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Eigenfunction Expansions for Symmetric Systems
of First Order in the Half-Space R+
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Seiichiro WAKABAYASHI*

§ 0. Introduction

The eigenfunction expansion theory for partial differential operators

has been investigated by many authors. T. Carleman [1], A. Ya. Povzner

[10] and T. Ikebe [2] treated the Schrodinger operator — A + q(x) in the

whole 3-dimensional Euclidean space R3. Especially Ikebe gave an

explicit eigenfunction expansion in terms of distorted plane waves. For

— A in an exterior domain of R3, the first result from Ikebe's point

of view was obtained by Y. Shizuta [13] (see also Ikebe [3]) and the

result is generalized by N. A. Shenk II [12] to the higher dimensional

case. K. Mochizuki [8] derived the eigenfunction expansions in terms

of distorted plane waves for symmetric systems in an exterior domain

of R" and J. R. Schulenberger and C. H. Wilcox [11] in the whole

space R". An other approach to spectral representations for the opera-

tors associated with the wave equation and symmetric hyperbolic systems

in an exterior domain in R" is developed by P. D. Lax and R. S.

Phillips [6]. As for the eigenfunction expansions for more general

partial differential operators there are important works by F. E. Browder,

L. Garding, F. I. Mautner and others.

In this paper we shall derive eigenfunction expansions associated

with the stationary problems in the half-space R" for symmetric hyper-

bolic systems with constant coefficients. We note that this problem can-

not be treated as a perturbation of the whole space problem. In fact,

our theory is a generalization of the sine and cosine transformations in
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the L2 space on the positive half-line which are eigenfunction expansions
d2

for — , 0 in (0, oo) with Dirichlet or Neumann conditions at x = 0.
ax2

Let R" denote the n-dimensional Euclidean space. Denote by x

the generic point of R" and write x' = (x1,..., x^.j). We shall also

denote by R£ the half-space {x = (x', xn)eR"; xn>0} and by t the

time variable. Let L be a first order symmetric hyperbolic operator

with constant coefficients:

where / is the identity matrix of order N and the Aj are NxN con-

stant Hermitian matrices.

We consider the mixed initial and boundary value problem in R"

for the operator L:

(0.2) L[i<(f, *)]=/(*,*), r>0,

(0.3) u(Q9 X) = HO(X),

(0.4) Bu(t, x)|Xn=0 = 0,

where u(t, x), f ( t , x) and i^0(^) are vector-valued functions whose values

lie in the JV-dimensional complex space CN and B is an IxN constant

matrix with rank if, which stipulates / linear homogeneous relations

between the components of u on the boundary xw = 0.

Replacing u(t, x) and f(t, x) in (0.2) by eiktv(x) and -ieiktg(x),

respectively, we obtain the corresponding stationary problem:

(0.5) (A-kI)v(x)=g(x\ xeR£ ,

(0.6) Bv(x)\Xn=0 = Q,

where

Our aim is to expand an arbitrary function in L2(R") by means of
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the generalized or improper eigenfunctions for the self-adjoint operator

associated with this problem under some suitable conditions of L (or ^4)

and B. In order to state our assumptions on the operators A and B,

let us now recall some basic notations and terminology about hyperbolic

mixed problems. For more details in this subject, see, for example,

Courant and Hilbert book and Lax and Phillips [6].

Let p(A, /?) be the characteristic polynomial associated with the

operator L:

(0.8) X^) = det(A/-Afa)),

where \] denotes a generic point of the real dual space En of Rn by

the duality x-t] = x1rji-i ----- hxKf/, t and

(0.9)
j=l

The polynomial p(k, r\) has a factorization

(O.io) P(^n)=Q^nT^-Q^nT^

where the factors Q/A, /?) are distinct homogeneous polynomials in (A,

77), irreducible over the complex number field C. Since the coefficient

of AN in p(A, rj) is 1, the factors are unique, apart from their order,

by requiring the coefficient of the highest power of A in each Q/A, rj)

be 1. Put

(0.11) 6(A,'/) = ei(A, /7)- Q,(A, f / ) .

Definition 0.1. The operator L is said to be uniformly propagative

if the roots A/??), 1 ̂  j ^ ^u, of the equation Q(A, 77) = 0 in A satisfy the

following conditions where \JL is the order of Q(A, r\): (1) The roots

AjO?) are all distinct for every Y\ with |f?| = l. Thus we may assume

that the A7-(;7) are enumerated in the following way.

(0.12) A1(iy)>A2(i?)>».>^).

(2) A root function A/;?) vanishes for some real 77 ^0 if and only

if it vanishes identically.
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Wilcox [15] gave an elegant characterization of this class of sym-

metric hyperbolic operators. For a uniformly propagative operator,

the eigenvalues of A(rj) for rj^Q have constant multiplicity.

(0.13) X4 iy) = (A-A1(iy))vi...(A-A | l(iy))vM, Vl + ».+v=Ar.

From the enumeration (0.12) it follows that the roots ^(rj) are C°°

functions of r\ in £"\{0} and positively homogeneous of degree 1. Fur-

ther we have

(0.14) lj(rj)=-^j+1(-rj) and Vj = v^j+1, ; = !,.. .9fi.

We consider only the case n^2. Hence by the condition (2) we have

for

(0.15) A1(iy)>->

if /x = 2p is even, and

(0.16) A1(iy)>->Ap(iy)>Ap+1(iy)sO>Ap+2(iy)>->A2p + 1(

if ju = 2p + l is odd.

The IxN matrix B in (0.6) defines a linear operator of C^ into

C' (under the respective canonical bases).

Definition 0.2. The linear operator defined above is called boundary

operator and denoted by the same letter B. The kernel {CeC^; B( = 0}

is called boundary space and denoted by 38 or kerJ5. A boundary

operator B (or space 38) is said to be conservative or energy preserving

if the quadratic form ^4nC'C associated with An is zero on 38 ̂  that is,

(0.17) 4,C-C = 0 for all

where f-f denotes the scalar product CiCiH ----- K#Cjv for £, £ zCN.

Under this condition we can easily see that every solution u(t,

•)eL2(RJ) of the mixed problem (0.2)-(0.4) with /=0 satisfies the

following energy equality which expresses the conservation of energy:

(0.18) ||ii(f, 011^(0= K
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This equality immediately assures uniqueness for the solution and con-

tinuous dependence on the initial data. But the above condition does
not guarantee existence of the solution. Indeed, we cannot expect a

solution to exist if too many boundary conditions are imposed, that

is, if fewer boundary conditions would guarantee the uniqueness of the

solution. To guarantee general existence of the solution, we require the

following concept.

Definition 0.3. A boundary space ^ is called maximally conserva-

tive if 3$ cannot be enlarged to a larger linear space over which the

quadratic form An£-£ is still everywhere zero. Since the boundary space

& is larger when we impose fewer conditions, the boundary operator

B then is called minimally conservative.

The following lemma due to Lax and Phillips [6] give a complete

description of all maximally conservative subspaces of C^ with respect

to the quadratic form An£'£ of signature zero.

Lemma 0.4 ([6], p. 199). Let S be a symmetric NxN matrix

of signature zero, and denote by & and Jf the N/2 dimensional sub-

spaces spanned by the eigenvectors corresponding to the positive and

negative eigenvalues, respectively. Then S is positive and negative

definite over 2P and Jf^ respectively. Let e\9...9e^j2 be any orthonor-

mal basis in 0* with respect to S and e7,..., %/2 be any orthonormal

basis in Jf with respect to —S. Then

(0.17)' SC-C = 0

for all £ in the subspace & spanned by e^ + e^,..., e~N/2 + eN/2 ana &
is maximal with respect to this property. Conversely, every & which

has property (0.17)' maximally can be constructed in this way.

From now on we shall assume that the hyperplane xn = Q is not

characteristic for L, i.e., the matrix An is non-singular. We define

(0.19)

where A is a complex parameter and £ is the generic point of S'1"1.
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From the hyperbolicity of L it follows that the eigenvalues of M(£; A)

are never real when ImA^O and ^eE""1. Since the eigenvalues of

M(£; A) are (multivalued) continuous functions of (f, A) this implies that

the number of roots with positive imaginary part, counted according

to multiplicity, is constant when ImA>0 (resp. ImA<0) and ^eS""1.

If the operator A is elliptic in the sense that A(v\) is non-singular for

all non-zero rjeS", the matrix M(£; 0) has the same property for non-

zero £eEn-1. We denote by £+(£; A) (resp. £-(£; A)) the subspace of

CN spanned by all the ordinary and generalized eigenvectors of M(£; A)

corresponding to eigenvalues with positive (resp. negative) imaginary part

and call it the positive (resp. negative) eigenspace of M(£; A). Then we

have

(0.20) £+(

when ImA=£0 and £eBn~l. If the operator A is elliptic we have further

(0.21) dim£+(^;A) = dim^-(^;A) = -^-=m(«^2)

for ImA^O and feS"-1.

Definition 0.5, A boundary operator B is called coercive for an

operator A if there exists a positive constant C such that

(0.22)
dx,

£C(\\Av\\ +\\v\\

for all functions t;eCo(R+)1} which satisfy the boundary condition

Bv\Xn=0 = Q. Here \\v\\ denotes the L2 norm of v over R".

The following lemma is also due to Lax and Phillips [6].

Lemma 0.6 ([6], p. 202). The boundary operator B is coercive
1 n g

for A = —^-J^ AJ-X— if and only if the following condition are satisfied:

(i) l = N/2.

(ii) # n E+(£; 0) = {0} for any non-zero ^EEn~l.

); Supfo u is bounded}.
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Here I is the number of column vectors of B.

Now we state precisely the assumptions that we impose on L and B'.

(L.I) The operator L is uniformly propagative.

(L.2) The operator A is elliptic.

(L.3) The multiplicity of the real roots of Q(A, ^)|,7=(^,T) = 0 with respect

to T is not greater than two for every ^eS"'1 and real A^O. Moreover

the equation has at most only one couple of real double roots for

every (£, A)^(0, 0).

(B.I) The boundary operator B is minimally conservative.

Remark 1. The condition (L.2) implies that the matrices Aj are

non-singular and that \JL and N are even. Hence we put n = 2p and

N = 2m.

NRemark 2. The condition (B.I) implies that l=-—-==m.

The differential operator A defines a non-bounded linear operator

$0 in L2(R+) with domain

stf is closable and we denote by A its closure. Then A is a self-

adjoint operator in L2(R"). Moreover if we assume that «^n£+(£;

0) = {0} for any non-zero c^eS""1, the domain £>(A) of the operator A

is the set [v(x)eHl(R$)-9 Bv(x)\Xn=Q = Q}, where H^R") denotes the
space of vector-valued functions whose derivatives of order ^1 belong

to L2(R") and Bv(x)\Xn=0 is interpreted as the trace of Bv(x) on the

hyperplane x;t = 0. These were proved by Lax and Phillips [5].

Let G(x, y ; A) be the Green function for (A — AI), Im A =£ 0, which

will be constructed in §3 according to M. Matsumura [7]. G(x, y; A)

is defined in R J x R£ x {C\R} and C°° function of (x, y) outside the

diagonal in R^xR^ . We extend G(x, y\ A) over R" with respect to

y by defining G(x, y; A) = 0 for xeR", y<£R" and ImA^O. Then for

xeR" and ImA^O, G(x, >', A) is a temperate distribution of y. Now

we put, for xeR", yeS" and ImA^O,
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(0.23) y/x, if ; A) = J|[G(x, 3; ; A)] fa) (A,-fa) - A)P/iy), 1 ^ j ^ 2p ,

where ^[/(y)]fa) denotes the conjugate Fourier transform of a tem-
perate distribution f(y) and P/fa) the orthogonal projection of CN

onto the eigenspace corresponding to the eigenvalue A/fa) of the matrix

A(rj). We can show that for all xeRJ and almost all fyeS"

rf) = *Fj(x, v\ ; Ayfa) + iO) ( = lim !P/(x, fy ; A^fa) + z e)) exists and satisfies
£-»0 +

(0.24)

(0.25)

Thus the ^(X ??) are (improper) eigenfunctions for the system

{^4, B} and therefore for the operator A in

Under our assumptions we need generally new eigenfunctions cor-

responding to the real zeros of the Lopatinski determinant defined in

§2 in order to derive the eigenfunction expansions for our problem.

If we assume in addition to the conditions (L.1)-(L.3) and (B.I) that

(L.I)' the operator L is strictly hyperbolic, and that (B.2) £+(<!;; /c) n ^

= {0} for every ^eS"'1 and every real k with |£| + |fc|7^03 then our

expansion theorem is stated by the following form.

Theorem 0.7. Under the conditions (L.I)', (L.2), (L.3), (B.I) and

(B.2), we have the following :

(i) For all /eL2(R!0

(0.26) /(x)= g
j=l

(0.27) /*0?) = ( „ <?*(*, n)*f(x)dx .
JR +

Here the above integrals are taken in the sense of the limit in the mean.

(ii) /6D(A) if and only if

L2(S»); P/i0/(!f)=/(i0}, lgj^2p. Then we have

(0.28)
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(0.29)

From our proof of the above expansion theorem we can see that

a(A) = crflc(A) = R1, where cr(A) and crflC(A) denote the spectrum and

the absolutely continuous spectrum of A, respectively. Moreover we can

obtain explicit representations of the eigenfunctions ^(x, rj). Let

0*: L2(R£)->L2(Sn) be the mappings defined by

(0.30) <*>!/=/? for all /eL2(R»), l£j£2p.

Put

(0.31) <£*== X <£j.
j=i

Then we can prove that the $j and ^± are (partial) isometrics and

give explicitly the ranges of <£* and $*.

Under the conditions (L.1)-(L.3) and (B.I) we shall prove the

expansion theorem in § 6. Further we shall also show that the condition

(L.2) can be removed in the last section.

The plan of the remainder of this paper is as follows: In § 1,

we study some behaviors of the eigenvalues with respect to the parameter

(£, A) and construct continuous bases of the positive and negative eigen-

spaces E±(^; A) of M(£; A). In §2 some behaviors of the Lopatinski

determinant in the neighborhood of the zeros are studied. In §3 the

Green function G(x, y\ A) of the operator A —AI is constructed and

a representation of its partial Fourier image is given. In §4 improper

eigenfunctions for A are defined. A construction of the spectral family

of A by means of the improper eigenfunctions is given in §5 and is

applied in §6 to prove the expansion theorem. Some examples are

given in §7.

§1. Eigenvalues of M(|; 2) and Continuous Bases of E±(§; 1)

We shall construct the Green function G(x, y\ 1) for the operator

in the form
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(1.1) G(x, y; X) = E(x-y, A)-£c(x, y\ A),

where E(xi X) is the fundamental solution of A = — — £ A,-* — in the
/ j- 1 VXj

free space R", defined by

(1.2) E(x; V = (2n)-2<Fl(A(ri)~Mr1~] .

On the other hand Ec(x, y\ A), called compensating kernel, will be

obtained as a solution of the following boundary value problem:

(1.3) (X,-A/)Ec(x,.y;A) = 0, x^eR", ImA^O,

(1.4) BEc(x, y, X)\Xu=0 = BE(x-y, A)Ln = 0 .

Taking formally partial Fourier transforms with respect to x' = (xl5...,
*„_!) in (1.3) and (1.4), we obtain the first order system of ordinary

differential equations depending on parameters (£, A) :

(1.5) - - - - M ( { ; A ) £ c « , ^ l l , ^ ; A ) = 0, jcn>0, CeH""

(1.6) BEtf, 0, y; X) =

where Ec(^ xn, y, A) = &x,[_Ec(x9 y; A)]. In order to construct the solutions
and to investigate their properties, we first study some behaviors of the
eigenvalues of M(£; A) and construct continuous bases of the positive
and negative eigenspaces £*(£; A) of M(£; A).

Eigenvalues of the matrix M(f ; 2)

Let k° be a non-zero real and ^°E3"~1. Assume that the matrix
°; /c°) has a real eigenvalue cr°. From the relation

(1.7) p(^ & e7) = det(A/-A(& ff)) = det(-AII)det((7/-M({; A))

and the definition (0.11) of Q(A, ^ a) we have Q(fe°, f°, (7°) = 0. Then

there exists in the enumeration (0.12) a unique number r, l^r^/i(=2p),

such that /c°=A,(£0, cr°). We know that the A/f, *) are real-valued

analytic functions of real variables /? = (£, cr) in S"\{0}. We consider

A = Ar(^, o) in a neighborhood of the point (£0, cr°) and extend the real
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variable a to the complex variable r. By the assumption (L.3) the real

root 0° of Q(k°, £°, a) = 0 is either simple or double. This implies

(1.8) (i) (£°, CT°)^O or (ii) 4k(£°, <r°) = 0 and «°,

In the first case where cr° is simple, there exists by the implicit function

theorem an analytic function T = T(£; A) defined in a neighborhood of

(<J°, (7°) such that A = Ar(£, t(£;A)), <J° = T(£°; fc°) and the value r(£; fc)

is real for real fc. i(<J; A) is an eigenvalue of the matrix M(£; A) with

multiplicity vr and a simple root of 2(A, <J, T) = O. Moreover T(£; A)

is not real for non-real A. Thus ImT(£; A) is always either positive

or negative for ImA>0 and the same for ImA<0. Write T = T+(£; A)

or T = T~((^; A) according as IniT(^; A)>0 or Imt(<!;; A)<0. Let Pf be

a sufficiently small neighborhood of £°eEn~* and put

(1.9) yl|(/c°) = {AeC; |ReA-/c°|«5, 0< ±

Then T = T+(^; A) or T~(£; A) is analytic in Wxyl+(fe°)

and continuous in WxA^(k°) (W x/t^(/c0)),2) where £ is chosen suf-

ficiently small. Moreover, making use of the Taylor expansion in T

of Ar(£, T) about the point a:

(1.10) Ar(£, T) = _£ -I- ^p({, cr)(T - *)J,

we can show that

I m A ^ O

where k is real.

Next let us consider the case (ii) of (1.8) where <r° is a double

root. From the implicit function theorem there exists a unique real-

valued analytic function G = G(£) in a neighborhood W of £° which satis-

fies

(1.12) «, <r(0)=0 and <7° = <r(£0).

2)
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Regarding Ar(^, T) as a function of T with parameters £ we expand it

in a Taylor series centered at the point a = a(^)

(1.13) A = Ar«, T) = Ar(£,

From this there exists by an inverse function theorem in analytic func-

tion theory an algebraic function T(£ ; A) in A defined in a neighbor-

hood of (£°, fe°) which satisfies

(1.14) A = ̂ ,<f;A)),a° = T«0;fc0) and fc°=Ar(£°, *°).

T = T({; A) is represented by a development in a Puiseux series of the

form

Define T+(^; A) and T~({; A) by the branches of T(£; A) such that

A)>0 and ImT~({;A)<0 for ImA^O, respectively. The validity of

these definitions follows from the fact that ImT(£; A) has the same sign

as Im^ODO- Then T+(£; A) and T~(£; A) are analytic in WxA+
d(k°)(W

and continuous in WxA^(k°)(WxAs(k°J). Moreover

A) and T~(£; A) are eigenvalues of the matrix M(f; A) in WxA^(k°)

(WxAs(k°y) and their multiplicities are equal to vr, respectively, unless

T+(£; A) = T~((^; A). In this case, from the development (1.13), we also

obtain

(1.16) lim =—Ir*V* =Qv ' A-fe i
ImA^O

where k=

Lemma 1.1. Let us consider the case (ii) of (1.8). Let

In a sufficiently small neighborhood of (£°, /c°)

(1.17) - - U I ^ !?*(«; A)-<
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hold.3) Moreover the following inequalities hold:

(i) If t±((J; k) are real, then

(1.18) (Re T+(£ ; A) - *«)) (Re T-« ; A) - <

(1.19) - -

(ii) // !*(£; k) are not real, then

Proof. (1.17) follows from (1.15). (1.19) follows from (1.13) and

the fact that ^I^IRer1^; A)-<7(£)|^C|*| if T±(£; k) are real. (1.18)o
follows from the fact that s0n(Re<£; A)-(r(5)) = sflfwRe(a1(QO if T±(£; k)
are real. The assertion (ii) is obvious. Q. E.D.

Since the matrices Aj are Hermitian, the eigenvalues of the matrix

; A) coincide with the complex conjugate of those of the matrix

). Let T?,.. . ,T§P be the roots of Q(k°, £°, r) = 0 (counted ac-
cording to multiplicity). Then the number of the non-real roots of
Q(k°, £°, u) = 0 is even. Thus that of its real roots is also even. Let

T = TJ-((^; A) be the functions defined in a neighborhood of (£°, k°) which
correspond to the real roots rj, respectively. Then the condition (L.2)
implies that for Im A > 0 (Im A < 0) the number of T/^; A) with positive
imaginary part is equal to that of T/£; A) with negative imaginary part.

We can rewrite the above T/£; A) in WxAffi)(WxAffi)) as

(1.20) rt«; A),...,Tj(f; A), TT(£; A),...,T;(§; A),

where 2p is equal to the number of the real roots T^ and TJ(<!;; A)
are taken to be ±ImT/^; A)>0 for ImA>0 (ImA<0). The T*(^; A),

l^ j^A are analytic in W xA^(k°)(WxA^(k°J) and continuous in W

xA^(k°)(WxAs(k°J). Moreover there exist continuous functions

^j^P, defined in WxA^)(WxA^)) such that the T

3) Here and in sequal C denotes a positive constant.
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are the non-real roots of Q(k°, f°, T) = O, the T*(£; A) are roots of Q(A,
£, 0 = 0 and ±ImT±{£; A)>0. Thus we obtain the 2p roots of Q(A, & T)

= 0 in W

(1.21) rt«; A),..., T+(£; A), T++I(£; A),..., T+(£; A),

Tl(f; A),..., r-(f ; /I), r-+1(f ; A),..., T;(£; A),

where T±(£°; fc°),-, T±«°; /c°) are real and T±+I«°; fc°),...,T±K°; fc°)
are not real. Let v7- be the multiplicities of the eigenvalues T*(^; /I)

(l^j^p, ImA^O) of M(^;A). By the condition (L.3) g(/c0, ^°, r) = 0
has at most only one couple of real double roots. Thus when Q(k°,

£0, T) = O has real double roots we may assume without loss of generality

that

(1.21)' Tf(^;k°) = TT(^;P)

is the real double root.

Construction of continuous bases of the positive
and negative eigenspaces E±(^ ; 2)

Slightly modifying a construction in [7], we construct a system

of vectors which satisfy the following properties:

(i) hh(t;X)(l£j£p9l£k£vj) and A+(£; A) (p0 + 1 ^ j ^ m) are de-

fined and continuous in WxA^(k°) and are linearly independent, where
p

Po=H vft.
k=l
(ii) fcjk(^; A) (l^j^p, 1^/c^Vj) are eigenvectors corresponding to

eigenvalues T|({; /I) of the matrix M(£; A).

(iii) {fcy*(f; A), fc]f-({; A)} i^-^i^^v^o + i^^m is a basis of the
positive eigenspace jE+(£; A) in

First let us define {fr/(f ; A)}Po + 1^ra. We choose a basis {/*°}Po

of tne subspace E+(£°; fc°) of C2m generated by all root vectors
corresponding to eigenvalues T£+I(£°; fc°),..., T+(^°; /c°) of M({°; fe°) and
put

(1,22) AJ(S;A) = ̂ J (TJ
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where y+ is a simple closed curve enclosing only the eigenvalues T£+I(£;

A),..., T£((!;; A) and away from the real axis. Next let us define {/ijk({;

^•)}i^./^p;i^*^V There exists a number n(l)9 1 ̂ 7r(/)^2p, for each /,
I g /gp , such that

(1-23)

The rank of a projection

(1.24) Pn(n(S9 Tf(£; A))

is equal to the multiplicity vn(l) of the eigenvalue An(l)(rf) of ^(77), which

is also equal to vt. Thus there exists a set of vt column vectors hfk(£'9 A),

of the matrix Pw(i)(^, T^(^; A)) which are linearly independent

in FFx/lJ(/c0). From the equation

(1.25) (Tf«; A)/

it follows that /?ffe(^; A), l ^ fe^v z , are eigenvectors corresponding to Tj"(£;

A). The equation (1.25) is easily proved by the following

Lemma 1.2. Let T(K) be a matrix-valued analytic function in

neighborhood of ;c = 0, HJ(K) ( l^y^s) /^5 eigenvalues and F a small

circle enclosing only ju^O) wff / i multiplicity v for ?c = 0.

P(JC) a«^ D(K) are analytic in K. Further if r(fc)=T(fc)* /or

?c, then jD(/c) = 0. T/zws (C— T^))"1 has a simple pole in £ at

C = jUi(K:) and P(K) is a projection onto the proper eigenspace.

Remark. In [4] more precise results are proved (see, Theorem

II-1.10, e.t.c., in [4]).

We have constructed a basis of £+(£; A) satisfying (i), (ii) and (iii).
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Moreover our construction shows that these vectors are analytic in

$(k°). Similarly we can construct {fc}k, hf } defined in
satisfying (i), (ii) and (iii) and {/ijfc9 hj} for the negative eigenspace

E~(£;A). When Q(k°, £°, r) = 0 has a real double root TJ(f°; fc°) =
TY(^°; /c°), we may assume that

(1.26) fcj^o; fc°)=fci^°; fc°)>

For simplicity we sometimes rewrite {h^k}i^j^p-,i^k^vj in the form

§2. Behavior of Lopatinski Determinant in the Neighborhood

of the Zeros

Consider the system of ordinary differential equations depending on

the parameters (£, A)eS11"1 x(C\R):

(2.1)

with the boundary condition

(2.2)

The question first arise is: what are the condition on B in order

that for any geCm the boundary value problem (2.1), (2.2) has one

and only one solution U(xn9 £; X) which is temperate in xn (or belonging

to L2(R|)). Noting that M(£; A) has no real eigenvalues for non-real

A, a solution U(xn9 <^; A) of (2.1) is temperate in xn if and only if 17(0,

<^; A)e£^+(^; A). Thus our problem turns to find the conditions on B

so that for any geCm the linear equation BU(Q, £; A) = # has a unique

solution in E+(£, ; A).

Here we define the Lopatinski determinant A(£', A) by using the

basis {/*J(£; X)}i^j^m constructed in the previous section:

(2.3) A(t; A) = det(B*t«; A),..., B*+(£; A)).

We defined this locally, but we can define it globally in E"~1xCqi\
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{(0, 0)} (Sn~l x(r\{(0, 0)}) making use of a suitable C°° partition of

unity.

Lemma 2.1. Let 1 be non-real and £eSn~l. Then the following

propositions are equivalent:

(1) For any geCm there exists a unique solution U(xn, f; /I) of (2.1)

and (2.2) which is temperate in xn.

(2) The linear operator B is a one-to-one mapping of E+(£'9 A) onto Cm.

(3) l = m and & n £+(£; A) = {0}? i.e.,

kerS.

(4) J(

Lemma 2.2. // f/ie boundary matrix B is conservative for L =

-iAor for A = -^Aj-- i.e., An^ = Q for every
\ ' j/

then & n E+(£ ; X) = {0} /loWs /or et>ery non-real X and £eS"~l and,

therefore, A(£

Lemma 2.3. Let |£| + |fc|^0, where k is real. Then we have

(1) Anh-g=Qfor any h, g G£+(£; fc).

(2) ABfc-^ = 0 /or on j; /ieE+(^; fe) and any 0e£°(£; k).

(3) (i) AHhj(t; fc±iOW({;fc±iO) = 0 /or l^j, l£m,j*L

(ii) ^4BfcJ(^ fc±W)-hJ(f ; k±iO) = 0 /or r/ie eigenvectors h^(£; k±iO),
I ^ j^v l 9 corresponding to a real double root, i.e., for h\J^m,

(iii) ^fcJ|IK;

/or */?e eigenvectors h^^; /c±fO)9 l^/i^v,-, corresponding to each

real simple root i^(^', k±iG), 2^j^p.

Here E°(£; k) denotes the linear subspace spanned by the eigenvectors

corresponding to all the real eigenvalues of M(£; k).

Lemmas 2.1, 2.2 and 2.3 are proved in [7] when L is strictly

hyperbolic. In our case we can also prove the above lemmas in the
same way.

h

Now put efc = '(0,...,0, l '?0,...,0)GC'M , Ig / igm. Let us consider
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(2.4)

\<
where 0<e^e°. Then we have

(2.5)

In order to estimate Ctt(^; fc+fe) we prepare the following three lemmas.

Lemma 2.4 (Schur). Let A = (aij) be an NxN positive definite

Hermitian matrix and B = (bij) an NxN non-negative definite Hermitian

matrix. Then

(2.6) ^M&j^h^buM*

holds for any £eCN , where h is the smallest eigenvalue of A.

Proof. Using the existence of a unitary matrix T such that A
%.? V*> one can easily Prove this lemma (see, [9]). Q.E.D.

Lemma 2.5. Let 1 be non-real and £ eS"'1. If the boundary

matrix B is conservative for A, then the following inequality holds

for the temperate solution U(xn, £; A) of the equations (2.1) and (2.2):

(2.7)

where C is a constant independent of (<!;, A) "which varies in a bounded

set of S^xC+CS^xC-).

This lemma is also proved in [7].

Put

(2.8)

(2.9) S
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where y+ is the simple closed curve defined in § 1. Then we have

(2.10)

and, therefore,

(2.11)

is generated by {/)}(<!;; /0}p0+ig;sm. Thus we put

(2.12) S(xtt, £; A)/7t(£; A)= f /y,(x,,, £; A)fct(f; A) for

Lemma 2.6. Lcf .v,?>0 and (£, A) be zw a neighborhood of (£°, /c°).

(i) I7?e fjk(xn, £", /I) are continuous in (xn, £, A) a«d £/ze inequalities

(2.13)

+ , R1).

(ii) Put F = (fjk). Then F is a (m — pQ) x (m — p0) matrix and non-

singular. In particular F(0, f; ^) = ^m-n0 =

Proof, (i) The rank of the projection (/ — Q((^; A)) is equal to (m

Hence it has (m+po) linearly independent column vectors at

(g, A) = (^°, /<°). By continuity they are also linearly independent in

a neighborhood of (^°, fc°). Let f/^; A), I ^ j ^ m + p0? be these column

vectors. Therefore we get

m+fc

(i ^A^ f
V--1^; J

vjk\xn) S, A;

Since the denominator of the right-hand side of (2.14) does not vanish,

the functions fjk(xn, £; A) are continuous in (xn, C> A). The inequalities

(2.13) immediately follow from the estimates of Sh'j^; A).

(ii) Suppose that detF(xfl, £; A) = 0 for some (XM, ^; A), i.e., there
m

exists (</Po+1, ..,dm)/(0,...,0) such that £ d/^x,, <^; A) = 0 for Po + 1
j=Po+l

^/c^m. Then,

4) R(T) denoteb the range of 7^,
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f djS(xH9 t; XW(t; X) = f dj
j=Po+l j,k=P0+l

m m
= Z ( Z djfjk)ht=0.

k=P0+l j=Po+l

This contradicts the linear independence of

S(xn, «; A)/7t(£; ;i) = *'M«*>*"fcJ«; A), Po +

Thus the assertion (ii) follows. Q.E.D.

Now we can estimate Clh(^'9 k±is).

Lemma 2.7. Let e>0 and (^, k + is) be a point in a neighborhood

of (^°, /c°). T/ien the following inequalities hold'.

(2.15) |C t t«;fc±ie)|gC|^T+( l)«;fe±ifi)P/c /or 1^/^^0 ,

where ^(i)(^\ k+is) is the eigenvalue of M(£; k+is) corresponding to

each vector hf(^', k±is).

(2.16) |C t t«;k±fe)|^C/fi /or p0 + l ^ / ^ m .

Proof. Let l/fc(xrt, ^; A) be the temperate solution of (2.1) with the
m

initial value £/fc(0, {; A)= 2 Ctt({; A)hJ({; A). Then it is represented as

^(*n, «; A)= Z Ctt«; A)c^(,,«^)»»fcr«; A)
/=!

m

By Lemma 2.4 we obtain the inequality

C^;A)/ik(xw^;

where 'K + e) is the smallest eigenvalue of the Gram matrix

and ImA=+s. Note that
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Z I Z c f t(£;A)/^jcn ,£;A)|2=£
k=P0+l l = P0+l l,k

roo
and that \ FF*dxn exists and is positive definite. Thus we have

m Too in

Z I Z CuKt; W^x,,, t; X)\2dxH*y' Z |Ctt«;A)|*.
k=P0+l Jo l=PQ+l l=Po+l

where 7' is a positive constant. Then from Lemma 2.5 the assertion of

the above lemma follows. Q. E.D.

Lemma 2.8. Assume that the operator L satisfies the conditions

(L.1)-(L.3) and the matrix B satisfies the conditions (B.I) and (B.2).

Moreover let \£\ + \k\=£Q. // the Lopatinski determinant A(^\ /c±iO)

vanishes, then Q(k, £, i) = 0 have a real double root in i.

Lemma 2.9. Assume that the operator L satisfies the conditions

(L.l)'5 (L.2) and (L.3) and that the matrix B satisfies the conditions

(B.I) and (B.2). Moreover let ^eS"-1 and Jc°eR with |£°| + |/e°|^05

and suppose that Q(k°, £°, r) = 0 has a real double root in i. Then we

have the development

(2.17) A& 1)=
7 = 0

in a neighborhood of (^°, /v°) a/id

(2.18) l/»o(«0)l

These two lemmas are also proved in [7].

Remark. These lemmas are used only to prove Theorem 0.7 where

eigenfunctions corresponding to boundary waves do not appear in the

expansion formula.

For our purpose we need to study some properties of zeros of

the Lopatinski determinant A(£\ A).

Lemma 2,10. Put
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where the 0/£) are analytic in a complex domain V. Then there exists

an analytic function D(£) (^0) in V such that the roots of p(£'9 A) = 0

with respect to A have constant multiplicities for £ in V={£E F; D(£)^Q}

and are analytic functions of £, in V.

Proof. We apply the Euclidean algorithm to p(£', X) and -^-(<^; A)

as polynomials of A. Put

; A)r0({; A)+r1(f ; A) ,

where g^; A), r^; A) are polynomials in A and the order l{ of r^; A)

is less than / — I. Write

Moreover, put

1(^; A), j=l, 2,...,

where the ^-(^; A) and r/^; A) are polynomials in A and the order

lj+1 of ry + 1 (<^;A) is less than the order lj of r/^; A). Write

Then there exists a number a, which is less than /— 1, such that ra+1(£

A) = 0 and r/^; A)^0 for O^j^a. We may write ajo(^)9 l^j^a, as

where fej-(^) and Cj.({) are analytic in K Put

Then for each fixed £e F={^e F; D(^)^0} the greatest common divisor

of ptf; A) and (^; A) is ra(£; A). Thus

; A), -(^; A) = r.(«; A)«({; A), for
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It is easy to see that p(£,\ A) = 0 has just / — /a distinct roots for ^eV

and that the totality of the distinct roots of p(£; A) = 0 is the totality

of the roots of m(£; A) = 0 for £ e K This implies that m(£; A) = 0 has
only simple roots for each £eV and that the roots of /??(£; A) = 0 (or

p(£; A) = 0) are (multi- valued) analytic functions in V. Let A j (£),...,

A0(£) be the distinct roots of p(£; A) = 0, where /? = 7-/a. Here we

consider the Afc(£) locally with respect to £. Then we have

__
A) - (A-

where the Affl are analytic. Further the /!/£) are equal to the mul-

tiplicities of the roots Aj(£). It is clear that V is connected. Therefore

the Aj(£) are constant for £ e V. Q. E. D.

Lemma 2.11. (i) For each fixed CeS""1 £/ie zeros of A(£\ A) in

C1" (C~) are a// rea/ and the number of the zeros is finite, (ii) A($\

7c + /0) = 0 // and only if A(£\ k — iO) = 0. (iii) There exist real-valued

continuous functions /c1(^),..., /cs(£), which are defined on open sets

D l5..., Ds (Di=> "• =3/)s), respectively, and a closed null set N(aEn~l)

such that the totality of non-vanishing zeros of the Lopatinski deter-

minant JO*; A) is the set {kj(^}je[v.^Dv} for any £$N, kj&^kffl for

^eD^Dj and i^j, and the kj(£) are positively homogeneous of degree

1.

Remark. The Lopatinski determinant A(^\ A) is defined only on E'1"1

xC^E"-1 xC^). We shall often regard A(£\ A) as a function to be

continued analytically across the real axis into En~l xC~(3n~l xC+).

However, A(£; A) does not coincide with the Lopatinski determinant

in S""1 xC~(S"~i xC+). Thus Lemma 2.11 does not give any informa-

tion about the zeros of J(£; A) in C~(C+).

Proof. J (C; /c±iO) = 0 if and only if there exists (Cf,..., C±)/(0,...,
m

0) satisfying f= £ C?hf(£', k±iQ)e<%. From Lemma 2.3 it follows
f = i

that Cf=0 for Vi + l^ /^po- On the other hand Q(fc, & i) = 0 has only
real simple roots with respect to T when |fe| is sufficiently large. Then

if C1^ Z Cf/?^; fc±/0) belongs to ^, all the Cf must vanish. There-
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fore A(^\ /c+iO)^0, if |fc| is sufficiently large. Thus from analyticity of

A(^\ A) with respect to A (or r = (A — Ar(£, or(^)))2) we see that the number

of the zeros of the Lopatinski determinant A(^\ X) is finite. This proves

the assertion (i). The assertion (ii) is easily verified. The assertion
(iii) can be proved by Lemma 2.10 and Weierstrass' preparation theorem.

In fact, let K l 9 . . . 9 K a be the (real) distinct roots of ^(£°; A) = 0 for fixed

£° in En~l, |£°| = 1. Moreover it suffices to consider the case where

the Lopatinski determinant A(£; A) is defined in Sn~1xC" t". If Q(KJ9

£°, r) = 0 has no real double roots, then A(£\ A) is analytic in WxA$(Kj)

and can be continued analytically across the real axis in a complex neigh-

borhood of (£°, KJ). Thus applying Weierstrass' preparation theorem

to A(^\ A), we have

in a small neighborhood of (£°, fc,-), where the flf/£) are analytic in

and fly(«°) = (-l)l(^)icj, and qfa A) is analytic in (£; A) and q

in the above neighborhood. It follows from Lemma 2.10 that there

exist functions /c1((^),..., /ty(£) defined in a real neighborhood W^0 °f £°
and an open set Pf0(c=Pf0) such that the /cv(^) are the zeros of A(£\ A)

in ^5(/cJ-)
5) for each £ in FP0 and analytic in W0, kj&^k^) for each

£ in J^o and ^o\^o ^s a closed null subset of W0. Since

- - { / c v ( 0 - / ) } for { in

^) is analytic in W^. Thus if Imfcv(^) does not vanish identically

in a component FF0 of W0, Im fcv(^) is non-zero for almost every £ in

P^0. Define HT0 by removing the set {^e ^0; Imfcv(^) = 0 (£V(Q = 0)}

from ^0 if Im kv((^) ̂  0 (£v(f) ̂  0). Let ^0 be a component of W0.

Then we have, by modifying the enumeration of the fev(<J),

for £e^ 0 -

Here we note that W0\W0 is a closed null set of W0 and that ^0 is

5)
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an open connected set of En~l. Next let us consider the case where
Q(KP £°, t) = 0 has real double roots. Moreover it suffices to consider
the case where the Lopatinski determinant A(^\ t2 + Ar(£, cr(C))) is defined

in * F x { f 6 C ; R e f ^ O and Imf^O} , where f = (A-Ar(^, a(£W and

ej(^0)). Then 4(<U; r2+A r(£, 0{£))) can be continued analytically
to a complex neighborhood of (£°, 0). Thus applying Weierstrass'

preparation theorem to J(^; £2 + A,.(£, cr(0)) we als°

(2.19) J«; ^2 + ̂ , cKO)) = (^ + «iXO^-1 + - + fliJXO)^«; 0

in a small neighborhood of (£°, 0), where the a^) are analytic in £
and fl./£0) = 0, and <?/£; 0 is analytic in (f, 0 and ^/^; 0^0 in the

above neighborhood. It follows from Lemma 2.10 that there exist func-
tions f^),..., tp(g) defined in a real neighborhood WQ of ^° and an open

set WQ^WQ) such that the iv(£) are the zeros of A(£\ t2 + lr(£,

in A^(G) for each ^ in W0 and analytic in W0, fv(0^^(0 for each

in W0 and P/
0\^o is a closed null subset of W0. Since

) and Refv(0 are analytic in ^0. Thus if Im t v(£) ̂  0 (Re rv(c) ̂  0)

in a component W0 of l^0, Im tv(^) (Re ̂ v(0) does not vanish for almost
^ as >v

every £ in VF0. Define W0 by removing the set {^6 W0; Im(v(^) = 0

(Refv(0 = 0)} from W0 if lmt^)^0 (Re(v(0^0). Let ^0 be a compo-
ss

nent of WQ and put

(2.20) Q = {t eC; Imr<0 or

Then we have, by modifying the enumeration of the

where fcv(^) = rv(^)2 + /LX^» °"(0)j 1^^^^- Thus we can define a system

6) 5S denotes the boundary of S.
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of continuous functions in En~l\N such that {k^), ..,

is the totality of non-vanishing real zeros of the Lopatinski deter-

minant A(£', 1) for £$N and N is a closed null set of En~l. Here

the number s(£)(^0) depends on £. However s(-) is constant in a

small neighborhood of each ^eEn~l\N, therefore in each component of

En~l\N, and Sups(£) is finite. Hence we put s = Sups(£) and DV = {C
ztr* „ ttn

eS""1^; s(0^v}, kv(£) = /cv(£) in Dv, l^v^s. This proves the assertion

(iii). Q.E.D.

Remark. From the proof of Lemma 2.11 it follows that for any

£°$N there exist a small neighborhood W(<=Sn'l\N) and d (>0) such

that /d(£; /l) = 0 has no roots in

\J {AeC;0<|/c..(0-A|<<5}
je{v;^ e JDv}

s
for every c in W. Moreover we note that NaEll~l\ \J Dv and N

v= l

= W dDv. Also we note that the kffi do not vanish for £ 6 Dj although
v=l

2d(<^; 0) may identically vanish.

Define

(2.21) #={(& ̂ eS"-1 xR; 2(/c, ^, i) = 0 /zas real

double roots with respect to T} ,

(2.22) Nj = {^ e S» ; «, A/^)) e JV} , 1 ^ j ^ 2p ,

(2.23) zlv={£6Dv ; ({,

^ is a null set of S B " J xR and the ^- are null sets of En. Further

we have the following

Lemma 2.12. (i) The kv(£) are analytic in Dv.

(ii) The BAV are null sets of En~l.

Proof. The assertion (i) follows from the proof of Lemma 2.11.

We observe that £eJ £ if and only if fei(^) = Ar(^, &(£)), where cr(0 is

defined in § 1. Thus the assertion (ii) easily follows from analyticity of

Q.E.D.
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Put

(2.24) N=N(J vj dAv (a null set of En~l).
v = l

Next let us consider the C/h(£; A) defined by (2.5). The following

lemma immediately follows from Lemma 2.7.

Lemma 2.13. Let £ ° £ i V U \J A^ and k° = kv(£°) for a fixed v.

Then we have the following:

(i) When T+(O(£°; fc°) is a real simple root of Q(fe°, ^°, t) = 0,
^/iat is, l^/^p0 ?

or «, A) in PFx ^(/c

(ii) When T+(O(£°; fe°) is non-real, that is,

Here and! in sequel W denotes a small neighborhood of £° in En~l

and 5 (>0) /s chosen sufficiently small.

Proof. From Lemma 2.7 we have

This implies the above lemma. Q.E.D.

Lemma 2.14. Let £°EAv\dAv and A:° = /cv(^°) for a fixed v. Then

we have the following:

(i) When T+(0(f°; fc°) is a rail dowb/g root of Q(k°, £°, r) = 0,

(ii) PF/ien T+(O({°; fc°) is a rea/ simple roo^ of Q(k°, ̂ °3 t) = 0,

is, Vj +

in
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(iii) When T+(O(^°; /c°) is non-real, that is,

for (£ ,A) in Wx

Here kv(£>^(^(£» In W.

Proof. The assertions (i) and (iii) immediately follow from Lemma
l

2.7. The assertion (ii) is proved by showing that f = (A — Ar(f, a(^))2=0

is not a pole of Ctt(f; *
2 + A,(£, <T(£))) for each £e Pf, VJ + I^PO,

which will be shown in the proof of Lemma 2.16 for more complicate

case. Q.E.D.

Next we investigate the behavior of C,A(£; A) in a neighborhood

of JVxR. Here we assume for simplicity that the Lopatinski deter-

minant A(£m, A) is defined in S"~1xC+. First we consider the case

where £° eJV, A(£°; fc°) = 0 and (£°9k°)$N. Then it suffices to consider

Ctt(<i[; A) for £ in each component ^0 constructed in the proof of

Lemma 2.11. 'Let Ri(£)9...,Kp(£) be the zeros of A(£\ A), continued

analytically, in Ad(k°) for each £e^0- Then we can assume without

loss of generality that

for { in ^0.

We note that {fci(£,)9... ,£££>)} is contained in {kj(^)}je(v.^Dv} for

Lemma 2.15. ,4sswme rtar ^° e ft, A(£°- fe°) = 0 and (£° 9

Then we have the following :

(i) FP/ic/i T+ (0(f°;fc0) w a real simple root of g(/c°9 f°, r) = 0,

is, I^/^PO,

(ii) When T+(0(.J
0; k°) ij non-real, that is,
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Proof. By Weierstrass' preparation theorem, more precisely Spath's

theorem, Clh(£\ A) is written in the form

; A),

where g(£; A), C(£; A), p t(£; A) and p2(c; A) are analytic in P7x^(/c0),

g(£;A) is bounded away from zero, pi(£;A) and p2(£; A) are polynomials

with respect to A, that is, pseudo-polynomials, and degpx(^; A)>degp2(£;

A). Thus, decomposing (S ~{ into a sum of partial fractions, we have

for (^,A) in ^0xyla(feO).

In fact, it follows from Lemma 2.7 that A = &,•(<!;), l^j^q, are at most

simple poles of Q;J(£; A). Moreover Lemma 2.7 implies that

n

Therefore,

(2.25)

o

where ImA = e. We rewrite F,fc(£; A) in the form

~
(2.26) F J f c ( f ;A)= 0 a-fc

J=«+l

where 7i = r a + 1 H ----- \-rp.1-l. Put
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where J2 = rq+l + — + rf. Then, from (2.25) and (2.26) it follows that

j = q+l

1

+ CL

Since the matrixix ( -^ - r-j is non-singular, we have
\ ( l + f l ) V / l S a £ y 2

(2.27) KODI^ £ qimk/or n1

~^ = V = ̂

Let us divided {^ + I , . . . , j8— 1} into two parts for fixed {epf^o as follows:

For Uj, l^j^b, kMJ(0 satisfy the relations

and for up b + 1 rg./ ^ ^ — 1 — q, kUj(^) do not satisfy at least one of

these relations, where a is a fixed large positive integer. We also rewrite

F,;,({; A) in the following form:

where y3 = rB1 + — + rllt-l. Then, from (2.26) and (2.27),

(2.28) &,tf)| = | jft W-^/OX-^(A-

p-i-q
r/J j=b+l

y-2 ~ &

«=i f j=i "J

i
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Here we have used the inequalities

Noting that for ImA^O and

|A-I

it follows from (2.28) that

(A-*•<«»-'"'-(i=
?2 dlrn/c

^ Z
"~

Observe that the above constants C's are independent of £ in lf"0. Put

; A) =f ,t(g ; A) - ri (A - fc,,^))-^ • (A_ , •

Then F^1}(^; A) is also estimated as follows:

c, e = Imxl>0.

In fact, for Ig/gp0

Thus we can estimate fl (A-k^))-11", • --—^"^ _t by applying the
j'-i (A— ^ ^ ( C ) ) &
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above argument and, inductively, fl (k — ku (£)) rUj '77 — f
j=i J (A~K

v = rp-2,...,l. Put

= Flh(t; A)- ft (*-£„,
v=l(A—

Then we have

and A = £00!;) is no pole of F^}(^; A). Apply the same argument for

F\1f)(£; X) replacing k^) by k^.^). Repeating the above argument,

we conclude

j = q+l

and, therefore,

IQ , (£ ;A) |g 5

Lemma 2.15 easily follows from this. Q. E.D0

Next let us consider Clh(£\ A) in the case where £° e JV, ̂ 1(^0; fc°) = 0

and (£°,k°)eN. Then it suffices to estimate Clh(£; X) for £ in each

component ^0 constructed in the proof of Lemma 2.11. Thus let

*!(£),..., fy(£) be the zeros of A(£', t2 + Xr(£, <r(£))), continued analytically,

in vd^(O) for each £ e f f i 0 . Then we can assume without loss of gen-

erality that

for { in J^0.

Moreover, since f1(<^),..., ^(<J) are distinct in jf'o we may assume that
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^(0 = 0 and tffl*092£j£q9 in #0. We observe that {^(0,... ,£,
is contained in {fc/0};6{v.£eDv}, where Jcffl^t

Lemma 2.16. ylsswme tfiaf £° e JV, ̂ (c°; fe°) = 0 and (£° , k°) E N .

Then Clh(£; A) fs decomposed into a sum of J j(t; ; /I), 1 ̂  j ^ /?, w/iic/i

satisfy the following estimates in jfr
0

x^J(^°) :

(1) In f/?e case w/iere T+ (Z)(^°; k°) is a real double root of Q(k°9 £°9

i) = 0, that is, l ^ / ^v l 5

(i) when T|(^; k+iO) is real, A = /c+ie,

_L _ __ l_
' 1 ^ 1 1 — f l l ^ / K \ l f l I

(ii) w/?en T|(£; /c+/0) zs non-real,

!/,«; 1)1 ^ [tatt

(2) /n i/?e case w/?ere T+(()(iJ0; fc°) /'s fl rea/ simple root of Q(k°, £,°, T)

= 0, that is, VI + I ^ / ^ P Q .

(3) /n t/ie case w/jere T+(i)(i*0; fe°) fs non-real, that is,

C C
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Here 6 is an arbitrary positive constant less than —=- and Pj = l (if

/Q^O), =0 (if Imk/a>0).

Proof. By Spath's theorem Clh(^\ r2+A r(£, <r({))) is written in the
form

n

where q(£\ i), C(£; 0, jPitf; 0 and p2 (5; 0 are analytic in JFx 4
q({; r) is bounded away from zero, Pi(i; 0 and /72(^ 0 are polynomials

with respect to t and deg/?^^; 0>degl72(^ 0- ?ut

where

Then we have by Lemma 2.7

and

(2.29)

where s=Imf2>0. In fact, the following estimates hold for
and l^ /^vj , l^j^q:

(1) Let rt(^; k/O + iO) be non-real.

(i) If
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(ii) If Imtt(£; fc + iO)=0,

(2) When Ira T|(£ ; /</£) + /O) = 0,

Here we have used Lemma 1.1 and the relation --=

when ImT|(^; fc+iO)^0. Moreover we have used the inequality |f

± 0(01 ^C{|f| + |f/0|} in the case (1) (ii) which follows from the fact

that |arg£ — arg(± *,•(£))[ ̂ -7-- (2.29) follows from the above estimates

and Lemma 2.7. Removing a closed null set from ffiQ if necessary,

we may assume that — tj(£) ^ tt(t;) in ^0 if l^j^q and q + l^i^/3.

In the case where — fy({) = ff(£) in J^0 for some j and z we can easily

modify our proof. Since Flh(^ t) = ̂ ^- E -2-^4^^2 has no Poles

P i ( £ l t) j=i * -~tj(£)
on co\{0}? Flh(^; t) can be written in the following form:

To unify the treatment we rewrite —£/(£) instead of tffl in the remainder

of this proof, l^j^q. Hence, ^(^) = 0 and tj(^)eQ9 2^j^[$. Moreover

put rj = l,l^j^q. For teQljco define d(0 = dis(r, co) and r(t)EO) in

such a way that \t-r(t)\ = d(t). Then let us divide {!,..., jg-1} into

two parts for fixed £e^0
 as follows: for uj9 l^j^b, tUj(£) satisfy the

relations

(2.30)
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(2.31)

and for uj9 b + l^j^fl—l, do not satisfy at least one of these relations,

where a is a fixed large positive integer. We rewrite Flh(£i t) in the

form

(2.32) ^^)=n;(^-
where 7! = ^ H ----- \-rf_1 — l. Put

JL-
where w = e4 and y2 = rl-\ ----- t~rp- Substituting t = t(d) in (2.32) and
using (2.29), we obtain

x l
1 1

(—-J is non-singular. Therefore we have

, a^a', the matrix

'

We also rewrite Fift(^; 0 in the following form:

where 73 = rH1H ----- 1- /•„„-!. By the same argument as in the proof of

Lemma 2.15 we obtain
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(2.33)

n Cd (t „(?))"- l \ C[Im T;O)({ ; t(a) 2 + A,(g.
= .£, | /-*„(£) I" 1 |/,«)|

Here we have also used the relation

Im

=° or 2 | / |g

and

(ii) If Im rt« ; fc + iO) = 0 and Im Tt« ;

First let us consider |G(£; 01 for (<^, A)e ^0
x^J(fc0) (^^ u co) in the

case where rf^.2.

(1) Let I g / g v p

(i) If ImTt« ; fc+iO)?feO,

(iii) If Im rt«; fc + iO) = 0 and Im Tj(£; r(f/£))2 + ̂ {, <<£)) + iO) = 0,
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(3) When

or

C l m

(4- 1 1 1< I V^) I < 2 1 ' I

and

(2) When VI + !^/^PO»

i

and

Here we have used Lemma 1.1 and the facts that if |r((p(^))|<d(^(^)) \t
+ \tW\} for f ^ O u t o , in the case (1) (ii) \t-t

and that |Im fe^)| = |2r(^))d(f^))l if r(^))^0. Put
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t) = Flh(^; /)- mt-tu,(t))-r; • (t-tlfa)',' r» = 2-

Then it follows from the above estimates and (2.29) that

where A = /v + ze = £2 + A,.(£, <r(C)). Thus we can inductively estimate fl
j= i

(t-tuj(£))~r"j- ( t _ _ v
t ( L } v by applying the above argument, v = r^-l,..., 2.( t _ _ t ( }

Put

Then,

Apply the same argument for f^"1^^; 0 replacing fp(<^) by
Repeating the above argument, we conclude

(2.34)

(2.35)

Next we consider the case where there exists a number u, l^u^fl — 1,

satisfying the relations (2.30) and (2.31). Write Flh(^\ f) in the form

Then we have

Yl (t — tnAv

C[Im T+(0(f ; /(I)2
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; 01 is estimated for (£, A) in ffi0xA$(k0)(t$QUo}) as follows:

(1) Let 1^/^Vi.

(i) If Im T|« ; fc + iO) = 0 and Im tt(c ; r(^(C))2 + ̂ (£, o(«) + '0) = 0,

or |*|£

and

and

(ii) If ImttK; fc+ J0) = 0 and ImTjtf;

(iii) If Imrtte; Jfe+iOJ/O,
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(2) When Vj + l^/gpo,

\G(t-i)\<1 IC' ;i =

or

1

3'4

and

A 1*1 = \* H\*S j i == ' I * ! anQ

(3) When

Here we have used the fact that if 4|f/^)|^|i| or

\t-tf(f,)\*±-{\t\ + \ t f ( S ) \ } and \t-t

hold. Put

~ &
:. ^_^p (£. ^_ -Q (f — t ((^))~1 .

J=l "J

Then it follows from the above estimates that
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I 0) .

Thus we assume for simplicity that for l^i^j^ft both the relations

d(/i(£))^d(f/(£))^ad(/i(£)), a |^(£)— / / (£) | ^d(^(£)) + d(/y(£))9oc

do not hold. Therefore, by (2.33) we obtain for vl + l^l^pQ and 2^

and

where ^-(^) is defined by (2.34). Flh(£\ t) can also be rewritten in the
form

Then, for / = !,..., vls />„ + !,..., m

where (J<l)=r(f/0) + ̂ i d(t/0). Let us estimate .f.
3j

f(i—ij
for (&;,)6lPoxW)(f*GUa>) and / = !,..., v1; p0 + l,..., m.

(1) Let lg /gvv
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(i) If Im T|(£ ; fc + iO) = 0 and Im tt(§; r(t/£))2 + ̂ (£, <*£)) + iO) = 0,

and

(otherwise)

(ii) If Im T+(£ ; fe+JO)=0 and Im T|(£ ; r(*/£))2 + Ar(£, <KO) + »0) 9*0,

C

(iii) If ImTtK;

and

(2) When

and

C (otherwise).

Finally we prove that for VJ + I^ /^PO t = tl(^)=0 is not a pole of

C,h(^; 0- Note that

(2.4) eft = CJ4« ; A)BAt(<^ ; A), Im A > 0 (tf Q U 01) .
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Put

J = {j; l^j^m and Cj7j(£; f2+A r(£, cr(£))) has a simple pole at

J' = {j; l^j^m and Cjh(£', t2+kr(^ <r(£))) has a pole of order 2
at r = 0}.

Then it is clear that for je {!,..., m}\{J I) J'} £ = 0 is not a pole of
and that J'cfoo + 1,..., m}. Put

; t 2 + J^, o(0)) = Cjtf ; 0, J e J ,

}h(£; f), je J',

where Cj7l(£; 0 and Cj7l(^; 0 are analytic at f = 0 and CJh(£\ 0), C^
Multiplying (2.4) by t2 and making r tend to zero (t^QUco), we obtain

o= E Cy*«)B/ij«;^X€))+iO).
JeJ'

For ;e J'clpQ + l,..., m} /i|(^; A) is analytic in A. Therefore we can
put

where u(^; A) is analytic in A. Thus multiplying (2.4) by £ and making
t tend to zero, we have

0= L £

It follows from Lemma 2.3 that Cjh(£; 0) = 0 for je J fl {vi + l , . - - 5

This implies that J n {v^ + l,..., p0}
 = ^ tnat is» Cjh(^; t)9

are analytic at f = 0. Thus for v^l^l^p^ Flh(£; t)= Z
j = 2 -j

Q.E.D.
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§3. Green Function G(x9 j; A) of the Operator A — 21

By the hyperbolicity of L = I-^-—iA9 the matrix A(r\)-U is non-

singular for every non-real A. Therefore (A(rj) — A/)~ 1 has the conjugate

Fourier transform with respect to rj

(3.1) E(x;X) = (27c)-2 ̂ l(AW - II)- 1] (x), Im A ̂  0 ,

in the distribution sense. £(x; A) is a fundamental solution in R" of

the differential operator A — II with non-real A, i.e., E(x; A) satisfies the

equation

(3 .2) (A - A/)£(x ; A) = <5(jc)7 .

It is well known that E(x; A) is analytic in (R"\{0})x(C\R). From

(3.1) and the relation (X(i0 - A/)- J = (T/ - M(£ ; A))-1^-1, iy = ((J, T), we

have

(3.3) ^[£(*-}>U)U=o]

Consider the first order system of ordinary differential equations depend-

ing on parameters (£, A)

(3.4) - - -

and the condition

(3.5) BEC& 0, j;; A) = J£, [B£(x - 3; ;

Under the assumptions that L is hyperbolic and B is minimally con-

servative, there exists, by Lemmas 2.1 and 2.2, a unique solution Ec(£,

xn, y; A) of (3.4) satisfying (3.5) which belongs to L2(0, oo) in xn and

£c(£, x?J, j; A) has the conjugate Fourier transform Ec(x'9 xn, y; A) with

respect to £. Define for non-real A

(3.6) G(x, y ; A) = £(x - y ; A) - Ec(x, 3; ; A) .
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Then G(x, y\ X) satisfies the equation

(3.7) (Ax-U)G(x,y9X) = 6(x-y)I, x 9 j e R £ , ImA^O

and

(3.8) BG(x,j;;A)|,n=0 = 0.

Moreover for every geC'gCR^) v(x\ A) = (A-AI)~1^(x) is given by

(3.9) <x;A)= G(x, yi$g(y}dy, xzR«+, ImA^O.
JR+

We call G ( x , y ; X ) Green function of the operator A — AI (or the system

{yl — A/,13}). From the self-adjointness of A it follows that

(3.10) G(x,y,X)* = G(y,x;X)9

where S* denotes the Hermitian adjoint of a matrix S. More precisely
we have

(3.11) E(x-y;X)* = E(y-x;X),

(3.12) Ec(x9y9X)* = EJ(y9x9X).

Let us find a local but more explicit representation of ^[_G(x9

y, A)]. Let <^° be a point of S""1, k° a non-zero real, W a small
neighborhood of £° and A^(k°) the regions defined in §1. Then it
suffices to consider the case when the roots of Q(A, f, r) = 0 in T for

(f, A) e FFx ylK^0) are in the situation (1.21) and (1.21)'. In fact, in
other cases we obtain corresponding representations by obvious modifica-

tions. First we consider ^^E(x — y; A)|JCn=0]. From (3.3) we have

(3.13) ^lE(x-yi^)\Xn=0]

-QnY^e-iy'-s ( e-iy^I
Jy-

where y_ is a simple closed curve in the lower half-plane enclosing

only the eigenvalues T;+I«; A),..., T;«; A), ({, A)e
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Now,

Put

(3.14) (qjl(t; V,-9qJ2m(t; A)) = gj - - - P^tf, T}(£ ; A)) .

Then the column vectors g/i(£; A),..., qj2m(£> A) are eigenvectors cor-
responding to the eigenvalue TJ(£; A) of M(£; A). Note that the /zjfc(£;

A), 1 ̂  /c ̂  Vp defined in § 1 are vy linearly independent column vectors

of the matrix PnU)(£» ?j(£; A)). We also put

(3.15) (^i(^w^;A),...^2w(jBJ^A))

The column vectors ^(y,,, ^; A),..., ^2m(3;n5 ^j A) belong to the subspace

generated by the root vectors corresponding to the eigenvalues Tp+i(C;
A),..., T~(^; A) and therefore they are represented as linear combinations

of /ip0+1(^;A),...,/z-(^A). From (3.13), (3.14) and (3.15) we have

(3.16) ^IBEfr-y; A)Un=0]= -1(271)-̂ -̂  f <r*™*»"

,, 5; A),..., ^2m(j;n5 f; A)).

Next we find a local representation J?f(<!;, xn, j; A) = J5'[^c(
x? ^? A)].

Denote by Uj(£, xn, y; X) the j-th column vector of Ec(£, xn9 y; A). By

Lemmas 2.1 and 2.2, l//£, +0, j; A)e£+(<^; A). Hence it can be written
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in the form

(3.17) I//& +0, y; A) = CjJiftf; X).

Since £//(£, xn, y; A) is given by the formula

(3.18) tf/£ XH, y; X) = +e'**«(-cI-M(t; X)rlUj(t, 0, y;

where r+=F+(£;A) is a positively oriented simple closed curve in

the upper half-plane, enclosing the eigenvalues T|({; A),..., T+(£; A), we
have

l=l j

9^7 2 Cj(( ^"^/-MC^
Z7T/ J=p 0 +i J \ J y +

Let us determine the coefficients CJ. From (3.5), (3.16) and (3.17)
we have

(3.20)
v=l

tf ; A),..., Bqj(y,, £; A), ..., 5A+(^; 1)) .

We extend G(x, y; A) over R" with respect to y by defining G(x, y; /l)=0

for xeR" and yB£R". Then we have

Lemma 3.1. Let 1 be non-real. Then

(3.21) J|[G(x, y;

, /, +0;
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Proof. Define

G(x, y-9X), x e R£ and y eR" ,

0 , x £ R £ and

Then we have

(3.22) G(x, y; A)* = G1(j;, x; I),

and

(3.23) 04,-I/)Cifo x; I) = 5(y-

, +0,

in the distribution sense. Since every term of (3.23) is a temperate

distribution in y, we take the Fourier transforms of both sides of (3.23)

with respect to y.

(3.24)

, +0, x;

From (3.22) and (3.24), (3.21) follows. Q.E.D.

Now let us give a representation of «^[G(x, y', +0;A)](£). From

the formula

(3.25) E(x-y; A) = (27i)

we have

(3.26) ^[£(x-

Therefore if
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(3.27) ^>lE(x-yiX)\yn=ol

where y+ is the simple closed curve in the upper half-plane defined in

§1 and ^-i-Imtt^; A). Next consider J^[£c(x, /, +0; A)]. From

(3.12) we have

(3.28) 4[£c(x, /, +0; A)] = {J^[EC(/, +0, x;

From (3.17) and (3.20), we obtain the following representation of

(3.29) '̂[£c(x, /, +0; A)] = (t71(^5 +0, x; A),..., l/2lfl(f, +0, x;

(3.30) £/X£, +0, x; 1)= £ C j h j ( t ; I),

(3.31) c}(x, 5; J)= -^w)"1^1^1*'-* Z -"~IT ^ "v"

§ 4. Eigenfunctions for the Operator A

We defined Vj(x, r,; A), l^j^2p, by (0.23):

The projection Pj-(»?) are represented as

( J
(4.1) P}(n)= 2
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where 6 is chosen sufficiently small such that the set {A; |A —

contains no roots of Q(A, fj) =0 except A/^).

Lemma 4.1. Le/ A be non-real. Then

(4.2) (A,

(4.3)

hold for xeRl,rjeS" and Igjg

Proof. Let <£ = (<k<5rt)eCg>(R£) and ^eC^(S"). Then

<(^-A/)4[G(x, y; A)], ̂ (x)^)>x>,

= <G(x, j;; A), '(-^.x-A/)</»(x)

= <XG(x, y; A), <(-Ax-

where 0(x) = ^>(x) for xeR£, and =0 for x£R£. This implies (4.2).

The equation (4.3) is obvious. Q.E.D.

From Lemma 3.1 it follows that

(4.4) Vj(x, i/; A) = (27c)-*c'*-'Py(iy)— -(27i)-^[G(x, /, +0;

Put

7) 'S denotes the transposed matrix of S.
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(4.5) Njv = fa e S"; <J e AT or £ e Dv and

(4.6) Nj = \J NJv U Nj, 1 g j ^ 2p.
v=l

The NJv and Nj are null sets of En. By the local representation of

J$'[G(x, y', +0; A)](f) in §3 and Lemma 4.1 the limits y*(x, i/) =
!F/jc, *?; A/i7)±iO) exist and satisfy (0.24) and (0.25) for xeR!^ and

Next define for x e R+, £ e Dv and non-real A

(4.7) !P,+2vp(x, ij; A)= ^I^} ^(^ 17; A), I^yg2p, l ^ v g j .

We denote by Njv and Dyv the sets

(4.8) (n e S" ; { e ft or f e Dv and fcv(0 =

(4.9)

respectively. Then we define new eigenfunctions corresponding to bound-

ary waves by

(4.10) Vf+2vp(x9 rj)=WJ+2vp(x, ffi fc^OfiO), *ieDJv.

The validity of the above definitions follows from the estimates for

the lFj+2vP(x> *l\ A) which can be derived from Lemmas 2.13 and 2.14.
We also note that the Njv are null sets of En. Moreover from Lemma
4.1 it follows that

(4.11) AxVf+2vp(x, fl) =

(4.12) BV*+2vp(x9ri)\Xn=0 = Q, for

§5. Construction of the Spectral Family

The self-adjoint operator A admits a uniquely determined spectral
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resolution :

(5.1) A

where {E(/l)}_00<A<00 denotes the right-continuous spectral family of

A. Put

(5.2) R(X) = (

Then we have

-0)

, b>a

(see, e.g., [14]). From (5.3) we obtain the following

Lemma 5-1. Let /eCg)(R+) and b>a. Then we have

(,d. (}E(b) + E(b-0) _ E(d) + E(a-0)\f ,\
1 ; VI 2 2 F'V

= lim— Z (bdk( dqf. , . £
7 . 2^ 2 -|/..(>y

Eio 7C j = i J f l Js» '(AJ.(^)-^)2 + £ 2 l ' / - / v /

w/iere (• , •) denotes the inner product of L2(R+) and

(5.5)

Proo/. Let ft(x) e Cg>(R") and Im/l^O, and let h(x) denote the

restriction to R" of h(x). Then for xeR"

y;

y;
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Since [K(A)£] (x) e L2(R£) and /e Cg>(RJ), we have

(5.6)

where (•, -)o denotes the inner product of L2(3n). When A are fixed,

Im/l^O, there exist a positive constant C and a non-negative integer a

such that for xeR+ and rjEEn

(5.7) |«F/x^U)|^C(l + M)a.

This follows from the representations of the *Fj(x, \i ; A) which have

been obtained in §§3 and 4. So we can apply Fubini's theorem to (5.6)

and obtain

E ( drj \
j=lJSn Aj(rj)

Thus we have

Here &R(I)f is the Fourier transform of [£(!)/] (x) extended as

(x) = 0 for x£R£. From (0.23) and (5.5) it follows that

Using Pj(rj)Pk(r]) = djkPj(rj)9 the resolvent equation and the above results

we have

a*(fc+fe)-*(*-/g)^^

Thus (5.4) follows from (5.3). Q.E.D.

Tn order to represent the spectral family {£(!)} by means of the
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eigenfunctions Wj (x, rj) and Yj:+2vp(x9 n) we investigate some properties
of the *Pj(x, YI\ A). Let us recall that

(4.4) Yj(x9 n; V^Vnyieto'iPjW

[G (x, /, +0;

(1.1) G(x, y; X) = E(x-y9 A)-£c(x, y; A).

Our aim is to analyse the behavior around the singular points of the
second term on the right hand side of (4.4). To this end we consider
the term in the region WxA^(k°)(WxA^(k°J). Then it suffices to deal
with the case when the roots of Q(l, £, t) = 0 in T for (£, X)eWxA^(k°)

(WxA~d(k°)) are in the situation (1.21). From now on this will not
be stated explicitly every time. First we consider <Fy,[E(x — y; A)|3,n=0](0

Put

(5.8)

(5.9) I°j(xtt, r,; V =

Then

(5.10) *$E{x-y; K)\yn =

Lemma 5.2. Let l^j^2p and ({, 1) e Wx /lj(fe°) (Wx A~a(k°)). Then

we have

( 1 ) /?(*„ n ; A) = (A/fj) - A)/?(xB) q ; A) ,

w/iere /^(x,,, >j; A) is a matrix-valued continuous function of (xn,n,,



122 SEHCHIRO WAKABAYASHI

and the limit I*j(xn, Y\\ k±iO) exists and is continuous in (xn, r\, k) where

S and k°-d<k<k°+5.

(2) Let 2^fj,^p.

(i) //jVnGO, then

(ii)

(3) (i)

f/ze /jO?; A) are continuous functions of (??; A) and t/?e limits

/j(?/; fc + z'O) ex/5f awJ are continuous in (77; /c).

Proof, We have

(5.11) W-Aftf; Ajr^^J-MK;

+ (A1-A2)(T1/-M(£; Aj

Hence,

=4Htl-^,>,=^L
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; A))- * - (a/- Af({; A2))- 1

cr —

(see, Lemmas 1.2 and 3.1). If n(fj)^j, we have

where ^W(A|)I/ is continuous in (<!;, A). The above calculations imply the
assertions (2) and (3). The assertion (1) can be proved in a similar

way. Q.E.D.

Next we consider &y.\Ec(x9 y', +0;

Lemma 53. qfl and qt (1^ j^p, l^ /^2m) defined by (3.14)
(3.15) are evaluated as follows:

(i) |fl|

where 2c/ = dis(y_? R
1).

(ii) |«X

These assertions follow directly from the definition of the qjt and ^z.

Suppose that J(^°; fc°±iO) = 0. From (3.29) and (3.30) we see

that the v-th row vector of &y,[Ec(x, /, +0; X)~]AnPj(rj) are equal to

f Ci(x, ^; A) [P:(ri)Anh }(£ ; 1)]*, 1 ^ v ̂  2m, where the coefficients Cl
v(x,

1=1
1; I I) are quantities defined by (3.31). Put

(5.12) J\v(xa, £; A)= ' , Aet(Bh\(£,; I), — ,Bqlv(^; /),...J ' * ;^)
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(5.13)

Then

(5.14)

n-1

Here we have used T^; I) = T^; X) which can be assumed in the

enumeration (1.21).

Lemma 5.4. Let (£°, fc°) e JV and (f , A) e Wx A+
d(k°) (Wx A~d(k°y).

Then

(i) For 1^/gVi

n, {; A)|^C
h=l

(ii) For

(iii) |/i,(*»«;A)|^c |Cft«fe=l

Proof. For l^j'rgVi we have

From (3.14), Lemma 5.3 and the above inequalities Lemma 5.4 easily
follows. Q.E.D.

Lemma 5.5. Let £°tftu y A,, k° = fc/f °) and (& A) e Tf x A+
s(k°)

(WxA~d(k
0)).



ElGENFUNCTION EXPANSIONS FOR SYMMETRIC SYSTEMS 125

(i) For l^l^po the Jl
v(xn, £; X) are continuous functions of (xn,

£, A) and the limits Jl
v(xn, £ ; k ± iff) exist and are continuous in (xn,

f, fc), where k°-d<k<k° + d.

(ii) For p0 + l^l^m

(xn> S > A) »v n 9 s i _ £ s x \

w/iere f/ze J(,(xn, <^; A) have the same properties as J^(xn9 £; A), l^jU^p0 .

Proof. The above assertions follow from Lemmas 2.13 and 5.4.

Q.E.D.

Lemma 5.6. Let t°eAj\dAj and fc0 = fe/{°) /or a

«, A) £ Pf x 4+(fcO) (Jfx ^lj(k0)). T/ien Ar(^, a(0) = fc/0 ifl ^
(i) For Vj + l^Jgpo f/ie Jj,(xn, ^; A) are continuous function of

(xn, %, A) a??d r/ie limits J(,(xn, £; /c + iO) ex/s^ and continuous in (xn,

£, fc), wfcerg /<°

(ii) For I g / ^ V i

B, £; A)= - - I J ( ( X m 9 {; A) .
(A-Ar({, *«)))*

(iii) For

J{,(xn, {; A) /?aye f/?e same properties as J^(xm £ ; A), vx + 1

Proof. The above assertions follows from Lemmas 2.14 and 5.4.

Q.E.D.

Lemma 5.7. Let l^j

(1) (i)

%,̂ ; A),

(ii)
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Here the ^(f/; A) are continuous in (rj, X) e Wx E x /lj(fc°) (Wx S x

^a(fc0)) and the limits yjitl(r\', fc + i'O) exist and are continuous in (n, k),
where k°-5<k<k°+d.

(2) For

t(t; I) = (^)-%,(^; A),

where y^\ A) /iat;e Z/ze same properties as y^n', A) in (1).

; A))-

Here we have used (5.11) and the fact that (U — A(^, 0-))"1 has a simple

pole at A = /Lj(?7). Therefore we immediately obtain the assertion (1).

The assertion (2) is proved in the same way. Q.E.D.

Lemma 5.8. Assume that g(£,) is analytic in W and does not

vanish identically. Then there exists a positive constant 00 such that

for 0<0<00

Proof. From /(O^O, linearly transforming £, if necessary, we can

assume that g(^, 0,..., 0)^0. Thus by Weierstrass' preparation theorem
we have

J=l

where g(£) is bounded away from zero. This completes the proof.

Q.E.DO

Lemma 5.9. Let feC$(Rl) and Q<a<b<oo (-oo<a<b<Q). Then



ElGENFUNCTION EXPANSIONS FOR SYMMETRIC SYSTEMS 127

s 2

holds, where

(5.16) ff(ri)=(11tn^
±j(x9ri)*f(x)dx for v£Nj (almost every rj E Sn)

and

(almost every rjEDv).

Proof. Now let us consider the case where 0<0<fo<oo.

^E(b) + E(b-0)_E(a) + E(a-0^fJ^

^ w +
i 2p rr

= Um-L- Z \
e iO ^ j = l L J

where 2d is a neighborhood of N and 1^ is chosen sufficiently large.

First we consider lim/jL(e). Divide the domain of integration DR = {(rj,
e* 0

fe) ; |^| < R, £$ A and k e [a, fo]} into a neighborhood of {(77, k)eDR;

(^, fc) e JV} and the remainder. It is easy to prove that we can inter-

change the order of lim and \ dv\ in the latter domain. Let us show
eiO J

that we can interchange the order in the former domain. It suffices

to prove this in a neighborhood of a point (rj°9 k°) such that (£°, k°)

eJV and (77°, k°)eDR, where rj°=(£°, a°). Let (rj, k) belong to such a

neighborhood and h = k+ie (l = k— is), 0<e^e0, where SQ is chosen
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sufficiently small. Hence we may assume that (f, A)e WxA^(k°)(W

xA~d(k°)). Then, by Lemmas 1.1 and 5.2-5.7, we have

X)\ for ijtr = n(l)9IMC, OK;;-A|

and

1+ |Ar(|?
1

)_A| l /r20/:A)l

1

where the fjfl(rj; A) are continuous in (77, A) and the limits fjfl(rii fe+iO)

(fjn(ri'9 k — iO)) exist and are continuous in (77, /c). Hence, in order

to show that the order of lim and \ drj can be interchanged it suffices
eJO J

to investigate the term

Since

1 , 1

holds, by Lemma 1.1 we obtain

1 . C . C
1 + /" C . T \ I I + /"£ • Q\ ~~ f £ • 1\ I := 1 Q 2 / ^

ff "™~ 1 \S» 9 ^y I I ^ 1 \.TJ ? ^y """~ 1 v^ 9 J I I *^ ~~~ fv

Thus
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where C is independent of 8 and rj (0<e^£0 and \rj\<R). Therefore it

follows from the Lebesgue bounded convergence theorem that

rfJ lim— \ n(,
 S^2 . Pi I//0?; k±i&)\2dk \

xE L s l O n ) aWjW) ~ K) + 8 J

+ z
v=l

Next we shall consider the /1/e). It suffices to estimate

l\xj(n)-ky^\f^k-i^2'

Assume that £° eJV, A(£°i k°) = 0 and (£°,/c°)eJV and that ^0 is a

component constructed in the proof of Lemma 2.11. Let fi(£),..., fy(<i;)

be the zeros of 2J(£; f2+A r(£, °"(£))) in ^v^) constructed in the proof
of Lemma 2.11. Then we can assume without loss of generality that

?!(£),..., tq(£)ea> and tq+l(£),...9 tp(£)eQ in J^0, and that ^(^ = 0 and
^ 1 ^ ~ P ^

j \?l) v = 0
Then from Lemmas 2.16, 5.2, 5.4 and 5.7, we have the following es-
timates :

(1) For j * r (= 7r(l)) and (f, A) e ^0 * ̂ K^0),

2<v<8)6 = =W
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(2) For (£, A) e l^o x A J(fc°),

(i) When T|(^; fc + iO) is real, for (& A) 6 ^0><

C C

(ii) When ?!(£; fe + iO) is non-real, for ({,

c
^

' 1 1
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Here /; is a number satisfying j = 7t(/;) and jSv = l (if Im£v(£)^0), =0

(if Im£v(0>0).
From the following estimates we can deduce that lim/|/£)-t-0

as m(4)->0.8>

da

In the case where T|(^; fe+fO) is real

8) m (•) denotes the Lebesgue measure in Sn~l.
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da e\t\~l

— 00

Here we have used Lemma 1.1. In the case where Tf(^ ;k+iO) is
non-real,

When ^°e^? J(^°; fc°) = 0 and (£°,k°)$N, by Lemma 2.15 the

estimates for , —^-/•(?/;/[) are easily obtained. Since fi is a null
AjWJ^A

set of S""1, we can take A to be sufficiently small, that is, m(^l)-»0.
Thus we have

lim /I ,(e) > 0 as m(A) > 0.
e i O

/?

In fact, from Lemma 5.8 and the fact that O *v(£)rv i§ an analytic
v = 2

function and equal to one of the coefficients %(£) in (2.19), it follows
that there exists 6 (>0) such that

Finally let us prove that lim/|/e)-»0 as K->oo. By applying the same
el 0

argument as for /|/(e) it is easy to see that

In fact, IA/T?)-A|2^C(tr2+K|2 + ̂ 2) holds for |iy|>U and fee [a, ft]
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and ^ [/(*)](£) is rapidly decreasing with respect to £. For |£|^£
we apply the same argument as for /|/e), noting that \a — rj~(£; A)|2

^CO2 + |£|2+jR2) for \q\>R and fce[a, ft]. Moreover for | f |>jR we

make use of Lemma 2.15 and the facts that (£, fc) does not belong to

N for k e [a, ft] and that

where //£) is rapidly decreasing. Thus we have

lim/jUe) >0 as K > oo .
£ 4 0

Q.E.D.

We can easily extend the equation (5.15) for all /eL2(R£) and
obtain E(d) = E(a — 0), a^O, making b[a in (5.15). Hence <7p(A)c:{0},
where <rp(A) denotes the point spectrum of A.

Theorem 5.10. Assume that the conditions (L.1)-(L.3) and (B.I)

are satisfied and that f and 0eL2(R+).

(i) We have for 0<a<f t<oo ( -oo<a<ft<0)

(5.18) ({E(b)-E(d)}f,g) =

s 2P

where

(5.19) /?(!,) = l.i.m. ( <Pf(x,r,rf(x)dx,
r-*ao JRJ n{ |x |<f )

(5.20) /*+2vpW = l.i.m.

(ii) crp(A)c{0}. Moreover if E+(£ ; 0) f] ̂  = {0} /or a/most a//

S""1, then (7p(A) = 0.

(iii) Le^ P° fte ^/ie orthogonal projection onto the subspace of dis~
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continuity with respect to A. Then P = (I — P°) is the orthogonal

projection onto the subspace of absolute continuity with respect to A

and R(P°) = N(A) and R(P) = R(A)a. Furthermore we have the Parseval

formula

(5.21) (Pf, g)= f (
j=lJSn

+ Z Z
v=lj=lJDvxS

Proof. It suffices to prove that 0£<7p(A), if E+(£ ; 0) n @ = {0} for
almost all {eS""1. Thus let us show that there does not exist any

non- trivial solution yeL^R") satisfying the following system of equa-

tions :

(5.22)

By taking the Fourier transforms with respect to x' in (5.22), we have

J__J~_ £(£9 xn)+ "x ZjA'^AjV^; *„) = (), jc,,>0,
/ axn j=i

.B0«,0)=0,

where v(E, XB) = ^x,\v(x' x.)] e L| (Ri). Thus y(^, 0) e jE+(2; 0), that is,\ = " ns X l~ \ ' n/-J J C w V -rs \3? / v^ 3 ys y

From £+(£; 0)n^ = {0} it follows that Q(0 = 0 for almost every {

eSn~l. Therefore g({, xw) = 0 for almost every ^eS""1, that is, t;(x) = 0.

Q.E.D.

§6. Eigenfunction Expansions

First we restate the properties and local representations of the

eigenfunctions ^(x, rj) and 1fj:
+2vp(x> *?)•

Theorem 6.1. Assume that the conditions (L.1)-(L.3) and (B.I)
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are satisfied.

(i) <F*(x, YI\ l^j^2p, are defined for xeR£ and / / # A / j . More-

over, the *Fj(x, t]) are infinitely differentiable in (x, Y\) e R" x (Sn\Nj)

and belong to L^jloc(S") and

AxV$(x, ti = WPf(x, n\ BV$(xf, + 0, >j) = 0

hold for all (x, njeR'ix (Sn\Nj).

(ii) ^+2vp(*^)(1^2p, l^v^s) are defined for (x, 17) 6 RJ x D,v
and infinitely differentiable in (x, rj) e R+ x Djv and belong to L^>loc(Dv

x3).

Moreover,

vp(x9 17), B¥%2vp(x', +0, i/) = 0

hold for (x,

(iii) T/ie fj(x, ^) are represented in a neighborhood of 77° e£",

(6.1)

(«/ «/7ere exists /^, l^lj^p, such that T^(^; !/>?) ± /O) = cr) ,

x-"/),.(»7)+ Z (Z e i j c '-«e'^«i^<1 ' )± '0)*»
P(0=lj M=l

+(5; Ay^)TiO))Af«; A/fj) TiO

I

,- 1 ..... 2ml

(i/ t/iere exists l}, l^lj^p, such that T,*(<^; AJ(J;) + iO) = a,

is, / /Tf(^; A,(/ /)±iO)^ff/or a// /, 1^/^p).
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Here p(>) is a mapping of {1, 2,..., p0} onto {{,..., p} such that T£(J)(£;

A.j(rj)+iG) is the eigenvalue of M(£; A/*/) + z'O) corresponding to the

eigenvector h^(f; A/?/)+/0).

Proof. The assertion (iii) follows from (5.10) and Lemmas 5.2 and

5.7 after some calculations. From Lemmas 2.15, 2.16 and 5.2-5.8 it

follows that 9^(x,ij)6L*floc(3") and W^+2vp(x9 f/)6LJ f l o c(Dvx3). In
fact, for any a and b, 0<a<fo, we have

±(
v=l JDvxEn fcvU)^&}n(U|^K}

where C depends only on R. Q.E.D.

Theorem 6.2. Assume that the conditions (L.1)-(L.3) and (B.I)

are satisfied and that /eL2(R").

(i) The expansion formula

(6.2)

v .

holds, where

(6.3) /* (,) = n <?*

(6.4) /*+2vpW

Here the above integrals are taken in the sense of the limit in the

mean.

(ii) /efl(A) if and only if A

e P,(ri)L2(Dv x S), 1 g j g 2p, 1 g v ̂  s. T/!en
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(6.5)

v=l

(6.6)

(6.7)

Proof. Let #* ; L2(R£)^L2(3") x !/(!>! x 2) x • • • x L2(DS x 2) be map-
pings defined by

* J/=

2P
Put 4>±= 2 ^*- Then we have the following

y=i

Lemma 63.

(6.8)

(6.9) <f>±*<£>±=0 7/ 7v/.

Moreover ^± are isometries, that is,

(6.10) <f

* are orthogonal projections in L2(En) x L2(D{ xE)x --x L2(DS

x E) whose ranges are equal to

We can easily verify that

(6. 1 1) (*J*/) (x) = f y ±(x, iy)/0n

where /=(/0, /15..., /s) e Cff(2") x Q(DX x S) x .- x C$(DS x 3). By the
boundedness of ^* (6.11) holds for all /eL2(S")xL2(D1 xS)x ••• xL2(Ds

xS), where the integrals are taken in the sense of the limit in the

mean. Therefore (6.2) follows from (6.9) and (6.10).
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Next we prove the diagonal representation of A. From Theorem

5.10 we have

+ ± s1 £-d £—j
v = l j = l

It is well known that /e D(A) if and only if

f,/)<oo

(see, e.g., [16]). Thus it is easy to see that /eD(A) if and only if

/^(f?), A/(??)/j(?7) e Pj(rj)L2(E"), f^+2vp(n)-> ^cv(0/j:+2vp(/?)e -P/??)^2(^vx ^)j 1
^j:g2p, l^v^s. Let ar(x) be a C°° scalar function such that

Let /e D(A). Then <xr(x)f(x) e D(A), and

x,

, f,))*a,(x)/(x)dx

= l.i.m.
f-»00

Similarly we can show that (A/)}J2vp(??):=^v(0/j:+2vpO/)- This proves
(6.5), (6.6) and (6.7). Q.E.D.

Proof, of Theorem 0.7.
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Assume that the operator L satisfies the conditions (L.I)', (L.2) and

(L.3) and that the matrix B satisfies the conditions (B.I) and (B.2).
Then from Lemmas 2.8 and 2.9 it follows that

This proves Theorem 0.7. Q.E.D.

The following theorem gives the ranges ^((P1) in an explicit form

under the conditions (L.I)', (L.2), (L.3), (B.I) and (B.2), where ^±

are defined by (0.30) and (0.31).

Theorem 6.4. Assume that the conditions (L.I)', (L.2), (L.3), (B.I)
and (B.2) are satisfied.

(i) We have

(6.12) «(0±) = P1(f?)L
2(F1±)©...0P2p(J7)L2(Ffp),

where the F* denote the sets {r\ e E" ; Tj"(<H ; l/^) ± iO) ̂  a for all I,

l^p}-9> and PXf/)L2(Ff)3{/eL2(3"); P/fa) =/fo), Supp/cf*}.
Moreover F* = Supp, [^(x, tjj], F) n F~.=Nj and F^UF^E" hold,

(ii) The functions <P* are partial isometries and

(6.13) R(0^ = Pj(ri)L2(F*)9 *^*f* = 0,

7ioW.

Proo/. It suffices to prove that grelV^*) n © Pj(ri)L2(F
:j:)10) implies

j=i

flfsO. Let g(ri)sgi(ri)®...®02l>(ri)eN(^^n © P/»;)L2(FJ). Then

where gN(n) = g(n) for |^|<JV, =0 for |f/ |>JV. Hence, for non-real A

(6.14) ^(A-A)-1^**^ - > 0 in L2^""1 xR|) as JV - > oo .

9) Sa denotes the closure of S.
10) N(0^) denote the null space of 0±*,
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Let feL2(S"-1 xRj) such thatJ^/e Cg>(R£). By (6.14) we have

) = (*±(A-1)-1^/, gN)0

»0 as N— » o o .
J=l

Thus

and, therefore, we obtain

= Z

?

where gfj(^) = g(>?) for agA/^^ft, =0 otherwise. So we have

(6.15) 0 = ? .

Z

Z
J=l J -OO

where the F*(£) denote the sets {creE; T?(£; ̂ )±iO)^tr for all /,

1^/gp}. It follows from (6.15) that

Z Z
j=l aeF±(S),Aj(ii)

(6.16)

for almost every (xn, ^, f)eRi xS""1 xR1 . Let (<^, t;) be fixed such

that (6.16) holds for almost every xB6Rj. The number of a, which
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satisfy aeF*(£) and kj(r\) = v, is at most finite. Denote by <TJ lv . . , ajkj

these values of a. Then,

On the other hand we can write 9^(xn, £, <r) in the form

' I
v=p+l

where the Pv(xn9 rj) are matrices whose entries are polynomials with

respect to xn. Therefore it follows that

(6.17) 0= S Z (2n
j=l v=l

+ t ^(xn,^(7U,...)(72pfapyv+(«="±i0^,
M=p+l

where the g^x^ ^\ o"u,..., ^2Pk2p)
 are polynomials with respect to xn.

By (L.I) we see that

ffjv¥>0j>v> if (j,

Moreover, from ajveFj(^) it follows that

Hence, from the linear independence of the functions of xn, eixnffjv

and e«;(«;»±*o)*ns we have gf/^, o-Jv) = 0, 1 g ; ̂  2p, 1 ̂  v ̂  fe^. Thus, ^)

= 0 holds for almost all rjeFj and, by Suppg/^cFj, we obtain ^-(fy)

= 0 in L2(Sn),l<*j<^2p, that is, 00?) = 0 in L2(S"). This completes

the proof of Theorem 6.4. Q.E.D.
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§7. Some Remarks and Examples

First we shall consider the case where the condition (L.2) is removed,
that is, the non-elliptic case. Let the Aj be NxN Hermitian matrices
and B an IxN matrix with rank / as stated in §0. In this case N

is not necessarily even. Put p = mnkAn. Then (L.I) implies that rank^y

= P> l^j^w, and that p is even. Moreover (B.I) implies that l = p/2.

Under the condition (B.I) it follows from [5] that the operator stf

defined in §0 is essentially self-adjoint. For the fundamental solution
E(x — yi /I) we obtain the same estimates as in the elliptic case. For

we deal with only the case where A is away from zero. Hence we

have only to estimate the compensating kernel Ec(x, y; A) (Ec(£, xn, y\ A)).
Recall that Ec(%9 xn9 y; /I) satisfies the equations

(1.5)' -±-An-r—-(M-A(t9 0)) Ec(£, xn, v; A) = (
L * «^n J

(1.6)' BEc(t, +0, j; X)=0r.[BE(x-y', A)|Xn=c

There exists a unitary matrix T such that

\ °
a2l(7.1) T*AnT=

L
0

where ai,...,a2t are the repeated non-zero eigenvalues of An. Replacing

Ec(£> xn> y> $ by an N-dimensional vector u(xn, £; 1) and
l)|In=0] by an /-dimensional vector g and putting

(7.2) v(xut;X)

we have for non-real 1

(1,5)"

(1.6)"

Put
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(7.3)

where #„(£; 1) is a 2 / x 2 / matrix. It is clear that Nn(£; A)* = NU(£; I)
and N2i(£)* = Nl2(l;). Moreover from the condition (L.I) it follows

that JV22(£; A)=A/N_21. Put

(7.4)

where vl is a 2/-dimensional vector. Finally we obtain

(7.5)

(7.6)

where

(7.7)

o '•— .^ a2l J

(7.8) h

1 ,

Therefore we can discuss the expansion problem in the same way as

we did in § § 1-6 and obtain the expansion theorem in the same form as

Theorem 6.2.

Next we consider

1 3

(7.9) -j-^

(7.10)

where

(7.11) A,=Q J),



144 SEIICHIRO WAKABAYASHI

It is easily seen that the above system satisfies the conditions (L.l)-
(L.3) and (B.I). However, the condition (B.2) is not satisfied (see, [6]).
We observe first that

(7.17)

(7.12)

By Theorem 6.2 we have for fe L2(Rf)

(7.13)

(7.14)

where

(7.15)

&<"{'

r<0).
'•" i b i v < ? > 2 ( £ , f f ) , <PM y j

(7.16) yj(*,'
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(7.18) !PJ(jc,ff) =

(7.19) <f>M = \t\2 + mi-it2°,

(7.20) <P2(lj) = (72 + « + |l/|ff+51 |l?|+(T«1 + ̂ K2 + ̂ 2 +

(7.21) 93to)

Moreover it follows from Theorem 5.10 that the spectrum o-(A) of the

operator A defined by (7.9) and (7.10) is equal to R1 and o-flC(A),

that is, a(A) = o-flc(A) = R1.

In order to show that the eigenfunction expansion for a single el-

liptic equation can be obtained in the same way we consider the follow-

ing example:

(7.22) (-J

(7.23) \av(x) + b-j^(x)} =0,
L oxn JXn=o

where a and b are real and |a| + |i>|^0. Then

(7.24)

where Im,//l-|£|2>0 for ImA^O. If a-b<Q or & = 0, J({; fc)^0 for

. Thus we have for /eL2(R£)

(7.25)

(7.26)

where
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(7.27)

a —biff J

If a-b>0 or a = 0, A(£\ fe) = 0 for /c=|£!2--p-. Therefore putting

(7.28)

we have for /e

(7.29) /(*) = ( <F±(*, *)/«!/)*/ + \ n
JEn JS

(7.30)

In conclusion, the author wishes to thank Professor M. Matsumura

for his valuable advices and helpful discussions.
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