£5(2) |4}/

(sClmeiC: A)ﬁ)

&
@Izl = 1250 or 2|20 [ = 12])

< CLIm Eﬂff)ﬁ <§C[Im q(é;m%>
[t]Z[A—kp(&)] &

(11 < 1@ <211] and d(ty(@) S 1ty

Clep(d)|2
Itl (k= A (& 0(8))? +62 +125(8) 43378

(11 <165(@)1 <211] and dey@)> @)1 ).

(2) When ¥, +1=1=Zpo,

~ 1
6 0l sEHRED S (I (t4()) ] 2d(25(8))
B

Clt;;(é)l2
- {(k A&, a(€)))* +e2 4 [15(O) |4}/

(1r(zp(0)) | <d(z4(S)))

(3) When py+1=5I1sm,

. ¢ -
S (121 =2[25(5)| and 1(z4(£)) #0)
STi= %, =21% ’ '

Here we have used Lemma 1.1 and the facts that if [r(t5(£) <d(24(8)) [t
—t(OIZ C{It| +1t(O)I} for t¢QUw, in the case (1) (i) [t—1t4(E)=C{lt|
+]t(8)|} and that [Imky(&)|=[2r(1,(E))d(t,()] if 1(5(£))#0. Put
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i_
(t—25(8))s°

522

FiPE; )=Fy(&;0)— H(t t,,(&)rw

Then it follows from the above estimates and (2.29) that

|FiPE =

1
Im ¢+ - )12
C[m'cp(;)(és )] +C,1¢QUaw,

b
where A=k+ie=t2+/,(¢, o(¢)). Thus we can inductively estimate J]

~ Jj=1
(t—t“l(é))—mj'—(t_:d_tvl%é)))_” by applying the above argument, v=r;—1,...,2.
Put
(rp= 1) (%~ 1) — o 5 d (&)
F”,” ! (é,t)—F“,(f, t) jl;ll (t t,,j(é)) ; (t tﬂ(é))v :
Then,

1
ClIm t%,,(¢; A)]2
Fip0es ) s TR B0CG AR L ¢ ye.

Apply the same argument for F{p~1)(&; 1) replacing t4(¢) by t5_,(é).
Repeating the above argument, we conclude

(2.34) Fu@io= 3 ;49

(2.35) |F(&; |

1
ClIm t+,.(¢: )2
[mT"‘a”(é’ N2 e auo.

Next we consider the case where there exists a number u, 1ISu<f—1,
satisfying the relations (2.30) and (2.31). Write Fj(¢; f) in the form

~ d b
Flh(é; t)= j]i[l (t—tuj(é))_l v=—ib:+1 (t_d;ﬂ((éé)))v—‘- j= ;:1 t du;(i)f)

Then we have

IG(; 0| = H(t-fu,@)' = (?@)

C[lmT s(&5 (D2 + 4,6, a())]2
[2=125(E) [ 125(S) | '
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1
L ClIm T, ()24 AE, o ()]
160l = 1= 1,(8) | 1= tu, (D]

¢l U w.

|G(&; 1)] is estimated for (&, A) in Wy x A3(k°) (t¢Q2 U w) as follows:
(1) Let 1ZI7,.
(i) If Imti(¢; k+i0)=0 and Imti(&; 1(t4(8))* +4,(&, 0(8))+i0)=0,

Cle,())?

G 1) S—
|82 {(k =2, (8, 6(E)2+ £2+ 1,(8) |4} /®

(sClim i A)ﬁ)

&

QeI =1t5(D)] or [t Z4[24(S)D)

< Clim ky(6) 12
11121 — Kp(©)|

(4115 155(©) 1 S211] and d,(9) S 1ty )

. Cley(@)1?
T2 {(k— A, (&, 0 (£)))2 + 2+ [25(E) |4} 318

(5111 S 15O S211] and A, (E)> 1] ).
(i) If Imt{(¢; k+i0)=0 and Imt{(&; r(t5(£)* + A&, a(£))+i0)#0,

Cl1,(8) |2

1G(E; 1) £ — :
|12 {(k = A (& 0(9)))2 +82+ |£,(8) | 4}3/8

(iii) If Imti(¢; k+i0)#0,

Clim <}(¢; )]

G N (A )]

(121 Z4[25(0)| or 2[z] = [24(O)])

 ClIm t}(&; )12

=SR] (= in@15210 and (@) #0)
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1
Ut L (11216, S2111 and 1,()=0).

IIA

(2) When ¥, +1=1=<po,

1
| Cle®)
A ({2 N (T (3)) EER SR TR G LTl

(41251 = [2] or [25(E)[ 2 4]2])

< Clim &y |4
P AGIEE

(11 = 1@ 1 =412] and [r(14(8)| 2d(55(2)))

Cley@) 12
(k=7 a(©))2+e>+ [1,(O)[*}°7®

IIA

(11 16O S 4111 and [r(t4(E)| <d(14() ).

(3) When py+1=IZm,

. C
IG(fst”ém (412 £ 12p(8)| or 41t5(8)1 2 121D

C 1
Sr@r (a1S1601 541 and 10©)#0)

STmE sy (a S 16@1 541 and 1,()=0).

Here we have used the fact that if 4|t4($)|<|t| or 4|t]<[ty(E),

[—12,(8) | z%{m +1t() 1} and [z—1, ()| 2 C{lz] + 14,0}

hold. Put

dy (&)
—1,(9)"

PP n=Fue:n- 11 (-1,

j=1

Then it follows from the above estimates that



108 SENCHIRO WAKABAYASHI

1
C + .l 2
[Im T”‘Q(é’ N cieouo.

[FiPE;01 <
Thus we assume for simplicity that for 1<i#j<f both the relations
‘%‘d(ti(é))éd(tj(é))éad(ti(f)), alt,(8) —1;(8) | £d(2:(8)) +d(2;(E)),

do not hold. Therefore, by (2.33) we obtain for ¥, +1=I/<p, and 2<j
=B

i ST HSILO) o 214©1 S 1D
L Climk;(0)|7
==K,

(G-l S 15,1 2211 and 15(,(2)| 24650

C

< e (M) 24O,

where dy(£) is defined by (2.34). Fu(£; 1) can also be rewritten in the
form

Flu(e; z)——(ftdt(é()) +d0(<§)> for I=1,..., vy, po+1,..., m

Then, for [=1,..., v, po+1,..., m

|d,()] = 1t,&)d DI = CLImT3)(&; (D> +4,(E, G

ldo(9)I=C,

where 1,(1)=r(t&)+e¥ d(t,¢). Let us estimate t—(t%,zgjgﬁ,

for (¢, A)e Wox A}(k®) (t¢Q U w) and I=1,...,v;, po+1,..., m

(1) Let 1<I<¥,
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(i) If Im7i(&; k+i0)=0 and Imt{(&; r(t(&)?*+ A&, a(8)+i0)=0,

4,6 | Cllmk(f)l2
t(t— t(é‘))l |t|2|/l ki@

(11 = 1501 £21e] and [r,(9)| 2d(1,() )

< ¢
1321011, |0

(otherwise) .

(i) If Imti(¢; k+i0)=0 and Imt}(&; r(2;(8)2+ A&, a(8))+i0)#0,

4,0 |« ¢
t(t—1;(%)) —ltl%ltll“’ltj(f)le '

(iii) If Imi(¢; k+i0)#0,

d;j(§) | LClm7i(¢; YK
1—1;(ENI= A=k, )]

(5111516, 28] and £(:;(8) #0)

- [CIm ti(£; )]?
== I 0(®)]

(otherwise) .

(2) When py+1=I=m,

A | C
t(t—1;(8)) =Ti- k (9]

(1111 S21e) and 1) #0)

| (otherwise) .

C
= 17=7 @)

Finally we prove that for ¥, +1=ZI<p,t=t,({)=0 is not a pole of
Cu(&; 1). Note that

2.4) e,= jénjl Ci(&; DBRY(E; A), Imi>0 (1¢Q U w).
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Put

J={j; 1ZjEm and C;(&; 124+4(¢, 0(f)) has a simple pole at
t=0},

J'={j; 1£jSm and Cy(&; t*+1(¢, 0(f))) has a pole of order 2
at t=0}.

Then it is clear that for je{l,..., m}\{JUJ'} t=0 is not a pole of
Ci(&; 124+, a(8))) and that J'c{py+1,..., m}. Put

1CH(&; 2+ 2,&, a(@))=Cp(& 1), jel,
t2C (&5 2+ A8, a(é)))=5§-’h(£)+t5}h(§; 1, jedJ’,

where C;(&; 1) and C},(¢; 1) are analytic at =0 and C,(&; 0), C%(&)#0.
Multiplying (2.4) by t? and making ¢ tend to zero (t1¢Q U w), we obtain

0= 3 CHOBRI(E; 4(E o(O)+10).

For jeJ'c{po+1,...,m} h%(&; 1) is analytic in A. Therefore we can
put

J%, CUOBIS(E; )=~ 21L&, a(ONu(E; N=120(¢; 4),

where v(§; 4) is analytic in A. Thus multiplying (2.4) by ¢ and making

t tend to zero, we have

0= 3% Cu(&; 0BR(E; AL, 0(&)+i0)

JjedJ

+ z C(&; OBRI(E; A&, a(8))+i0).

It follows from Lemma 2.3 that C,(&;0)=0 for jeJn{¥ +1,..., po}.
This implies that Jn{#,+1,..., po}=¢, that is, C,(&; 1), ¥, +1=<j=<p,,
~ B .
are analytic at t=0. Thus for ¥, +1ZI<py, Fiu(é; )= X d;(8)
j=2

t-tj(é) '
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§3. Green Function G(x,y; 4) of the Operator A—AI

By the hyperbolicity of L=I~§t——iA, the matrix A(p)—Al is non-

singular for every non-real A. Therefore (A(y)—AI)~! has the conjugate
Fourier transform with respect to 7

(3.1) E(x; )=(Qm) 2 ZL(AM - 1),  Imi#0,

in the distribution sense. E(x; A) is a fundamental solution in R” of
the differential operator A—AI with non-real 4,i.e., E(x; i) satisfies the
equation

(3.2) (A—ADE(x; 2)=8(x)I .

It is well known that E(x;A) is analytic in (R"\{0})*x(C\R). From
(3.1) and the relation (A()—AD) " l=(I—-M(E; )" 14,1, n=(, 1), we
have

(3.3) Fo[E(x—y; Dlx,=0]
_nt1 © .
—Qn) T ety -.:S emivni(zl — M(E; M)~ A d.
Consider the first order system of ordinary differential equations depend-
ing on parameters (&, A)

G4 (2= ME D), 50 73 D=0, %,>0, yeRYE, e,

n

and the condition
(3'5) BEc(é, 03 Vs )')==g;-c’[BE(x_y; )")lx,.=0] .

Under the assumptions that L is hyperbolic and B is minimally con-
servative, there exists, by Lemmas 2.1 and 2.2, a unique solution E,(¢,
Xp V3 4) of (3.4) satisfying (3.5) which belongs to LZ2(0, c©) in x, and
E (¢, x,, y; 1) has the conjugate Fourier transform E/(x’, x,, y; A) with
respect to £. Define for non-real 4

(3.6) G(x, y; )=E(x—y; )—E/x, y; 2).
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Then G(x, y; 4) satisfies the equation

3.7 (A, —ADG(x, y; H=(x—y)I, x, yeR%, ImAis#0
and
(3.8) BG(x, y; Mly,=0=0.

Moreover for every ge CP(RZ) v(x; A)=(A—AI)"1g(x) is given by
(9 o D=, 60 v DgO)y,  xeRL, TmiA0.

We call G(x, y; 1) Green function of the operator A—AI (or the system
{A—AI, B}). From the self-adjointness of A it follows that

(3.10) G(x, y; )*=G(y, x; 1),

where S* denotes the Hermitian adjoint of a matrix S. More precisely
we have

(.11 E(x—y; )*=E(y—x; D),

(3.12) E(x, y; D*=E[y, x; 4).

Let us find a local but more explicit representation of £ [G(x,
y;A)]. Let &9 be a point of ZE""1, k° a non-zero real, W a small
neighborhood of ¢° and A#(k°) the regions defined in §1. Then it
suffices to consider the case when the roots of Q(4, &, 7)=0 in t for
(&, ) e Wx A£(k®) are in the situation (1.21) and (1.21). In fact, in
other cases we obtain corresponding representations by obvious modifica-
tions. First we consider #.[E(x—y; A)l,, =o]. From (3.3) we have

(3.13) F[E(x—y; Dlx,=0]

_nt1l b
=—(27r) 2 e iy ¢ z

g emivni(cl — M(£; A)) 1A Ade
i=1J]t=1 (&M=

—Qr) " iy S e ivni(rl — M(E; )~ A= \dx,
y—

where y_ is a simple closed curve in the lower half-plane enclosing
only the eigenvalues 75,.,(&; 4),..., 7,(&; A), (&, 4) € Wx AF(k®) (Wx A5(k°)).
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Now,
1 vt Arrr e 1N 4t
2nig|r—r,‘(§;2)|=a,e yi(tl—M(E; )T Ay d
- _ELS e‘iy"r ZZP I—I———Pu(éa T)dT
) et (&:0)|=6; 1A=, 1)
=it (&) pn
=6/1,,(e.) : Pop(& 55 ).
T’(i, 13(€;4))
Put
1
(.14) (g;1(&; A),eq2m(E; D)= 57— Poiy(& 13 D).
D&, 77 (55 )

Then the column vectors gq;;1(&; A),..., 4;2,(¢; 4) are eigenvectors cor-
responding to the eigenvalue 7;(¢; 4) of M(£; 4). Note that the hj(¢;
2), 1=k<9¥;, defined in §1 are ¥; linearly independent column vectors
of the matrix P,;y(&, 75(&; 4)). We also put

(315) (ql(ym éa A)as q2m(yns fa /1))
=-2% Sy e~ (tI— M(E; 1))~ ' A= 1d .

The column vectors q,(¥, &; 4),..., 42m(Vus €; 4) belong to the subspace
generated by the root vectors corresponding to the eigenvalues 7,.,(¢;
2)...» T,(&; A) and therefore they are represented as linear combinations
of hpyr1(&; A)enss Bp(E5 4). From (3.13), (3.14) and (3.15) we have

n—1 _
(3.16) F[BE(x—y; Mly,=0l=—i2m)" 2 e71""¢ f_" e~ iti (& A)yn

Jj=1

X (Bq;1(&; A),..., Bqjan(&; A))

— i) e By E5 Vs Bgnm & D).

Next we find a local representation E.(¢, x,, y; A)=Z[E(x, y; V].
Denote by U(¢, x,, y; 4) the j-th column vector of E(¢, x,, y; A). By
Lemmas 2.1 and 2.2, U/, +0, y; ) eE*(¢; 4). Hence it can be written
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in the form
(3.17) U +0,y: )= 5 Cihi(&: 2.
Since U(¢, x,, y; A) is given by the formula

(3'18) UJ(€9 Xus Vs A)=—2Lnl;gr+eirx"(fl— M(i; }'))-IUJ(éa 05 Y A)d‘[ s

where I't=I'*(£; 1) is a positively oriented simple closed curve in
the upper half-plane, enclosing the eigenvalues t3(¢; 2),..., T5(&; 4), we
have

Po ith  (&;4)xn
(3.19) Uié, %, y; A)=3 Cle P hi(&E; )
=1

bt O, - M ) rae e 1)

27 1=po+1
Let us determine the coefficients Cj. From (3.5), (3.16) and (3.17)
we have

e =it (&54)yn

45 4)

(3.20) Ci(y, &; )=

l
.+ Bay;(&; ). BRE(E; )

1

T et (BHL(E; Drevr By (ur E3 s oonn BHLE; D).

A('f /1)

We extend G(x, y; 1) over R" with respect to y by defining G(x, y; 1)=0
for xeR} and y,¢R%. Then we have

Lemma 3.1. Let A be non-real. Then

(3.21)  FLG(x, y; A () (An)— A1)

= @n) Fe -1 2n) 5, [60x, ¥, 405 DIO4,.
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Proof. Define

G(x, y; A), xeR? and yeR%,
Gi(x, y; A)=
0 , x¢R] and yeR}].

Then we have

(3.22) G(x, y; D*=G,(y, x; 1), xeRl, yeR",
and
(3.23) (A,— DG ,(y, x; )=08(y —x)I

+ 1 4,G(y', +0, x; D3yl xeRY, yeR",

in the distribution sense. Since every term of (3.23) is a temperate
distribution in y, we take the Fourier transforms of both sides of (3.23)
with respect to y.

(3.24) (A)— 2D FLG4(y, x5 D] (n)

= @0 Tt I+ 2m) 24, £ 160, +0, x3 D).
From (3.22) and (3.24), (3.21) follows. Q.E.D.

Now let us give a representation of Z.[G(x, y’, +0; 1)]J(£). From
the formula
(3.25) E(x—y; H=Qm) 2 F[e=(Am—A)"10), M0,

we have

(3.26) FLEx—y; Dly,=o]

<o}

nt1
=(2n)‘l2‘e"*’ "fg e (tl —M(&; ) 1A dr.

Therefore if (€, 1) e Wx Af(k°),
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(3.27) FLEx—y; Dly.=o]

_ntl P
=Qn) Z e E Yy

S eixn(z] — M(E; 7))~ 1Az dr
Sl @nl=s

+(2n)_%1—e"""§g eixni(tl — M(E; 1))~ A= de,
Y+

where y, is the simple closed curve in the upper half-plane defined in

§1 and 6j§-;‘—lm1}(é; 2). Next consider ZJ[E[(x,y’, +0;A)]. From

(3.12) we have
(3.28) FLE(x, Y, +0; DI={FLE(Y', +0, x; H]}*.

From (3.17) and (3.20), we obtain the following representation of
‘%’[Ec(x’ ,VI, +0; l)]:

(3.29)  F[E(x, ¥, +0; )1=(Uy(&, 40, x; A),..., Us,(&, +0, x; D)*,

(3.30) UfE +0,x; D= Chi(e: D),

—1 P —it; (&;4)xn
1 . _ =73 p—ix' =& —e—v—
(3.31) Clix, & ND=—i2n) 2 e 2z, A(E;7)

l
x det (BRY(E; X)se-.s BAy[(E; Dse.., BRA(E; T)

. L
—i(zn)‘T‘%@;—%det(Bht(c; Dseres By €3 7)., BEE(E; T)).

§4. Eigenfunctions for the Operator A
We defined ¥ (x, n; 1), 1=j=2p, by (0.23):
¥i(x, n; )= FLG(x, y; DI Am)—)Pm).
The projection Pj(n) are represented as

Lg
4.1) Pi(m)= { 278 ))a-a5(m =5
0 , n=0,

(AI—A(n))~'dA, n#0,
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where & is chosen sufficiently small such that the set {A;[i—A;(n)|<0}
contains no roots of Q(4, n)=0 except A(n).

Lemma 4.1. Let A be non-real. Then
4.2) (A= 2DP(x, 13 )=(2m) 2 et 12, (1) — )P ,(n).
(4.3) BY {(x, 15 Mls,=+0=0
hold for xeR", neZE" and 1<j<2p.
Proof. Let ¢=(¢,0,)e CHR") and Y e Cg(Z"). Then
(A= ADZLG(x, y; 1, ¢+,
=(G(x, y; 1), (= A= 2DPX)F W1 (1),
=(XG(x, y; 1), (= A= DG, FIVIOD,

=<{Ko(x =y, ¢(x)>5 FYID,

= SR“ ¢ FY1)dy= gn: ¢(x)Z [Y] (x)dx
- SR': dx S n dn(2m)” 2 e 1) ()

=<Q2n) 2e™* 1L, GO

where @(x)=¢(x) for xeR%, and =0 for x¢R?. This implies (4.2).
The equation (4.3) is obvious. Q.E.D.

From Lemma 3.1 it follows that
n o 1 ,
@4 ¥i0xm )=Cm e 1P ) ——-Cm) IF G, ¥, +0;

Put

7) 'S denotes the transposed matrix of S.
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4.5) N;,={ne&";¢eN or teD, and k()

=4} 1=5js2p, 1SvSs,
(4.6) N,=UN,uN, 15j<2p.
v=1

The N; and N; are null sets of EZ". By the local representation of
Z[G(x, y', +0; )J(¢) in §3 and Lemma 4.1 the limits Y#(x,n)=
Yi(x, n; A{(n)£i0) exist and satisfy (0.24) and (0.25) for xeR} and

n¢N;:
qul_?:(x’ ’1)=)"J(’1)Tji(xs 11)5 BYIJi(x’ ’1)|x,.=o=0, 1_S_]§2p .

Next define for xeR%, £e D, and non-real 4

@) iannlx s D=4 ((5)) ¥,(x, 13 4), 1SjS2p, ISVEs.

We denote by N, and D, the sets

(4.8) {neE"; teNor EeD,and k(&)=2,n)},
(49) {V[EE";&ED‘,, ﬂéﬁjv}a

respectively. Then we define new eigenfunctions corresponding to bound-
ary waves by

(410) lIIJ¢+2vp(-x9 ’1)': lPj+2vp(xs n; kv(é)i iO), ne Djv .

The validity of the above definitions follows from the estimates for
the ¥;,,,,(x,n; A) which can be derived from Lemmas 2.13 and 2.14.
We also note that the N;, are null sets of Z”. Moreover from Lemma
4.1 it follows that

(4-11) ]+2Vp(x 77) k (é)qu+2vp(x’ 7'[),

(412) BT_ZJ!:+2vp(xs 'I)lx,.=o=0, for XER.':., WEDjv'

§5. Construction of the Spectral Family

The self-adjoint operator A admits a uniquely determined spectral
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resolution:
(5.1) A=S°O JAEQG),

where {E(1)}_,<i<. denotes the right-continuous spectral family of
A. Put

(5.2) R)=(A—-2)"1, ImAi#O0.

Then we have

=s—nmLSb[R(kH.s)—R(k—is)]dk, b>a

si0 2mi
(see, e.g., [14]). From (5.3) we obtain the following

Lemma 5.1. Let fe C®(R}) and b>a. Then we have

(5.4) ({ E(b)+£?(b—0) _ E(a)+2E(a—O) }f, f)

T e € . .
—lim-L ¥ gadkgsnanlfj(n, k+ig)|?

el T j=1

. 2p b .
=11m—1— > S:"dﬂg dkam:sk)—z-l-?lfj(n’ ki”‘;”za
z a j

elo T j=1

where (, ') denotes the inner product of L>(R%}) and

(5.5 Jins H={, Vi m DY @dx,  Imiz0, 1552,

R%

Proof. Let h(x)eC®®R”") and ImA#0, and let h(x) denote the
restriction to R% of h(x). Then for xeR}

[RAR1)= ., GCx, v3 DRIy =G, y: 2, (),

=(FG0x, 3 1), FHOy= 3 b= 0513 D, B,y
J= J
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Since [R(A)R](x)e L2(R%) and fe C$(R%), we have

(5:6)  (ROF, N)=(he), RADSI)=(Rn), FIRAST (o
RO, )= 3§ dx(§ 5 oh=r 105 ms Didn) 7

where (-, '), denotes the inner product of L2(Z"). When A are fixed,
Im A#0, there exist a positive constant C and a non-negative integer o
such that for xeR} and ne&"

(5.7) [¥(x, n; DISCA+nl)*.

This follows from the representations of the ¥(x,#n;A) which have
been obtained in §§3 and 4. So we can apply Fubini’s theorem to (5.6)
and obtain

N

p

R, f)= 3§ dneshon {6 mit)yfGod

ll'Mg

2. ay=rhon Tiors Dan.
Thus we have

Here #R(A)f is the Fourier transform of [R(1)f](x) extended as [R(1)f]
(x)=0 for x¢R%. From (0.23) and (5.5) it follows that

Py F RO = i) e LA(E
J

Using P(n)P(n)=0,P;(n), the resolvent equation and the above results
we have

(RGk-+ie) = Rk=iolf, 1= 32 B 7y ko)) 2

Thus (5.4) follows from (5.3). Q.E.D.

In order to represent the spectral family {E(4)} by means of the
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eigenfunctions ¥#(x,n) and ¥%,,,,(x,n) we investigate some properties
of the ¥;(x,n; 4). Let us recall that

4.4)  ¥,(xn; D) =Qn) Fe 1P (n)

1 _ ,
— L Cm) 250G (x, ¥, +0; 21O A, P,
ImA#0, [<j<2p,
(1.1) G(x, y; )=E(x—y; )—E/(x, y; 4).

Our aim is to analyse the behavior around the singular points of the
second term on the right hand side of (4.4). To this end we consider
the term in the region Wx A}(k®)(Wx A5(k?)). Then it suffices to deal
with the case when the roots of Q(4, & 1)=0 in 7 for (&, 1) e Wx AF(k®)
(Wx A3(k%) are in the situation (1.21). From now on this will not
be stated explicitly every time. First we consider %.[E(x—y; A)|,.-0](&)
AP (). Put

—it} (& A)xn

(5.8) T4l =——5— S
) ;(’1 ) 2mni lt=tE (&) |=dpu

e *ni(tl— M(&; A1)~ tdtP(n),
1=u=p,

(59) I 13 D=gt | (el ME D) B ).

+

Then
(5.10)  FLEx—y; My, =0]()A,P;n)
n—=1 P,
=i(2n)" 2 €™ '¢{M§1e”*‘“’=’”"""l‘,‘-(n;l)+19(xmn;i)},
1=j=2p.

Lemma 5.2. Let 1=j52p and (&, 1) e Wx AF(k®) (Wx A5(k®)). Then
we have

(1) 19Cxss 15 D)=~ DI (x5 1)

where T‘}(x,,,n;/l) is a matrix-valued continuous function of (x, n, A)
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and the limit T?(x,,, n; k+1i0) exists and is continuous in (x,, 1, k) where
x,€R1, neWxE and k®—5<k<k®+4.

(2) Let 2=5u=p.
(D) If j#n(w), then
Ii(n; A=m—DI4n; 2.

(i) I#(p)('l, A)= mlﬁm(ﬂ, A).

3) () If j#r, where r=n(l), then

VORPINENND () bt S TV
L0 A= —aEn 1Y

. . — )‘r(n)—i T .
O R e ) G e G RAGR

Here the T’J‘-(n;).) are continuous functions of (n; 1) and the limits

I*(n; k+i0) exist and are continuous in (n; k).
Proof. We have
(5.11) (e = M(&; A1)~ = (2l = M(E5 A5))7!
=(t2— 1) (ty ] = M(&; A)) (1l = M(&; 22))7!
+ (A= A) (r I = M(E; A0)) 1AL (2] = M(E5 45)) 71 .
Hence,

)
27 ) e (32) =6,

etxnr(tl— M(&; A)) " 'dTP;(n)
) S
=— dz
412 ) eyt @nl=on D 1Aa—asoni=s
die (T I— M(E; 1))~ HoI—M(&; 4,)) 1431

1

= 2& d’51g
412 ) oyt (230 1=0, 1A2-25(n)|=0
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dl eixnt1 - [(TII M(f ;L))— ‘—(O'I M(é AZ))_

+ (A= (v I— M(E; 1)1 A7 (o] — M(E; 4,)) 1 145"

Ai(n) =42 a}'n(u)
o—1i(&;0)

= gith (&)

(& (&5 4)
X Prn(&, Ti(&5 A P(n)
(see, Lemmas 1.2 and 3.1). If n(u)+#j, we have
Pry(&, i85 MD)P ()= (0 —7i(&; MRp(i(&5 4),

where R;,; is continuous in (£, A). The above calculations imply the
assertions (2) and (3). The assertion (1) can be proved in a similar
way. Q.E.D.

Next we consider £ [Ex,)’, +0; A)14,P;(n), 1=j=2p, in Wx A}(k°)
(Wx A5(k%)).

Lemma 53. gq; and q,(1=5j<p, 1=£1=2m) defined by (3.14) and
(3.15) are evaluated as follows:

(1) lg(x,, &3 DI =Ce®,  1=1<2m,
where 2d=dis(y_, R').
(i) lg;(&; HI=C,  2=5jsp, 1=SI<2m

lg&; DISCITIE; H—11(& HITY, 1SI<2m.

These assertions follow directly from the definition of the g; and g,

Suppose that A(£%; k9+i0)=0. From (3.29) and (3.30) we see
that the v-th row vector of Z,[E(x,y’, +0; A)14,P;(n) are equal to
Z m[Pj(n)A hi(&; D]*, 1<v<2m, where the coefficients Ci(x,
5 Z) are quantities defined by (3.31). Put

1

det(BR{(E; 1), Bg1(&; M)som.

it (&M%

1 . —
(5-12) le(xn’65l) A(é,Z)

ooy BR3(E; T)),
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P pithi(&;4)xn
5.13 Jh(x, E: )= ¢ """
( ) ZV(xn 6 ) u§2 A(f)’ Z)

det(BAH{(¢; 2), ...

1
UrEs Tz 1 S (BA (-1
seey Bquv(é’ 1):---’ ma(é’ I))"‘ Wet(‘Bhl(és Z) ]

1

s Bqu(xy, & D)y BENE: D).

Then

(5.14) Cl(x, & D=i@m)""7 &8I} (x,, &3 4) +Ty(xn &5 2))
=iQn)""7 et 4Tl (x,, E3 1) .

Here we have used t3(¢; A)=14(&; A) which can be assumed in the

enumeration (1.21).

Lemma 54. Let (% k%eN and (& A)e Wx A§(k°) (Wx A75(k°)).
Then

() For 1<I<V,
4 & DISC 3 1CuE3 Dl+CUI=2,E, 0@ 72
(ii) For ¥,+1=I<m

WG &5 DISC 3 1€l DI
(i) 17, &5 DISC 3 1Cu(E: D).

Proof. For 1<j<7¥, we have
h3(E5 )= h5(E; DI < ClA— A&, o@))2 .

From (3.14), Lemma 5.3 and the above inequalities Lemma 5.4 easily
follows. Q.E.D.

Lemma 5.5. Let £0¢ NU \_s/ 4, KO=Kk[(E°) and (& A)e Wx A3(k°)
(Wx A5(kO)). =
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(i) For 1Z1Zp, the J'(x,, &; 1) are continuous functions of (x,,
£, A) and the limits J'(x,, &; k+i0) exist and are continuous in (x,,
&, k), where k®—d<k<k®+3.

(i) For py+1=I=m

. 1 ~
Ty (xns &3 D) =75 Ji (30, £3 1),
where the Ji(x,, &; ) have the same properties as J“(x,, &; ), 1< u< po.

Proof. The above assertions follow from Lemmas 2.13 and 5.4.
Q.E.D.

Lemma 5.6. Let (°e€A4;\04; and k°=kyE°) for a fixed j and
(&, D) e Wx AF(kO)(Wx A5(k°)). Then 2(E, a(&)=ki(&) in W.

(i) For ¥%,+1ZI1<p, the Ji(x,, &; A) are continuous function of
(x,, &, 1) and the limits Ji(x,, &; k+i0) exist and continuous in (x,,
&, k), where k® —6<k<k®+34.

(i) For 1<I<9,

T £ 2)= 1 (x5 ).

(A—2,(&, 0(£)))?

(iii) For py+1=<I<m
1 . — 1 1 .
Jv(xm és )')'— ﬂl—k_,(&) Jv(xm és )') .
Here the Ji(x,, &; 1) have the same properties as J“(x,, &; 1), ¥, +1
S U= Po.

Proof. The above assertions follows from Lemmas 2.14 and 5.4.
Q.E.D.

Lemma 5.7. Let 1<j<2p.
1O @ If j#=),

P(mAMRTE D= m)—Dyjn; A,  151<p, 1=usy,.
(ii) Poy (At D= 220 =2 0,

o—17(&: D)
1<I<p, 12psW,.
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Here the 1v;,n;2) are continuous in (n, A)e WxEx AF(k®) (Wx E x
A3(k®) and the limits y;;,(n; k+i0) exist and are continuous in (y, k),
where k°—6<k<k®+4.

(2) For py+1=I<m

P At (&5 D= =Dy u(n; A,
where y;(n; 2) have the same properties as y;,(n; A) in (1).

Proof.

(g __LS
Py Ay Preiy (&, 7185 D) =5 [A1=2;(m)|=31

(a1—M(¢E; 1)~ 1da, Sm_“=6(f”§(€; D= M(&; 2)) 4,7 dA,
__Ai(m—42 oz,
—ij(n)}’n(l)(és (&5 ).

Here we have used (5.11) and the fact that (AI—A(&, 0))~! has a simple
pole at A=AZ,(n). Therefore we immediately obtain the assertion (1).
The assertion (2) is proved in the same way. Q.E.D.

Lemma 5.8. Assume that g(¢) is analytic in W and does not
vanish identically. Then there exists a positive constant 0, such that
for 0<6<0,

de
SW——|g(¢)|ﬂ<+°°'

Proof. From f(£)#0, linearly transforming &, if necessary, we can
assume that g(&;, 0,...,0)#0. Thus by Weierstrass’ preparation theorem
we have

g(c)=q(c)§g Cr=0,Earr Eu D),

where ¢(¢) is bounded away from zero. This completes the proof.
Q.E.D.

Lemma 5.9. Let fe C®(R}) and 0<a<b<oo (—ow<a<b<0). Then
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(5.15) ({E(b)+2E(b—0)_E(a)+2E(a—0)}ﬂ f>

2p

S | F%(n) | 2dn
asi;(n)sb

=1

s 2P
+y S
v=1j=1J){a<ky(E)Sb}NDyxE

‘f_} +2vp(’7)| d’1
holds, where

(5.16) f;—-f(rp)=gnn'l’ij(x, n*f(x)dx for néN; (almost every neZ")

and
G0 Fraw®={, ¥t dx  for neD,
(almost every neD,).

Proof. Now let us consider the case where O<a<b< 0.

({E(b) + f(b —0) E(a)+ f(a——O)}f’ f)

b e R .
J o) ki ot K i)

1 2»¢

b
—lim— $° B dng dk+g dngbdk
elo T j=10LJ{|n|<RNAxE a (nl<R}NAxE a
b .20
+S dng dk]zhm ¥ LIk ,(e) + I3,(e) + I3 (o)1,
In]<R a el0j=1

where A is a neighborhood of N and R is chosen sufficiently large.
First we consider 11mI kj(e). Divide the domain of integration Dg={(#,
k); Inl<R, E¢ 4 and kela, b]} into a neighborhood of {(y, k)€ Dg;
(¢, k)e N} and the remainder. It is easy to prove that we can inter-
change the order of lim andgdn in the latter domain. Let us show
that we can interchatiéeo the order in the former domain. It suffices
to prove this in a neighborhood of a point (#°, k°) such that (£°, k°)
eN and (#° k°)eDg, where n°=(&°, 6¢°). Let (4, k) belong to such a
neighborhood and A=k+ic(A=k—ie),0<e<e, where ¢, is chosen
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sufficiently small. Hence we may assume that (& A)e Wx A{(k®)(W
x A5(k®)). Then, by Lemmas 1.1 and 5.2-5.7, we have

1 . ) 1 .
mlfj(’l,l)l =< |fj1(7’l,)~)| +m|fn(’1, A

1 £ . . —
@ sy —ap s Al for i r=n(l),

and
1 7 (n: 2 (n: 1 .
EOEYR L fo(n; VIS | fri(ns D]+ TG =T [Foa(n:d)]

1 - 1
4G @) =a] s D @ DT E D=0 D]

Y 1 S
X rstt: DU e @G DT D= AT o D1

where the fm(n; 1) are continuous in (#, A) and the limits f (M k+10)

(fjun; k—i0)) exist and are continuous in (», k). Hence, in order

to show that the order of lim and Sdr/ can be interchanged it suffices
0

el
to investigate the term

1 .
o=t DI E D=1 ] (s Dl p=4,5.

Since

1
(6—71(&; ) (z1(&; ) —71(85 )

1 1
N CEHAD I NG M G GG BT G)
holds, by Lemma 1.1 we obtain

1 < C " C
lo—3(&; D11 D —11(E DT [A-4, o)) 7 [A-4m)] °

Thus

gk°+5 &

voos G0 = )2 T a2 in; kxie) | 2dk < C,



E1GENFUNCTION EXPANSIONS FOR SYMMETRIC SYSTEMS 129

where C is independent of ¢ and n (0<e=Zg, and |p|<R). Therefore it
follows from the Lebesgue bounded convergence theorem that

. r.. 1 (b e ~ , j
1 — - - . 2
lellrglaj(S)—S”"|§R}\Axsdnulg)l . Su(ﬂj(n)_ e (s ket | 2dk |
- |F50012dn

[{In]|SRN AxEIN{aZi;(n)<b}

3 S | P54 20,0 2d1
v=1J[{|n|SRNAXE]IN{asky(E)Sb}NDyXE

Next we shall consider the IZ;(e). Tt suffices to estimate

I2 _Ld bdk————e—— P (n: k—ie)|?
k(&)= S "Iga (lj(n)—k)2+82|fj('1’ —ig)|*.

Assume that £°eN, A4(£°; k°)=0 and (£°, k% eN and that W, is a
component constructed in the proof of Lemma 2.11. Let t,({),..., t(&)
be the zeros of A(¢; t2+2,(¢, a(&)) in A 5(0) constructed in the proof
of Lemma 2.11. Then we can assume without loss of generality that
1(E),s ty(E) e and 1,4 4(),... t,,(f)eg in W,, and that #,(6)=0 and
1(0)#0, 25j<q, in W,. Put — 7 ij(mz)—Zf,v(nJ) A=k+ie.
Then from Lemmas 2.16, 5.2, 54 and 5.7, we have the following es-
timates:

(1) For j#r (=n(1)) and (& A) e W, x AL(k°),

2 . 9 C
|fj0(rl’ Z)]é |i_)~](n)| + ltl ’

. C C
AUy Y Q) IV X 3]

. 1
1 1 ClIm k,(£)[*
+< ! To—(& l)l)(ﬁ” |A—k,(&)]3/4

Cln(9)1? c
TG=AE @) + 15,@ 557 T |,|1—e]tv(5)|9)(2§v§ﬁ)

. c ¢
R e ¥ (= () I REVES R TR
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(2) For (& 2) e Wox A5(k°),

, c
R RN GRE Rk

(i) When t3(£; k+i0) is real, for (£, 1) e W, x A3(k°)

1
e Cle, )2
713 D1 & = e DI =2 00+ T T

+p,ClmE, &)1 + c c ]

P NG TN G LA

2=vp)

L ¢
TSR T TS AGE @]

. C C
i3 DS 17— s@y 1+ 1= 2,01

I
-
o= 21(E; )] 1212

+

(i) When ti(¢; k+i0) is non-real, for (£, 1) e Wy x A5(k°)

701 < [ Ti(E; D12 c
s DI S50 [M—Mf, a(®)]

ClIm k()| 4

ARG

C
@)

Clr, @1 N
I A OV O T T

C C

TR T RE e@) @SVER

1
_ C[Im t3(&; )12
Jestns D1 S 10— D124, o @)

C C
RPN O R VN (A (3)]
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Here [; is a number satisfying j=n(l;) and B,=1 (if Imk,(£)£0), =0
(if Tm k,(&)>0).

From the following estimates we can deduce that leigrél,% ;(&)—0
as m(4)—0.%)

: lIm £,(8) |2
S‘“S‘”‘S TTo=t G TA=K,@&)37

° o Imh( ) |ImkyQ)[?
¢ facfar(” ac To—tH D2 TA-Fy (&)
cf

lIA

~ 1
dégdk—“—m-ﬁ(l‘z— §c§d¢ (Im k,(6)<0),

P AGIEE
o 16,8)]
S"ég‘”‘g_w"" =T E DT (=& 78 DT
écgdé,
® 1
gdfg‘”‘g_ ""la-r,,(c I ER TR TR (] EL
écgdfg‘”‘u e (5»11 0 Itv(é)l“
gcgw‘glﬁ Q=<v<h).

In the case where t3(&; k+1i0) is real

o ele] ! 16,
S”MS‘”‘S-@"" [e=71(&; D2 (k=% 0(®)) 2 + LB [*]57
© o Imti;A) 18,0 |
=C S“égd"g-wd" [o—75(&; D2 (k= 4E, () 2+ 1 O[5}/
éCSdé,
1
g|t] 1 |Im k,(&)]2

Sdé‘SdkS O @ DIE U=k |72

éCSdé (Im k,(5)<0)

8) m (-) denotes the Lebesgue measure in £"~1.
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glt]!
S"’fg””‘g A e E DT AR

ac
=CSW 2=v=p).

Here we have used Lemma 1.1. In the case where 73(&; k+i0) is

non-real,

° o Imtig; ) :
S"‘fg‘”‘g_wd" o= D2 TA=4E, o)

zcla,

LS Im ti(&; A) €
faclar” ao 2 iE P AGIE

<c Sdé (Imk, (&) 0) .

When ¢°€eR, A(go k%)=0 and (&° k°)¢N, by Lemma 2.15 the
estimates for ToN—71 fin; 7) are easily obtained. Since N is a null

/1()

set of E"° !, we can take 4 to be sufficiently small, that is, m(4)—0.
Thus we have

lilmll%j(s)——>0 as m(4) — 0.
el0
In fact, from Lemma 5.8 and the fact that H t(&v is an analytic

function and equal to one of the coefficients a”(é) in (2.19), it follows
that there exists 6 (>0) such that

f st 25vsh.

Finally let us prove that limI3;(e)»0 as R—co. By applying the same
el0

argument as for If;(e) it is easy to see that

b e _ C
szw@mdésa [4;(m) =412 |75(n; D ks 5 +R2"

In fact, |A;,())—A]22C(62+ |£|2+R?) holds for |g|>R and ke[a, b]
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and Z.[f(x)](¢) is rapidly decreasing with respect to & For [£|=R
we apply the same argument as for IZ;(e), noting that |o—1/(¢; A)|?
2C(62+|€|?+R?) for |g|>R and ke[a, b]. Moreover for |£|>R we
make use of Lemma 2.15 and the facts that (&, k) does not belong to
N for ke[a, b] and that

b rd rd s
2| 17,03 D2k =11,
where fj(é) is rapidly decreasing. Thus we have

limI3;(e) — 0 as R— .
el0
Q.E.D.

We can easily extend the equation (5.15) for all feL?*(R%) and
obtain E(a)=E(a—0), a#0, making bla in (5.15). Hence o¢,(A)c={0},
where o,(A) denotes the point spectrum of A.

Theorem 5.10. Assume that the conditions (L.1)-(L.3) and (B.1)
are satisfied and that f and ge L*(RY).

(i) We have for 0<a<b< o (—0<a<b<0)

20

(5.18) ({E(b)—E(a)}f, 9)= X

Jj=1 Saélj(n)éb

FEm)»gFman,

s 2P -
+ 4%
+ v;l jgl g{a;k\,(q)gb}ﬂDvxE f_) +2vp(’1) g]+2vp(r’)dr' )
where
(5.19) JEm)=Lim. g WE(x, n)*f(x)dx,
r—ooo JRY N{|x|<r}
(5200 Jhoawn=Lim. | V2, 1 (.
r—o R N{|x]|<r}

(i) o0,(A)={0}. Moreover if E*(&;0)nZ={0} for almost all
e E" 1, then o,(A)=¢.

(iii) Let P° be the orthogonal projection onto the subspace of dis-
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continuity with respect to A. Then P=(I—P°) is the orthogonal
projection onto the subspace of absolute continuity with respect to A
and R(P°)=N(A) and R(P)=R(A)*. Furthermore we have the Parseval
formula

20 @ho= 2 T T

+ 2 F (Tt G, dn

v=1 j=1

Proof. It suffices to prove that 0¢o,(A), if E*(£;0)n#={0} for
almost all £eZ"!. Thus let us show that there does not exist any
non-trivial solution ve L'(R%) satisfying the following system of equa-
tions:

(5.22) [ Av=0, x,>0,

Ble"=0=0.

By taking the Fourier transforms with respect to x' in (5.22), we have

L d ; S e A4 x) =
[ 2 86 x)+ 5, 4471 4,58 x) =0, x,>0,

IBﬁ(E, 0)=0,

where #(¢, x,)= Z[v(x', x,)]e L2 (R}). Thus #(& 0)e E*(¢; 0), that is,
K2 0=3% C(Oh(E: 0.

From E*(¢;0)n#={0} it follows that C,(&)=0 for almost every ¢
e Z"~ 1, Therefore #(¢, x,)=0 for almost every £éeZ"~1, that is, v(x)=0.
Q.E.D.

§6. Eigenfunction Expansions

First we restate the properties and local representations of the
eigenfunctions ¥#(x, #) and ¥#,,,(x, n).

Theorem 6.1. Assume that the conditions (L.1)-(L.3) and (B.1)
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are satisfied.

(i) YF(x,n), L£j=<2p, are defined for xeR} and n¢N; More-
over, the W%(x,n) are infinitely differentiable in (x, n)eRix(E"\N})
and belong to L2 ,,(Z") and

APE(x, =4 m¥YF(x, n), BYF(', +0,17)=0

hold for all (x, n) e R} x (E"\N)).

(i) ¥%ov,(vn) (1SjS20, 1SVEs) are defined for (x,m)eRLxD,,
and infinitely differentiable in (x,n)eRL}xDj, and belong to L2 ,,(D,
x ).

Moreover,

Ale,-]TF-!—va(X’ 11)=kv(§)ql;:+2vp(x: ’1): BW_?:+2vp(x’s +0’ ")=0

hold for (x, n)eRY xDj,.

(iii) The Y¥(x,n) are represented in a neighborhood of n°eZ",
'10 ¢ Nj’ as
(6.1) ¥F(x, n)

_ 1o

(if there exists 1;, 1<1;=p, such that t{(¢; A(n)£i0)=0),

)4
(Zn)“%(eix‘npj(n) + Z { Z eix’-.feirfi({;).,(n)iiO)x,,
L p(D)=1; p=1

o G BE AT 00y BanlEs H{T0)
x A(&; A;(n) Fi0) 65 4,1 seees By (G5 4;(0 yerns

OA;
—51%('7)

4(&);4,;(n) Fi0)

Bl (&5 A,(n) Fi0)hi (&5 2;(n) Fi0)* +eix "¢

l
det(BhT,..., Bq,(x,, &5 4;(n) F90),..., Biy)hf (&5 4;(n) Fi0)*},—, W

..... 2ml

(if there exists 1, 1=1;<p, such that ©,*(&; 2;(n)Fi0)=o,

|
’Lthat is, if ©f(&; A(n)L£i0)#0 for all I, ISI<p).
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Here p(.) is a mapping of {1, 2,..., po} onto {l,..., p} such that t;)(¢;
A{(m)Fi0) is the eigenvalue of M(E; A(n)Fi0) corresponding to the
eigenvector hi(¢; A;(n)¥F i0).

Proof. The assertion (iii) follows from (5.10) and Lemmas 5.2 and
5.7 after some calculations. From Lemmas 2.15, 2.16 and 5.2-5.8 it
follows that YF(x,n)eL2,.(Z") and ¥Y%,,,(x,n)eLl2 . (D,xE). In
fact, for any a and b, 0<a<b, we have

S
S | (x, n) | 2dn+ zg
{agij(m)Eb}n{|n| =R} v=1JD,xEn{askyw(&)SbIn{In|=R}

% 2dy=1i LS g e
|T1+va(x’ ’1)| dfl l;:lf% T '”'ngr, a(/{j(n)_k)Z_,_EZ
x|¥ix, n; ktie)?dk<C,
where C depends only on R. Q.E.D.

Theorem 6.2. Assume that the conditions (L.1)-(L.3) and (B.1)
are satisfied and that fe L2(R?).

(i) The expansion formula

6.2) PfGo= 32| 5t i sapan

s 2P .
* z z SD x:Wﬁ'zv”(X’ q)f_-l_‘-+2vp(n)d’1

v=1 j=1

holds, where

6.3) 730={ . G *fCdx,  1j529,

64)  Thean®={y, VhoasCo f(0dx, 1552, 12955,

Here the above integrals are taken in the sense of the limit in the
mean.

(i) feD(A) if and only if 2m)f*(n)ePL*E"), k(EfF2.,n)
eP,(nL*(D,xE), 1=j<2p, 1Sv<s. Then
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(6.5) ANE= 3 | 2w nfsondn
+ 2 B0 k@2 M fav 0,
v=1 j=1 JDyXE
(6.6) AfEM=2mf5m), 15j=2p,
(6-7) (Af);+2v;z(’1)=kv(é)fj¢+2vp(")! 1§j§2P, 1 §V§S.

Proof. Let ®F; L>(R})—L?(Z")x L?(D; xE)x -+ x L*(Dyx E) be map-
pings defined by

@ff: (f;i(’?), f_);+29(ﬂ)3"'5f1¢+ 2.5p(’1))5 1§J§2p .

2
Put ¢*= Zﬂ ®F. Then we have the following
=1

Lemma 6.3.
(6.9) dE*PE=0  if j#l.

Morvreover ®* are isometries, that is,

(6.10) ¢I*¢i=1L2(n:), PEP*=pt

where P* are orthogonal projections in L?2(E")x L*(D;x E)x -+- x L*(D,
X E) whose ranges are equal to R(®%).

We can easily verify that
6.11) @5 ={_ 50e nfolmdn

+3 0 W lnnfondn,

where f=(fo, fi5.r f) € CE(EM) X CE(D; X E) X - x CF(Dy x E). By the
boundedness of @%* (6.11) holds for all feL?(E")x L%(D;x &)X -+ x L%(Dj
x Z), where the integrals are taken in the sense of the limit in the
mean. Thereflore (6.2) follows from (6.9) and (6.10).
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Next we prove the diagonal representation of A. From Theorem
5.10 we have

2

Ewrr =31 J-gEmdn

s 2P
+ 3

{ T¥r20p(0) Frran, ), £, g€ L2(RY).
v=1 j=1JDyxEn{ky(&)Sp}

It is well known that fe D(A) if and only if
(7 ra@@ys, <o

(see, e.g., [16]). Thus it is easy to see that feD(A) if and only if

T¥), 2, ) € PADLAE", [E20)M)s kl(E)T e 20,(m) € PADLAD, x 5), 1
<js<2p,1=v=<s. Let a(x) be a C® scalar function such that

1, |xl<r,

a,(x)= [
0, I|x|>r+l.

Let fe D(A). Then «.(x)f(x)e D(A), and
AnsEe=tim. [, w500 oA

—Lim. (| [4.60P5x, MY )
~lim. XR" (ALY (x, m)*a,(x)f (x)dx

+Lim.

r—w S{xeR’_,‘_ srS x| Sr+1

)P )T (i
=Lim. {30075, *a,(OS@dx= 1m0

Similarly we can show that (Af)ji,,,(mM)=k,(%) f;—; 2vp(n).  This proves
(6.5), (6.6) and (6.7). Q.E.D.

Proof. of Theorem 0.7.
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Assume that the operator L satisfies the conditions (L.1)’, (L.2) and
(L.3) and that the matrix B satisfies the conditions (B.1) and (B.2).
Then from Lemmas 2.8 and 2.9 it follows that

ql}"t+2vp(x9 ’1)50’ lé.]ézp’ l§v§s.
This proves Theorem 0.7. Q.E.D.

The following theorem gives the ranges R(®*) in an explicit form
under the conditions (L.1)’, (L.2), (L.3), (B.1) and (B.2), where &%
are defined by (0.30) and (0.31).

Theorem 6.4. Assume that the conditions (L.1), (L.2), (L.3), (B.1)
and (B.2) are satisfied.
(i) We have

(6.12) R(®*)=P(nL*(F)®- @ P, (ML*(F3,),

where the F¥ denote the sets {neZ";tf(&; Aj(m)+i0)#0 for all I,
1S1=p}*® and PmL*(F7)={feL*(E"); P;f())=f(n), SuppfcF%}.
Moreover F%=Supp,[¥F(x, n)], FinF;=N; and F}UF;=E" hold,
1=j=2p.

(i) The functions ®F are partial isometries and
(6.13) R(®%)=P(n)L*(F¥), ¢f¢%*=0, Jj#k,
hold.
2
Proof. It suffices to prove that geN(®**) n @p P;(ML,(F$)'1°) implies
j=1

2p
g=0. Let g(n)Egl(n)CB---@gz,,(n)eN(q’**)ﬂj@le(n)Lz(F%)- Then

. 2p
0=¢¢*g=11.vl;12. S ,-; Y5 (x, man(mdn,

where gy(n)=g(n) for |p|<N, =0 for |#y|>N. Hence, for non-real A

6.14) F(A-N)"1d**g, — 0 in L>(Z"!'xR})as N— ©.

9) S¢ denotes the closure of S.
10) N(®**) denote the null space of =¥,
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Let fe L2(E" ! xR}) such that#.fe Cy(R}). By (6.14) we have
(f, ZAA=2) 102G ) =(PHA D) Zf, gn)o
(3 (=119 Ff g — 0 as N—co.

Thus

2p

1 e
=> - P Z f-gd
0 j=1g5nij(11)—}, J éfg n

and, therefore, we obtain

2p e b g e s
0= ; S Tgadka‘mq’ﬂgf'y

2p o 2p L -

=% S PF Ffgdn= X (27 7S, 9;(D)o

j=1Jasij(n)sb =1

= 51, morg, (1)),

where g{(4)=g(n) for a<Aj(n)<b, =0 otherwise. So we have

N

p

(6.15) 0= j; . BE*g (4)

]
N
)

z [, 07T e T3 (x,, mg (|

J

~N
A~}

(" #5000 ma,()do

]

ji=1

i
|| Mg

S N P4 (xa mg(ndo,
F (&)N{a=4;(n)=b}

where the F}(é) denote the sets {oeZ;tf({; A;()+£i0)#o for all I,
1=1=p}. It follows from (6.15) that

20

6.16 F(x ~0
( ) jgl aeFt(§)2,11(11)=v ] (X,, n)g(n)

for almost every (x,, & v)eRIxZE""1xR!. Let (£,v) be fixed such
that (6.16) holds for almost every x,eR}. The number of o, which
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satisfy aeﬁf(é) and A;(n)=v, is at most finite. Denote by 6;y,..., 0,
these values of o. Then,

20 ki

> 2 ¥PH(xy & 0,)9(, 0;,)=0.

i=1v=1

On the other hand we can write ‘T’Ji(x,,, £, 0) in the form

o~ 1. 1»r P4 .
P50 & @) =[Qm) el +Q2m) 72 . Cylpeivi &o2io
1 2 - .
+(2n)-2v=§+lpv(xm Y])e”v (ﬁ;vitO)xn]Pj(n)’

where the P,(x,, 1) are matrices whose entries are polynomials with
respect to x,. Therefore it follows that

6.17) 0= zf kz (2n)‘%e“‘""ﬂg,-(é, o)

ji=1v=1

P . .
+ z gu(é; G115-15 ollpkzp)elr;(éwil())xn
n=1

p

e

+ Zﬂg,,(x,,, &3 Ortsenns Oy, )elu (B30 E00%n
u=p

where the g,(x,, & 0115..05 O2p,,) are polynomials with respect to x,.
By (L.1) we see that

o'jv#o-j'v' if (]5 v)#(jla vl)'
Moreover, from o;,e F#(¢) it follows that
T45(&; v+i0)#aj,.

Hence, from the linear independence of the functions of x,, e**n%iv
and e’ Ei0xn we have gi(¢, 0;,)=0, 1=<j<2p, 1Sv<k; Thus, g;()
=0 holds for almost all ne F¥ and, by Suppg;(n)=FF, we obtain g,(n)
=0 in L2%(E"),1<j<2p, that is, g(y)=0 in L3(E"). This completes
the proof of Theorem 6.4. Q.E.D.
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§7. Some Remarks and Examples

First we shall consider the case where the condition (L.2) is removed,
that is, the non-elliptic case. Let the A; be NxN Hermitian matrices
and B an Ix N matrix with rank | as stated in §0. In this case N
is not necessarily even. Put p=rankA,. Then (L.1) implies that rank 4;
=p,1<j<n, and that p is even. Moreover (B.1) implies that [=p/2.
Under the condition (B.1) it follows from [5] that the operator
defined in §0 is essentially self-adjoint. For the fundamental solution
E(x—y; 1) we obtain the same estimates as in the elliptic case. For
we deal with only the case where A is away from zero. Hence we
have only to estimate the compensating kernel E/(x, y; 1) (E&, x,, y; A).
Recall that E (¢, x,, y; A) satisfies the equations

15 [ Auger = GI=AG ) |E&, 5 v D=0, %,>0,

(1.6)' BE,(¢, +0, y; )= FZ[BE(x~y; Dls,=0]-

There exists a unitary matrix T such that

s al O \‘
(1.1) T*A,T= "y, | =4,

where a,,..., a,, are the repeated non-zero eigenvalues of A,. Replacing
E/(¢, x,, y; A) by an N-dimensional vector u(x,, &; A) and Z[BE(x—y;
Mlx,=0] by an I-dimensional vector g and putting

(7.2) v(x,, &; A)=T*u(x,, &; 1),

we have for non-real A

WSy (A —THGI= A T sy, £ D=0, %,>0,

(1.6)" BTuv(0, &; A)=g.
Put
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(Nu(f;l) Ny5() > =T*[AI—-A(, 0T,
(7.3)

N,1(9) N, (&5 2)

where N,;(&; A) is a 2Ix 2l matrix. It is clear that N, (&; )*=N,(&; 1)
and N,;()*=N,,(¢). Moreover from the condition (L.1) it follows
that sz(é; A’)_—:AIN"ZI' Put

< vl(xm és /1) ) = v(xm €> A)a
(7.4)
Uz(xm éa /1)

where v, is a 2/-dimensional vector. Finally we obtain

(1.5) (= ME D) Yo (3 & D=0, 3,50,
(7.6) E(fa /1)01(0’ ¢ /?-)"—"gy
where
a7 m&n=[, 0 "' CAGHES S HELAG)
.
O azxj
(7.8) B(¢; )=BT Iy }

. "‘i“Nz 1(5)_]

Therefore we can discuss the expansion problem in the same way as
we did in §§1-6 and obtain the expansion theorem in the same form as
Theorem 6.2.

Next we consider

13,0

(7.9) 24 ja—;j—(x) —Jv(x)=g(x), xeR3,
(7.10) Bo(x)|,,~0=0,

where

(7.11) A1=<(1) (1)> A2=(? “(’;), A3=<(1) _(1’), B=(1, 1).
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It is easily seen that the above system satisfies the conditions (L.1)-
(L.3) and (B.1). However, the condition (B.2) is not satisfied (see, [6]).
We observe first that

(7.12) A& )=4+¢;.

By Theorem 6.2 we have for fe L2(R3)

(7.13) 1= 5 #itx o odn,
(7.14) Fi={ . ¥i0e i 00dx, 1554,
where
(71.15) ¥i(x,m={ 0 (6>0),
O SRR ('”'*"’5“"52>
eix’ &l pixac
2Inl Ei+its, Inl—o

e~ixse [ @1(m), @2(8, —0) )
- (0'<0) ’
In] +51< 928, 0), ¢1(1) J

(1.16) ¥i(x,m={ 0 (6<0),

en gk [( e ‘fl"“)
—&1+ily, Nl +o

e-i%30 <¢1(—€1, 82, 0), 92(—¢y, &2, 0) >

11 =81\ 63 (=E0 E=0); @1(—=¢E1, E3, 0)
(6>0),
717 ¥ix,m={ 0 (€,>0)
‘é lé ix’ - x3&2
S TS
<(P3(")a ¢3(éa —'O')) (£2<0),
os(n), —@3(, —0)
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(7.18) ¥im=/ 0 (&>0)
-3 152 ix’+&,x3&2
m) e, =D e

< e3(—=m, ¢i(=¢, 0)>(€2<O)’
—(P3(_’1)’ —903(-'59 O')

(7.19) o1 =1&1>+ ¢ —ié,0,
(7.20) Q(mM=02+,2+nlo+&yInl+ 0y +i(Inlé, + 08, +E,E5),
(7.21) pam=Inl+o+& +i¢,.

Moreover it follows from Theorem 5.10 that the spectrum o(A) of the
operator A defined by (7.9) and (7.10) is equal to R! and og,(A),
that is, o(A)=0,/(A)=R1.

In order to show that the eigenfunction expansion for a single el-
liptic equation can be obtained in the same way we consider the follow-
ing example:

(7.22) (—4—-NDu(x)=g(x), xeR}%,
(7.23) [av(x)+ b g)‘c’ (x):L =0,

where a and b are real and |a|+|b|#0. Then
(7.24) A(E; D)=ibJA=[E*+a,

where Im./A—[£[2>0 for ImAis0. If ab<0 or b=0, A(; k)#0 for
|k|+|€]#0. Thus we have for fe L2(R%)

(7.25) Fe)={_ 50, mFteidn,

(7.26) 730={ ., 365 (0,

R

where
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(1.27) ¥ie,m=! 0 (+0>0),

(2n)_%eix/.g[eix,.a__ e—ixnaZi—lb);:g} (+ a'<0) .
{

2
If a-b>0 or a=0, 4(¢; k)=0 for k=|§|2—%. Therefore putting

-2 Dai '
= 2__ =% pixteg Xn
(7.28) ¥,(x, n)=02n) 5o tai’ e *np,

we have for fe L2(R%)

(7.29) 769=|_ it mPsmdn+ |, ¥ax, mfx0dn,

(7.30) fz(n)=§ W, (x, n)*f(x)dx

R?

In conclusion, the author wishes to thank Professor M. Matsumura
for his valuable advices and helpful discussions.
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