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Simple Proofs of Nakano’s Vanishing Theorem
and Kazama’s Approximation Theorem
for Weakly 1-Complete Manifolds

By

Osamu Suzukr¥

Introduction

Let X be an m-dimensional complex manifold and let E be a
vector bundle on X. A hermitian inner product in E is given as usual
and is denoted by H(&, ). In particular, when &=#, we write H(E, &)
as |¢]2. By O(E) we denote the sheaf of germs of holomorphic sections
of E. X is called a weakly l-complete manifold when there exists a
Cx-differentiable pseudoconvex function ¥ on X such that X.={¥<c}
is relatively compact in X for any real number c¢. We see that if X
is a weakly l-complete manifold, X, is also a weakly l-complete mani-
fold.

Now we consider a weakly 1-complete manifold with a positive vec-
tor bundle E (see, Definition (1.4) in §1). Then the following theorems
have been proved by S. Nakano [8] and H. Kazama [4] respectively:

Theorem 1. For any real number c, we have
HY(X,, O(EQK))=0  for g=1,
where K denotes the canonical line bundle of X.

Theorem 2. Fix two constants ¢ and d with ¢>d. Then for any
holomorphic section ¢ e H°(X,;, 0(E®K)), X; being the closure of X,
in X and for any positive constant ¢, there exists a section pe H(X,,
O(E®K)) such that |o—@|*><e everywhere in X,.
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Corollary. HY(X, 0(E®K))=0 for q=1.

This follows from Theorems 1 and 2 by a well known technique
(see, Gunning and Rossi [2], p.243, Theorem 14).

In this short note we shall give simple proofs of the above theorems
by using the method due to K. Kodaira (see, Theorem 3 in §2) and
a key lemma due to A. Andreotti and E. Vesentini (see, [1], p. 93,
Proposition 5). The original proof of Theorem 1 is very complicated
because of the choices of the metrics of E and X (see, the proof of
(iii) in Proposition 1 in p. 172, Nakano [8]). Kazama’s proof is very
long.

Sections 1 and 2 are devoted to preliminaries and in section 3
our proofs will be done.

The author would like to thank Professors S. nNakano, H. Komatu
and M. Ise for their encouragements during the preparation of the
present paper.

§1. Hermitian Connections of Hermitian Vector Bundles

Let X be an m-dimensional complex manifold and let E be a her-
mitian vector bundle of rank r on X. We cover X by locally finite
coordinate neighborhoods {U,} and denote local coordinates on U,
by z}, z2,...,z%7. With respect to this covering a hermitian inner pro-
duct H is expressed by a system of positive definite hermitian matrixes
{(hs,,)} on Uj: for Ce-sections &={({}, ¢%...., ¢N)} and n={(}, n}....,
ny)} of E on X,

(1.1) H(E, )= ,? hy s E5L.

By (k%) we denote the inverse matrix of (h,, kj)- By using H, we can
define a hermitian connection in a canonical manner: A system of
matrix valued l-forms {w%}}, w%={w}!} on U, is called a hermitian con-
nection if

r
(1.2) wifi= lfjf,“,i dz§ where I'} ,i= _Zlhf,{ drz
= =

The curvature tensor of the above connection is defined by
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(1.3) K ige="725
We also define
Kl,ikﬁa=zhi..jiK}.,iﬁa .

It is easily seen that K, y3,=K; g This shows that (K; z) can be
regarded as a hermitian matrix of type (mr, mr).

Definition (1.4). E is called positive in the sense of S. Nakano [6]
if there exists a hermitian inner product in E such that (—K; jz,) is
positive definite everywhere

Set K; 5,= Z K, '5.. Then K;,5,=0,0; log h;, where k;= det (h; ;).
The following 1s eas11y proved.
Proposition (1.5). If E is positive, then
—2K; jdz3 A dZ"

is positive definite (1.1)-form on X.

Then we see that a positive vector bundle induces a kihler metric
on X.

Now we shall restrict ourselves to a weakly 1-complete manifold
with a positive vector bundle E. The positive metric is denoted by (1.1).
Fix a real number ¢ and consider X.. Then X, is also a weakly 1-com-
plete manifold with respect to a complete pseudoconvex function

y
=1 (1—_>.
v=1/(1--
For a convex increasing function A, set
a,=h3led¥),

Then we have a kihler metric

2] i
(1.6) _y 5 fgz“,,l dz%-dz",.

S. Nakano [7] proved
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Propositon (1.7). If Sw\/T(T)dt=w, then (1.6) is a complete

kdhler metric on X,.

In what follows, we fix such a complete metric on X, which is de-
noted by

(1.8) ds?=23g, 5dz3dz}.
We define the metric form by
Q=\/—12g, ;dz3 NdZ}.

From this metric we can define a connecction {w,}, w;=(w;, %) in a well

known manner:

mn m _ 0 B
(L9 =3 r,0dzg where 1,0, = § gpiiae,
a=1 =1 Z;

where (g3%) is the inverse of (g;,.;). The Riemann curvature tensor is
defined by

and also we define
m P
R} ap7s= Zl!h,pa R, Bs-
=

As for the conjugates of the above, we define

Th5,=Tif5 Rissa=R,,

=™t

76 and R).,&ﬁ176=R}.,aﬁy3'

:ﬁlﬂl

The Ricci form is defined by
R, A4z AdZh, where R; j,= iRl,’;ﬁa.
p=1

We infer that I';§,=T,3%s; since the connection is induced from a
kidhler metric. The canonical line bundle K of X is defined to be

o(z}, z2,..., z)

K= 1w}, where Jy, =50

on U,nU,.
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We see that
|J,“‘|2=~Z—’1 on U,nU, where g,=det (g, ,z).
u

Therefore

(1.10) {97}

determines a metric of K on X, The following is well known:
(1.11) R, p.=0,05l0gg;.

In what follows we choose {g;!} as a metric of K and fix once for all.
By using (1.1) and (1.10), we define a hermitian inner product in EQK.

(1.12) (Hl,kj) Where El.k]=g;1hl,k]'
Also for a convex increasing function y, we take
(1.13) (e7*Wh, ;).

Then we get another inner product in E®K. The Riemann curvature
tensor induced from (1.13) is denoted by

Ky
We see

(1.14) KPip=K, s —06%0,0,0()—540,05l0gg,; .

§2. Differential and Integral Caluculus of E®K-valued Forms

We recall differential and integral caluculus of E®K-valued forms
on X, Let C, (X, E®QK) denote the space of Cx-differentiable EQK-
valued (p, g)-forms on X, and let 2, (X, EQK)={peC, (X, EQK):
the support of ¢ is compact}. We express (p=(go,{)eCp,q(Xc, E®K) as

P!q!dl ,,,,, ap B1ses

For 9eC, (X, EQK), we set
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R

((p)i, 1..8p,81..8q =2g511—'l -gEZTZ ..... g&pfp-gilﬂl -gﬁzﬁz- vee -giqﬁq

J
X ((p)).,txtz...tp,ﬁlc_rz...ﬁq .

Particularly when ¢ is a (0, g)-form, we write (¢)] 7, 5, and (@)j#+Ps
With respect to (1.8) and (1.12) we define a hermitian inner product
in C, (X,, EQK) as follows: For ¢ and yeC, (X, EQK)

H)i((P, lﬁ)=Zﬁl,kj((P)'if,al...a,,,ﬁl...ﬁq(!//)g.'ihuap’ﬂl"'pq .

Also we define

Hx(¢9 l//) =e 1 )Hh((P> lp) .

We define

@1 (0. vn={_Hilo. ¥)av,

22)  @.¥),=| Hfe.)dV for 9,yc, (X, EOK)

where dV= 1
m!

denote (¢, ¢), (tesp. (9, @)) by lol2 (resp. [@l?). 3: C, X., EQK)
—=C,+1(X,, EQK) is defined as usual. With respect to (2.2) (resp. (2.1))
the formally adjoint operator is defined, which is denoted by &, (resp.
95). The Laplace-Beltrami operator [1, is defined by [,=0¢,+%,0.

Let o M(Xc, E®K) denote E®K-valued covariant tensor fields
of type (p, q). We write the (a;...0,, B;...5,)-component of ¢pe7, (X,,
E®K), (‘P)/{,ul...u,,,ﬁl...ﬁ.,- The connections (1.2) and (1.9) derive covariant
differentiations V' of type (1,0) and V§® of type (0,1) in 7, (X,,
E®K) respectively:

QAQA - ANQ(m-times).  Particularly when o=y, we

i a((p)ja w@psBi1...Bq
(vgx)(o)i,a;...upa,ﬁh..ﬁq='—léz%¢ﬁi

r . q m . t
+s21 Fit(a{){v((P)i,ul...ap,ﬁ1...[?4—tzl Zl F).,atzat((p)ﬁ,u1...i...u,,ﬁ1...ﬁq s
= =1 t=

where I'#®J denotes the connection coefficients defined from (1.12) as

in (1.2), and
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(@)}, as.capoirondia
0zh

(VPO araptrdad=

—

49 m _ .
- Z T;l Fi,ﬁﬁt((P)i,al...dp,[_il...?...ﬁq .

t=1
Then we obtain the commutation formula: For e, (X., EQK),

(23) ([vgl)_v—éx) _VEX)VQX)](p)i,al...apu,ﬁl...'ﬁ_qﬁ

q m _ . t
== Y R 5.0 0 apfriba

P m t r .
+ Z Z RA,;tﬁa((P)i,a1...&...41,,,[71...?.1+SZ.:I Kg.{)gﬁa(go)i,al...a‘,,ﬁl...ﬁq .

In the same manner as in Kodaira and Morrow [5] (see, p.110, Pro-
position (5.3) and Theorem (5.2), and p.112, Proposition (6.7)), we
get for pe 2, (X, EQK),

= . q _ .
{ (OP)i arapfodis= ";0 (= D"PT (D), arapiBonfuniia
(2.4)

l (ﬁl(P)ﬁ,al...a,,,ﬁl.../?q_1 = glmva(x)((p)i,ﬁa]...ap,fil...ffq-1 .

I3 1

>
B=

Therefore

. . _ - .
(Dx(p)ﬁ,alu.a,.,ﬁl...ﬁq_ - Zp gpoavg:nVﬂﬁ)((p)i,al...ap,ﬁl...ﬁq
xopo

J Baf o (DTG0 (0 () j
- 4 Zl (_' l)ugﬁa(vax vﬁy - vl}“ vu )((p)l,a1...1,,,[7%...%,....[7., .

o,B p=

In what follows we consider only (0, g)-forms. Then by (2.3)
(0,50 a=— %gﬁavi")v—é")((/’){ BioBa

— X R} ()], 51nie— 2IKP 5, (0)3, 5,

1 F

o
=
L)

where R;,=29%R, 5.4

=

Then
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H (0,9, 9)=—Xe *Wh; ;67 PV (9)k 5,..5,(90) 7+
- Zen’((mﬁ;.,ij%u(¢)§,E,...§...ﬁqW
- ze_x(w)ﬁl,kjg?aKg.)f)l.:E“a(go)’i,El...?...[HW .
As in Kodaira and Morrow [5] (see, p. 126), we can prove
— 5 0GR, VPPN 5.5, @AV 20.
Thus we obtain

(2.5) (.9, 9),2 —gx Se*Wh, 1 iRs (9)k 5, 4 s (@) FrPadV

e g K45, (0D1,c5.0 (P 0V

Xe

Referring to (1.11) and (1.14), the second term of the right side of
(2.5) becomes

| B R, 0K, b 0 s (OF P Y

®

@26)  +| eIl R (05 b @ P dy

+ SX Ze_xmﬁi,kig?aaagﬂX(‘ﬁ)((P)'i,E;...;...ﬁ,,(fp)f{”""”" av.

®

Here note that since 0(y)=0, the last term in (2.6) is non-negative
and that the first term in (2.5) and the second term in (2.6) cancel
each other. Finally we obtain

Theorem 3. For ¢pe 2, (X, EQK), we have

u

(0,0.0),2 = | Ze R, g™, 0 (035, L5 (@F 0 V.

§3. Proofs of Theorems 1 and 2

First we prove Theorem 1. Making completion of 2, (X, E®K)
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with respect to |[l@[2 (resp. [o||) we obtain a Hilbert space £3 (X,
EQ®K, y) (resp. £3 (X, E®K, h)). We extend 0:9, (X, EQK)->2,,
1+1(X s EQK) (resp. 0: D¢ 41(X,, EQK)=> D¢ 4. 2(X., EQK)) to the dif-
ferential operator in the sense of distribution, which is denoted by
T: %3 ((Xe, EQK, )23 401(Xo, EQK, 1) (resp. S: 23, 111(X, EQK, 1)~
Z35,442X,, EQK, x)). Then T(resp.S) is a densely defined closed
operator, so the adjoint operator T* (resp. S¥) can be defined.
Consider

T N
g%,q(Xc’ E®Ka X) ? ='géz),q+1(‘)((:’ E®K’ X) :—;—*_)— g%,q+2(xc5 E®K’ X)

First we infer that by the completeness of i, there exists a convex
increasing function y such that [@|2<+oc0 for any ¢eCg (X, EQK).
Then in view of Dolbault isomorphism and a lemma on LZ2-estimate
(see, Hormander [3], p. 78, Lemma 4.1.1), it is sufficient for the proof
of Theorem 1 to prove the following

Theorem 4. There exists a positive constant C, which does not
depend on the choice of y such that

(%) lel; =CollT*@lZ +1S0l7)  for @eD(T*)nD(S),

where

D(T*)={(P E,?%,q_,_l(Xc, E®K, X): T*(PE,?%,‘I(XC, E®K’ X)}9

D(S)={¢E$(2),q+1(xc, E®K, X): S(Peg(z),q+2(Xc, E®K, X)} .

Proof. By the choice of the base metric, it is a complete metric.
So referring to a key lemma which is due to A. Andreotti and E.
Vesentini [1] (see, p. 93, Proposition 5), we have only to prove (%)
for pePy,,41(X,, EQK). Let C denote the minimum of the eigen
values of (—Kj zjpz) on X,, then we see that C>0. Thus by Theorem 3
we have

(0,0, ©),2Collell2,  where Cy=(q+1)C,

which proves (x).
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Next we prove Theorem 2. We follow the proof given in the
approximation theorem on Stein manifolds (see, L. Hormander [3],
p- 89-90). For E®K-valued forms ¢ and ¥, we set

(@, n/z),-.,d=SXdH5(<p, Wdv.

To prove Theorem 2 it is sufficient to show that if ue #3 (X, EQK, y)
satisfies (u, @)54=0 for any @eH°X,, O(E®K)), then (u, §);,=0 for
any ¢eH(X,, 0(E®K)). Take such a u. We extend u by setting
0 outside of X, and denote it by the same latter u. Let Ny be the
null space of T: £3 o(X,., EQK, y)—» %3 (X, EQK, y), then we see that

Nt=H°(X,, 0(EQK)) N £3,o(X., EQK, 7),

where N denotes the orthogonal complement of N;. So ue*®¥) is con-
tained in N+. By a lemma due to L. Hormander [3] (see, p. 79, Lemma
4.1.2) we see that there exists an fe %3 (X, E®K, y) such that

3.1 ueW=T*f and |[f[;=Colul?.
Set g=e~*(¥)f. Then we have by (3.1)
u=19,;g .

Now we choose a sequence of functions {y,} such that (1) y, is
a convex increasing function, (2) y,=yx; for each v, (3) x,()=1 if t=d
and (4) for any te(d, ¢) y,(£)— o0 (v—>0).

For each yx, we get g. By (3.1) and (3) there exists a positive
constant M which does not depend on v such that

S e Hy(g™, g")dV=M.

c

Then g™ e 23 o(X., EQK, —y;) and g is bounded. Therefore there
exists a subsequence which converges weakly to a limit g,. By (4)
we see that go=0 on X,—X,. Also by the continuity of differentiation
in the sense of distribution, we have u=v4g,. Therefore, (u, a);=(go,
da); for ae D, (X, EQK). Take @eHX, O(EQK)) and extend
® to ¢* such that ¢*e€ 2, o(X,, EQK). Then we see that (u, @)z,=0,
which proves Theorem 2.
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