
Publ. RIMS, Kyoto Univ.
11 (1975), 201-211

Simple Proofs of Nakano's Vanishing Theorem
and Kazama's Approximation Theorem

for Weakly 1-Complete Manifolds

By

Osamu SUZUKI*

Introduction

Let X be an m-dimensional complex manifold and let £ be a

vector bundle on X. A hermitian inner product in E is given as usual

and is denoted by H(£, rj). In particular, when £ = rj, we write H(£, £)

as |£|2. By 0(E) we denote the sheaf of germs of holomorphic sections

of E. X is called a weakly 1-complete manifold when there exists a

C°°-differentiable pseudoconvex function W on X such that Xc={W<c}

is relatively compact in X for any real number c. We see that if X

is a weakly 1-complete manifold, Xc is also a weakly 1-complete mani-

fold.

Now we consider a weakly 1-complete manifold with a positive vec-

tor bundle E (see, Definition (1.4) in §1). Then the following theorems

have been proved by S. Nakano [8] and H. Kazama [4] respectively:

Theorem 1. For any real number c, we have

H«(XC,0(E®K}) = Q for q^l,

where K denotes the canonical line bundle of X.

Theorem 2. Fix two constants c and d with c>d. Then for any

holomorphic section <pEH°(Xd, 0(E®K)\ Xd being the closure of Xd

in X and for any positive constant e, there exists a section (pEH°(Xc9

@(E®K)) such that \<p — (p\2<s everywhere in Xd.
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Corollary. H«(X, 0(£®K)) = 0 for q^l .

This follows from Theorems 1 and 2 by a well known technique

(see, Gunning and Rossi [2], p. 243, Theorem 14).

In this short note we shall give simple proofs of the above theorems

by using the method due to K. Kodaira (see, Theorem 3 in §2) and

a key lemma due to A. Andreotti and E. Vesentini (see, [1], p. 93,

Proposition 5). The original proof of Theorem 1 is very complicated

because of the choices of the metrics of E and X (see, the proof of

(iii) in Proposition 1 in p. 172, Nakano [8]). Kazama's proof is very

long.

Sections 1 and 2 are devoted to preliminaries and in section 3

our proofs will be done.
0

The author would like to thank Professors S. Nakano, H. Komatu

and M. Ise for their encouragements during the preparation of the

present paper.

§1. Hermitian Connections of Hermitian Vector Bundles

Let X be an m-dimensional complex manifold and let E be a her-

mitian vector bundle of rank r on X. We cover X by locally finite

coordinate neighborhoods {U^} and denote local coordinates on 17A

by z], zjf,..., z^. With respect to this covering a hermitian inner pro-

duct H is expressed by a system of positive definite hermitian matrixes

{(h,ikj)} on 17A: for ejections £ = {(«, £!,..., «)} and >j = {fai, f / f , . . . ,
of E on X,

0-1) fcj

By (/if-7) we denote the inverse matrix of (fcA) fej). By using H, we can

define a hermitian connection in a canonical manner: A system of

matrix valued 1 -forms {coj}, a>^ = {eoj[} on l/A is called a hermitian con-

nection if

(1-2) o>H= f rUrfzJ where rj..J = £ *A^.

The curvature tensor of the above connection is defined by
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sn A

We also define

It is easily seen that K^ik^ = K^^. This shows that (KAsi^a) can be

regarded as a hermitian matrix of type (mr, mr).

Definition (1.4). £ is called positive in the sense of S. Nakano [6]

if there exists a hermitian inner product in E such that ( — KA)lfc^a) is

positive definite everywhere.

Set K^= ^ ^A j^a. Then K^^ = daSp log /*A, where /ZA= det (/zAjkJ).

The following is easily proved.

Proposition (1.5). If E is positive, then

is positive definite (l.l)-/orw on X.

Then we see that a positive vector bundle induces a kahler metric

on X.

Now we shall restrict ourselves to a weakly 1 -complete manifold

with a positive vector bundle E. The positive metric is denoted by (1.1).

Fix a real number c and consider Xc. Then Xc is also a weakly 1-com-

plete manifold with respect to a complete pseudoconvex function

*-./(,--!-).
For a convex increasing function A, set

Then we have a kahler metric

S. Nakano [7] proved
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S ao __
jA"(t)dt=ao9 then (1.6) is a complete

kdhler metric on Xc.

In what follows, we fix such a complete metric on Xc, which is de-

noted by

(1.8) ds*

We define the metric form by

From this metric we can define a connection {COA}? <yA = (eoA5 £) in a well

known manner:

(1-9) «»,.;= Z rA>;,<fcj where rjy= £ »j'-fe^ ,
a=l

where (0J0) is the inverse of (#A>ap). The Riemann curvature tensor is

defined by

and also we define

m

p=l

As for the conjugates of the above, we define

The Ricci form is defined by

^ where
P=I

We infer that rAJy = rAj^, since the connection is induced from a

kahler metric. The canonical line bundle K of ^T is defined to be

d(zl z2 zm}
K= {/,„}, where ^ = Tr ''''' "- °n ^ n ̂  '
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We see that

\J^\2--^ on UtnUp where 0, = det (0A>a/0 .
WAI

Therefore

(1-10) {9I1}

determines a metric of K on Xc. The following is well known:

(1.11) Ritfr = dJ

In what follows we choose {0I1} as a metric of K and fix once for all.

By using (1.1) and (1.10), we define a hermitian inner product in E®K.

(1-12) (/u.fcj) where K^j^g^h^j.

Also for a convex increasing function #, we take

(1-13) (e

Then we get another inner product in £®K. The Riemann curvature

tensor induced from (1.13) is denoted by

We see

(1.14) Ktfjsf = K,^- &yjttf$) - 8*jdJ5, log g, .

§2. Differential and Integral Caluculus of E®£-yalued Forms

We recall differential and integral caluculus of E®K- valued forms

on Xc. Let Cptq(Xc, £®X) denote the space of C°°-differentiable E®K-

valued (p, g)-forms on Xc and let &p,q(Xc9 E®K) = {(peCpiq(Xc, E®K):

the support of cp is compact}. We express (p = ((p{)ECptq(Xc, E®K) as

9{=-tt 2 Z (9)i^^ptft^qdz
P • y ' < X l , . . . , ( X p Pl ..... Pq

For cpeCp>q(Xc, E®K), we set
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Particularly when cp is a (0, g)-form, we write Op)!,^...^ and (<p)iPl-Ptl.

With respect to (1.8) and (1.12) we define a hermitian inner product

in Cptq(Xc9E®K) as follows: For <p and ^ e Cptq(Xc, E® K)

Also we define

We define

(2.1) OP, 10,8 =

(2.2) (<?, iA), = ( Hx((p,^)dV for

X c

where dV= —r O A Q A • •- A O(m-times). Particularly when cp = \l/9 we
ml v

denote (<p, <p)x (resp. (cp, (p)h) by ||̂ ||| (resp. ||<p||f). d: Cp>q(Xc, E®K)

-»cp,q+i(xc> E®K) is defined as usual. With respect to (2.2) (resp. (2.1))

the formally adjoint operator is defined, which is denoted by &x (resp.

$ri). The Laplace-Beltrami operator Dx is defined by D^ = 5^X + ^X5.

Let &~pfq(Xc, E®K) denote £®K-valued covariant tensor fields

of type (p, q). We write the (al...ap, Plm..^-component of q)E&~p>q(Xc9

E®K),(<p)it0llmmmgiptplmmmpq. The connections (1.2) and (1.9) derive covariant

differentiations V(/} of type (1, 0) and Vj^ of type (0, 1) in &

E®K) respectively:

^^A

4 m

s^l —~ - . - i — « p . / » i — 0 « t-lr-1

where Ffs
(*)J

s denotes the connection coefficients defined from (1.12) as

in (1.2), and
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Then we obtain the commutation formula: For (pe^~ p } q (X c ,

(2.3)

q m t

In the same manner as in Kodaira and Morrow [5] (see, p. 110, Pro-
position (5.3) and Theorem (5.2), and p. 112, Proposition (6.7)), we

get for

. . p , . . .

(2.4)

!^,..^,,-,.^-^- Z ^
a > / )= 1

Therefore

t (- D"ff? '(vL

In what follows we consider only (0, g)-forms. Then by (2.3)

a/8

where

Then
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As in Kodaira and Morrow [5] (see, p. 126), we can prove

Thus we obtain

(2.5) (CUP, <?
x c

. .
T

Referring to (1.11) and (1.14), the second term of the right side of

(2.5) becomes

- \j

(2.6) +(
JA

.
c

Here note that since 33(^)^0, the last term in (2.6) is non-negative

and that the first term in (2.5) and the second term in (2.6) cancel

each other. Finally we obtain

Theorem 3. For <p e @0tq(Xc, E®K), we have

x c

§3. Proofs of Theorems 1 and 2

First we prove Theorem 1. Making completion of @0}(1(XC
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with respect to \\<p\\* (resp. \\q>\\%) we obtain a Hilbert space ^l>q(Xc,

E®K, %) (resp. &l%£&& E®K, £)). We extend 3: ®0>q(Xc, £®£)-»^0>

,+ 1(Xc, £®K)(resp. 3:90.q+l(Xc,E®K)->90fq+2(XC9E®Kj) to the dif-
ferential operator in the sense of distribution, which is denoted by

T: <?%tq(XC9 E®K, x)-*3>2
0,q+i(Xc, E®K, x) (resp. S: <?2

0iq+l(Xc,E®K,x)-+

£'u,q+2(Xc> E®K, /)). Then T(resp. S) is a densely defined closed
operator, so the adjoint operator T* (resp. 5*) can be defined.

Consider

&$tq(Xc, E®K, x) d=± ^2o,q+i(Xc, E®K, x) ;=± &t.q+2(X» E®K, x) -

First we infer that by the completeness of \l/, there exists a convex

increasing function x such that ||<p|||< + oo for any <p e C0)q(Xc, E®K).

Then in view of Dolbault isomorphism and a lemma on L2 -estimate

(see, Hormander [3], p. 78, Lemma 4.1.1), it is sufficient for the proof

of Theorem 1 to prove the following

Theorem 4. There exists a positive constant C0 which does not

depend on the choice of x such that

I*) \\<P\\l£CMT*q>\\* + \\S<p\\*) for

where

2
>q+1(Xc, E®K, x): T*9e J?2

0,q(Xc9 E®K, x)} ,

q+l(Xc, E®K, x): Scpe &2
0,q+2(Xc9 E®K, x)} -

Proof. By the choice of the base metric, it is a complete metric.

So referring to a key lemma which is due to A. Andreotti and E.

Vesentini [1] (see, p. 93, Proposition 5), we have only to prove (*)

for <pe^0j2+1(Zc, E®K). Let C denote the minimum of the eigen

values of ( — K^^j^) on Xc, then we see that C>0. Thus by Theorem 3

we have

(nx9,(p)x^C0\\<p\\2, where C0

which proves (*).
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Next we prove Theorem 2. We follow the proof given in the

approximation theorem on Stein manifolds (see, L. Hdrmander [3],

p. 89-90). For £®K-valued forms q> and if/, we set

To prove Theorem 2 it is sufficient to show that if u e &%t0(Xd, E®K, %)

satisfies (u, <p)^d = ® for any (peH°(Xc, 0(E®K)\ then (u, $)nld = Q for

any (peH°(Xd, &(E®KJ). Take such a u. We extend u by setting

0 outside of Xd and denote it by the same latter u. Let NT be the

null space of T: 3>%>()(XC, E®K, x)->JS?§fi(Xc, E®K, £), then we see that

where N^ denotes the orthogonal complement of NT. So ue*w is con-

tained in N^. By a lemma due to L. Hormander [3] (see, p. 79, Lemma

4.1.2) we see that there exists an fE&%}i(Xc,E®K9x) such that

(3.1) iie*<*> = T*/ and |

Set g = Q-*Mf. Then we have by (3.1)

Now we choose a sequence of functions {#v} such that (1) xv i§

a convex increasing function, (2) Xv^Zi f°r eacn v> (3) %v(0=l if ^d
and (4) for any t e(d, c) Xv(i)-*°° (v->oo).

For each %v we get gf ( v ) . By (3.1) and (3) there exists a positive

constant M which does not depend on v such that

Then g(v)e^^0(Xc9 E®K, -/J and #(v) is bounded. Therefore there

exists a subsequence which converges weakly to a limit g0. By (4)

we see that g0 = Q on Jfc — Zd. Also by the continuity of differentiation

in the sense of distribution, we have w = #/j0o- Therefore, (u, a)^ = (^0,
do)n for aG&oi0(Xc9 E®K). Take <peH°(Xd, 0(E®K)) and extend

q> to ^* such that <p* E @0tQ(Xc, E®K). Then we see that (w,
which proves Theorem 2.
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