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The Principle of Limit Amplitude for Symmetric
Hyperbolic Systems of First Order

in the Half-Space R+

By

Seiichiro WAKABAYASHI*

§ 1. Introduction

The present paper is concerned with the principle of limit amplitude

for symmetric hyperbolic systems in a half-space. Our proof for the

validity of the principle is based on the eigenfunction expansion theorem

established in the preceding paper [3], For the notation and terminology

in this paper we refer the reader to [3], We shall consider the fol-

lowing mixed initial-boundary value problem for hyperbolic systems:

U 1 ^ 11 (t ~r\—iAn(t yV I __£»iktff-y~\ f *-> 0. i) — « — U \ L J A )—is±u\ij J(,J^T—^-K j\Ji)9 i^\j)

(1.2)

(1.3) u

where k ( ̂  0) is a real number,

the AJ are 2mx2m constant Hermitian matrices, B is an m x 2 m constant

matrix with rank m and u(t9 x), g(x) and f(x) are vector-valued functions

whose values lie in C2m. Replacing u(t, x) in (1.1) and (1.2) by eiktv(x),

we obtain the corresponding stationary problem:

(1-5) (A-kI)v(x)=f(x), xeRn
+,
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(1.6) Bv(x)\Xn=0 = Q.

We assume the following conditions:

(L.I) L=(l-fiT — iAJ is uniformly propagative.

(L.2) The operator A is elliptic.

(L.3) The multiplicity of the real roots of Q(A, ^)|^=(^jt) = 0 with respect

to T is not greater than two for every <!; e £"" * and real A^O. Moreover

the equation has at most only one couple of real double roots for

every ({, X)*(0, 0).

(B.I) The boundary matrix B is minimally conservative.

Under the above assumptions the following expansion theorem

was proved in [3]:

Theorem 1 (cf. Theorem 6.2 in [3]). Assume that the conditions

(L.1)-(L.3) and (B.I) are satisfied and that /eL2(R£).

(i) The expansion formula

(1.7) P/(x) = J!

t E

holds, where

(1-8)

(1-9) „
JR +

integrals are taken in the sense of the limit in the

mean and P is the orthogonal projection onto R(A)a = N(A)1-.

(ii) /eD(A) if and only if

e Pj(ri)L2(Dv xS), l^j£2p, l^v^s. Then

(1.10)
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(1.11)

(1.12)

ffce A/??) are distinct roots of Q(A, 77) = 0 arcd J/ie /cv(£) are non-

vanishing zeros of the Lopatinski determinant (see [3]).

Remark. The differential operator A defines an unbounded linear

operator s& in L2(R+) with domain

D(.flO = MX) 6 CS(RJ) ; Bv(x)\Xn=0 = 0} .

Thus we denoted by A the closure of $0 in [3], which is a self-adjoint

operator in L2(R").

In [3] it was proved that cr(A) = R1. Hence in general there exist

no solutions of (1.5) and (1.6) belonging to L2(R") for real fc and /e

L2(R"). Then the question arises of determining uniquely a solution of

(1.5) and (1.6). There are three important approaches of deriving a

unique solution of (1.5) and (1.6), i.e., the radiation principle, the limit-

ing absorption principle and the limiting amplitude principle. The

limiting absorption principle for (1.5) and (1.6) was justified in M.

Matsumura [2] under more restrictive assumptions than ours.

In this paper the following theorems will be proved:

Theorem 2. Let /(x) = 0 in (1.1), g(x)eD(A) in (1.3) and Supp#(x)

be bounded. Suppose that at least one of the following conditions holds'.

a) £+(£;0)n^ = {0} for |f|^0, b) g(x) belongs to C°°(RJ). Then for

the solution u(t, x) of the equations (1. !)-(!. 3) and any compact set

(1.13) -ru(t,x) - > d Q t l g 2 ( x ) inL2(K) as t - >oo, / = 0, 1,

hold, where (50jj = l for 1 = 0, =0 for 1 = 1, and g = g1+g2, gi

= R(&)a, g2GN(A). Moreover if a) holds, then g2 = Q>

Theorem3 (the limiting amplitude principle). Let /e L2(R"), g

eD(A) and k^Q be real in (1. !)-(!. 3) and Supp/(x) and Supp#(x)
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be bounded. Suppose that at least one of the following conditions

holds: a) £+(£; 0) fl ̂  = {0} for |f|^0, b) f(x) and g(x) belong to

C°°(R;). Then for the solution u(t, x) of the equations (1. !)-(!. 3)

and any compact set Kc=R!J.

(1.14) e~ikt-T "& ̂ -$0,1/2 + 92 - > (ik)lv(x) in L2(K)

as t - > oo, / = 0, 1,

hold, where v(x) E L?oc(Wl^ and f=f, +/2, f, E JV(A)\ f2 e JV(A). More-

over aR(x)v(x) E D(A) and v(x) satisfies (1.5) in the sense of distribution

and also satisfies (1.5) and (1.6) in the following sense: There exists a

sequence (t;J.}c:#1(R+) such that BVj\Xn=0 = Q, v^v(x) in Lfoc(W+)

and (A-kI)Vj-»f in L?oc(R*l) as j-»ao. Here %R(x)=l for \

= 0 for \x\^R + l and belongs to C°°(R£).

Remark le a) E+(£ ; 0) n @ = {0} for |£|^0 implies the coercivity

of B for the elliptic operator A. Thus if a) holds, then

(1.14)' e-^-^u&x) - >(ik)lv(x) in HIOC(W+) as t - >oo, / = 0,19

and v(x) is a solution of (1.5) and (1.6) belonging to f/1
1

oc(R").2)

Remark 2, From Lemma 3 it is easy to see that

(A- AirVW - > **) in L?OC(R5) as A - > fc- iO .

In order to prove the above theorems we state some lemmas and

propositions in §2, following D. M. Eidus [1]. In §3 we shall give

their proofs.

§ 2. Preliminaries

Let jf be a separable Hilbert space, ^0 a subspace of ^ P the

orthogonal projection onto J^Q} and A a self-adjoint operator in Jf '.

1) -^i2oc(R+) denotes the space of vector-valued functions / such that f^Lz(K) for
any compact set

_ 3a
2) #ioC(R+) denotes the space of vector-valued functions / such that aR(x) ~ a f ( x )

) for H<;i and any R>Q.



PRINCIPLE OF LIMIT AMPLITUDE 153

Definition 1. An element /e^ is said to satisfy the condition 7\

if for all real a and b(a-b>Q,a<b) there exists a constant C such

that for any complex A = /c + ei (e^O, /ce[a, fr]) the inequality

(2.1) \\PR(X)f\\£C

holds.

Lemma 1. Suppose that f satisfies T^. Then for almost all fceR1

there exist the weak limits3^

(2.2) w - lim PR(X)f= v(±\k) .

This lemma can be proved by Fatou's theorem and Riemann's

mapping theorem.

Lemma 2. Let f satisfy T^. Suppose that F(k) is a complex-valued

function, continuous and bounded on (— oo, 0) U (0, oo). Then for any

real a and b (a-b>Q, a<b, including a=— oo and fo = oo)

(2.3) P J* F(k)dE(k)f=^ ^ F(k)B(k)dk

holds, where {E(k)}_QO<k<<X) denotes the right-continuous spectral family

of A and

(2.4) 0(fc) = u<+>(fc)-t;<->(fc).

Here the integral on the right-hand side of (2.3) is taken in the sense

of Bochner's integral.

We first consider the Cauchy problem for t>Q

(2.5) -

(2.6)

The following proposition can be easily verified.

3) A —» k± z'O means that 1 —> k along any path that does not cross the real axis and
is not tangent to it.
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Proposition 1. Let /=0 in (2.5), g satisfy T± and geD(A). Let

u(f) be the solution of (2.5), (2.6). Then

(2.7) P^ - >o^lPg2 in ^ as t - > O), / = 0, 1,

hold, where d0il=l for 1 = 0, = 0 for 1 = 1, and g = g1+g2, g1e N(A)^-,

g2eN(A).

Definition 2. An element /e^f is said to satisfy the condition T2

if it satisfies Ti and if 9(k) determined by (2.4) satisfies a Holder con-

dition on any interval [a, &]c=R\{0}.

Lemma 3. Let /G N(A)1- satisfy T2. Then replacing the weak limits

by the strong limits in (2.2) Lemma 1 holds. Moreover

where the integral is taken in the sense of the principal value. v(±\k)

satisfy a Holder condition on any interval [0, fo]c:R\{0}.

This lemma follows from Lemma 2.

Proposition 2. Let f satisfy T2,g = Q and /c^O be real in (2.5),

(2.6), and u(i) be the solution of (2.5), (2.6). Then

(2.9) e~lktp-r K«-«o.rf-/2 - > (ik)W-\k) in tf

as £-»oo, / = 0, 1,

hold.

Using Lemmas 2 and 3, we can easily prove the above proposition.

Lemma 4. Let fejf be such that for all a and b with a-b>Q,

a<b, and any h0e^0 there exists C0>0 such that for all complex

i (/ce[a, b], s^O) the inequality

(2.10) \(R(X)f,
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holds. Then f satisfies T2. Here v(±\k) satisfy a Holder condition

with exponent 1 on an arbitrary interval [0, &]

The above lemma follows from the equality

(2.11) -* W/. h0) = (RW2f, h0) = (RWf, R(l)h0).

§3. Proof of the Theorems

We first state the following

Lemma 5. Let f ( r ) be a complex-valued function and f(r)eLl(Q,

oo)nC1+a(0, oo),4>a>0. Then for all a and b (a-b>0, a<b) there

exists a constant C0 (>0) such that for any /ce[a, 6]

(3.1)

holds, where /l = /c+ie,

Now let /, /ieL2(R+), Supp/(x) and Supp/?(x) be bounded and A

the self-adjoint operator associated with (1.5) and (1.6). Then it follows

from Theorem 1 that for

(3.2)

(3.3)

hold. We can replace / by h in (3.2) and (3.3). Moreover we have

PR(X)f=R(X)Pf. Thus by Theorem 5. 10 in [3] we obtain

(3.4) (R(VPf, R(l)h)= Z

4) C1+a(0, oo) consists^of continuous functions whose derivatives satisfy a Holder con-
dition with exponent a on any bounded closed subinterval of (0, oo).
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Let us consider the case l^j^p.5) Put S; = 0?e£"; A/iy)=l},

and Q)= * l^j^p. Then

(3'5) L

,0 \f

holds, where n/(c0) denotes the outward unit normal to Sj at G> and

dS the surface element on S. Put

(3.6) //r)

Let us prove below that //r) e C°°(0, oo). By Theorem 6.1 in [3]

we have a local representation

(when there exists /,-, 1^/j^p, such that

(3.7)

(2;ir V" "/>,(.
/«=!

n)'
ST

xdet(Bfct«;

!v= l,...,2mi
I

I (when there exists 1J9 l^lj^p, such that

for
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where the Cjlt(rj) are 2 m x 2 m matrices whose elements are positively

homogeneous of degree 0. Noting that the trf(£; A/f/) + /0), — -- and

are positively homogeneous of degree 0 and that the

T J(£ ; A/iy) ± iO) are positively homogeneous of degree 1, we obtain

drk

(3.8) + (2;r)

fc=l,2,....

-— = — -Here we have used the relation -3— =S — -5 — and Euler's identity.
dr kti r drjk

 J

It follows from the estimates of *F*(x, ??) in [3] that for fixed a and

, and re[fl, b]

(3.9) g (^ *> *-/(*) =F"^

holds, where Fj-(x, ft)) satisfies the inequality

(3.10) (o)-»Xco)) |F5(x, ^IdxdS^ + oo
J R +
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since - - L ^ g C , Supp/(x) is bounded and -^-BqJ^x^ £ ; /I/*?) + iO) is con-

tinuous in (xn, rj). Also we can replace f ( x ) and Fj(x, CD) by h(x)

and HJ-(x, co) in (3.9) and (3.10), respectively. Therefore we have

dk

(3.11) _

Thus we have

since

(3.13)

From this it follows that //r)6C°°[a, fo], i.e., //r)eC°°(0? oo). Put

5V={^6S»; /cv«) = l, £eDv}, D+ = {eeDv; fcv(«>0} and D~ = DV\D^ I

^vgs. Moreover put r = kv(t;) and co= ^ for <^eD+. Then

(3-14) \
J

holds, where nv(oj) denotes the unit normal to £„ at a> and

denotes the surface element on §,. Put

(3.15) /,+2vp(r)

By the definition of !P*+2vp(x, »j) in [3] we see that
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(3.16)

T^; 1),...

where the C^(rj) are 2mx2m matrices and positively homogeneous of

degree 0, and the y}^) are Ix2m matrices and positively homogeneous

of degree —1. Thus we have

n1

k m

xZ Z
h = 0 1=1

i 2mi , 5 fc = 0, 1, 2,

Here we have used the fact that

is positively homogeneous of degree 1, where efc =
 r(0,..., 1,..., 0). We

put in [3]

(3.18) g^Oc,,, £; /cv(^) + i'0) is equal to the /^-th column vector of

^ J ^^'(TjJ
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Thus

dh —(3.19) --fc-qn(xn9 £; &v(£) + /0) is equal to the ^-th column vector of

Hence it follows from (3.19) that

0.20)

holds, where the Ch are independent of (xn9 £). Let us consider the

case where E+({; 0) n ^ = {0} for |£MO. Then there exists d (>0)

such that for all £ with |£| = 1 and £eDv , |fcv(Q|>5. Thus Sv are

bounded, l^vrgs. Therefore, by the same argument as for //r), Irgj^p,

it follows from the estimates of ^jfi^vpfo */) m [3] that /j+2vp(r)e^'00[a9
b] for any interval [a, fo], 0<a<fe<oo, i.e., /j+2vp(r)eC00(0, co). Next

let us consider the case where f(x) belongs to C°°(R+). Then we have

(3.21 ) i j^[x*)/(*)] «, xji = KI + i«i2r ̂ ,'[(1 -^y

for arbitrary non-negative integer / and p(x)eC™. Since we have

for sufficiently large R, \y\>R and fcv(£)e[fl>

(3.23)

hold. Thus for re [a, &] and ft=0, 1, 2,...,

(3-24)
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IL
hold, where

(3.25) |co-/iv(a))||F5+2vp(a))|2dSv< + oo ,

Choosing / more than ^- + — + 1, we have /j+2vp(r)eCfc(0, GO). There-

fore /y+2vp(r)eC°°(0, oo).

Proof of Theorems. Define an orthogonal projection P on L2(R")

by P/(X)=/Oc) for \x\£R, = 0 for |x|>K,/(x)eL2(RJ). Let /eL2(RJ)
and f=f1+f2J1(x) = (Pf)(x)EN(A)JLJ2eN(A). Then / satisfies T2 if

and only if fi=Pf satisfies T2. Suppose that Supp/(x) is bounded and

that at least one of the following conditions holds: a )£ + (£ ;0 ) f l^

= {0} for |{|^0. b)/(x) belongs to C°°(RJ). The above arguments

and Lemmas 4 and 5 imply that / satisfies T2. Thus Theorem 2 follows

from Proposition 1. Similarly the first assertion of Theorem 3 follows

from Proposition 2. Here although PR(X)f->v<->(k) in L2(R£) as

A-»fc— z'O and Supp^"^)^*; 1^1^^}^ moving ^ to +00, we can
define v^~\k) as follows:

n OC as

Let a^Cx) e C°°(RJ) and <*R(x) = l for |x|gJR, =0 for |x|^R+l. Then,

(3 .26) (A - k)*R(x)R(X)f= aR(x)/(x) + (A - fc)aR

in L(R£) as - > f c - i O .

Since aR(x)(jR(A)/)(x)->aJR(x)i?^>(fc) in L2(R^) as A->/c-iO, the closedness
of the operator A implies that ^(xX'^eDCA) and that

(3.27) (A - fc)aR(xy-)(fc) = aR(x)/

that is,
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(3.27)' (Aloc - fc)u<->(fc) =/(x).

Moreover suppose that E+(£; 0) n SI = {0} for |£|^0. Then N(A) = \

and the coerciveness inequalities for the operator A,

(3.28) du

dXj

hold for ueD(A). Thus from (3.26) it follows that

(3.29) R(X)f >i;<->(fc) in H}OC(R^) as A >k-iO.

This completes the proof of Theorem 3.

References

[ 1 ] Eidus, D. M., The principle of limit amplitude, Uspehi Mat. Nauk, 24 (1969),
91-156, =Russian Math. Surveys, 24 (1969), 97-167.

[ 2 ] Matsumura, M., Comportement asymptotique de solutions de certains problernes
mixtes pour des systemes hyperboliques symetriques a coefficients constants, Publ.
RIMS, Kyoto Univ., 5 (1970), 301-360.

[ 3 ] Wakabayashi, S., Eigenfunction expansions for symmetric systems of first order
in the half-space R", Publ. RIMS, Kyoto Univ., this issue.


