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Tensor Products and Approximation
Problems of C*-Algebras1}

By

Jun TOMIYAMA*

Abstract

For C*-algebras C and D and their C*-subalgebras A and B, it is shown
with other related results that if all irreducible representations of A are finite
dimensional with bounded degree then the family of product functionals in the
minimal C*-tensor product C®D determines completely the subalgebra A®B.

Relations to Effros' recent work are also discussed.

§ 1. Introduction

Let C and D be C*-algebras. In the case of the minimal tensor

product of C*-algebras, C®D, the family of product functionals deter-
a

mines completely the norm in C®D. Nevertheless, once we are con-
oc

cerned with the structure of the algebra there appear many things in

which we do not know the effect of the family of product functionals.

Some of them give rise to basic difficulties in the theory of tensor

products of C*-algebras. For example, for a non-zero ideal / of C

we still do not know in general whether the kernel of the homomorphism

C®D > C/I®D
a a

coincides with the tensor product /®D. In this case, one may easily
at,

see that the family of product functionals can not separate the kernel

from J®D.
a

In the following we shall discuss such kind of the problem whether
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the family of product functional can determine a product subalgebra

^4®B, that is, whether to each element x not belonging to A®B there
a a

exists a product functional cp®\l/ vanishing at A®B with <x, ^ ® ^ > ^ 0 .
a

The problem will be formulated in terms of a certain extraordinary

product (Fubini product)' of subalgebras A and B in C®D. If one
a

recalls results in Grothendieck [8] or Waelbroeck [19] one may regard

the problem as a C*-algebraic version of the usual approximation prob-

lem for Banach spaces, which had been remained open for a long time

until Enflo [6] gave the first counter-example.

We shall give in §2 a description of our problem as well as for-

mulations of the problem. The main result will be stated in § 3. In

spite of the depth of the problem, to date all that we have succeeded

in proving is that (Theorem 3.1) if A is a C*-algebra whose irreducible

representations are finite dimensional with bounded degree, then the

question is affirmative for any triple of C*-algebras (B9 C, D). In

§4 we shall show relations and difference between our Fubini product

and an extraordinary product defined recently in Effros [4] as another

C*-algebraic analogue of the approximation problem of Banach spaces.

Next §5 concerns a little different subject from others. The result

here says, roughly speaking, that for a generalized Fubini map defined

in §4 the Fubini type principle (which will be shown to be quite useful

throughout this paper) holds if and only if the induced functional is

cr-weakly continuous.

The author would like to thank G. A. Elliott and M. Takesaki

for their stimulating conversation on the subject and H. Araki for

his hospitality during the author's stay at the Research Institute for

Mathematical Sciences, Kyoto University.

§2. Formulations of the Problems

Let C and D be C*-algebras and A and B be C*-subalgebras of

C and D respectively. Throughout this paper we do not assume units

for these C*-algebras unless otherwise specified. When the algebras

C and D are acting on Hilbert spaces H and K the minimal C*-tensor

product C®D is defined as the closure of the algebraic tensor product
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C®D by the operator norm of the algebra of all bounded operators

on H®K. Hence the product algebra A®B is considered as a C*-

subalgebra of C®D. For each bounded linear functional cp on C (resp.
a

\l/ on D) we can define a bounded linear mapping R^ from C®D to
a

D (resp. Ly from C®D to C) which we call a right Fubini map (resp.
a

left Fubini map), such that

These two kinds of mappings are related in the following way;

We call this the Fubini type principle since it may be regarded as a

Fubini theorem for the product functional <p®\l/. It is shown in [14],

[16] that these mappings and the above equality are quite useful in the

theory of the minimal tensor product of C*-algebras.

We define a closed subspace F(A, B) with respect to C®D as
a

follows ;

F(A9 B) = {xeC®D; R(p(x) E B, L^x) e A for every cp e C* and ^ G D*} ,
cc

where C* and D* mean the duals of the Banach spaces C and D.

We call F(A, B) the Fubini product of A and B with respect to C®D.
a

We have following natural questions.

Question 1. Does F(A, B) necessarily coincide with y4®£?
a

Question 2. Does F(A, B) contain a non-trivial (not equal to A®B)
as.

C*-subalgebra of C®D ?
a

One may easily see that equivalent formulations of the above ques-

tions are;

Problem 1. For each element x in C®D not belonging to A®B,
a a

can we find a product functional (p®\l/ vanishing at A® B with
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Problem 2. For each C*-subalgebra E which contains A®B prop-
a

erly, can we find a product functional which vanishes on A®B and
a

which does not vanish on El

As we have noticed in the introduction many basic questions in

the theory of C*-tensor products appear in the form of these problems,

particularly in the form of problem 2. To illustrate the thing, we add

two more examples. Let Kl9 K2 and K be the largest GCR ideals in

A, B and A®B. Then most of the problems related to the type of the
a

tensor product A®B are reduced to the question whether K = Kl®K2
(X.

or not. A partial answer to this question is known ([16; Theorem 4])

but in general all what we know is that K is contained in the Fubini

product F(K19 K2) with respect to A®B (cf. [16; p 225]). The second
a

one is a question for relative commutants in C*-tensor products, that

is, the question whether the relative commutant of A®B in C®D
a. a.

coincides with the C*-tensor product of the relative commutants of

A in C and B in D. Again in this case the former is contained in the

Fubini product of the latter. The first question also relates to the ques-

tion of separation of closed ideals in A®B by means of the family of
a.

all product functions, a stronger version. A partial answer to this

stronger version is also given in [16; Theorem 5]. The second question

is, of course, a C*-algebraic version of the fundamental commutation

theorem of the tensor products of von Neumann algebras which had

remained open for a long time until the Tomita-Takesaki theory appear-

ed. In this connection, it should be noticed that in case of von Neu-

mann tensor products we can define similarly a tr-weakly closed Fubini

product for a given von Neumann tensor product by means of a-

weakly continuous Fubini mappings and we get an affirmative answer

to Question 1. Namely, let M and N be von Neumann algebras acting

on Hilbert spaces H and K. Denote by B(H) and B(K) the algebras

of all bounded linear operators on H and K, respectively. For each

a-weakly continuous linear functional cp on B(H), i.e. (peB(H)^ we

can define a cr-weakly continuous right Fubini map R9 from the von

Neumann tensor product B(H)®B(K) to B(K). Similarly a a- weakly

continuous linear functional \l/ on B(K), i.e. \l/eB(K)*, gives rise a a-
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weakly continuous left Fubini map L^ from B(H)®B(K) to B(H). Define

the subspace F(M, N) in B(H)®B(K) by

F(M, N) = {x E B(H)®B(K) ; R9(x) e N, L,(x) e M

for every <p e £(#)*, \j/ e B(K)*} .

Then it is nothing but an equivalent version of the commutation the-

orem (M®Ny = M'®Nf that we can conclude F(M, N) = M®N (cf.

[17; §2]). The result has many interesting consequences. For instance,

for all von Neumann algebras M1 and M2 on H and N^ and N2 on

K, the intersection M1®Ar1nM2®-/V2 is contained in F(M1 n M2, N1

n N2), whence

M^ N! n M2®N2 = (M A n M2)^(N1 n N2) .

A particular case of this fact is the result for relative commutants; if

Mi and JVA are von Neumann subalgebras of M2 and JV2 then we

have

(MigJA^)' n M2®N2 = M'1~®N'l n M2®N2 = (M'1 n M2)®(Ni n N2).

If ,F is a group of *-automorphisms of M and if ^ is a group of

*-automorphisms of N, then the subalgebra of fixed points for ^x^

acting as a group of *-automorphisms of M®N is contained in F(M^,

Ng) of the subalgebras of fixed points M^ and AT^. Hence we have

In spite of these positive results the author is afraid that the answer

to Question i for C*-tensor products could be negative in general.

We note two preliminary lemmas.

Lemma 2.1, Each element xeF(A,B) gives rise a linear mapping

from A* to B whose restriction to the unit sphere of A* is weak*

continuous. It also defines a linear mapping from B* to A whose

restriction to the unit sphere is weak* continuous.

Proof. Let a) be a bounded linear functional on A and let (p

and (f) be extensions of CD to C. Then for an arbitrary \f/eD* we
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have

Hence the image R^x) in B does not depend on the choice of the

extensions of a>. We denote this image by R(co, x). The mapping

jR(c0, x) is apparently a linear mapping from A* to B. On the other

hand, one easily verifies that the mapping R(p(x) from C* to D is weak*

continuous on the unit sphere of C*. Hence if we consider norm pre-

serving extensions of elements in the unit sphere of A* to C* and the

weak* compactness of the unit sphere of C* we may conclude that R(co,

x) is weak* continuous on the unit sphere of ^4*.

Lemma 2.2. Let I and J be closed ideals of A and B, respectively.

Then the Fubini product F(I, J) with respect to A®B is a closed ideal.
a

Proof. Take a fixed x e F(/5 J). It is enough to show that both

(a®b)x and x(a®b) belong to F(J, J) for aeA and beB. Take cpeA*

and i^eJ5*. We denote by Laq> the functional defined by

Then,

Hence we have

R9((a ® b)x) = bRLa(p(x) E J .

Similarly we see that

L^((a ® b)x) = aLLbll/(x) e I .

Thus, (a® b)x e F(/, J). A similar argument shows that x(a® b) e F(I9 J).
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Next we shall describe a relation of our problem to the usual ap-

proximation problem of Banach spaces. Let E^ and E2 be Banach
=^

spaces and denote by E^®E2 the injective tensor product of El and

E2. Waelbroech [17] defined a product Elq>E2 as one of the following

three mutually isometric Banach spaces:

a) The space of all linear mappings of E* into E2 whose restric-

tion to the unit sphere of Ff are weak* continuous.

b) The space of all linear mappings of E\ into E± whose restric-

tion to the unit sphere of £* are weak* continuous.
c) The space of all bilinear forms on Ef x E\ whose restriction

to the product of the unit sphere are weak* continuous.

A Banach space E is said to have the approximation property if

each compact operator on £ is a uniform limit of finite rank operators.
^

Then a result in [19] says that E1®E2 coincides with E^E2 for every

Banach space E2 if and only if E{ satisfies the approximation property.

Since we now have a counter-example to the approximation problem

constructed by Enflo [6], we know that there is a case such that £As**
®E2

<E^Ei<pE2. Now let X and Y be the unit sphere of £f and £f

with weak* topology. The space E^ (resp. E2) can be considered as a

closed subspace of C(X) (resp. C(7)), the space of complex valued
^

continuous functions on X (resp. on Y). Moreover the space E1®E2^
can be considered as a subspace of C(Z)®C(Y), which by [8; p 90],

may be regarded as the space of C(7)-valued continuous functions on

X or the space of C(J£)-valued continuous functions on Y. Since in this

case we can also define right and left Fubini mappings for cp E C(X)*

and ^eC(Y)*, we may define the Fubini product F(El9 £2) with respect
#«5

to CPO®C(Y), too. Then it is not so hard to see that

F(E19 E2) = C(X}®E2 fl £1®C(Y) = C(X, £2) n C(Y, EJ,

which shows that the space F(Ei9 £2) is just another definition of

Waelbroeck's product E^E2. Thus, in this case we have a nice char-

acterization of the Fubini product, especially because of the simple

definition of the injective cross-norm. At any rate, the above arguments

show that our problem may be regarded as an approximation problem

for C*-algebras. We note at last that in spite of our Lemma 2.1 the
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Fubini product is not isometric to a space of linear mappings as in

Waelbroeck's definition except for a few cases.

§3. Main Theorem

In this section we shall prove the following

Theorem 3.1. Let C and D be C*-algebras and A and B be

their C*-subalgebras, respectively. If A is a C*-algebra whose irredu-

cible representations are finite dimensional with bounded degree, then

Question 1 has an affirmative answer, that is, F(A, B) = A®B.

The proof will be decomposed into a sequence of lemmas.

Before going into the proof we list some consequences of the above

result.

Corollary 1. Let I be a closed ideal of C with the property

mentioned above. Then the kernel of the homomorphism

C®D > C//®D is I®D .
a, a a

The result is previously known with restrictions to the algebra C

(such as C is of type I etc.).

Corollary 2. // one of the relative commutants of A and B in

C and D is a C*-algebra in the class mentioned above, in particular

a commutative C*-algebra, then

(A®B)r n c®D=(A' n C)®CB' n D).
a a a

Lemma 3.2. // A is the algebra of nxn-matrices, then Question

1 has an affirmative answer.

Proof. Take a fixed x e F(A, B}. There exists a projection of

norm one e from C to A. Take cpeC* and i/feD* and denote by

q>\A the restriction of (p to A. Then,
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Hence x = e®l(x)e^4®Z). Let (xu) be a matrix representation of x
a

over D. For each i/^eD*, one easily verifies that L^(x) = (il/(xij)). If

\l/ vanishes on B, We have, for each cpeA*,

Hence,

Llj/(x) = (il/(xijJ) = Q and ^(xij) = 0 for every / and j .

Therefore, each entry x/y belongs to B, which shows that x belongs

to A®B.
a

Let A be an n-homogeneous C*-algebra, which means that every

irreducible representation of A is ^-dimensional. Put X = A, the dual

of A. We write Pt for the primitive ideal corresponding to the rep-

resentation teX. Denote by A(t) the image of A by t. The image

of an element a will be denoted by a(t). In this case the space X is

a locally compact HausdorfT space and the function f-»||a(f)|| is continuous

and vanishes at infinity. Let <F be the set of all operator fields in

{X, A(f)} induced by the elements of A. A field x(t) in {X, A(t)} is
said to be continuous with respect to & if for any teX and positive

8 there is a field a in & and a neighborhood U of t such that

|| x(s) — a(s) || < e for every se t / .

It is known that the algebra A is represented as the C*-algebra of all

continuous fields in {X., A(i), ^} vanishing at infinity with local triviality

([7], [11]). Now, consider the homomorphism £®1 of A®B. The kernel
a

of this homomorphism is Pt®B by [14; Theorem 5]. Each element
a

xeA®B gives rise to an operator field x(0 = £®l(x) in {X, A(i)®B}.
a a

We have

Lemma 3.3. The function t-+\\x(i)\\ is continuous on X and vanishes

at infinity. The algebra A®B is isomorphic to the algebra of con-
a

tinuous fields in {X, A(t)®B} with respect to the fields x(t)'s.
a

Proof. Fix teX. By the local triviality there exists a compact

neighborhood U of t, on which the restriction of A may be regarded
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as the space of M,rvalued continuous functions. Since the latter space

is isomorphic to the tensor product C(U)®Mn, the restriction of the
a

space of the fields x(i)'s to U may be naturally identified with C(U)

®Mn®B. Thus the function s-»||x(s)|| is continuous on 17, in particular
<X V.

at t. Moreover if a net {ta} is eventually outside any compact set,

then ||a(fa)|| converges to zero for every a e A. Hence the function
n

II Z fli(O®^ill converges to zero. Therefore the function ||x(OII vanishes
i= l

at infinity, too.

Next suppose x(0 = 0 for every teX. Then for every il/eB*,

L^(x) belongs to the ideal Pt for every t. Hence L^(x) = 0 for every

i/re£*, which implies x = 0. Thus we have an isomorphism of A®B
a

into the space of continuous fields. We assert this is an onto mapping.

Consider an arbitrary couple (t, s) in X. We have

a a a a

Hence by [9; Lemma 8.1]

Let a and b be arbitrary elements of A(f)®B and A(s)®B, respectively.
a a

Choose c and d in A®B with t®l(c) = a and s®l(d) = b. We may
a

write

c— d=x— y

with xePt®B and yePs®B. Put
a v

z=c—x=d—y.

Then we have

a = t®l(z) and b = s®l(z).

Hence by the general Stone-Weierstrass theorem for C*-algebras of

continuous fields [15; Theorem 2.2], the assertion follows. This completes

the proof,
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Remark. The above proof shows that the result is valid for any

C*-algebra of continuous fields with local triviality.
Now we are back to our original situation assuming that A is

7i-homogeneous. We extend the representation t to a representation nt

of C on a space K such that the restriction of 7it(A) to a subspace H

is unitarily equivalent to t (cf. [3; 2.10.2]). Let p be the projection
onto H and z(f) be the central cover of p in nt(A)"9 the commutant

of nt(A)r.

We assume that the algebras B and D are acting on a Hilbert
space.

Lemma 3.4. Suppose xeF(A,B). Then

7C,®l(x)z(0®l Ent(A)z(t)®B.
a

Proof. We shall show that the element 7r,®l(x)z(f)®l belongs
to F(nt(A)z(t), B) with respect to nt(C)"®D. Then, as ut(A)z(f) is iso-

a
morphic to Mn the conclusion follows from Lemma 3.2.

Now for every (pe(nt(C)")* and \l/eD*, we have

=<x, Rz(t)(pont®\ijy=(RRz(t)(p07<t(x)9 \i/y.

Whence

R9(nt® 1 (x)z(O ® 1) = RRz{t)(pont (x) e 5 .

Similarly we get

A/,(X® 1(X)Z(0® 1) =7Cr(L^(x))z(0 6 7Tr

Remark. The element 7rr®l(x) commutes with z(f)®l. In fact,

Let 0r be the isomorphism between 7rr(/4)z(r) and A(f) and denote 0f
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the isomorphism of nt(A)z(t)®B to A(t)®B. By the above lemma
a a

there exists an element x(i) in A(f)®B with 6t®l(nt®l(x)z(t)®l) =

Lemma 3.5. The field t-*x(i) is a continuous field in {X9 A(t)®B}
(X

vanishing at infinity.

Proof. Take a point teX and let U be a compact neighborhood
of t on which the algebra A (or A®B) becomes trivial with complete

a
matrix units e^s) for s e U. Let (ptj(s) be a linear functional on A(s)

with norm one such that

Let

*0)= Z eij(s)®xij(s) with
», j= l

Then for every ^eD* we get

where <^-(s) is a norm preserving extension of RZ(S)<Pij(s)°9s to 7rs(C)
whose choice does not change the value Rtj)..(s)07ts(x) because x belongs
to F(A, B). It follows that xij(s) = R4>ij(s)OJts(x). On the other hand,

for aeA, we have

where a(s)= 2 ^ij(s)eij(s}- Therefore if sa converges to s in U,

7rSa|^l converges weakly to (^(s^TiJA Now suppose x(t) = y(t) for some
yeA®B. Then xij(t) = yij(t). From the above arguments,
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which converges to R<j>tj(t)°nt(
x — J;) = 0 by Lemma 2.1 if sa converges

to t in 17. Therefore, x(t) is a continuous field. Finally suppose ta

converges to infinity. We choose at each point tx the functional <p;/Ja)

considering a fixed neighborhood of ra on which A becomes trivial.

Let {il/ij(t^} be norm preserving extensions of RZ(tat)9ij(ta)oOtg[ to 7ifa(C).

Then there exists a weak* convergent subnet of {^/O0?^}. Since this

holds for each net {fj, in order to get the conclusion we may suppose

that the net {*Ai/*a)07rfa} itself converges weakly to a functional cpQ

in the weak* topology. As an element a of A vanishes at infinity in

X we have

Hence cpQ\A = Q, which implies, by Lemma 2.1, that

*y(O = £*,,<*.)•*,„(*) - ^ 0.

Therefore the field x(f) vanishes at infinity.

Lemma 3.6. // A is n-homogeneous, Question 1 has an affirmative

answer.

Proof. Take an element XEF(A, B). By Lemma 3.5 and 3.3

there exists an element y of A®B such that x(f) = y(f) for every teX.
a,

This means that

7Tr®l(x — j;)z(t)®l=0 for every teX*

Hence for every (pe(nt(C)")* and i^eD*, we have

Hence n^L^x - y)) z(t) = 0 and L^(x -y)(f) = Q because L^x — y)eA.

Hence L^(x — y) = Q for every \l/eD* and x — y = 0. Thus x belongs to

A®B.
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Proof of the Theorem. Let n1<n2<-~<nk be the dimensions of

irreducible representations of A and let Jt be the intersection of the

kernels of irreducible representations of A with dimension nx. Let n

be a representation of A on a Hilbert space with kernel I1. Write

H as the extension of n to C on a Hilbert space .K such that the restric-

tion of n(A) to a suitable subspace H of K is unitarily equivalent to

n. Let z be the central cover of the projection p: k-+H in n(A)'.

Take an element xeF(A,B). As in the proof of Lemma 3.3 we can

show that 7r®l(x)z®l belongs to F(n(A)z, B) with respect to n(C)" ®D.
XV xv <*

Since the set {teA: dimt = n1} is closed in A, n(A)z is an n-homogeneous

C*-algebra. Hence by Lemma 3.6 we have n®l(x)z®\eTt(A)z®B. Let
a.

y1 be an element of A®B such that 7i®l(x)z®l=7i®l(j;1)z®l. We
a

assert that x — yl eF(/1? B) with respect to C®D. In fact, suppose
a

there exist a bounded linear functional i/^eD* with L^(x — y^) $ Ilm

Then there exists a functional <p e n(A)* such that

Let 0 be the isomorphism of n(A)z to n(A), then

However,

This is a contradiction. Therefore, L^(x — j;1)e/1 for every ij/eD*.

On the other hand, as both x and j^ belong to F(A9 B) it is apparent

that R^x — y^eB for every <peC*.

Let J2 be a closed ideal of ^4 which is the intersection of irreducible

representations with dimensions nl or n2. Then the quotient algebra

I ill 2 is n2-homogeneous. Hence applying the same argument for x

— yleF(I1, B) we can find an element j2e/1®B such that
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Continuing this process we can find {yl9 J^,.--)'*-^} with y,-e/ j- i®B
a

such that

x-yi-y2 ----- yfc-2eF(/k_ l 5 B).

However the ideal Ik-l is an rck-homogeneous C*-algebra, hence by

Lemma 3.6

Therefore xeA®B, which completes the proof.
a

There is one easy case which is not included in the above arguments.

Proposition 3.7. Keep the same notations as above. Suppose there

exist projections of norm one EI and e2 from C to A and D to B.

Then F(A, B) = A®B.

Proof. By [14; Theorem 1] there is a projection £1®fi2 from C®D

to A®B such that

Take an element x in F(A9 B). Then for every <p e C* and \l/eD*

we have

<81®£2(X),

The second equality follows from the property of x. Thus x =

An interesting class of C*-algebras satisfying the above condition

is the class of injective von Neumann algebras. A von Neumann al-

gebra M acting on a Hilbert space H is said to be injective if there

is a projection of norm one from B(H) to M (we prefer the terminology
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"inject! ve" in Effros and Lance [5] to our original terminology, a

C*-algebra having the extension property in [17; §7]). It turns out

([17; Theorem 7.2]) that the property is equivalent to saying that there

is a projection of norm one to M from any C*-algebra containing M.

Every von Neumann algebra of type I and every hyperfinite factor

together with its commutant are injective.

For von Neumann algebras there is an equivalent question for the

Fubini product. Namely, let M and N be von Neumann algebras

on Hilbert spaces H and K. Then does the intersection M®NnB(H)

®B(K) coincide with M®JV? The situation is expressed in the following
a a

way.

Proposition 3.8. M®N n B(H)®B(K) coincides with F(M, N) with
a

respect to B(H)®B(K). In particular, if M and N are injective we
a.

have

M®N n B(H)®B(K) = M®N.
a a

Proof. From the definition it is apparent that for any (peB(H)%

RV maps M®N n B(H}®B(K) to N. On the other hand, an element
a

xeB(H)®B(K) gives rise to a linear mapping R9(X) from B(H)* to
a

B(K) whose restriction to the unit sphere is weak* continuous. Since

the unit sphere of the predual B(H)% is weak* dense in the unit sphere

of B(H)*9 it follows that

R9(M® N n B(H)®B(K)) = N for every <p e B(H)* .
a

Similarly we can see that

n B(H)®B(K)) = M for every \l/ e B(K)* .

The other inclusion follows from the commutation theorem for von

Neumann tensor products as explained in §2. The rest is then just

an immediate consequence of Proposition 3.7.
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§4. Relations between the Fubini Products and the Extraordinary

Products by Effros

Recently Effros [4] has introduced an extraordinary product of

two unital C*-algebras as a C*-algebraic analogue of the approximation

property of Banach spaces. The definition goes as follows. Let A

and B be C*-algebras with units. Let .4** and 5** be the second

duals of A and B as the enveloping von Neumann algebras for A and

B respectively. Let S* be the set of normal states of ^4**®B**. Since

the predual of ,4**®£** is the tensor product A*®B* with the func-
a'

tional cross norm a', S* is a subset of ^4*®B*. We provide it with
a'

the weak topology defined by A®B and consider this as a replacement

of the product space of the unit spheres of the dual spaces in the

case of the injective tensor products. Then, as in the case of Banach

spaces, a C*-algebra D with

is said to be an extraordinary product of A and B provided the first

inclusion is proper and the elements of D are continuous on S* in

the ;4®J3-topology. Since an element of D may sit outside the C*»

tensor product ,4**®$**, this product may certainly be different from
a

our Fubini product. However we can define a slightly weaker Fubini

product;

Fm(A, B) = {xe A**®B** ; R9(x) E B, L^x) 6 A for every <p e A* and i// e B*} .

Then one can verify easily that Fm(A9 B) contains the algebra D. How-

ever, the following example shows that even in the case of commutative

C*-algebras this weak Fubini product may contain a C*-subalgebra which

does not coincide with ^4® B, whereas in commutative cases the algebra
a

does not have an extraordinary product by [4; Theorem 4.1] (or use

the fact a-norm = injective cross norm). Before going to state the exam-

ple we need a little more preparation. A positive functional (p on a

von Neumann algebra M is said to be singular if for every non-zero

projection p there is a non-zero projection q^p such that (q, <p> = 0.
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The set of finite linear combinations of singular positive linear functional

forms a closed subspace of M*, M%. The conjugate space M* is decom-

posed into the ^-sum of the predual M* and M£, that is,

with (j^eM*, <p2eM± and \\<p\\ = | l<P i l l + \\9i\\

(cf. [12]).

We call a functional in M£ singular and a functional in M# normal.

Example. Put A = B = lco. Let ew be the minimal projection of
00

I00 coresponding to the n-th coordinate. Put x0= ]£ en®e» m (Z00)**

®(/°°)**. We assert that XoeF^l™, i00)-/00®/00." Thus, from the
a

proof of Lemma 2.2 we see that

Let <p be a singular functional of /°°, then <en, <p> = 0 because it

is a finite linear combination of singular states. Now the right Fubini

mapping for <pe(/°°)* is a a- weakly continuous mapping of (/°°)**<g)

(I00)** to (I00)**, hence I^(;c0)= £ <en5 (?X in (/°°)**. Therefore if
11=1

(p is singular, ^(^:0) = 0. If cp is normal, then <en, 9>-»0. Hence,

JR^XQ) is a uniform limit of £ <^, <p>^ and ^^(^o) e '°°- We have

the same conclusions for L^(x0). Thus, the element x0 belongs to

FJJ™> /°°). Next, let <pn be a normal state on /°° such that <eM, (pn>
= ll^«ll=:l- Choose a subsequence {<pn.} which converges to singular

state cp in the weak* topology. Then the double sequence {(pni®9nj}

converges in the weak* topology on I00®/00. Hence for each positive
a

number s we can find an integer ne such that

for every ni9 rij>ne if XQ belonged to J00®/00. However this contradicts
(X

the equality;

<Pni®9nj>= <^«? 9f.,X^ ^«J>=^}«
n— 1

Thus, the element x0 does not belong to J00®/00.
a

Let M and N be von Neumann algebras. Fix an element xe
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M®7V. For an arbitrary bounded linear functional cp we define a bounded

linear functional on JV* as

Then there exists an element (x) in N such that

We get a bounded linear mapping Rv of M®JV to N, which is clearly

an extension of the right Fubini mapping in M®JV induced by (p. We
a _

call this a generalized right Fubini mapping in M®AT. Similarly we

can define a generalized left Fubini mapping L# for any functional

i j / e N * . From the definition we have the Fubini type principle,

if either cp or \l/ is a normal functional. Note that the property aRv(x)b

= R(p(l®axl(S)b) holds for this generalized mapping. In fact, for \l/eN%,

Here the third equality follows from the property of the cr-weakly con-

tinuous mapping L^.

We shall show that the C*-algebra, C*(x0, J00®/00) is contained
a

in the stronger Fubini product,

Fs(/%/00) = {.xG(/00)**®(/00)**;Klp(x)6/00, L^(JC) e /°° for every cp, ̂ e(/°°)***}.

In fact, it is enough to show the assertion for a singular functional cp

of (/°°)**. We claim that R(p(x0) = Q. Since en is also a minimal pro-
QO

jection in (/°°)**, (p vanishes at en for every n. Hence, putting z0= ^ en

in (7°°)**, we have

R9(x0)z0= Z R<p(xQ)en= ^(x0l®O=
«= 1 n= 1 n=l

Furthermore,
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0 whence

§5. The Fubini Type Principle for Generalized Fubini Mappings.

As we have seen already the Fubini type principle plays an important

role in the theory of tensor products of operator algebras. We shall,

however, prove here that we can not expect this principle to hold for

our generalized Fubini mappings. Namely we have the following result,

which sounds quite natural in a measure theoretical sense.

Theorem 5.1. Let M be a von Neumann algebra acting on a

separable Hilbert space and N an infinite dimensional von Neumann

algebra. Let cp0 be a bounded linear functional of M. Then we

have the equality

in M®N for an arbitrary bounded linear functional ij/ of N if and

only if <p0 is normal, i.e. a-weakly continuous.

Proof. The sufficiency follows from the definition. So suppose

R<PQ satisfy the above equality for any i j / e N * . From the assumption,

the unit sphere of M is metrizable in the <r-weak topology. Let {an}

be a sequence in the unit sphere of M converging to zero a- weakly. Let

{en} be an infinite family of mutually orthogonal projections in N. Then

the von Neumann subalgebra generated by {en} is isomorphic to the

l°° algebra. Write c0 as the subalgebra of /°° consisting of all sequences

converging to zero. We note that (/°°)i = cg, the polar of c0. Put x
oo t _

= X an®en in M®N. If (p is a normal functional of M, <an, cpy
«=1 00

converges to 0. Hence, R(p(x)= ^ <#„, q>yen belongs to c0. Therefore
n=l

if \j/ is an extension of a singular functional of /°°,

As cp is arbitrary, it follows that L^(x)=0. Hence, because of the

equality, we have
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which means that Rqt(x)Ec0. Write R9(x) = £ fan where A,,-»0. Then,
w=i

Hence, <an, <p0>=/ln->0. Thus, <p0 is cr-weakly continuous on the unit

sphere of M and by [2; Theorem 1.3.1] it is a- weakly continuous on

M.
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