The Principle of Limit Amplitude for Symmetric Hyperbolic Systems of First Order in the Half-Space \mathbb{R}^n_+

By

Seiichiro WAKABAYASHI*

§ 1. Introduction

The present paper is concerned with the principle of limit amplitude for symmetric hyperbolic systems in a half-space. Our proof for the validity of the principle is based on the eigenfunction expansion theorem established in the preceding paper [3], For the notation and terminology in this paper we refer the reader to [3], We shall consider the following mixed initial-boundary value problem for hyperbolic systems:

(1.1)
$$
\frac{\partial}{\partial t} u(t, x) = iAu(t, x) + \frac{1}{i}e^{ikt}f(x), \quad t > 0, \quad x \in \mathbb{R}^n_+,
$$

 $Bu(t, x)|_{x_0=0}=0$, (1.2)

$$
(1.3) \t u(0, x) = g(x),
$$

where k (\neq 0) is a real number,

$$
(1.4) \t\t A = \frac{1}{i} \sum_{j=1}^{n} A_j \frac{\partial}{\partial x_j},
$$

the A_i are $2m \times 2m$ constant Hermitian matrices, *B* is an $m \times 2m$ constant matrix with rank *m* and $u(t, x)$, $g(x)$ and $f(x)$ are vector-valued functions whose values lie in \mathbb{C}^{2m} . Replacing $u(t, x)$ in (1.1) and (1.2) by $e^{ikt}v(x)$, we obtain the corresponding stationary problem:

$$
(1.5) \qquad (A-kI)v(x)=f(x), \qquad x \in \mathbb{R}^n_+,
$$

Communicated by S. Matsuura, September 9, 1974.

^{*} Department of Mathematics, Tokyo University of Education, Tokyo.

150 SEIICHIRO WAKABAYASHI

(1.6) *Bv(x)\Xn=0 = Q.*

We assume the following conditions:

(L.1) $L \equiv \left(I \frac{\partial}{\partial t} - iA\right)$ is uniformly propagative.

(L.2) The operator *A* is elliptic.

(L.3) The multiplicity of the real roots of $Q(\lambda, \eta)|_{\eta=(\xi,\tau)} = 0$ with respect to τ is not greater than two for every $\xi \in \mathbb{Z}^{n-1}$ and real $\lambda \neq 0$. Moreover the equation has at most only one couple of real double roots for every $(\xi, \lambda) \neq (0, 0)$.

(B.I) The boundary matrix *B* is minimally conservative.

Under the above assumptions the following expansion theorem was proved in [3]:

Theorem 1 (cf. Theorem 6.2 in [3]). *Assume that the conditions* $(L.1)$ - $(L.3)$ and $(B.1)$ are satisfied and that $f \in L^2(\mathbb{R}^n_+)$.

(i) *The expansion formula*

(1.7)
$$
Pf(x) = \sum_{j=1}^{2\rho} \int_{\mathbb{S}^n} \Psi_j^{\pm}(x, \eta) \hat{f}_j^{\pm}(\eta) d\eta + \sum_{\nu=1}^{8} \sum_{j=1}^{2\rho} \int_{D_{\nu} \times \mathbb{S}} \Psi_{j+2\nu\rho}^{\pm}(x, \eta) \hat{f}_{j+2\nu\rho}^{\pm}(\eta) d\eta
$$

holds, where

(1.8)
$$
\hat{f}_j^{\pm}(\eta) = \int_{\mathbf{R}_+^n} \Psi_j^{\pm}(x, \eta)^* f(x) dx, \qquad 1 \le j \le 2\rho,
$$

$$
(1.9) \qquad \hat{f}_{j+2\nu\rho}^{\pm}(\eta) = \int_{\mathbf{R}_{+}^{n}} \Psi_{j+2\nu\rho}^{\pm}(x,\,\eta)^{*}f(x)dx, \quad 1 \leq j \leq 2\rho, \,\, 1 \leq \nu \leq s.
$$

Here the above integrals are taken in the sense of the limit in the *mean and P is the orthogonal projection onto* $R(A)^a = N(A)^{\perp}$.

(ii) $f \in D(A)$ if and only if $\lambda_i(\eta) \hat{f}^{\dagger}_i(\eta) \in P_i(\eta) L^2(\mathbb{Z}^n)$, $k_{\nu}(\xi) \hat{f}^{\dagger}_{i+2\nu\rho}$ $\in P_j(\eta) L^2(D_v \times \mathbb{Z}), 1 \leq j \leq 2\rho, 1 \leq v \leq s.$ Then

 $(A f)(x) = \sum_{i=1}^{2p} \int_{\pi} \lambda_i(\eta) \Psi_i^{\pm}(x, \eta) \hat{f}^{\pm}_i(\eta) d\eta$ (1.10) $+ \sum_{\nu=1}^s \sum_{j=1}^{2\rho} \int_{D_\nu \times \Xi} k_\nu(\xi) \Psi^{\pm}_{j+2\nu\rho}(x,\eta) \hat{f}^{\pm}_{j+2\nu\rho}(\eta) d\eta\,,$

(1.11)
$$
(\mathbf{A}f)^{*}_{j}=(\eta)=\lambda_{j}(\eta)\hat{f}^{+}_{j}(\eta), \qquad 1 \leq j \leq 2\rho,
$$

$$
(1.12) \qquad (\mathbf{A} f)^{*+}_{j+2 \nu \rho}(\eta) = k_{\nu}(\xi) \hat{f}^{+}_{j+2 \nu \rho}(\eta), \quad 1 \leq j \leq 2\rho, \quad 1 \leq \nu \leq s.
$$

Here the $\lambda_i(\eta)$ are distinct roots of $Q(\lambda, \eta) = 0$ and the $k_{\nu}(\xi)$ are non*vanishing zeros of the Lopatinski determinant* (see [3]).

Remark. The differential operator *A* defines an unbounded linear operator $\mathscr A$ in $L^2(\mathbb R^n_+)$ with domain

$$
D(\mathscr{A}) = \{v(x) \in C_0^{\infty}(\overline{\mathbf{R}_+^n}); \; Bv(x)|_{x_n=0} = 0\}.
$$

Thus we denoted by A the closure of $\mathscr A$ in [3], which is a self-adjoint operator in $L^2(\mathbf{R}^n_+).$

In [3] it was proved that $\sigma(A) = \mathbb{R}^1$. Hence in general there exist no solutions of (1.5) and (1.6) belonging to $L^2(\mathbb{R}^n_+)$ for real k and $f \in$ $L^2(\mathbf{R}^n_+)$. Then the question arises of determining uniquely a solution of (1.5) and (1.6). There are three important approaches of deriving a unique solution of (1.5) and (1.6) , i.e., the radiation principle, the limiting absorption principle and the limiting amplitude principle. The limiting absorption principle for (1.5) and (1.6) was justified in M. Matsumura [2] under more restrictive assumptions than ours.

In this paper the following theorems will be proved:

Theorem 2. Let $f(x)=0$ in (1.1), $g(x) \in D(A)$ in (1.3) and Supp $g(x)$ *be bounded. Suppose that at least one of the following conditions holds'.* a) $E^+(\xi; 0) \cap \mathscr{B} = \{0\}$ for $|\xi| \neq 0$, b) $g(x)$ belongs to $C^{\infty}(\overline{\mathbb{R}^n_+})$. Then for *the solution* $u(t, x)$ *of the equations* (1.1) – (1.3) and any compact set $K\subset\overline{\mathbb{R}^n_+}$

$$
(1.13) \quad \frac{d^l}{dt^l} u(t, x) \longrightarrow \delta_{0,l} g_2(x) \quad \text{in } L^2(K) \text{ as } t \longrightarrow \infty, \ l = 0, 1,
$$

hold, where $\delta_{0,l} = 1$ *for* $l = 0$, $= 0$ *for* $l = 1$ *, and* $g = g_1 + g_2$ *,* $g_1 \in N(A)^{\perp}$ $= R(A)^a$, $g_2 \in N(A)$. Moreover if a) holds, then $g_2 = 0$.

Theorem 3 (the limiting amplitude principle). Let $f \in L^2(\mathbb{R}^n_+), g$ $\in D(A)$ and $k \neq 0$ be real in (1.1)-(1.3) and Supp $f(x)$ and Supp $g(x)$

be bounded. Suppose that at least one of the following conditions holds: a) $E^+(\xi; 0) \cap \mathscr{B} = \{0\}$ *for* $|\xi| \neq 0$, b) $f(x)$ *and g(x) belong to* $C^{\infty}(\overline{\mathbb{R}^n_+})$. Then for the solution $u(t, x)$ of the equations (1.1)-(1.3) and any compact set $K \subset \overline{\mathbb{R}^n_+}$.

$$
(1.14) \ e^{-ikt} \left[\frac{d^l}{dt^l} u(t, x) - \delta_{0,l} \left(\frac{1}{k} f_2 + g_2 \right) \right] \longrightarrow (ik)^l v(x) \quad in \ L^2(K)
$$

as $t \longrightarrow \infty$, $l = 0, 1$,

hold, where $v(x) \in L_{\text{loc}}^2(\overline{\mathbb{R}_+^n})^1$ and $f = f_1 + f_2, f_1 \in N(\mathbb{A})^\perp, f_2 \in N(\mathbb{A})$. More*over* $\alpha_R(x)v(x) \in D(A)$ and $v(x)$ satisfies (1.5) in the sense of distribution *and also satisfies* (1.5) *and* (1.6) *in the following sense: There exists a* sequence $\{v_j\} \subset H^1(\mathbf{R}_+^n)$ such that $Bv_j|_{x_n=0} = 0$, $v_j \to v(x)$ in $L^2_{\text{loc}}(\overline{\mathbf{R}_+^n})$ *and* $(A-kI)v_j \to f$ *in* $L^2_{loc}(\overline{\mathbb{R}^n_+})$ *as* $j \to \infty$ *. Here* $\alpha_R(x)=1$ *for* $|x| \leq R$ *,* $= 0$ for $|x| \ge R + 1$ and belongs to $C^{\infty}(\mathbb{R}^n_+).$

Remark 1. a) $E^+(\xi; 0) \cap \mathscr{B} = \{0\}$ for $|\xi| \neq 0$ implies the coercivity of *B* for the elliptic operator *A.* Thus if a) holds, then

$$
(1.14)' e^{-ikt} \frac{d^l}{dt^l} u(t, x) \longrightarrow (ik)^l v(x) \quad in \ H^1_{loc}(\overline{\mathbb{R}^n_+}) \quad as \quad t \longrightarrow \infty, \ l = 0, 1,
$$

and $v(x)$ is a solution of (1.5) and (1.6) belonging to $H_{\text{loc}}^1(\overline{\mathbf{R}^n_+})$.²⁾

Remark *2,* From Lemma 3 it is easy to see that

 $(A - \lambda I)^{-1} f(x) \longrightarrow v(x)$ in $L^2_{loc}(\overline{\mathbb{R}^n_+})$ as $\lambda \longrightarrow k - i0$.

In order to prove the above theorems we state some lemmas and propositions in §2, following D. M. Eidus [1]. In §3 we shall give their proofs.

§ 2. Preliminaries

Let \mathcal{H} be a separable Hilbert space, \mathcal{H}_0 a subspace of \mathcal{H}, \tilde{P} the orthogonal projection onto \mathcal{H}_0 , and *A* a self-adjoint operator in \mathcal{H} .

¹⁾ $L_{\text{loc}}^2(\overline{\mathbf{R}_+^n})$ denotes the space of vector-valued functions f such that $f \in L^2(K)$ for any compact set $K \subset \overline{\mathbb{R}^n_+}.$ any compact set $K \subset \overline{\mathbf{R}_+^n}$.

2) $H_{\text{loc}}^1(\overline{\mathbf{R}_+^n})$ denotes the space of vector-valued functions f such that $\alpha_R(x) \frac{\partial^{\alpha}}{\partial x^{\alpha}} f(x)$

 $\in L^2(\overline{\mathbb{R}^n_+})$ for $|\alpha| \leq 1$ and any $R>0$.

Definition 1. An element $f \in \mathcal{H}$ is said to satisfy the condition T_1 if for all real a and $b(a \cdot b > 0, a < b)$ there exists a constant C such that for any complex $\lambda = k + \varepsilon i$ ($\varepsilon \neq 0$, $k \in [a, b]$) the inequality

(2.1) *\\PR(X)f\\£C*

holds.

Lemma 1. Suppose that f satisfies T_1 . Then for almost all $k \in \mathbb{R}^1$ *there exist the weak limits³ ^*

(2.2)
$$
w-\lim_{\lambda\to k\pm i0}\widetilde{P}R(\lambda)f=v^{(\pm)}(k).
$$

This lemma can be proved by Fatou's theorem and Riemann's mapping theorem.

Lemma 2. Let f satisfy T_1 . Suppose that $F(k)$ is a complex-valued *function, continuous and bounded on* $(-\infty, 0) \cup (0, \infty)$ *. Then for any real a and b (a-b>0, a
b, including* $a = -\infty$ *and* $b = \infty$ *)*

(2.3)
$$
\tilde{P} \int_{b}^{a} F(k) dE(k) f = \frac{1}{2\pi i} \int_{b}^{a} F(k) \theta(k) dk
$$

holds, where ${E(k)}_{-\infty \le k \le \infty}$ *denotes the right-continuous spectral family of A and*

(2.4)
$$
\theta(k) = v^{(+)}(k) - v^{(-)}(k).
$$

Here the integral on the right-hand side of (2.3) is *taken in the sense of Bochner's integral.*

We first consider the Cauchy problem for *t>Q*

(2.5)
$$
\frac{d}{dt}u(t) = iAu(t) + \frac{1}{i}e^{ikt}f,
$$

$$
(2.6) \t u(0) = g \in D(A)
$$

The following proposition can be easily verified.

³⁾ $\lambda \rightarrow k \pm i0$ means that $\lambda \rightarrow k$ along any path that does not cross the real axis and is not tangent to it.

Proposition 1. Let $f=0$ in (2.5), g satisfy T_1 and $g \in D(A)$. Let *u(f) be the solution of* (2.5), (2.6). *Then*

(2.7)
$$
\tilde{P} \frac{d^l u}{dt^l} \longrightarrow \delta_{0,l} \tilde{P} g_2 \text{ in } \mathcal{H} \text{ as } t \longrightarrow \infty, l = 0, 1,
$$

hold, where $\delta_{0,i} = 1$ *for* $l = 0$, $= 0$ *for* $l = 1$, and $g = g_1 + g_2$, $g_1 \in N(A)^{\perp}$, $g_2 \in N(A)$.

Definition 2. An element $f \in \mathcal{H}$ is said to satisfy the condition T_2 if it satisfies T_1 and if $\theta(k)$ determined by (2.4) satisfies a Hölder condition on any interval $[a, b] \subset \mathbb{R} \setminus \{0\}.$

Lemma 3. Let $f \in N(A)^{\perp}$ satisfy T_2 . Then replacing the weak limits *by the strong limits in* (2.2) *Lemma* 1 *holds. Moreover*

(2.8)
$$
v^{(\pm)}(k) = \pm \frac{\theta(k)}{2} + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\theta(k_1)}{k_1 - k} dk_1,
$$

where the integral is taken in the sense of the principal value. $v^{(\pm)}(k)$ *satisfy a Hölder condition on any interval* $[a, b] \subset \mathbb{R} \setminus \{0\}.$

This lemma follows from Lemma 2.

Proposition 2. Let f satisfy T_2 , $g=0$ and $k\neq 0$ be real in (2.5), (2.6), *and u(i) be the solution of* (2.5), (2.6). *Then*

(2.9)
$$
e^{-ikt}\tilde{P}\left[\frac{d^l}{dt^l}u(t)-\delta_{0,l}\frac{1}{k}f_2\right] \longrightarrow (ik)^lv^{(-)}(k) \text{ in } \mathcal{H}
$$

as $t \to \infty$, $l=0,1$,

hold.

Using Lemmas 2 and 3, we can easily prove the above proposition.

Lemma 4. Let $f \in \mathcal{H}$ be such that for all a and b with $a \cdot b > 0$, $a < b$, and any $h_0 \in \mathcal{H}_0$ there exists $C_0 > 0$ such that for all complex $\lambda = k + \varepsilon i$ ($k \in [a, b]$, $\varepsilon \neq 0$) the inequality

$$
(2.10) \quad |(R(\lambda)f, R(\bar{\lambda})h_0)| \leq C_0
$$

holds. Then f satisfies T2. Here v (±\k) satisfy a Holder condition with exponent 1 *on an arbitrary interval* $[a, b] \subset \mathbb{R} \setminus \{0\}.$

The above lemma follows from the equality

$$
(2.11) \qquad \frac{d}{d\lambda}(R(\lambda)f,h_0)=(R(\lambda)^2f,h_0)=(R(\lambda)f,R(\bar{\lambda})h_0).
$$

§3. **Proof of the Theorems**

We first state the following

Lemma 5. Let $f(r)$ be a complex-valued function and $f(r) \in L^1(0,$ ∞) \cap C^{1+ α}(0, ∞),⁴) α > 0. Then for all a and b (a ·b > 0, a < b) there *exists a constant* C_0 (>0) *such that for any* $k \in [a, b]$

$$
(3.1) \qquad \qquad \Big|\int_0^\infty \frac{f(r)}{(r-\lambda)^2} \, dr \Big| \leq C_0
$$

holds, where $\lambda = k + i\varepsilon$, $\varepsilon \neq 0$.

Now let $f, h \in L^2(\mathbb{R}^n_+)$, Supp $f(x)$ and Supp $h(x)$ be bounded and A the self-adjoint operator associated with (1.5) and (1.6). Then it follows from Theorem 1 that for $Im \lambda \neq 0$

(3.2)
$$
(R(\lambda))^2_{j}(\eta) = \frac{1}{\lambda_j(\eta) - \lambda} \hat{f}_j^{\pm}(\eta), \qquad 1 \leq j \leq 2\rho,
$$

$$
(3.3) \quad (R(\lambda)f)^{*}_{j+2\nu\rho}(\eta) = \frac{1}{k_{\nu}(\xi) - \lambda} \hat{f}^{+}_{j+2\nu\rho}(\eta), \qquad 1 \leq j \leq 2\rho, \ 1 \leq \nu \leq s,
$$

hold. We can replace f by h in (3.2) and (3.3). Moreover we have *PR(* λ *)f=R(* λ *)Pf.* Thus by Theorem 5.10 in [3] we obtain

$$
(3.4) \qquad (R(\lambda)Pf, R(\bar{\lambda})h) = \sum_{j=1}^{2\rho} \int_{\Xi^n} \frac{1}{(\lambda_j(\eta-\lambda)^2)} f_j^{\pm}(\eta) \cdot \overline{h}_j^{\pm}(\eta) d\eta
$$

$$
+ \sum_{j=1}^{2\rho} \sum_{\nu=1}^s \int_{D_{\nu} \times \Xi} \frac{1}{(k_{\nu}(\xi)-\lambda)^2} f_{j+2\nu\rho}^{\pm}(\eta) \cdot \overline{h}_{j+2\nu\rho}^{\pm}(\eta) d\eta.
$$

⁴⁾ $C^{1+\alpha}(0, \infty)$ consists^{*}of continuous functions whose derivatives satisfy a Hölder condition with exponent α on any bounded closed subinterval of $(0, \infty)$.

Let us consider the case $1 \leq j \leq \rho.5$ Put $S_j = \{ \eta \in \mathbb{Z}^n; \lambda_j(\eta)=1 \}$, and $\omega = \frac{\eta}{\lambda_j(\eta)}$, $1 \leq j \leq \rho$. Then

(3.5)
$$
\int_{\mathbb{S}^n} \frac{1}{(\lambda_j(\eta)-\lambda)^2} \hat{f}_j^{\pm}(\eta) \cdot \overline{\hat{h}_j^{\pm}(\eta)} d\eta
$$

$$
= \int_0^\infty \frac{r^{n-1}}{(r-\lambda)^2} dr \int_{S_j} (\omega \cdot n_j(\omega)) \hat{f}_j^{\pm}(r\omega) \cdot \overline{\hat{h}_j^{\pm}(r\omega)} dS_j
$$

holds, where $n_j(\omega)$ denotes the outward unit normal to S_j at ω and dS_j the surface element on S_j . Put

(3.6)
$$
I_j(r) = \int_{S_j} (\omega \cdot n_j(\omega)) \hat{f}_j^{\pm}(r\omega) \cdot \overline{\hat{h}_j^{\pm}(r\omega)} dS_j.
$$

Let us prove below that $I_j(r) \in C^\infty(0, \infty)$. By Theorem 6.1 in [3] we have a local representation

$$
\Psi_{j}^{\pm}(x, \eta)
$$
\n
$$
= \begin{pmatrix}\n0 \\
\text{(when there exists } l_{j}, 1 \leq l_{j} \leq \rho, \text{ such that} \\
\tau_{l_{j}}^{\pm}(\xi; \lambda_{j}(\eta) \pm i0) = \sigma), \\
(2\pi)^{-\frac{n}{2}} e^{ix \cdot \eta} P_{j}(\eta) + (2\pi)^{-\frac{n}{2}} \sum_{\mu=1}^{p} e^{ix' \cdot \xi} e^{i\tau_{\mu}^{\pm}(\xi; \lambda_{j}(\eta) \pm i0)x_{n}}
$$
\n(3.7)\n
$$
\times C_{j\mu}(\eta) + (2\pi)^{-\frac{n}{2}} e^{ix' \cdot \xi} \sum_{p(l)=l_{j}} \left[\frac{\frac{\partial \lambda_{j}(\eta)}{\partial \tau}}{\frac{\partial \tau}{\partial \tau}} \right]
$$
\n
$$
\times \det(Bh_{1}^{\pm}(\xi; \lambda_{j}(\eta) \mp i0), ..., Bq_{\nu}(x_{n}, \xi; \lambda_{j}(\eta) \mp i0), ...
$$
\n..., $Bh_{m}^{+}h_{l}^{\pm}(\xi; \lambda_{j}(\eta) \mp i0)^{*} \Big]_{\nu=1,...,2m^{l}}$ \n(when there exists $l_{j}, 1 \leq l_{j} \leq \rho$, such that\n
$$
\tau_{l_{j}}^{\pm}(\xi; \lambda_{j}(\eta) \mp i0) = \sigma),
$$

5) $\lambda_1(\eta) > \lambda_2(\eta) > \cdots > \lambda_\rho(\eta) > 0 > \lambda_{\rho+1}(\eta) > \cdots > \lambda_{2\rho}(\eta)$ for $\eta \neq 0$.

where the $C_{j\mu}(\eta)$ are $2m \times 2m$ matrices whose elements are positively homogeneous of degree 0. Noting that the $h_l^+(\xi; \lambda_j(\eta) \mp i0)$, $\frac{\partial \lambda_j(\eta)}{\partial \tau}$ and $\Delta(\xi; \lambda_i(\eta) \mp i0)$ are positively homogeneous of degree 0 and that the $\tau^{\dagger}_{\mu}(\xi; \lambda_j(\eta) \pm i0)$ are positively homogeneous of degree 1, we obtain

$$
\frac{\partial^k \Psi_j^{\pm}(x, \eta)}{\partial r^k}
$$
\n=\n
$$
\begin{pmatrix}\n0 & (\tau_{ij}^{\pm}(\xi; \lambda_j(\eta) \pm i0 = \sigma), \\
(2\pi)^{-\frac{n}{2}} \left(\frac{i x \cdot \eta}{r}\right)^k e^{i x \cdot \eta} P_j(\eta) + (2\pi)^{-\frac{n}{2}} \sum_{\mu=1}^p \\
\frac{\left(i x' \cdot \xi + i \tau_{\mu}^{\pm}(\xi; \lambda_j(\eta) \pm i0) x_n\right)^k e^{i x' \cdot \xi} e^{i \tau_{\mu}^{\pm}(\xi; \lambda_j(\eta) \pm i0) x_n} C_{j\mu}(\eta) \\
+ (2\pi)^{-\frac{n}{2}} e^{i x' \xi} \sum_{p(i)=i}^p \left[\frac{\frac{\partial \lambda_j(\eta)}{\partial \tau}}{\Delta(\xi; \lambda_j(\eta) \mp i0)} \sum_{h=0}^k \binom{k}{h} \left(\frac{i x' \cdot \xi}{r}\right)^h \\
\times \det(Bh_1^{\pm}, \dots, \frac{\partial^{k-h}}{\partial r^{k-h}} Bq_{\nu}(x_n, \xi; \lambda_j(\eta) \mp i0), \dots, Bh_m^{\pm})\n\end{pmatrix}
$$
\n
$$
h_i^{\pm}(\xi; \lambda_j(\eta) \mp i0)^* \bigg]_{\nu=1, \dots, 2m+1} (\tau_{ij}^{\pm}(\xi; \lambda_j(\eta) \mp i0) = \sigma),
$$
\n
$$
k=1, 2, \dots
$$

Here we have used the relation $\frac{\partial}{\partial r} = \sum_{k=1}^{\infty} \frac{\eta_k}{r} \frac{\partial}{\partial \eta_k}$ and Euler's identity. It follows from the estimates of $\Psi^{\pm}_{i}(x, \eta)$ in [3] that for fixed *a* and $0 < a < b$, and $r \in [a, b]$

(3.9)
$$
\left| \left(\frac{\partial^k \Psi_j^{\pm}}{\partial r^k} (x, \eta) \right)^* f(x) \right| \leq F_j^k(x, \omega)
$$

holds, where $F_j^k(x, \omega)$ satisfies the inequality

$$
(3.10) \qquad \int_{S_j} (\omega \cdot n_j(\omega)) \Biggl(\int_{\mathbf{R}^n_+} |F_j^k(x, \omega)| dx \Biggr)^2 dS_j < +\infty ,
$$

since $\frac{|\eta|}{r} \leq C$, Supp $f(x)$ is bounded and $\frac{\partial^i}{\partial r^i} Bq_\nu(x_n, \xi; \lambda_j(\eta) \mp i0)$ is continuous in (x_n, η) . Also we can replace $f(x)$ and $F_j^k(x, \omega)$ by $h(x)$ and $H_i^k(x, \omega)$ in (3.9) and (3.10), respectively. Therefore we have

(3.11)
$$
\frac{\partial^k}{\partial r^k} \hat{f}_j^{\pm}(r\omega) = \int_{\mathbf{R}_+^n} \left(\frac{\partial^k \Psi_j^{\pm}}{\partial r^k}(x, \eta)\right)^* f(x) dx,
$$

$$
\frac{\partial^k}{\partial r^k} \hat{h}_j^{\pm}(r\omega) = \int_{\mathbf{R}_+^n} \left(\frac{\partial^k \Psi_j^{\pm}}{\partial r^k}(x, \eta)\right)^* h(x) dx.
$$

Thus we have

$$
(3.12) \frac{\partial^k}{\partial r^k} I_j(r) = \int_{S_j} (\omega \cdot n_j(\omega)) \sum_{h=0}^k {k \choose h} \frac{\partial^h}{\partial r^h} \hat{f}_j^+(r\omega) \cdot \frac{\overline{\partial^{k-h}}}{\partial r^{k-h}} \hat{h}_j^+(r\omega) dS_j,
$$

since

$$
(3.13) \qquad \left| \frac{\partial^h}{\partial r^h} \hat{f}_j^{\pm}(r\omega) \cdot \frac{\overline{\partial^{k-h}}}{\partial r^{k-h}} \hat{h}_j^{\pm}(r\omega) \right| \leq C \left\{ \left(\int_{\mathbf{R}_+^n} |F_j^h(x,\,\omega)| \,dx \right)^2 + \left(\int_{\mathbf{R}_+^n} |H_j^{k-h}(x,\,\omega)| \,dx \right) \right\}^2.
$$

From this it follows that $I_i(r) \in C^\infty[a, b]$, i.e., $I_i(r) \in C^\infty(0, \infty)$. Put $\tilde{S}_v = {\eta \in \Xi^n; k_v(\xi) = 1, \xi \in D_v}, D_v^+ = {\xi \in D_v; k_v(\xi) > 0}$ and $D_v^- = D_v \setminus D_v^+$, 1 $\leq v \leq s$. Moreover put $r = k_v(\xi)$ and $\omega = \frac{\eta}{k_v(\xi)}$ for $\xi \in D_v^+$. Then

$$
(3.14) \quad \int_{D_v \times \bar{z}} \frac{1}{(k_v(\xi) - \lambda)^2} \hat{f}_{\bar{j}+2v\rho}^{\pm}(\eta) \cdot \overline{\hat{h}_{\bar{j}+2v\rho}^{\pm}(\eta)} d\eta
$$

$$
= \int_{D_v \times \bar{z}} \frac{1}{(k_v(\xi) - \lambda)^2} \hat{f}_{\bar{j}+2v\rho}^{\pm}(\eta) \cdot \overline{\hat{h}_{\bar{j}+2v\rho}^{\pm}(\eta)} d\eta
$$

$$
+ \int_0^{\infty} \frac{r^{n-1}}{(r-\lambda)^2} dr \int_{\bar{S}_v} |\omega \cdot \tilde{n}_v(\omega)| \hat{f}_{\bar{j}+2v\rho}^{\pm} (r\omega) \cdot \overline{\hat{h}_{\bar{j}+2v\rho}^{\pm}(\gamma \omega)} d\tilde{S}_v
$$

holds, where $\tilde{n}_{\nu}(\omega)$ denotes the unit normal to \tilde{S}_{ν} at ω and $d\tilde{S}_{\nu}$ denotes the surface element on \tilde{S}_v . Put

$$
(3.15) \tIj+2\nu\rho(r) = \int_{\mathcal{S}_{\nu}} |\omega \cdot \tilde{n}_{\nu}(\omega)| \hat{f}^{\perp}_{j+2\nu\rho}(r\omega) \cdot \hat{h}^{\perp}_{j+2\nu\rho}(r\omega) dS_{\nu}.
$$

By the definition of $\Psi^{\pm}_{j+2\nu\rho}(x, \eta)$ in [3] we see that

$$
(3.16) \t\t\t\Psi_{j+2\nu\rho}^{\pm}(x,\,\eta) = (2\pi)^{-\frac{n}{2}} e^{ix\cdot\cdot\xi} \sum_{\mu=1}^{p} e^{i\tau_{\mu}^{\pm}(\xi;k_{\nu}(\xi)\pm i0)x_{n}} C_{j\mu}^{\nu}(\eta)
$$

$$
+ (2\pi)^{-\frac{n}{2}} e^{ix\cdot\cdot\xi} \sum_{i=1}^{m} \left[\left(\frac{\lambda - k_{\nu}(\xi)}{\Delta(\xi;\,\overline{\lambda})} \overline{\det(Bh_{1}^{\pm}(\xi;\,\overline{\lambda}),...} \right) \right.
$$

$$
\cdots, Bq_{\mu}(x_{n},\,\xi;\,\overline{\lambda}),..., Bh_{m}^{+}(\xi;\,\overline{\lambda}))|_{\lambda=k_{\nu}(\xi)\pm i0}
$$

$$
\times \gamma_{j}^{\nu}(\eta) \Big]_{\mu=1,...,2m^{+}}, \t\eta \in D_{j^{\nu}},
$$

where the $C^{\nu}_{j\mu}(\eta)$ are $2m \times 2m$ matrices and positively homogeneous of degree 0, and the $\gamma_{jl}^{\nu}(\eta)$ are $1\times2m$ matrices and positively homogeneous of degree -1 . Thus we have

$$
(3.17) \frac{\partial^k \Psi^{\pm}_{j+2\gamma\rho}(x,\,\eta)}{\partial r^k} = (2\pi)^{-\frac{n}{2}} \sum_{\mu=1}^p \left(\frac{ix' \cdot \xi + i\tau^{\pm}_{\mu}(\xi\,;\,k_{\gamma}(\xi) \pm i0)x_{n}}{r} \right)^k
$$

$$
\times e^{ix \cdot \zeta} e^{i\tau^{\pm}_{\mu}(\xi;k_{\gamma}(\xi) \pm i0)x_{n}} C^{\gamma}_{j\mu}(\eta) + (2\pi)^{-\frac{n}{2}} e^{ix' \xi}
$$

$$
\times \sum_{h=0}^k \sum_{i=1}^m \left[\left(\binom{k}{h} \left(\frac{ix' \cdot \xi}{r} \right)^h \frac{1}{A(\xi;\,\bar{\lambda})} \frac{det(Bh^{\pm}_{1}(\xi;\,\bar{\lambda})...)}{det(Bh^{\pm}_{1}(\xi;\,\bar{\lambda})...)} \right. \right.
$$

$$
\dots, \frac{\partial^{k-h}}{\partial r^{k-h}} Bq_{\mu}(x_n,\,\xi\,;\,k_{\gamma}(\xi \mp i0),..., Bh^{\pm}_{m}(\xi;\,\bar{\lambda}) \right)|_{\lambda=k_{\gamma}(\xi) \pm i0}
$$

$$
\times \gamma^{\gamma}_{j\,l}(\eta) \big]_{\mu=1,...,2m\downarrow}, \qquad \eta \in D_{j\nu}, \quad k = 0, 1, 2,
$$

Here we have used the fact that

$$
\frac{\lambda - k_{\nu}(\xi)}{\Delta(\xi; \bar{\lambda})} \overline{\det(Bh_1^+(\xi; \bar{\lambda}), ..., h_h^+(\xi; \bar{\lambda}))} \big|_{\lambda = k_{\nu}(\xi) \pm i0}
$$

is positively homogeneous of degree 1, where $e_h = (0, \ldots, 1, \ldots, 0)$. We put in [3]

(3.18) $q_\mu(x_n, \xi; k_\nu(\xi) \mp i0)$ is equal to the μ -th column vector of

$$
\left(\frac{1}{2\pi i}\int_{\gamma_-}e^{-ix_n\tau_1}(\tau_1I-M(\xi;k_\nu(\xi))\right)^{-1}A_n^{-1}d\tau_1\bigg).
$$

Thus

$$
(3.19) \frac{\partial^h}{\partial r^h} q_\mu(x_n, \xi; k_\nu(\xi) \mp i0)
$$
 is equal to the μ -th column vector of\n
$$
\left(\frac{1}{2\pi i}\right)_{\gamma} \frac{1}{r^h} \left[\left(\tau_1 \frac{d}{d\tau_1}\right)^h e^{-ix_n\tau_1}\right] (\tau_1 I - M(\xi; k_\nu(\xi)))^{-1} A_n^{-1} d\tau_1.
$$

Hence it follows from (3.19) that

$$
(3.20) \qquad \left| \frac{\partial^h q_\mu}{\partial r^h} (x_n, \xi; k_\nu(\xi) \mp i0) \right| \leq \frac{C_h (1 + |\xi| x_n)^h}{r^h}
$$

holds, where the C_h are independent of (x_n, ξ) . Let us consider the case where $E^+(\xi; 0) \cap \mathscr{B} = \{0\}$ for $|\xi| \neq 0$. Then there exists $\delta (>0)$ such that for all ξ with $|\xi|=1$ and $\xi \in D_{\nu}$, $|k_{\nu}(\xi)| > \delta$. Thus \tilde{S}_{ν} are bounded, $1 \le v \le s$. Therefore, by the same argument as for $I_j(r)$, $1 \le j \le \rho$, it follows from the estimates of $\Psi_{j+2\nu\rho}^{\pm}(x, \eta)$ in [3] that $I_{j+2\nu\rho}(r) \in C^{\infty}[a, \eta]$ b] for any interval [a, b], $0 < a < b < \infty$, i.e., $I_{j+2\nu\rho}(r) \in C^{\infty}(0, \infty)$. Next let us consider the case where $f(x)$ belongs to $C^{\infty}(\overline{\mathbb{R}^n_+})$. Then we have

(3.21)
$$
|\mathcal{F}_{x'}[p(x)f(x)](\xi, x_n)| = |(1 + |\xi|^2)^{-1} \mathcal{F}_{x'}[(1 - \Delta_{x'})^1]
$$

$$
(p(x)f(x))]\left(\xi, x_n\right) \le C_I(1 + |\xi|^2)^{-1}
$$

for arbitrary non-negative integer *l* and $p(x) \in C^{\infty}$. Since we have

(3.22)
$$
|C_{j\mu}^{\mathrm{v}}(\eta)| \leq \frac{C(1+|\xi|)}{1+|\sigma|},
$$

$$
|\gamma_{j\ell}^{\mathrm{v}}(\eta)| \leq \frac{C}{1+|\sigma|},
$$

for sufficiently large R, $|\eta| > R$ and $k_v(\xi) \in [a, \xi]$

$$
(3.23) \quad \int_{a \le k \sqrt{\xi}} (1 + |\xi|^2)^{-\frac{n}{2} - h - 1} \left| \frac{\partial^h \Psi^+_{j+2 \sqrt{\nu}}(x, \eta)}{\partial r^h} \right|^2 d\eta < +\infty ,
$$

 $h = 0, 1, 2, \dots,$

hold. Thus for $r \in [a, b]$ and $h=0, 1, 2,...$,

$$
(3.24) \left| \int_{\mathbf{R}_+^n} \left(\frac{\partial^h \Psi^+_{j+2\,\nu\rho}(x,\,\eta)}{\partial r^h} \right)^* f(x) dx \right| \leq (1+|\xi|^2)^{-l+\frac{h}{2}+\frac{n}{4}+\frac{1}{2}} F_{j+2\,\nu\rho}(\omega) \,,
$$

$$
\Big|\int_{\mathbf{R}_+^n} \Big(\frac{\partial^h \Psi^{\pm}_{j+2\nu\rho}(x,\,\eta)}{\partial r^h}\Big)^* f(x) dx\Big| \leqq (1+|\xi|^2)^{\frac{h}{2}+\frac{n}{4}+\frac{1}{2}} H_{j+2\nu\rho}(\omega)\,,
$$

hold, where

(3.25)
$$
\int_{\widetilde{S}_{\nu}} |\omega \cdot \widetilde{n}_{\nu}(\omega)| |F_{j+2\nu\rho}^{h}(\omega)|^{2} d\widetilde{S}_{\nu} < +\infty ,
$$

$$
\int_{\widetilde{S}_{\nu}} |\omega \cdot \widetilde{n}_{\nu}(\omega)| |H_{j+2\nu\rho}^{h}(\omega)|^{2} d\widetilde{S}_{\nu} < +\infty .
$$

Choosing *l* more than $\frac{n}{2} + \frac{k}{2} + 1$, we have $I_{j+2\nu\rho}(r) \in C^k(0, \infty)$. Therefore $I_{j+2\nu\rho}(r) \in C^{\infty}(0, \infty)$.

Proof of Theorems. Define an orthogonal projection \tilde{P} on $L^2(\mathbb{R}^n_+)$ by $\tilde{P}f(x)=f(x)$ for $|x| \le R$, $=0$ for $|x| > R$, $f(x) \in L^2(\mathbb{R}^n_+)$. Let $f \in L^2(\mathbb{R}^n_+)$ and $f=f_1+f_2$, $f_1(x) = (Pf)(x) \in N(A)^{\perp}$, $f_2 \in N(A)$. Then f satisfies T_2 if and only if $f_1 = Pf$ satisfies T_2 . Suppose that Supp $f(x)$ is bounded and that at least one of the following conditions holds: a) $E^+(\xi; 0) \cap \mathscr{B}$ $= \{0\}$ for $|\xi| \neq 0$. b) $f(x)$ belongs to $C^{\infty}(\overline{\mathbb{R}^n_+})$. The above arguments and Lemmas 4 and 5 imply that f satisfies T_2 . Thus Theorem 2 follows from Proposition 1. Similarly the first assertion of Theorem 3 follows from Proposition 2. Here although $\tilde{P}R(\lambda)f \to v^{(-)}(k)$ in $L^2(\mathbb{R}^n_+)$ as $\lambda \rightarrow k - i0$ and $\text{Supp}_x v^{(-)}(k) \subset \{x; |x| \leq R\}$, moving R to $+\infty$, we can define $v^{(-)}(k)$ as follows:

$$
R(\lambda)f \longrightarrow v^{(-)}(k)
$$
 in $L_{loc}^2(\overline{\mathbf{R}_+^n})$ as $\lambda \longrightarrow k - i0$.

Let $\alpha_R(x) \in C^\infty(\mathbb{R}^n_+)$ and $\alpha_R(x) = 1$ for $|x| \le R$, $= 0$ for $|x| \ge R+1$. Then,

(3.26)
$$
(\mathbf{A} - k)\alpha_R(x)R(\lambda)f = \alpha_R(x)f(x) + (\lambda - k)\alpha_R(x)R(\lambda)f(x) + (A\alpha_R(x))(R(\lambda)f)(x) \longrightarrow \alpha_R(x)f(x) + (A\alpha_R(x))v^{(-)}(x)
$$

in $L^2(\mathbf{R}^n_+)$ as $\lambda \longrightarrow k - i0$.

Since $\alpha_R(x)(R(\lambda)f)(x) \to \alpha_R(x)v^{(-)}(k)$ in $L^2(\mathbb{R}^n_+)$ as $\lambda \to k-i0$, the closedness of the operator A implies that $\alpha_R(x)v^{(-)}(k) \in D(A)$ and that

(3.27)
$$
(\mathbf{A} - k)\alpha_R(x)v^{(-)}(k) = \alpha_R(x)f(x) + (A\alpha_R(x))v^{(-)}(k),
$$

that is,

162 SEIICHIRO WAKABAYASHI

$$
(3.27)' \t\t (Aloc - k)v(-)(k) = f(x)
$$

Moreover suppose that $E^+(\xi; 0) \cap \mathscr{B} = \{0\}$ for $|\xi| \neq 0$. Then $N(A) = \{\xi \in \mathscr{B} : |\xi| \neq 0\}$ and the coerciveness inequalities for the operator A,

(3.28)
$$
\left\|\frac{\partial u}{\partial x_j}\right\| \leq C(\|\mathbf{A} u\| + \|u\|), j = 1,..., n,
$$

hold for $u \in D(A)$. Thus from (3.26) it follows that

$$
(3.29) \t R(\lambda)f \longrightarrow v^{(-)}(k) \t \text{in} \t H_{\text{loc}}^1(\overline{\mathbf{R}_+^n}) \t as \t \lambda \longrightarrow k-i0.
$$

This completes the proof of Theorem 3.

References

- [1] Eidus, D. M., The principle of limit amplitude, *Uspehi Mat. Nauk,* 24 (1969), 91-156, *=Russian Math. Surveys,* 24 (1969), 97-167.
- [2] Matsumura, M., Comportement asymptotique de solutions de certains problèmes mixtes pour des systemes hyperboliques symetriques a coefficients constants, *Publ. RIMS, Kyoto Univ.,* 5 (1970), 301-360.
- [3] Wakabayashi, S., Eigenfunction expansions for symmetric systems of first order in the half-space R", *Publ. RIMS, Kyoto Univ.,* this issue.