Simple Proofs of Nakano's Vanishing Theorem and Kazama's Approximation Theorem for Weakly 1-Complete Manifolds

By

Osamu Suzuki*

Introduction

Let X be an m-dimensional complex manifold and let E be a vector bundle on X. A hermitian inner product in E is given as usual and is denoted by $H(\xi, \eta)$. In particular, when $\xi = \eta$, we write $H(\xi, \xi)$ as $|\xi|^2$. By $\mathcal{O}(E)$ we denote the sheaf of germs of holomorphic sections of E. X is called a weakly 1-complete manifold when there exists a C^{∞} -differentiable pseudoconvex function Ψ on X such that $X_c = \{\Psi < c\}$ is relatively compact in X for any real number c. We see that if X is a weakly 1-complete manifold, X_c is also a weakly 1-complete manifold.

Now we consider a weakly 1-complete manifold with a positive vector bundle E (see, Definition (1.4) in §1). Then the following theorems have been proved by S. Nakano [8] and H. Kazama [4] respectively:

Theorem 1. For any real number c, we have

$$H^q(X_c, \mathcal{O}(E \otimes K)) = 0 \quad for \quad q \ge 1,$$

where K denotes the canonical line bundle of X.

Theorem 2. Fix two constants c and d with c > d. Then for any holomorphic section $\varphi \in H^0(\overline{X}_d, \mathcal{O}(E \otimes K)), \overline{X}_d$ being the closure of X_d in X and for any positive constant ε , there exists a section $\tilde{\varphi} \in H^0(X_c, \mathcal{O}(E \otimes K))$ such that $|\varphi - \tilde{\varphi}|^2 < \varepsilon$ everywhere in \overline{X}_d .

Communicated by S. Nakano, September 19, 1974.

^{*} Graduate School, University of Tokyo, Tokyo.

Corollary.
$$H^q(X, \mathcal{O}(E \otimes K)) = 0$$
 for $q \ge 1$.

This follows from Theorems 1 and 2 by a well known technique (see, Gunning and Rossi [2], p. 243, Theorem 14).

In this short note we shall give simple proofs of the above theorems by using the method due to K. Kodaira (see, Theorem 3 in §2) and a key lemma due to A. Andreotti and E. Vesentini (see, [1], p. 93, Proposition 5). The original proof of Theorem 1 is very complicated because of the choices of the metrics of E and X (see, the proof of (iii) in Proposition 1 in p. 172, Nakano [8]). Kazama's proof is very long.

Sections 1 and 2 are devoted to preliminaries and in section 3 our proofs will be done.

The author would like to thank Professors S. Nakano, H. Komatu and M. Ise for their encouragements during the preparation of the present paper.

§1. Hermitian Connections of Hermitian Vector Bundles

Let X be an *m*-dimensional complex manifold and let E be a hermitian vector bundle of rank r on X. We cover X by locally finite coordinate neighborhoods $\{U_{\lambda}\}$ and denote local coordinates on U_{λ} by $z_{\lambda}^{1}, z_{\lambda}^{2}, ..., z_{\lambda}^{m}$. With respect to this covering a hermitian inner product H is expressed by a system of positive definite hermitian matrixes $\{(h_{\lambda,kj})\}$ on U_{λ} : for C^{∞} -sections $\xi = \{(\xi_{\lambda}^{1}, \xi_{\lambda}^{2}, ..., \xi_{\lambda}^{r})\}$ and $\eta = \{(\eta_{\lambda}^{1}, \eta_{\lambda}^{2}, ..., \eta_{\lambda}^{r})\}$ of E on X,

(1.1)
$$H(\xi, \eta) = \sum_{kj}^{r} h_{\lambda,kj} \xi_{\lambda}^{k} \overline{\eta_{\lambda}^{j}}.$$

By $(h_{\lambda}^{\bar{k}j})$ we denote the inverse matrix of $(h_{\lambda}, {}_{k\bar{j}})$. By using H, we can define a hermitian connection in a canonical manner: A system of matrix valued 1-forms $\{\omega_{\lambda}^*\}, \omega_{\lambda}^* = \{\omega_{\lambda k}^{*i}\}$ on U_{λ} is called a hermitian connection if

(1.2)
$$\omega_{\lambda k}^{*i} = \sum_{\alpha=1}^{m} \Gamma_{\lambda,\alpha k}^{*i} dz_{\lambda}^{\alpha} \text{ where } \Gamma_{\lambda,\alpha k}^{*i} = \sum_{j=1}^{r} h_{\lambda}^{ji} \frac{\partial h_{\lambda,kj}}{\partial z_{\lambda}^{\alpha}}.$$

The curvature tensor of the above connection is defined by

WEAKLY 1-COMPLETE MANIFOLDS

(1.3)
$$K_{\lambda,k\bar{\beta}\alpha} = \frac{\partial\Gamma^*_{\lambda,\alpha\bar{k}}}{\partial\bar{z}^{\beta}_{\lambda}}.$$

We also define

$$K_{\lambda,ik\bar{\beta}\alpha} = \Sigma h_{\lambda,ji} K_{\lambda,k\bar{\beta}\alpha}.$$

It is easily seen that $K_{\lambda,ik\bar{p}\alpha} = \overline{K_{\lambda,\bar{k}i\bar{\alpha}\beta}}$. This shows that $(K_{\lambda,ik\bar{\beta}\alpha})$ can be regarded as a hermitian matrix of type (mr, mr).

Definition (1.4). *E* is called positive in the sense of S. Nakano [6] if there exists a hermitian inner product in *E* such that $(-K_{\lambda,ik\bar{\beta}\alpha})$ is positive definite everywhere.

Set $K_{\lambda,\bar{\beta}\alpha} = \sum_{i=1}^{r} K_{\lambda,i\bar{\beta}\alpha}$. Then $K_{\lambda,\bar{\beta}\alpha} = \partial_{\alpha}\bar{\partial}_{\beta} \log h_{\lambda}$, where $h_{\lambda} = \det(h_{\lambda,k\bar{j}})$. The following is easily proved.

Proposition (1.5). If E is positive, then $-\Sigma K_{\lambda,\bar{\beta}\alpha} dz_{\lambda}^{\alpha} \wedge d\bar{z}_{\lambda}^{\beta}$

is positive definite (1.1)-form on X.

Then we see that a positive vector bundle induces a kähler metric on X.

Now we shall restrict ourselves to a weakly 1-complete manifold with a positive vector bundle E. The positive metric is denoted by (1.1). Fix a real number c and consider X_c . Then X_c is also a weakly 1-complete manifold with respect to a complete pseudoconvex function

$$\psi = 1 / \left(1 - \frac{\Psi}{c} \right).$$

For a convex increasing function Λ , set

$$a_{\lambda} = h_{\lambda}^{-1} e^{\Lambda(\psi)}$$
.

Then we have a kähler metric

(1.6)
$$ds^{2} = \sum \frac{\partial^{2} \log a_{\lambda}}{\partial z_{\lambda}^{\alpha} \partial \bar{z}_{\lambda}^{\beta}} dz_{\lambda}^{\alpha} \cdot d\bar{z}_{\lambda}^{\beta}$$

S. Nakano [7] proved

Propositon (1.7). If $\int_{-\infty}^{\infty} \sqrt{A''(t)} dt = \infty$, then (1.6) is a complete kähler metric on X_c .

In what follows, we fix such a complete metric on X_c , which is denoted by

(1.8)
$$ds^2 = \Sigma g_{\lambda,\alpha\bar{\beta}} dz^{\alpha}_{\lambda} d\bar{z}^{\beta}_{\lambda}.$$

We define the metric form by

$$\Omega = \sqrt{-1} \Sigma g_{\lambda,\alpha\bar{\beta}} dz_{\lambda}^{\alpha} \wedge d\bar{z}_{\lambda}^{\beta}.$$

From this metric we can define a connection $\{\omega_{\lambda}\}, \omega_{\lambda} = (\omega_{\lambda}, \frac{\beta}{\alpha})$ in a well known manner:

(1.9)
$$\omega_{\lambda,\gamma}^{\ \beta} = \sum_{\alpha=1}^{m} \Gamma_{\lambda,\alpha\gamma}^{\ \beta} dz_{\lambda}^{\alpha} \text{ where } \Gamma_{\lambda,\alpha\gamma}^{\ \beta} = \sum_{\sigma=1}^{m} g_{\lambda}^{\overline{\sigma}\beta} \frac{\partial g_{\lambda,\gamma\overline{\sigma}}}{\partial z_{\lambda}^{\alpha}},$$

where $(g_{\lambda}^{\bar{q}\beta})$ is the inverse of $(g_{\lambda,\alpha\bar{\beta}})$. The Riemann curvature tensor is defined by

$$R_{\lambda,\tilde{\beta}\bar{\gamma}\delta} = \frac{\partial \Gamma_{\lambda,\tilde{\delta}\beta}}{\partial \bar{z}_{\lambda}^{\gamma}},$$

and also we define

$$R_{\lambda,\bar{\alpha}\beta\bar{\gamma}\delta} = \sum_{\rho=1}^{m} g_{\lambda,\rho\bar{\alpha}} R_{\lambda,\beta\bar{\gamma}\delta}^{\rho}.$$

As for the conjugates of the above, we define

$$\overline{\Gamma}_{\lambda,\overline{\beta}\gamma} = \Gamma_{\lambda,\overline{\beta}\overline{\gamma}}, \ \overline{R_{\lambda,\overline{\beta}\overline{\gamma}\delta}} = R_{\lambda,\overline{\beta}\gamma\overline{\delta}} \text{ and } \ \overline{R_{\lambda,\overline{\alpha}\beta\overline{\gamma}\delta}} = R_{\lambda,\alpha\overline{\beta}\gamma\overline{\delta}}.$$

The Ricci form is defined by

$$R_{\lambda,\bar{\beta}\alpha}dz_{\lambda}^{\alpha}\wedge d\bar{z}_{\lambda}^{\beta}$$
, where $R_{\lambda,\bar{\beta}\alpha} = \sum_{\rho=1}^{m} R_{\lambda,\rho\bar{\beta}\alpha}$.

We infer that $\Gamma_{\lambda,\beta\gamma} = \Gamma_{\lambda,\gamma\beta}$, since the connection is induced from a kähler metric. The canonical line bundle K of X is defined to be

$$K = \{J_{\lambda\mu}\}, \text{ where } J_{\lambda\mu} = \frac{\partial(z_{\mu}^1, z_{\mu}^2, \dots, z_{\mu}^m)}{\partial(z_{\lambda}^1, z_{\lambda}^2, \dots, z_{\lambda}^m)} \text{ on } U_{\lambda} \cap U_{\mu}.$$

We see that

$$|J_{\lambda\mu}|^2 = \frac{g_{\lambda}}{g_{\mu}}$$
 on $U_{\lambda} \cap U_{\mu}$ where $g_{\lambda} = \det(g_{\lambda,\alpha\bar{\beta}})$.

Therefore

(1.10)
$$\{g_{\lambda}^{-1}\}$$

determines a metric of K on X_c . The following is well known:

(1.11)
$$R_{\lambda,\bar{\beta}\alpha} = \partial_{\alpha}\bar{\partial}_{\beta}\log g_{\lambda}.$$

In what follows we choose $\{g_{\lambda}^{-1}\}$ as a metric of K and fix once for all. By using (1.1) and (1.10), we define a hermitian inner product in $E \otimes K$.

(1.12)
$$(\tilde{h}_{\lambda,k\bar{j}})$$
 where $\tilde{h}_{\lambda,k\bar{j}} = g_{\lambda}^{-1} h_{\lambda,k\bar{j}}$.

Also for a convex increasing function χ , we take

(1.13)
$$(e^{-\chi(\psi)}\tilde{h}_{\lambda,k\bar{j}})$$

Then we get another inner product in $E \otimes K$. The Riemann curvature tensor induced from (1.13) is denoted by

 $K^{(\chi)i}_{\lambda,\ k\,\bar{lpha}\,eta}$.

We see

(1.14)
$$K_{\lambda, j\bar{a}\beta}^{(\chi)i} = K_{\lambda, j\bar{a}\beta} - \delta_{j}^{i}\partial_{\alpha}\bar{\partial}_{\beta}\chi(\psi) - \delta_{j}^{i}\partial_{\alpha}\bar{\partial}_{\beta}\log g_{\lambda}.$$

§2. Differential and Integral Caluculus of $E \otimes K$ -valued Forms

We recall differential and integral caluculus of $E \otimes K$ -valued forms on X_c . Let $C_{p,q}(X_c, E \otimes K)$ denote the space of C^{∞} -differentiable $E \otimes K$ valued (p, q)-forms on X_c and let $\mathscr{D}_{p,q}(X_c, E \otimes K) = \{\varphi \in C_{p,q}(X_c, E \otimes K):$ the support of φ is compact}. We express $\varphi = (\varphi_{\lambda}^{\perp}) \in C_{p,q}(X_c, E \otimes K)$ as

$$\varphi_{\lambda}^{j} = \frac{1}{p! q!} \sum_{\alpha_{1}, \dots, \alpha_{p}} \sum_{\beta_{1}, \dots, \beta_{q}} (\varphi)_{\lambda, \alpha_{1} \dots \alpha_{p}, \overline{\beta}_{1} \dots \overline{\beta}_{q}}^{j} dz_{\lambda}^{\alpha_{1}} \wedge dz_{\lambda}^{\alpha_{2}} \wedge \dots \wedge d\overline{z}_{\lambda}^{\beta_{q}}.$$

For $\varphi \in C_{p,q}(X_c, E \otimes K)$, we set

$$(\varphi)^{j,\bar{\alpha}_{1}...\bar{\alpha}_{p},\beta_{1}...\beta_{q}} = \sum g^{\bar{\alpha}_{1}\tau_{1}} \cdot g^{\bar{\alpha}_{2}\tau_{2}} \cdot \cdots \cdot g^{\bar{\alpha}_{p}\tau_{p}} \cdot g^{\bar{\sigma}_{1}\beta_{1}} \cdot g^{\bar{\sigma}_{2}\beta_{2}} \cdot \cdots \cdot g^{\bar{\sigma}_{q}\beta_{q}}$$
$$\times (\varphi)^{j}_{\lambda,\tau_{1}\tau_{2}...\tau_{p},\bar{\sigma}_{1}\bar{\sigma}_{2}...\bar{\sigma}_{q}}.$$

Particularly when φ is a (0, q)-form, we write $(\varphi)_{\lambda,\bar{\beta}_1...\bar{\beta}_q}^{j}$ and $(\varphi)_{\lambda}^{j\bar{\beta}_1...\bar{\beta}_q}$. With respect to (1.8) and (1.12) we define a hermitian inner product in $C_{p,q}(X_c, E \otimes K)$ as follows: For φ and $\psi \in C_{p,q}(X_c, E \otimes K)$

$$H_{\bar{h}}(\varphi, \psi) = \Sigma \tilde{h}_{\lambda,k\bar{j}}(\varphi)^{k}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}} \overline{\langle \psi \rangle^{j}_{\lambda}, \overline{\alpha_{1}...\overline{\alpha}_{p},\beta_{1}...\beta_{q}}} \,.$$

Also we define

$$H_{\chi}(\varphi, \psi) = \mathrm{e}^{-\chi(\psi)} H_{\hbar}(\varphi, \psi) \,.$$

We define

(2.1)
$$(\varphi, \psi)_{\hbar} = \int_{X_c} H_{\hbar}(\varphi, \psi) dV,$$

(2.2)
$$(\varphi, \psi)_{\chi} = \int_{X_c} H_{\chi}(\varphi, \psi) dV \quad \text{for} \quad \varphi, \psi \in \mathscr{D}_{p,q}(X_c, E \otimes K)$$

where $dV = \frac{1}{m!} \Omega \wedge \Omega \wedge \cdots \wedge \Omega(m$ -times). Particularly when $\varphi = \psi$, we denote $(\varphi, \varphi)_{\chi}$ (resp. $(\varphi, \varphi)_{\bar{h}}$) by $\|\varphi\|_{\chi}^2$ (resp. $\|\varphi\|_{\bar{h}}^2$). $\bar{\partial}: C_{p,q}(X_c, E \otimes K) \rightarrow C_{p,q+1}(X_c, E \otimes K)$ is defined as usual. With respect to (2.2) (resp. (2.1)) the formally adjoint operator is defined, which is denoted by ϑ_{χ} (resp. $\vartheta_{\bar{h}}$). The Laplace-Beltrami operator \Box_{χ} is defined by $\Box_{\chi} = \bar{\partial}\vartheta_{\chi} + \vartheta_{\chi}\bar{\partial}$.

Let $\mathscr{T}_{p,q}(X_c, E \otimes K)$ denote $E \otimes K$ -valued covariant tensor fields of type (p, q). We write the $(\alpha_1 \dots \alpha_p, \overline{\beta}_1 \dots \overline{\beta}_q)$ -component of $\varphi \in \mathscr{T}_{p,q}(X_c, E \otimes K)$, $(\varphi)_{\lambda,\alpha_1\dots\alpha_p,\overline{\beta}_1\dots\overline{\beta}_q}^{j}$. The connections (1.2) and (1.9) derive covariant differentiations $\nabla_{\alpha}^{(\chi)}$ of type (1, 0) and $\overline{\nabla}_{\beta}^{(\chi)}$ of type (0, 1) in $\mathscr{T}_{p,q}(X_c, E \otimes K)$ respectively:

$$(\nabla_{\alpha}^{(\chi)}\varphi)_{\lambda,\alpha_{1}...\alpha_{p}\alpha,\bar{\beta}_{1}...\bar{\beta}_{q}}^{j} = \frac{\partial(\varphi)_{\lambda\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}}^{j}}{\partial z_{\lambda}^{\alpha}} + \sum_{s=1}^{r} \Gamma_{\lambda,\alpha_{s}s}^{*(\chi)j}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}}^{s} - \sum_{t=1}^{q} \sum_{\tau=1}^{m} \Gamma_{\lambda,\alpha\alpha_{t}}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}}^{t},$$

where $\Gamma_{\lambda,\alpha s}^{*(\chi)j}$ denotes the connection coefficients defined from (1.12) as in (1.2), and

WEAKLY 1-COMPLETE MANIFOLDS

$$(\overline{\nabla}_{\beta}^{(\chi)}\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\beta}_{q}\overline{\beta}} = \frac{\partial(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\beta}_{q}}{\partial\overline{z}_{\lambda}^{\overline{\beta}}} \\ -\sum_{t=1}^{q}\sum_{\tau=1}^{m}\Gamma_{\lambda,\overline{\beta}\overline{\beta}_{t}}^{\overline{\tau}}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\tau}...\overline{\beta}_{q}}.$$

Then we obtain the commutation formula: For $\varphi \in \mathcal{T}_{p,q}(X_c, E \otimes K)$,

$$(2.3) \quad (\left[\nabla_{\alpha}^{(\chi)}\overline{\nabla}_{\beta}^{(\chi)} - \overline{\nabla}_{\beta}^{(\chi)}\nabla_{\alpha}^{(\chi)}\right]\varphi)_{\lambda,\alpha_{1}...\alpha_{p}\alpha,\overline{\beta}_{1}...\overline{\beta}_{q}\overline{\beta}}^{j} \\ = -\sum_{t=1}^{q}\sum_{\sigma=1}^{m} R_{\lambda,\overline{\beta}_{t}\alpha\overline{\beta}}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\beta}_{q}}^{j} \\ + \sum_{t=1}^{p}\sum_{\tau=1}^{m} R_{\lambda,\overline{\alpha}_{t}\overline{\beta}\alpha}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\beta}_{q}}^{j} + \sum_{s=1}^{r} K_{\lambda,s\overline{\beta}\alpha}^{(\chi)j}(\varphi)_{\lambda,\alpha_{1}...\alpha_{p},\overline{\beta}_{1}...\overline{\beta}_{q}}^{s}.$$

In the same manner as in Kodaira and Morrow [5] (see, p. 110, Proposition (5.3) and Theorem (5.2), and p. 112, Proposition (6.7)), we get for $\varphi \in \mathcal{D}_{p,q}(X_c, E \otimes K)$,

(2.4)
$$\begin{cases} (\bar{\partial}\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{0}...\bar{\beta}_{q}} = \sum_{\mu=0}^{q} (-1)^{\mu+p} \overline{\nabla}^{(\chi)}_{\beta\mu}(\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{0}...\bar{\beta}_{\mu}...\bar{\beta}_{q}}, \\ (\vartheta_{\chi}\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q-1}} = -\sum_{\alpha,\beta=1}^{m} g^{\bar{\beta}\alpha} \nabla_{\alpha}^{(\chi)}(\varphi)^{j}_{\lambda,\bar{\beta}\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q-1}}. \end{cases}$$

.

Therefore

$$(\Box_{\chi}\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}} = -\sum_{\alpha_{0}\beta_{0}} g^{\bar{\beta}_{0}\alpha} \nabla^{(\chi)}_{\alpha} \overline{\nabla}^{(\chi)}_{\beta_{0}}(\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}_{1}...\bar{\beta}_{q}}$$
$$-\sum_{\alpha,\beta}\sum_{\mu=1}^{q} (-1)^{\mu} g^{\bar{\beta}\alpha} (\nabla^{(\chi)}_{\alpha} \overline{\nabla}^{(\chi)}_{\beta_{\mu}} - \nabla^{(\chi)}_{\beta_{\mu}} \nabla^{(\chi)}_{\alpha})(\varphi)^{j}_{\lambda,\alpha_{1}...\alpha_{p},\bar{\beta}\bar{\beta}_{1}...\bar{\beta}_{q}...\bar{\beta}_{q}.$$

In what follows we consider only (0, q)-forms. Then by (2.3)

$$(\Box_{\chi}\varphi)^{j}_{\lambda,\bar{\beta}_{1}...\bar{\beta}_{q}} = -\sum_{\alpha\beta} g^{\bar{\beta}\alpha} \nabla^{(\chi)}_{\alpha} \overline{\nabla}^{(\chi)}_{\beta}(\varphi)^{j}_{\lambda,\bar{\beta}_{1}...\bar{\beta}_{q}}$$
$$-\sum R^{\bar{\tau}}_{\beta\mu}(\varphi)^{j}_{\lambda,\bar{\beta}_{1}...\bar{\tau}...\bar{\beta}_{q}} - \sum g^{\bar{\tau}\alpha} K^{(\chi)j}_{\lambda,s\bar{\beta}_{\mu}\alpha}(\varphi)^{s}_{\lambda,\bar{\beta}_{1}...\bar{\tau}...\bar{\beta}_{q}}$$

where

$$R_{\bar{\beta}\mu}^{\bar{\tau}} = \sum g^{\bar{\tau}\alpha} R_{\lambda,\bar{\beta}\mu\alpha}.$$

Then

$$H_{\chi}(\Box_{\chi}\varphi,\varphi) = -\sum e^{-\chi(\psi)}\tilde{h}_{\lambda,k\bar{j}}g^{\bar{\rho}\alpha}\nabla^{(\chi)}_{\alpha}\overline{\nabla^{(\chi)}_{\beta}}(\varphi)^{k}_{\lambda,\bar{\beta}_{1}...\bar{\beta}_{q}}\overline{(\varphi)_{\lambda}^{j\beta_{1}...\beta_{q}}} \\ -\sum e^{-\chi(\psi)}\tilde{h}_{\lambda,k\bar{j}}R^{\bar{\tau}}_{\bar{\beta}_{\mu}}(\varphi)^{k}_{\lambda,\bar{\beta}_{1}...\bar{\tau}...\bar{\beta}_{q}}\overline{(\varphi)^{j}_{\lambda}^{\beta_{1}...\beta_{q}}} \\ -\sum e^{-\chi(\psi)}\tilde{h}_{\lambda,k\bar{j}}g^{\bar{\tau}\alpha}K^{(\chi)k}_{\lambda,s\bar{\beta}_{\mu}\alpha}(\varphi)^{k}_{\lambda,\bar{\beta}_{1}...\bar{\tau}...\bar{\beta}_{q}}\overline{(\varphi)^{j}_{\lambda}^{\beta_{1}...\beta_{q}}}.$$

As in Kodaira and Morrow [5] (see, p. 126), we can prove

$$-\sum\!\!\int_{X_c}\!\!\mathbf{e}^{-\chi(\psi)}g_{\lambda}^{\bar{\beta}\alpha}\tilde{h}_{\lambda,k\bar{j}}\nabla^{(\chi)}_{\alpha}\overline{\nabla}^{(\chi)}_{\beta}(\varphi)_{\lambda,\bar{\beta}_1\ldots\bar{\beta}_q}^k(\overline{\varphi})_{\lambda,\bar{\beta}_1\ldots\bar{\beta}_q}^{k,\bar{\beta}_1\ldots\bar{\beta}_q}dV \ge 0\,.$$

Thus we obtain

$$(2.5) \quad (\Box_{\lambda}\varphi, \varphi)_{\chi} \geq -\int_{X_{c}} \sum e^{-\chi(\psi)} \tilde{h}_{\lambda,k\bar{j}} R^{\bar{t}}_{\bar{\beta}\mu}(\varphi)^{k}_{\lambda,\bar{\beta}1...\bar{t}...\bar{\beta}q} \overline{(\varphi)^{j\beta_{1}...\beta_{q}}_{\lambda}} dV -\int_{X_{c}} e^{-\chi(\psi)} g^{\bar{\imath}\alpha} \tilde{h}_{\lambda,k\bar{j}} K^{(\chi)k}_{\lambda,s\bar{\beta}\mu\alpha}(\varphi)^{s}_{\lambda,\beta_{1}...\bar{\imath}...\beta_{q}} \overline{(\varphi)^{j\beta_{1}...\beta_{q}}_{\lambda}} dV.$$

Referring to (1.11) and (1.14), the second term of the right side of (2.5) becomes

$$(2.6) \qquad -\int_{X_{c}} \sum e^{-\chi(\psi)} \tilde{h}_{\lambda,k\bar{j}} g^{\bar{\tau}\alpha} K_{\lambda,k\bar{\beta}\mu\alpha}(\varphi)_{\lambda,\bar{\beta}1\dots\bar{\tau}\dots\bar{\beta}q}^{\mu} \overline{(\varphi)_{\lambda}^{j\beta_{1}\dots\beta_{q}}} \, dV + \int_{X_{c}} \sum e^{-\chi(\psi)} \tilde{h}_{\lambda,k\bar{j}} R^{\bar{\tau}}_{\bar{\beta}\mu}(\varphi)_{\lambda,\bar{\beta}1\dots\bar{\tau}\dots\bar{\beta}q}^{\mu} \overline{(\varphi)_{\lambda}^{j\beta_{1}\dots\beta_{q}}} \, dv + \int_{X_{c}} \sum e^{-\chi(\psi)} \tilde{h}_{\lambda,k\bar{j}} g^{\bar{\tau}\alpha} \partial_{\alpha} \bar{\partial}_{\beta} \chi(\psi)(\varphi)_{\lambda,\bar{\beta}1\dots\bar{\tau}\dots\bar{\beta}q}^{k} \overline{(\varphi)_{\lambda}^{j\beta_{1}\dots\beta_{q}}} \, dV.$$

Here note that since $\partial \bar{\partial}(\psi) \ge 0$, the last term in (2.6) is non-negative and that the first term in (2.5) and the second term in (2.6) cancel each other. Finally we obtain

Theorem 3. For $\varphi \in \mathscr{D}_{0,q}(X_c, E \otimes K)$, we have

$$(\Box_{\chi}\varphi,\varphi)_{\chi} \ge -\int_{X_c} \sum e^{-\chi(\psi)} \tilde{h}_{\lambda,k\bar{j}} g^{\bar{\imath}\alpha} K_{\lambda,k\bar{\beta}\bar{\mu}\alpha} (\varphi)^{s}_{\lambda,\bar{\beta}_{1}\dots\bar{\imath}\dots\bar{\beta}_{q}} \frac{\mu}{(\varphi)^{j\beta_{1}\dots\beta_{q}}_{\lambda}} dV.$$

§3. Proofs of Theorems 1 and 2

First we prove Theorem 1. Making completion of $\mathcal{D}_{0,q}(X_c, E \otimes K)$

with respect to $\|\varphi\|_{\chi}^2$ (resp. $\|\varphi\|_{\tilde{h}}^2$) we obtain a Hilbert space $\mathscr{L}^2_{0,q}(X_c, E\otimes K, \chi)$ (resp. $\mathscr{L}^2_{0,q}(X_c, E\otimes K, \tilde{h})$). We extend $\bar{\partial}: \mathscr{D}_{0,q}(X_c, E\otimes K) \to \mathscr{D}_{0,q}(X_c, E\otimes K) \to \mathscr{D}_{0,q+1}(X_c, E\otimes K)$ (resp. $\bar{\partial}: \mathscr{D}_{0,q+1}(X_c, E\otimes K) \to \mathscr{D}_{0,q+2}(X_c, E\otimes K)$) to the differential operator in the sense of distribution, which is denoted by $T: \mathscr{L}^2_{0,q}(X_c, E\otimes K, \chi) \to \mathscr{L}^2_{0,q+1}(X_c, E\otimes K, \chi)$ (resp. $S: \mathscr{L}^2_{0,q+1}(X_c, E\otimes K, \chi) \to \mathscr{L}^2_{0,q+2}(X_c, E\otimes K, \chi)$). Then T (resp. S) is a densely defined closed operator, so the adjoint operator T^* (resp. S^*) can be defined. Consider

$$\mathscr{L}^{2}_{0,q}(X_{c}, E \otimes K, \chi) \xrightarrow[T^{*}]{T} \mathscr{L}^{2}_{0,q+1}(X_{c}, E \otimes K, \chi) \xrightarrow[S^{*}]{S} \mathscr{L}^{2}_{0,q+2}(X_{c}, E \otimes K, \chi).$$

First we infer that by the completeness of ψ , there exists a convex increasing function χ such that $\|\varphi\|_{\chi}^2 < +\infty$ for any $\varphi \in C_{0,q}(X_c, E \otimes K)$. Then in view of Dolbault isomorphism and a lemma on L^2 -estimate (see, Hörmander [3], p. 78, Lemma 4.1.1), it is sufficient for the proof of Theorem 1 to prove the following

Theorem 4. There exists a positive constant C_0 which does not depend on the choice of χ such that

(*)
$$\|\varphi\|_{\chi}^{2} \leq C_{0}(\|T^{*}\varphi\|_{\chi}^{2} + \|S\varphi\|_{\chi}^{2}) \quad for \quad \varphi \in D(T^{*}) \cap D(S),$$

where

$$D(T^*) = \{ \varphi \in \mathscr{L}^2_{0,q+1}(X_c, E \otimes K, \chi) \colon T^* \varphi \in \mathscr{L}^2_{0,q}(X_c, E \otimes K, \chi) \},\$$
$$D(S) = \{ \varphi \in \mathscr{L}^2_{0,q+1}(X_c, E \otimes K, \chi) \colon S \varphi \in \mathscr{L}^2_{0,q+2}(X_c, E \otimes K, \chi) \}.$$

Proof. By the choice of the base metric, it is a complete metric. So referring to a key lemma which is due to A. Andreotti and E. Vesentini [1] (see, p. 93, Proposition 5), we have only to prove (*) for $\varphi \in \mathcal{D}_{0,q+1}(X_c, E \otimes K)$. Let C denote the minimum of the eigen values of $(-K_{\lambda,\bar{k}j\bar{\beta}\bar{a}})$ on X_c , then we see that C>0. Thus by Theorem 3 we have

$$(\Box_{\chi} \varphi, \varphi)_{\chi} \ge C_0 \|\varphi\|_{\chi}^2$$
, where $C_0 = (q+1)C$,

which proves (*).

Next we prove Theorem 2. We follow the proof given in the approximation theorem on Stein manifolds (see, L. Hörmander [3], p. 89–90). For $E \otimes K$ -valued forms φ and ψ , we set

$$(\varphi, \psi)_{\hbar|d} = \int_{X_d} H_{\hbar}(\varphi, \psi) dV.$$

To prove Theorem 2 it is sufficient to show that if $u \in \mathscr{L}^{2}_{0,0}(X_{d}, E \otimes K, \chi)$ satisfies $(u, \varphi)_{h|d} = 0$ for any $\varphi \in H^{0}(X_{c}, \mathcal{O}(E \otimes K))$, then $(u, \tilde{\varphi})_{h|d} = 0$ for any $\tilde{\varphi} \in H^{0}(\overline{X}_{d}, \mathcal{O}(E \otimes K))$. Take such a u. We extend u by setting 0 outside of \overline{X}_{d} and denote it by the same latter u. Let N_{T} be the null space of $T: \mathscr{L}^{2}_{0,0}(X_{c}, E \otimes K, \chi) \rightarrow \mathscr{L}^{2}_{0,1}(X_{c}, E \otimes K, \chi)$, then we see that

$$N_T^{\perp} = H^0(X_c, \mathcal{O}(E \otimes K)) \cap \mathscr{L}^2_{0,0}(X_c, E \otimes K, \chi),$$

where N_T^{\perp} denotes the orthogonal complement of N_T . So $ue^{\chi(\psi)}$ is contained in N_T^{\perp} . By a lemma due to L. Hörmander [3] (see, p. 79, Lemma 4.1.2) we see that there exists an $f \in \mathscr{L}^2_{0,1}(X_c, E \otimes K, \chi)$ such that

(3.1)
$$ue^{\chi(\psi)} = T^*f \text{ and } ||f||_{\chi}^2 \leq C_0 ||u||_{\chi}^2$$

Set $g = e^{-\chi(\psi)}f$. Then we have by (3.1)

 $u = \vartheta_{\bar{h}}g$.

Now we choose a sequence of functions $\{\chi_{\nu}\}$ such that (1) χ_{ν} is a convex increasing function, (2) $\chi_{\nu} \ge \chi_1$ for each ν , (3) $\chi_{\nu}(t) = 1$ if $t \le d$ and (4) for any $t \in (d, c) \ \chi_{\nu}(t) \to \infty \ (\nu \to \infty)$.

For each χ_v we get $g^{(v)}$. By (3.1) and (3) there exists a positive constant M which does not depend on v such that

$$\int_{X_c} \mathbf{e}^{\chi_{\nu}(\psi)} H_{\hbar}(g^{(\nu)}, g^{(\nu)}) dV \leq M.$$

Then $g^{(\nu)} \in \mathscr{L}_{0,0}^2(X_c, E \otimes K, -\chi_1)$ and $g^{(\nu)}$ is bounded. Therefore there exists a subsequence which converges weakly to a limit g_0 . By (4) we see that $g_0 = 0$ on $X_c - X_d$. Also by the continuity of differentiation in the sense of distribution, we have $u = \vartheta_h g_0$. Therefore, $(u, \alpha)_h = (g_0, \bar{\partial}\alpha)_h$ for $\alpha \in \mathscr{D}_{0,0}(X_c, E \otimes K)$. Take $\tilde{\varphi} \in H^0(X_d, \mathcal{O}(E \otimes K))$ and extend $\tilde{\varphi}$ to $\tilde{\varphi}^*$ such that $\tilde{\varphi}^* \in \mathscr{D}_{0,0}(X_c, E \otimes K)$. Then we see that $(u, \tilde{\varphi})_{h|d} = 0$, which proves Theorem 2.

References

- [1] Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equations on complex manifolds, *Publ. Math. I. H. E. S.*, **25** (1965), 81-130.
- [2] Gunning, R. C. and Rossi, H., Analytic functions of several complex variables, Prentice-Hall, (1965).
- [3] Hörmander, L., An introduction to complex analysis of several complex variables, Van Nostrand, (1966).
- [4] Kazama, H., Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, *Mem. Fac. Sci. Kyusu Univ.*, 27 (1973), 221-240.
- [5] Kodaira, K. and Morrow, J., Complex manifolds, New York, (1971).
- [6] Nakano, S., On complex analytic vector bundles, J. Math. Soc. Japan., 7 (1955), 1–12.
- [7] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ., 6 (1970-'71).
- [8] Nakano, S., Vanishing theorems for weakly 1-complete manifolds, "Number theory, commutative algebra and algebraic geometry, papers in honor of Professor Yasuo Akizuki", Kinokuniya, (1973), 169–179.