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On Semi-Free Finite Group Actions
on Homotopy Spheres
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Kojun ABE*

§ 0. Introduction

In this paper, we shall study semi-free finite group actions on

homotopy spheres. In [8], M. Sebastiani studied semi-free finite group

actions on homotopy spheres with two points as the fixed point set.

He showed that the collection of equivariant diffeomorphism classes of

these semi-free finite group actions is an abelian group under the equiv-

ariant connected sum about a fixed point. By the methods analogous

to Kervaire-Milnor [4], he proved that this abelian group is a finite

group in the case of cyclic group actions.

In this paper, we shall study semi-free finite group actions on

homotopy m-spheres with homotopy w-sheres as the fixed point set in

the case of 5^n<m — 2. Our methods are some extensions of M.

Sebastiani [8] and using the results obtained by these methods we

can generalize G. Bredon's results [2, Chapter VI, Theorem 8.6].

In § 1 we shall see that the collection of equivariant diffeomorphism

classes <9m(oc) (see Definition 1) of a subset of the above semi-free finite

group actions is an abelian group under the equivariant connected sum

about a fixed point in the case of 5^n<m — 2. In §2 we shall define

our interesting subgroup /w(a) of 6>m(a) and study an equivariant version

of Pontrjagin-Thom construction. Then we shall see that Im(oC) contains

a subgroup Am(a) whose elements bound equivariant Ti-manifolds (see

Definition 2), and 7m(a)//lm(a) is a finite group. In §3 we shall define

a homomorphism I: Am(a)^Z in the case of n = 4r—1 for an integer
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r^2, where Z denotes the group of integers. This homomorphism is

given by sending an element of Am(oi), which bounds an equivariant n-

manifold (Wm+i, <2>), to the signature of the fixed point set of (Wm+i, <P)

(see Theorem 3.3). In §4 we shall apply these results to prove that

some semi-free finite group actions on Brieskorn spheres are elements

of infinite order in 0m(a). G. Bredon [2, Chapter VI, Theorem 8.6]

proved analogous results by a different method when the actions are

involutions.

The author is grateful to Professor M. Adachi for his helpful dis-

cussions and encouragement. The author is also grateful to Professor

N. Shimada for his kind encouragement and to T. Matumoto for his

valuable criticism.

§1. Bm(d) Is a Group

Let G be a finite group and a: G->GL(m, R) be its m-dimensional

representation. Throughout this paper we shall assume 5^n<m — 2.

Definition 1. Let (Zm, <p) denote a smooth semi-free G-action on

an oriented homotopy m-sphere Im with an oriented n-sphere In as the

fixed point set. Moreover we will assume that the local representation

of G at a fixed point is equivalent to a. Let 0m(a) be the collection of

equivariant diffeomorphism classes of these semi-free actions (Zm, (p).

We can prove that 6>w(a) is a commutative semi-group under the
equivariant connected sum about a fixed point.

In this section we shall prove that the commutative semi-group

<9m(a) is an abelian group. First we shall study semi-free G-actions

on a disc.

Let (Dm
9 i/O denote a smooth semi-free G-action on an oriented

m-disc Dm with an oriented w-disc Dn as the fixed point set. Moreover

we will assume that the local representation of G at a fixed point is

equivalent to a.

Let Dm(a) denote the collection of equivariant diffeomorphism classes

of these semi-free G-actions (Dm
9 \l/). Let (Dm

9 \l/) also denote the equiva-

riant diffeomorphism class of (Dm
9 \l/). We can see Dm(a) is a commuta-

tive semi-group under the equivariant boundary connected sum about
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a fixed point which belongs to dD" and the standard linear action

(Dm, a) serves as zero element.
Let (Dm, \j/) be an element of Dm(<x). Let x be a point in the

interior of the fixed point set D". Let BamtD™ be a G-invariant

closed 2s-disc neighborhood of x on which G acts orthogonally, where

s is a sufficiently small positive real number. Let N be a G-invariant

closed e-tubular neighborhood of D" in Dm. We can identify N with

the normal disc bundle of D" which is a product G-bundle. Let W

= Dm-int(B(] N) and W0 = dB-mt(dB n N). Let Wl = dDm-int(dDm n N)

and V=dW— mt(W0 U W^). It is easy to see that V is equivariant dif-

feomorphic to cW0x[0, 1].

Fig. 1

Since (dW0x [0, 1])/G is diffeomorphic to (W0/G)x [0, 1] and the

inclusions WQ/G^W/G, W^G^W/G are homotopy equivalent in the case

of n<m — 2, (W/Gi W0/G9 W1/G) is an /1-cobordism with boundary.

Then (W/G, W0/G) defines the Whitehead torsion i(W\G, W0/G) e Wh(G).

It is not difficult to see that i(WjG, W^G) depends only on (Dm, ^).

Let t(\l/) denote this torsion. This defines a semi-group homomorphism

Lemma 1.1. T is isomorphic.

Proof. Let (Dm'? ^') be an another element of Dm(a). We will

describe by V, W'0, W manifolds corresponding to the above V, W0)

W respectively. If T(I^') = T(^), the uniqueness theorem of s-cobordism

says that W'/G is diffeomorphic to W/G preserving WfQ/G=W0/G and

V'/G=V/G (see L. Siebenmann [10, §2]). Since W'-+W'IG and W->W/G
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are universal coverings, W is equivariant diflfeomorphic to W preserving

WQ = WO and V' = V. Then we have that (Dm',\l/f) is equivariant dif-

feomorphic to (Dm, \j/), and T is injective.

Now we will show that T is surjective. By the existence theorem

of s-cobordism, there exists an fr-cobordism (W"i W0/G, W'[) with t(W\

PF0/G) = T0 and 8W"=W0IG U W'[ U F/G, for every TO e Wh(G) (see J.

Milnor [6, Theorem 11.1]. The proof of [6, Theorem 11.1] is valid

for the case of /i-cobordism with boundary). Let W" and W'[ be the

universal coverings of W" and W'[ respectively. Then dW" = WQ\jW'{

U V9 and W" is a free G-manifold by the covering transformation.

Now we obtain an m-dimensional semi-free G-manifold (M, \l/) from

the disjoint union W" + ( B \ ) N ) by identifying W0 U V in W" with W0 U F

in B ( j N . Then (M, I/O is an element of Dm(oC), and T(I/T) = TO. This

proves that T is surjective, and Lemma 1.1 follows.

Let (rm, <p) be a semi-free G-action on £m which represents an

element of <9m(a)« Let (£m, 9) also denote the equivariant diffeomor-
phism class of (Zm, cp). By removing a G-invariant open disc neigh-

borhood U of a fixed point, on which G acts orthogonally, we have

an element (Zm-U, cp\(Im-U)) in Dm(a), since 2m-U and I" -17 are

difTeomorphic to Dm and D" respectively in the case of n^5. We put

i(cp) = T:(Zm— [7, <p\(Zm— U)). It can be seen that 1(9) is independent

of U. Note that 6>m(a) is a commutative semi-group under the equiva-

riant connected sum about a fixed point and the standard linear action

(Sm, a©0) serves as zero element, where 6 is a trivial 1 -dimensional re-

presentation of G. Then we have a semi-group homomorphism T:

Now we will prove that (rm, 9) has an inverse. Let W denote (Zm

— C/)x[0, 1], where the action W on W is given by (p\(Zm— U) on the

first factor. By straightening the corners equivariantly, (W, !F) defines

an element in Dw+1(a©0). By Lemma 1.1 there exists an element

(W, V) of DM+1(a©0) so that (W, ¥)%(Wf, Y')~(Dm+l
9 a©0), where

4 denotes the equivariant boundary connected sum about a fixed point,

and ~ implies equivariant diffeomorphism.

Then we have
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(S™, <x®0) = (dDm+1, a@6)~(dW, «P)*(3PT, Vf)^(Zm, <?)*(- Zw, <p)*(3JP, V),

where J denotes the equivariant connected sum about a fixed point.

This implies that (Zm, cp) has an inverse (-Im, (p)$(dW, V') in 0 „(<*).

Thus we have:

Theorem 1.2. // 5^w<ra — 2, <9m(a) /s arc abellan group.

Remark. In G. Bredon [2, Chapter VI], we can find the proof

that the equivariant connected sum is well defined and the invariant

tubular neighborhood is unique up to equivariantly isotopic. He proves

the above results in the case of G = Sl or S3 (see [2, Chapter VI, Theo-

rem 9.1]).

Let (Zm, cp) be an element of ©m(a) with T(<p) = 0. Then (Im, cp)

is topologically equivalent to (Sm, oc®6) (see [2, Chapter VI, Corollary

9.3]).

§2. Which Elements of Im(a) Bound e-^r-ManifoIds?

Let T: 0m(a)-*Wh(G) be the homomorphism defined in §1. Let

<9£(a) denote the kernel of T. Let (Sm+k, affi(fc+l)0) denote an or-

thogonal G-action on Sm+k given by an (m + k + l)-dimensional repre-

sentation a©(/c+l)0 for a positive integer k. Define 7m(a)c:0°(a)

as follows. An element (I"m, cp) of 0°(a) is an element of /m(a) if and

only if (£m, cp) is G-imbeddable in (Sw+2, a©30). It is easy to see

Jm(oc) is a subgroup of

Lemma 2.1. Let (Zm, ^?) be an element of /m(a). Choose a G-

imbedding f: (Im, cp)-+(Sm+2, a©30). T/?en r/ie normal G-bundle vf

of Im in Sm+2 is isomorphic to a product G-bundle ZmxR2, where

the action on R2 is trivial.

Proof. Let x be a point of the fixed point set In of (Im, cp). Let

B be a G-invariant closed disc neighborhood of x in Im on which G

acts orthogonally. Since 1(9) = 0, the restricted action (£m-intJ3, <p\(Im

— intB)) is equivariantly diffeomorphic to (Dm, a). Since B and Zm — intB

are equivariantly contractible, the restricted G-bundles vf\B and vf\(I
m
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— intB) are isomorphic to D m x H 2 a s G-bundles, where the action on R2

is trivial (see E. Biestone [1, Corollary 3.2]). Let \j/1 and i//2 be equiva-
riant normal 2-frames on B and (Im — intB) respectively.

Let g:dB-+SO(2) be a G-map so that ^2(P) = 9(p)'ll/i(p) f°r a

point p of dB, where the action on S0(2) is trivial. Let n: dB-^dB/G

denote the natural map. Then g induces a map*?: dB/G-*SO(2) so that

0 = 0-7T.

If g is extendable over B/G, g can be extended equivariantly on

B and Lemma 2.1 follows. Note that 5/G is contractible and dB/G

is homeomorphic to n-fold unreduced suspension of Sm~n~1/G9 where

the action on Sm~n~1 is given by the non-trivial summand of a. Thus

g is extendable over B/G since Hk+1(B/G, dB/G', nk(SO(2))) = Q for any

integer k, and Lemma 2.1 follows.

Let (!m, (p) be an element of /m(a). Let /: (IM, ^)->(5w+fc, a©

(k+l)9) be a G-imbedding such that vf is isomorphic to ImxRk as

a G-bundle9 where the action on Rk is trivial. Let if/ be a specific

G-invariant field of normal ^-frames. Then the Pontrjagm-Thom

construction yields a G-map

where the action on Sm+k is given by a©(/c 4-1)0 and on Sk trivial.

Let [Sm+k, Sk]% denote the set of all G-homotopy classes of base

point preserving G-maps Sm+k-*Sk, where the base points of Sm+k and

Sk are the north poles. Then [Sm+fc, Sk~]% is an abelian group.

As shown in the proof of Lemma 2.1, Sm+k/G is homeomorphic

to (n + fc+l)-fold suspension space of Sm~n-lIG. Put L = Sm~n-1/G.

Then [Sm+fc, Sfc]g is isomorphic to [S'l+fc+1L, S&]0 and for a sufficiently

large positive integer k this is a stable cohomotopy group n$n'~'L(L).

Therefore p(q>, /,*!/) defines an element p((p9f,^) of n$n~l(L). Al-
lowing the G-imbedding / and the G-invariant normal frame field \l/ to

vary, we obtain a set of elements

Definition 2. Let (W, <2>) be a difFerentiable semi-free G-action

on an (m + l)-dimensional manifold W. (W, <f>) is called an e-n-manifold



if there exists a G-imbedding in a linear G-action (Dm+k+l
9 a©(fc+l)0)

such that the normal G-bundle is isomorphic to the product G-bundle

WxRk, where the action on Rk is trivial.

Lemma 2.2. The subset p(2m, (p)^n$n~l(L) contains the zero ele-

ment of n$n~l(L) if and only if (£m, cp) bounds an e-n-manifold.

Proof. "If" part is trivial. Conversely if p((p,f,\l/):Sm+k-*Sk is

G-homotopic to zero, p((p,f,*l/) can be extended to a G-map h: Dm+k+1

->Sfc, and h can be approximated by a differentiate G-map h':Dm+k+1

-+Sk which is transverse regular on OeS f e , where the action on Dm+k+l

is given by oc©(/c+l)0. Moreover h' may be chosen so that h'\Sm+k

= p((p,f,ils) (see G. Segal [9], or we can prove in a similar way as

Proposition 3.7 of A. Wasserman [11]).

Set W=h'~1(Q). The action on W is given by the restricted action

$ on Dm+fc+1. Clearly (W9 3>) is an e-7r-manifold whose boundary is

(Im, (p). This completes the proof of Lemma 2.2.

Lemma 2.3. Let (Pg, (p0) and (1̂ , (p^ are elements of Im(a). Then

Proof. Let /£: (Ii? ^)->(Sm+k, a©(/c+l)(9), for i = 0, 1, be G-imbed-

dings such that there exist G-invariant fields \l/t of normal /c-frames of

Zt-. We can assume that /0(£0) H /i(^i) = ^. It is easy to see that there

exists a G-imbedding h: (Dmx [0, 1], a©0)-»(Sm+fc, a©(fc+l)0) with /i(Dm

x [0, 1]) n f^ = h(Dm x 0 for i = 0, 1.

Now we obtain W from the disjoint sum Z0 x [0, 1] + !^ x [0, 1]

+ Dwx[0, 1] by identifying C/T'O), 1) with h"1^) for xEh(Dmxi),
i = 0, 1. By straightening the corners equivariantly, we have an (m + 1)-

dimensional differentiate G-manifold (W, <P) so that 5Pf=I0#I1 + (-I'0)

+ ( — 1^), where the action ^ on W is given by the actions on the

first factors. Moreover we have a G-imbedding

F: (W, <f>) - >(Sm+kx[Q, 1], a

so that F(x, 0 = (/*(*), 0 fof (^ Oe^x[0, 1], i = 0, 1.
By pushing the interior of F(W) into the interior of Sm+k x [0, 1],
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this imbedding can be taken transversely on d(Sm+k x [0, 1]). It is

easy to see that there exists a G-invariant field W of normal /c-frames

on W with ^1(^x0) = ^^. Let \l/ denote the restriction of W on ZQ^Zl.

Then p((po,fo9 $o) + p(<Pi->fi, $\) is G-homotopic to p((po$(pi, F\Z0%219

\l/). This completes the proof of Lemma 2.3.

Theorem 2.4. The set p(Sm, a©0) is a subgroup of the stable coho-

motopy group TrJ""1^). For any element (Z™9 (p) of /w(a), the cor-

respondence (Z9 cp)->p(Z, (p) defines a well-defined homomorphism

and the kernel of p consists exactly of all elements of Im(a) which

bound e-n-manifolds.

Proof. Since i((^) = 0, (— Zm, (p) is an inverse of (Im, (p) in Im(a).

Combining Lemma 2.2 and Lemma 2.3 with the identities

and

we obtain this theorem.

Remark 1. The above notations p(cp, f, i/O, p(Zm, <p), p(Sm, a(
and njn~l(L) are equivariantly analogous to Kervair-Milnor's notations

p(Im, cp), p(I"m), p(Sm) and nm respectively.
2. Let Am(u) denote the kernel of the homomorphism p: /m(a)-*

n$n~l(L)/p(Sm, a®9). Then any element of Am(a) bounds an e-7r-manifold.

Note that Jw(a)/ylm(a) is a finite group by Theorem 2.4, since n$n~l(L)

is a finite group (see P. Hilton [3, Theorem 3.18]).

§3. A Homomorphism liAm(a) >Z

In this section we will assume n = 4r — 1 for some positive integer

r^2. Let (W, $) be an (m + l)-dimensional e-Ti-manifold whose boundary

is (Sm, «00). Let f:(W,$)->(Dm+k+l,x@(k+l')0) be a G-imbedding
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such that the normal G-bundle vWtDm+k+i is isomorphic to the product

G-bundle Wx Rk, where the action on Rk is trivial. Here we will

assume k^n + 2 = 4r+[. Let W be a G-invariant field of normal k-

frames of W.

Let F denote the fixed point set of (W, 0). Then dF is the fixed

point set of (5W, a©0) and is Sn. Note that / carries F into the fixed

point set Dn+k+l of (Dm+k+i, a©(fc+l)0). Since vF i D n .k +i©(vDn+ k +i ,

D,»+k + i)\F is isomorphic to vFtW®(vWfDm+k+i)\F as a G-bundle, vF>Dn+k+i

is isomorphic to (vWiDm+k+i)\F.

Now ¥ defines an element of [W, SO(A:)]G, where the action on

SO(k) is trivial. Since vF ) D , ,+kri is isomorphic to (vWtDm+k+i)\F9 the

inclusion Sn = dF^W induces a map ft: {W9 SO(fe)]c->^B(SO(fc)).

Lemma 3.1. /i: [W, SO(/c)]G-»7rn(SO(/c)) is zero

Proof. There is a commutative diagram

where ft' and ft" are induced by the inclusions Sm = dW<->W and Sn(-+Sm

respectively. Since G acts on S0(/c) trivially, [Sm, 5O(/c)]G is identified

with [S'"/G, SO(fe)]. Now Sm/G is homeomorphic to an (n-hl)-fold
suspension space S'I+1L, so we have that [Sm, SO(k)~]G is identified with

[S»+1L, SO(fe)].
Therefore ft" is identified with ft": [S^L, SO(fe)]-*7cB(SO(fc)). Since

ft" is induced by the inclusion S"C->SII+1L, we have ft" is zero map.

From the above commutative diagram ft is zero map, and Lemma

3.1 follows.

Lemma 3.2. With the above notations, let Sgn(F) denote the

signature of the 4r-dimensional manifold F. Then we have Sgn(F) = 0.

Proof. Since vFtDn+k+i is isomorphic to (vWtDm>-k+i)\F9 *¥\F is identifi-

ed with a field of normal /c-frames of F in Dn+k+1. Note that nn(SO(k))

= n4r_l(SO(k)) = Z for fc^4r+l. Identifying F and D4r along their
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common boundary, we obtain a closed 4r-dimensional manifold M.

Note that h(Y) is equal to a homotopy class of W\S" in nn(SO(K)).

According to Milnor and Kervaire (Lemma 2 in [5]), the r-dimensional

Pontrjagin class pr(M)=±ar(2r—l)\-h(*F)9 where ar is 2 for r odd

and 1 for r even. Thus, by Lemma 3.1, pr(M) = Q.

Since F is a parallelizable manifold, so M is an almost parallelizable

manifold. Therefore jpf(M) = 0 for 0<i<r (see [5]). Then we have

Sgn(F) = Sgn(M) = 0. This completes the proof of Lemma 3.2.

Theorem 3.3. Let n = 4r—l for some positive integer r^2. Let

(Zm, <p) be an element of Am(<x), (W, 0) an (m + l)-dimensional e-n-mani-

fold whose boundary is (Zm, cp\ F the fixed point set of (W, 0). Then

the correspondence (Z, <p)-»Sgn(F) defines a well-defined homomorphism

I: Am(a)-+Z, where Z denotes the group of integers.

Proof. Let (W, 0') be an another e-7c-manifold whose boundary

is (I", (p), F' the fixed point set of (W9 0'). Then the G-invariant bound-

ary connected sum (W, $)$(— W, 0') is an e-rc-manifold whose boundary

is equivariant diffeomorphic to (Sm, a©0).

Since the fixed point set of (W, $)*(-W'9 0') is Ftl(-F'), we have

Sgn(FH(-F)) = 0 by Lemma 3.2. Therefore Sgn (F) = Sgn (F'), and /

is well-defined. It is clear that / is a homomorphism. This completes

the proof of Theorem 3.3.

§4. Semi-Free G-Actions on Brieskorn Spheres

In this section we apply the previous results to semi-free G-actions

on Brieskorn spheres.

Let tfc be the tangent disc bundle of Sk with the total space £(rfc).

Consider 0(k— l)cO(/c+l) acting on Sk, and hence on ufc in the standard

way. SkxSk is an 0(k— l)-manifold with the diagonal action. Let

AsaSkxSk be the diagonal set which is also an 0(k — l)-manifold. Let

vs denote the 0(k— l)-invariant normal bundle of As in SkxSk, and

E(vs) be the total space of its associated disk bundle. Then it is easy

to see that E(vs) is isomorphic to E(rk) as an O(k— l)-bundle.

Similarly let AD be the diagonal submanifold in Dk+lxDk+i which
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is a differentiable 0(/c— l)-manifold with the diagonal action by straight-

ening the corners equivariantly. Hereafter, for a given G-manifold with

corners, we will think of it as a difTerentiable G-manifold by straightening

the corners equivariantly. Let VD denote the 0(k — l)-mvariant normal

bundle and E(vD) the total space of its associated disc bundle. Then

E(vD) is isomorphic to the tangent disc bundle of Dk+l as an O(k— 1)-

bundle. Note that dAD is 0(k— 1) equivariant diffeomorphic to As,

and hence E(v^)\dAD is isomorphic to the associated disc bundle E(vs®9)

of vs®9 as an 0(k— l)-bundle.

Let P2k(E8) denote a 2/odimensional Q(/c—l)-manifold which is

obtained by plumbing 8-copies of E(i^) equivariantly according to the

graph £8: o u o o o o o (see Chapter V, §8 in

[2]). Let pk_i be the standard (k— l)-dimensional representation of

0(k — 1), and 9 the trivial 1-dimensional representation of 0(k— 1).

Lemma 4.1. P2k(E8) can be imbedded in D2k+2 equivariantly as

an O(k — l)-manifold, where the action on D2k+2 is given by 2pk_1®49.

Proof. Let x be a fixed point of As, and Dx an O(k— l)-invariant

closed disc neighborhood of x on which O(k— 1) acts linearly. dAD

can be thought of as As, and SkxSk as a submanifold of Dk+ixDk~*~v.

Let Hx be an 0(k— l)-in variant closed half disc neighborhood of x in

AD on which 0(k — 1) acts linearly. Then E(vs)\Dx and E(vD)\Hx are

isomorphic to the product 0(k — 1 )-bundles DxxDk and HxxDk+1 as

0(k— l)-bundles respectively, where the actions on Dk and Dk+l are given

by pk-i®9 and pk_1®29 respectively.

Since dE(vD)=>E(vD)\As, and since

E(VD)\AS is isomorphic to the disc

bundle of vs©0, E(vs) can be thought

of as a G-submanifold of 5£(vD).

Hence by the above isomorphisms,

Hxx Dk+ 1 n fl£(

x Dk+1 ̂ Dx x Dk+1 n E(vs) = Dx x Dk .
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We will regard Dk+1 as DkxD1. Since Dx is equivariantly dif-

feomorphic to Dk, we have an equivariant diffeomorphism ju: DxxDkxDl

->DxxDkxDl with ti(u,v, t) = (v,u, t) for ueDx9veDk and teD1.

Now we obtain W from 2-copies of E(vD) by identifying (w, t;, *) with

\JL(U, v, t) for (w, v, f)eDxxDmxDl. By straightening the corners equiva-

riantly, W becomes a (2/c + 2)-dimensional O(k— l)-manifold.

Let P2k(A^) denote a 2/c-dimensional 0(k — l)-manifold which is

obtained by plumbing 2-copies of E(ik) equivariantly according to the

graph A2: o o (see G. Bredon [2, Chapter V, §8]). From the defini-

tion, W is obtained by the equivariant boundary connected sum£(vD)t]

E(vD). Since E(vD) is equivariantly diffeomorphic to D2k+2, W is also

equivariantly diffeomorphic to D2k+2. Moreover P2k(A2} is obtained

from 2-copies of E(vs) by identifying (u9 v) with ft(u, v) for (u,v)eDxx

Dm. Thus P2k(A2) can be imbedded equivariantly in D2k+2.

Iterating this method, P2k(E8) can be imbedded equivariantly in

D2k+2. Note that P2k(Es) is imbedded equivariantly in dD2k+2. By

pushing the interior of P2k(E8) into the interior of D2k+2, this imbed-

ding can be taken transversally on dD2k+2
9 and Lemma 4.1 follows.

Lemma 4.2. With the notations of Lemma 4.1, let v be the 0(k— 1)-

equivariant normal bundle of P2k(E8) in D2k+2. Then v isisomorphic

to P2k(E8)xR2 as an 0(k—l)-bundle, where the action on R2 is

trivial.

Proof. Let x be a fixed point of Sk and Dx a closed invariant

disc neighborhood of x on which 0(k— 1) acts linearly. Let £1=£(Tfc)|

Dx and E2 = E(i;k)\(S
k-mtDx). Since Dx and Sk-intDx are equivariantly

contractible, E± and E2 are equivariantly diffeomorphic to DxxDk and

(Sk — intDx)xDk respectively, where the action on Dk is given by pk,1®6

(see E. Biestone [1, Corollary 3.2]). Note that P2k(E8) is obtained by

plumbing 8-copies of E(rk) equivariantly, so we can regard £(ife) as a

subspace of P2k(Es).

Since £A and E2 are equivariantly contractible, v\E^ and v\E2 are

isomorphic to E1 x R2 and E2 x R2 respectively. Note that E± n E2

= E(ik)\dDx which is equivariantly diffeomorphic to dDkxDk. Since

(dDkxDk)/0(k-l) and (DxxDk)/O(k-l) are contractible, it can be
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proved that v|£(rk) is isomorphic to £(rk)xj?2 as an 0(fc-l)-bundle by

the similar method of Lemma 2.1.

Note that P2k(A2) is obtained by plumbing 2-copies of £(ifc) equiva-

riantly, so we can regard P2k(A2) as a subspace of P2k(E8), and P2fc(,42)

— intE(Tft) is equivariantly diffeomorphic to DkxDk. Hence it can be
proved that v\P2k(A2) is isomorphic to P2fe(,42)xM2 as an O(/c-l)-bundle,

by the above method.
Iterating this method, we can prove v is isomorphic to P2k(E8)xR2

as an O(k— l)-bundle. This completes the proof of Lemma 4.2.

Consider the Brieskorn sphere W^1 defined to be the space

of all points (w, v, zl9 z2,..., z f e_1)eC f c + 1 on the intersection of the space

and the variety

By the well-known method, PFifs1 is an O(k— l)-manifold.

Let G be a finite subgroup of O(fc-2r)cO(fc-l) for k^

Rk~2r is an 0(k — 2r)-manifold by the standard orthogonal action, hence

it is a G-manifold. We will assume that G acts freely on the unit

sphere in Rk~2r. We have many finite groups G satisfying this condition
(see P. Orlik [7, Chapter 6, Theorem 1]). By the restricted action, W^1

is a semi-free differentiate G-manifold (W^ l> <Po) whose fixed point
set is Wfa1. Let 0: G-»0(/c-2r) denote a (fe - 2r)-dimensional re-

presentation of G given by the inclusion G^>O(k — 2r). Then it is

easy to see that (JFffs1 , q>0) defines an element of 02fc

Theorem 4.3. // r^2 and k^2r + 2, (W^1, <pQ) is an element of

infinite order in ®2fc-i(a)> where a = 2j9©(4r— 1)6.

Proof. Let us consider the homomorphism T: 6)2fc_1(a)

If r((p0) is an element of infinite order in Wh(G), we have nothing

to prove. Thus we may assume that q"t((po) = Q for some positive

integer q. Hence q-(W, <po) = (W, <p0)9 •••%(¥?, <pQ) is an element of ^ifc-iO*)-
Note that P2k(E8) is an 0(k — l)-manifold and hence a G-manifold.
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Let (P2fc(£8), <£) denote this G-manifold. Since W2k$ l is equivariantly

diffeomorphic to dP2k(E8) as an 0(/t— l)-manifold, (W%*J 1, ^0) is equiva-

riantly diffeomorphic to (dP2k(E8), d>') as a G-manifold, where $' is

the restricted action of 0 (see Chapter VI of G. Bredon [2]). By

Lemma 4.2 (P2k(£8), $) is an e-7r-manifold and hence q-(P2k(E8\ 0)

= (P2k(E8), ®^~^(P2k(Ez), <P) is an e-7r-manifold whose boundary is

q'(dP2k(E8)9 $')^q-(Wlks\ <p0). Therefore q'(W^5l, <Po) is an element

of A2k-i(a) by Theorem 2.4.

Here let us consider the homomorphism I: A2k-i(<x)-+Z. Since

the fixed point set of (P2fe(£8), #) is P4r(E8), we have

I(q<W2k5 1 , <Po)) = Sgn (P4^8)4 •

Thus (Wjksl, q)0) must be an element of infinite order in 02fc-i(a).

This completes the proof of Theorem 4.3.

Remark. In the case of G = Z2, G. Bredon [2, Chapter VI, Theorem

8.6] have proved an analogous theorem to 4.3 by a different method.
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