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The Principle of Limit Amplitude for Symmetric
Hyperbolic Systems of First Order
in the Half-Space R*

By

Seiichiro WAKABAYASHI*

§1. Introduction

The present paper is concerned with the principle of limit amplitude
for symmetric hyperbolic systems in a half-space. Our proof for the
validity of the principle is based on the eigenfunction expansion theorem
established in the preceding paper [3]. For the notation and terminology
in this paper we refer the reader to [3]. We shall consider the fol-
lowing mixed initial-boundary value problem for hyperbolic systems:

(1.1) Fat—u(t’ x)=iAu(t, x)+%e””f(x), t>0, xeR%,
(]'2) Bu(t’ x)lx,,=0=0’
(1.3) u(0, x)=g(x),

where k (#0) is a real number,

0
Ox;’

J

(1.4) a=1L 3% 4,
I j=1

the A; are 2m x2m constant Hermitian matrices, B is an m x2m constant
matrix with rank m and u(t, x), g(x) and f(x) are vector-valued functions
whose values lie in C2™ Replacing u(t, x) in (1.1) and (1.2) by ei*u(x),
we obtain the corresponding stationary problem:

(L.5) (A—kDo(x)=f(x), xeR%,

Communicated by S. Matsuura, September 9, 1974.
* Department of Mathematics, Tokyo University of Education, Tokyo.



150 SEIICHIRO WAKABAYASHI

(1.6) Bu(x)|,,=0=0.

We assume the following conditions:
(L.1) L= (I %—iA) is uniformly propagative.
(L.2) The operator A4 is elliptic.
(L.3) The multiplicity of the real roots of Q(4, #)l,=(n=0 with respect
to t is not greater than two for every £eZ" ! and real 1#0. Moreover
the equation has at most only one couple of real double roots for
every (&, 1)#(0, 0).
(B.1) The boundary matrix B is minimally conservative.

Under the above assumptions the following expansion theorem
was proved in [3]:

Theorem 1 (cf. Theorem 6.2 in [3]). Assume that the conditions
(L.1)-(L.3) and (B.1) are satisfied and that fe L?*(R}).
(i) The expansion formula

2p
(L.7) Pre= 3§ w3t misoidn

s 2P -
+3 35 (o 0T fadn

v=1j=1JD

holds, where

(1.8) = wicommdx,  15)52,

(19 Fhan={ Phanle (s, 15520, 15vSs.

Here the above integrals are taken in the sense of the limit in the
mean and P is the orthogonal projection onto R(A)*=N(A)L.

G) feDA) if and only if AMFEm)ePMLAE, k(O
eP(nL*(D,xE), 1=j=<2p, 1=v<s. Then

(1L10)  ANE= 3, | Lo¥5e ni5edn

+ 3 E 0 KOPfanx DI,

v=1 j=1
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(1.11) ANFEM=2,mfm, 15j=2p,

(1.12) (AN =kOf Fian, (), 15j=2p, 1=vSs.

Here the Ajn) are distinct roots of Q(A,n)=0 and the k(&) are non-
vanishing zeros of the Lopatinski determinant (see [3]).

Remark. The differential operator A defines an unbounded linear
operator .« in L2(R}) with domain

D()={v(x) € C5(R}); Bo(x)ly,=0=0}.

Thus we denoted by A the closure of « in [3], which is a self-adjoint
operator in L2(RY).

In [3] it was proved that o(A)=R!. Hence in general there exist
no solutions of (1.5) and (1.6) belonging to L2(R}) for real k and fe
L?(R%). Then the question arises of determining uniquely a solution of
(1.5) and (1.6). There are three important approaches of deriving a
unique solution of (1.5) and (1.6), i.e., the radiation principle, the limit-
ing absorption principle and the limiting amplitude principle. The
limiting absorption principle for (1.5) and (1.6) was justified in M.
Matsumura [2] under more restrictive assumptions than ours.

In this paper the following theorems will be proved:

Theorem 2. Let f(x)=0 in (1.1), g(x)e D(A) in (1.3) and Suppg(x)
be bounded. Suppose that at least one of the following conditions holds:
a) E¥(;00n #={0} for |£|#0, b) g(x) belongs to C<(R%). Then for
the solution u(t, x) of the equations (1.1)=(1.3) and any compact set
KcR?

1

(1.13) gt—,u(t, X) — 80.102(x) in LA(K) as t— 0, [=0, 1,

hold, where 6,,=1 for 1=0, =0 for I=1, and g=g,+g,, g, NA}
=R(A)?, g, € N(A). Moreover if a) holds, then g,=0.

Theorem 3 (the limiting amplitude principle). Let feL?(R%), g
€ D(A) and k#0 be real in (1.1)-(1.3) and Suppf(x) and Suppg(x)
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be bounded. Suppose that at least one of the following conditions
holds: a) E*(&;00n #={0} for |£|#0, b) f(x) and g(x) belong to
C*(R%). Then for the solution u(t,x) of the equations (1.1)—(1.3)
and any compact set K<R"

(1.14) ekt [g_t', u(, x)—50,1<-]1€f2+g2>j] s (ik)o(x) in L*(K)

as t— o0, 1=0,1,

hold, where v(x)e L% (R%)V and f=f,+f,, f1 € N(A)Y, f,€ N(A). More-
over ag(x)v(x)€ D(A) and v(x) satisfies (1.5) in the sense of distribution
and also satisfies (1.5) and (1.6) in the following sense: There exists a
sequence {v;}<H'(R}) such that Buj|, -o=0, v;>v(x) in LZ%.(R})
and (A—klv;—f in L3 .(R") as j—ooo. Here ag(x)=1 for |x|<R,
=0 for |x|=ZR+1 and belongs to C*(R}).

Remark 1. a) E*(¢;00)n #={0} for [£|#0 implies the coercivity
of B for the elliptic operator A. Thus if a) holds, then

] I
(1.14)'e-ikr_d‘it,—u(t, x) — (ik)lo(x) in HL (RT) as t—o,=0,1,

and o(x) is a solution of (1.5) and (1.6) belonging to H{, (R%).2
Remark 2. From Lemma 3 it is easy to see that
(A=AD"!f(x) — v(x) in LZ.(R%) as A — k—i0.

In order to prove the above theorems we state some lemmas and
propositions in §2, following D.M. Eidus [1]. In §3 we shall give
their proofs.

§2. Preliminaries

Let s# be a separable Hilbert space, #, a subspace of s, P the
orthogonal projection onto s, and A a self-adjoint operator in .

1) L% (R?) denotes the space of vector-valued functions f such that feL*K) for
any compact set KCRZ.

2) HL.R?) denotes the space of vector-valued functions f such that ap(x) aa;a f(x)

€LR7) for |a|<1 and any R>0.
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Definition 1. An element fes# is said to satisfy the condition T,
if for all real a and b (a'b>0, a<b) there exists a constant C such
that for any complex A=k+ei (¢#£0, ke[a, b]) the inequality

(CRY IPRAfIC

holds.

Lemma 1. Suppose that f satisfies T;. Then for almost all keR!?
there exist the weak limits3)

(2.2) w—lim PR(A) f=0v'*)(k).

A-kxi0

This lemma can be proved by Fatou’s theorem and Riemann’s
mapping theorem.

Lemma 2. Let f satisfy T,. Suppose that F(k) is a complex-valued
function, continuous and bounded on (—o0,0)U(0, c©). Then for any
real a and b (a'b>0, a<b, including a= —o and b= )

~

(2.3) P gb FR)E(R)f =5 Sb FUOB(K)dk

holds, where {E(k)}_o<i<w denotes the right-continuous spectral family
of A and

(2.4) 0(k) = v (k) — v (k) .

Here the integral on the right-hand side of (2.3) is taken in the sense
of Bochner’s integral.

We first consider the Cauchy problem for >0
2.5) Ay =idu@+ L ey
dt i ’

(2.6) u(0)=g e D(A4).

The following proposition can be easily verified.

3) 2—k=*i0 means that 2 — % along any path that does not cross the real axis and
is not tangent to it,
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Proposition 1. Let f=0 in (2.5), g satisfy T, and geD(A). Let
u(t) be the solution of (2.5), (2.6). Then

s d'u

Q.7 P —680,,Pg, in# ast—> o, 1=0,1,

hold, where 06y,=1 for 1=0, =0 for I=1, and g=g,+4g,, g, € N(4)',
g2 € N(4).

Definition 2. An element fes# is said to satisfy the condition T,
if it satisfies T; and if 6(k) determined by (2.4) satisfies a Holder con-
dition on any interval [a, b]<=R\{0}.

Lemma 3. Let fe N(A)* satisfy T,. Then replacing the weak limits
by the strong limits in (2.2) Lemma 1 holds. Moreover

0(k) 1 S“’ (k)
() =4 ), 2 1
(2.8) vEN(k)=+ 5 + o )ow &, dk ,

where the integral is taken in the sense of the principal value. v*)(k)

satisfy a Holder condition on any interval [a, b]<R\{0}.
This lemma follows from Lemma 2.

Proposition 2. Let f satisfy T,,g=0 and k#0 be real in (2.5),
(2.6), and u(t) be the solution of (2.5), (2.6). Then

~ 1
(2.9) ik P [% u(t)— 50,,17,9] s (RN in
as t—> o, 1=0,1,
hold.

Using Lemmas 2 and 3, we can easily prove the above proposition.

Lemma 4. Let fes# be such that for all a and b with a'b>0,
a<b, and any hoe#, there exists Cy>0 such that for all complex
A=k+ei (ke[a, b], ¢#0) the inequality

(2.10) I(R(A)f, RAho)|=Co
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holds. Then f satisfies T,. Here v'¥)(k) satisfy a Hélder condition
with exponent 1 on an arbitrary interval [a, b]<=R\{0}.

The above lemma follows from the equality

(2.11) -%(R(l)f, ho) = (R(2)%f, ho)=(R(A)f, R(Dhy) .

§3. Proof of the Theorems

We first state the following

Lemma 5. Let f(r) be a complex-valued function and f(r)e L(0,
)N C**0, 00),*> «>0. Then for all a and b (ab>0,a<b) there
exists a constant Co (>0) such that for any kel[a, b]

© S |
3.1) \SO 1y 4| £Co
holds, where L=k+ ig, £#£0.

Now let f, he L2(R}), Suppf(x) and Supph(x) be bounded and A
the self-adjoint operator associated with (1.5) and (1.6). Then it follows
from Theorem 1 that for ImA#0

(32) (RO ==y JH0. 12,
J

(3.3) (RN =g Jeaws  1S7S2p, 15955,

hold. We can replace f by h in (3.2) and (3.3). Moreover we have
PR(A)f=R(A)Pf. Thus by Theorem 5.10in [3] we obtain

G4 Rors ROI=F (Lo Fro Rynan
= J

=1

N 1 n -A_FM
+ ;1 Snvxsm _T+2v,1('1)'h7+2\»p(7l)d”l-

4) C'+%(0, o) consistsTof continuous functions whose derivatives satisfy a Hélder con-
dition with exponent a on any bounded closed subinterval of (0, o).
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SH .

Let us consider the case 1<j<p.5) Put S;={neZ"; ;,(n=1}, r=4;n)

and o= 1=<j=p. Then

n
/11'(77) ’
1 frem)- it
63 =y [0

=S: Ur—;,ll)z_ dr Ssj(w'”j(w))ff(rw)-fF(rE)dsj

holds, where njw) denotes the outward unit normal to S; at w and
dS; the surface element on S;. Put

(3.6) I(r)= Ssj(w-nj(w))f}t(rw)-ﬁ}(rw)dsj .

Let us prove below that I,(r)eC»(0, ). By Theorem 6.1 in [3]
we have a local representation

PF(x, n)
= (0
(when there exists [;, 1<1;<p, such that

(&5 4 £ i0)=0),

(2r) Zei= 1P () +(2m) 3 3 ei¥ - deitiEihitmion,
u=1

(3.7) e

[ 04;(n)
;L A5 A0 Fi0)

X C;(m) + (2m) 2e ¢ ¥
p(D)=1;

<
x det (Bh{(; A;(n) Fi0),..., Bq,(x,, &; Ai(n) F0),...

s BIRHE: 2D T i0)* |

v=1,..,2mil

(when there exists [;, 1<1;<p, such that

11(&; A(n)Fi0)=0),

5) () >25(n)> o0 >2,(7) > 0 >Ap44(n) > oo >45,(7) for 0.
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where the C;,(n) are 2mx2m matrices whose elements are positively
homogeneous of degree 0. Noting that the hf(&; 4;(n)Fi0), ﬂét(i) and

A(E; A (m)Fi0) are positively homogeneous of degree O and that the
Th(&; A{(n)£i0) are positively homogeneous of degree 1, we obtain

0¥ +(x, n)
ork

= (0 (t](&; 4;(n) +i0=0),
()2 (ixr‘_”)keix‘ "Pi(n)+ (27r)"%u§1

( ix" - E+itg(8; A;(n) £i0)x,

r

k
cr ey Ak, .
> e'x ‘:e”#(‘:sl,l(’l)i‘o)xncj"(n)

. " - onm
) +(2n) 2ei¥E ¥ ot (k) (ix-E )
pUF’iL Wﬁgo (h)< r >

]

gkh g —
x det(Bhi,..., —ar—k—Tqu(xm ¢; ;(n) Fi0),..., Bhy,)

i (&5 4;(n) Fi0)* } (t1,(&; 4;(n) Fi0) =0),

k=1,2,...

Here we have used the relation 9 _ i Me 0 and Euler’s identity.

K 0
It follows from the estimates of ¥F(x,#n) in [3] that for fixed a and b,

O<a<b, and re[a, b]

=

(3.9) (5 e ) 10| < P, )

r

holds, where F%(x, ) satisfies the inequality

(3.10) Ss, (@n ,(w))(SM IFi(x, w)ldx) dS; <+ o0,
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since 'Z—|§c, Suppf(x) is bounded and _aa-r'Tqu(x,,, £ A(N)Fi0) is con-
tinuous in (x,, 7). Also we can replace f(x) and F%x, w) by h(x)
and H%x, w) in (3.9) and (3.10), respectively. Therefore we have

K

ak oy *
(3.11) Wf,*(rw)=gm<ﬁkj—(x, ?l)> f(x)dx,

Ky

% ﬁ;—f(rw) = SR'i(%(x, n)>*h(x)dx .

Thus we have

(.12 Lo1,0)=(_(@n) 3 () L Fi00) Sy hiw)ds;,
s; =0 r r

since

h A=k .. _ 2
G13) | fiee)rSphico)| s c{({ 1P o)1dx)

R

+(SM |5 (5, )| dx )}

From this it follows that Iy(r)eC*®[a, b],ie., I(r)eC®(0, ). Put
S,={nez"; k(&)=1,¢eD,}, Di={¢eD,; k()>0} and D;=D,\D}, 1

<v=<s. Moreover put r=k,(¢) and w= kréf) for £eDf. Then

Gy | e T Bt dn

= SD_xE(—k‘(?)lj‘/D—zfﬁzvp(ﬂ)'Eﬁzvp(ﬂ)dﬂ

© n—1 " —_—
+S0 '(;r:zjfdrgsvlw'nv(w)|f%+2vp(rw).h1¢+2vp(rw)dsv

holds, where fi(w) denotes the unit normal to S, at ® and d§,
denotes the surface element on S,. Put

(1) Lo 0@ Fravpr0) T2, re)dS,.

v

By the definition of ¥%,,,,(x, #) in [3] we see that
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_n | 2 .
(B16)  ¥ihay(x M=(Qn) 28 3 e Gk Cy, (n)

e B (A=K T
+(2m)den e & K—”A(c;m det(Bhi(E; 7),...

<L

ey Bqu(xm & A),..., Bi(&; Z))|l=kv(§)ii0

X Y eD;.,
yﬂ(n)]u=1,...,2ml’ n J

where the CY, (1) are 2mx2m matrices and positively homogeneous of
degree 0, and the yY,(y) are 1x2m matrices and positively homogeneous
of degree —1. Thus we have

akq}_%+2vp(x’ T])
or*

(3.17) 2, (ix"-E+itf(&; k,(§) £i0)x, )k

n
=(2n) 2
emt s -

X el Egit 5k OEIXCY (i) +(2n) 2eie

(D=L dEmn deBricE N

T
k—h ~ _
ceey %;,‘Bqu(xm ¢; k(EFiQ0),..., Bh;(é;l)>|}.=kv(§):\‘:i0

XV}":(”I)],L=1 ..... 2mi> rIEDjva k=07 1, 2a

Here we have used the fact that

A—ky(£) i £z )
A(é,i) det(Bh-i—(éal)’5 €hyeres Bh::(é’ /1)) |i.=kv(§)ii0

is positively homogeneous of degree 1, where e,=%(0,..., 1,...,0). We
put in [3]

(3.18)  q,(xp, &; k(E)Fi0) is equal to the p-th column vector of

(g | emmi—m @) ayvas,).
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Thus

h
(3.19) %q#(x,,, ¢; k,(¢)Fi0) is equal to the p-th column vector of

( 1 S 1 [(‘Elzi_l)he‘ixnnil (v I—M(; kv(é)))-lAzld,rl).

27 ), rh

Hence it follows from (3.19) that

oh Cu(1 L
(3.20) e (s &5 k() Fi0) | g SRS

holds, where the C, are independent of (x,, £). Let us consider the
case where E*(¢;0)n #={0} for |£#0. Then there exists o (>0)
such that for all ¢ with |¢|=1 and ¢eD,, |k (§)|>5. Thus S, are
bounded, 1<v=<s. Therefore, by the same argument as for I(r), 1<j<p,
it follows from the estimates of ¥%,,,,(x,n) in [3] that I;,,,,(r)eC[a,
b] for any interval [a, b],0<a<b<o0,i.e., I;;;,,(r)eC®(0, c0). Next

n

let us consider the case where f(x) belongs to C*(R}). Then we have
(3.21) |7 [p() f ()], x) =11+ [¢12)7'F [1-4,)

(PG SGNIEs x) | =CA+IE)
for arbitrary non-negative integer ! and p(x)e C®. Since we have

ca+1&h

v <
(3.22) cnml s S,

C
v < ¢
I)’Jz(’”): 1+Io.' ’

for sufficiently large R, |#|>R and k(&) e€[a, b],

,, oy 8
(3.23) (14 23wt | L Rz(B ) 2
asky(E)Sh or

h=0,1,2,...,

hold. Thus for re[a, b] and h=0,1, 2,...,

hyp + —+hyn 1
(3.24) ]Sp(%ﬂ)"f(x)dx[ <(1+1€12)7H IR, (),
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lgna (P Pz Y pryaix] <1121 2, (@),

hold, where

(3.29) [ 0@ (@178, < + o0,

[ 10,1 Hbsz0 @28, <+ c0.
Choosing ! more than —g~+§+1, we have I[;,,,,(r)e C¥0, ). There-
fore I, ,,,(r) e C*(0, ).

Proof of Theorems. Define an orthogonal projection P on L2(R%)
by Pf(x)=f(x) for |x|<R, =0 for |x|>R, f(x)e L2(R%). Let feL2(R%)
and f=f,+f,, fi(x)=(Pf)(x)e N(A), f,e N(A). Then f satisfies T, if
and only if f,=Pf satisfies T,. Suppose that Suppf(x) is bounded and
that at least one of the following conditions holds: a) E*(¢;0)n £
={0} for |£|#0. b) f(x) belongs to C=(R%Y). The above arguments
and Lemmas 4 and 5 imply that f satisfies 7,. Thus Theorem 2 follows
from Proposition 1. Similarly the first assertion of Theorem 3 follows
from Proposition 2. Here although PR(A)f—v(X(k) in L2(R%) as
A—k—i0 and Supp,v(k)c={x;|x|<R}, moving R to +oo, we can
define v()(k) as follows:

RU)f — vO(k) in L3 (RT) as i — k—i0.
Let og(x)e C=(RL) and ag(x)=1 for |x|<R, =0 for |x|=R+1. Then,
(3.26) (A — K)ag(X)R(A) f=0tg(x) f (x) + (A — k)or(x)R(4) f(x)
+ (Aag(x)) (R(D) ) (x) — og(x) f(x) + (Aag(x))v¢(x)
in L2(R7) as A— k—i0.

Since og(x) (R(A)f) (x)—og(x)v(k) in L2(R}) as A—-k—i0, the closedness
of the operator A implies that az(x)v(")(k) e D(A) and that

(3.27) (A — k)ag(x)p (k) = ag(x) f (%) + (Aar () (k) ,

that is,
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(3.27) (Ao — (k) =f(x).
Moreover suppose that E*(&; 0)n #={0} for |£]#0. Then N(A)={0}
and the coerciveness inequalities for the operator A,

(3.28) ”57”“ <C(IAul+ul), j=1,..., n,

hold for ue D(A). Thus from (3.26) it follows that
(3.29) R(A)f— v)k) in HL . (RY) as 41— k—i0.

This completes the proof of Theorem 3.
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