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Convergence of the ACM Finite Element
Scheme for Plate Bending Problems

By

Fumio KIKUCHI*

Summary

Convergence rates of the ACM non-conforming scheme are evaluated. This
scheme is usually employed for two-dimensional bi-harmonic boundary-value and
eigenvalue problems arising from plate bending analysis. When the shape of the
domain is rectangular and the exact solution is sufficiently smooth, Z,2~

error

bounds of moments and deflection and error of eigenvalue are all at the order of
square of the maximum mesh size. This result is also confirmed by numerical
experiments.

1. Introduction

In the engineering literatures, non-conforming finite elements are

frequently employed especially for plate bending problems (Zienkiewicz,

[11]). In this type of approximation, the trial functions do not belong

to the energy space, and the finite element solution may or may not

converge to the exact solution. The mathematical studies of this method

have been conducted, for example, by Strang and Fix [10], Babuska

and Zlamal [1], and Ciarlet [2]. However, the case study appears to

be still insufficient since the convergence depends strongly upon the

specific features of the individual schemes. This paper deals with an

important non-conforming scheme in practice.

The ACM scheme is one of the most popular finite element scheme

for plate bending (see Melosh [5]). Although it is non-conforming,

the accuracy of the solutions obtained by its use is known to be ex-

cellent. In fact, we can readily find the following statement in Zien-

kiewicz [11]: The linear distribution of moments tries, as it were,
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to give the "best fit" to the exact moment distribution at all stage of

the subdivisions.
As for its convergence for boundary-value problems, Miyoshi [7]

performed an error analysis for clamped plates subdivided into regular

meshes. His main result is that the orders of errors of the deflection

and the moments (second-order derivatives of deflection) are square root

of the maximum mesh size h. When the shape of the domain is exactly

represented by this rectangular element and the exact solution is suf-

ficiently smooth, the orders may be improved up to O(/?), as is seen

from his analysis.

On the other hand, we can presume that the orders would be 0(h2)

in certain cases, if the Zienkiewicz observation is true. The aim of

this paper is to derive some error bounds to the finite element ap-

proximation of both boundary-value and eigenvalue problems of simply

supported rectangular plates, from which we can see that the above

conjecture is true. To this end, the scheme is regarded as an improved

one of Melosh's scheme [4] based on the partial approximation. Numer-

ical experiments are also conducted for a few simple problems to see

the validity of the theory.

2e Preliminaries

Let JR2 be the two-dimensional Euclidean space, a point of which

is designated by x = (xl9 x2), and QdR2 is a rectangular domain defined

by \Xi\<di/2 (1=1, 2). In the sequel, C, C*, C1 etc. are generic positive

constants independent of various parameters and may take different values

when appear in different places.

Let Hn(Q) be the usual n-th order real Sobolev space with n being

a non-negative integer. The norm of u e Hn(Q) is given by

(1)

where a = (al3 oc2) is a two-component index, ct^s being non-negative

integers, \oc\=o^l +«2 and Dx = d^ldx°[ldxK
2

2. The space H"0(Q) is the

completion, with respect to the norm (1), of the space of all test func-
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tions on Q. For n = Q, HQ(S) = H$(Q) is the usual L2(Q) space, the

inner product and the norm of which are respectively denoted by ( , )fi

and || ||0. We will also use a semi-norm of H"(Q) defined by

1
(2) I«U = ( Z \ \D>u(x)\*dx)2 .

\ l a | = n J f l /

Let us consider a biharmonic operator A = AA with the domain of

definition

and u = d2u/dnz = 0 on

where Q is the closure of Q, dQ the boundary of Q, and B2u/dn2 the

second order derivative of u in the outward normal direction of dQ.

The boundary conditions in the above correspond to the simply sup-

ported edges of plates. Clearly, D(A)czH*(G)nHb(Q), and the range

of A is included into L2(O). The use of the divergence theorem yields

(Au, u)a = (u, AU)a= Z (d2uldxidxj9 d2rtldxidxj)f2
i , j= l

for any u,rieD(A). Thus it is easy to show that A is symmetric and

satisfies (cf. Lemma 1 in this paper)

where C is a positive constant dependent only on d^ and d2>

Now we can use the standard procedure to obtain the energy space

HA associated with A (see sec. 9 of Mikhlin [6]): we first define the in-

ner product < , > and the energy norm ||| ||| for the elements of

D(A) by

1
<w, u) = (Au, U)Q and || |H|| |=<W, w > 2 ,

and then obtain HA as the completion of D(A) with respect to the

energy norm. We will use the same notations as the above even for

the inner product and the norm of HA.

It is not difficult to show
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This may be done by first extending u eH2(Q) n H1
0(Q) outside Q in

an anti-symmetric manner with respect to dQ, and then using a suf-
ficiently smooth symmetric mollifier to get an element of D(A) arbitrarily

close to u in the norm of H2(Q). Consequently, we obtain the follow-
ing explicit expressions of the inner product and the norm of HA:

(3) (u, S>= _ E^u/dx^xj, d2uldxfiXj)a9

(4) \W\\ = \u\2.09

for any u, UeHA.

A variational formulation for the static (boundary-value) problem of

the plate is to find a deflection ueHA for an arbitrarily given load
/eL2(O) such that

(5) <«,"> = (/,*)« PteHj,

while that for the vibration (eigenvalue) problem is to find non-zero

u E HA and a real number /I such that

(6) < U , M > = J<II,M)I, (v*eHJ.

Here we have assumed both the bending rigidity and the mass per

unit area of the plate to be unity and Poisson's ratio to be zero.
The following two theorems are on the solutions of the above two

problems.

Theorem 1. The solution of Eq. (5) exists uniquely in HA for any

feL2(Q) and satisfies

(7)

(8) u = d2u/dn2 = Q on

Therefore, u satisfies AAu=f in Q in the strong sense, and the traces

in Eq. (8) may be regarded as continuous functions on dQ.

Proof. The uniqueness and the existence follow from the Riesz

representation theorem. The smoothness of u may be established by
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constructing the solution explicitly by the Fourier double series, (cf.

Theorem 1.10 of Mizohata [8] and Lemma 1 of Hall and Kennedy [3].)|

The following is easy to check by the use of compactness theorems
and the preceding theorem.

Theorem 2, The set of all eigenvalues for Eq. (6) is a countable

set in ]0, oo[ without any accumulation points (except at infinity).

We can arrange the eigenvalues {^i}f=i in such a way that

(9)

The corresponding eigenf unctions {ut}f=i can be normalized as

(10) (ui,uj)Q = dij (dtj: Kronecker's delta),
and satisfy

(ID

(12) u. = d2
Ui/dn2 = 0 on

3. Finite Element Schemes

Let us decompose Q into rectangular elements {Qhi}&i by lines

parallel to the coordinate axes (see Fig. 1). The side lengths of Qhi
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in Xji and x2 directions are respectively denoted by hn and /i/2, for

which we assume

(13) C1^hi2lhil^C2>09

where Cl and C2 are pre-assigned positive constants. We also use

the notations /7; = max{/?£1, /?-2} and h= max hi.

In the ACM scheme, the distribution of the approximate function

uh is given by linear combination of x^xy with 0^a^3 and |a|^4

(excluding the case a1 = a2 = 2) in each element. Globally, it can be

expressed by

Mh

(14) uh(x)= Z Z *>*uh(Pj)<l>fj(x)9

where Pj is the j-th nodes of the mesh. Here, uh and its first derivatives

are forced to be continuous at all nodes, and the shape function <^-

satisfies

1 (<x = j8 and j = fc),

0 (otherwise)

for |a|, |j8|^l and l<Zj, k£Mh. When P j E d Q , some of the above

nodal values vanish identically to satisfy the condition wft = 0 on dQ.

The precise definition of uh may be found in page 177 of Zienkiewicz

[11]. The finite element space thus defined is denoted by Sh. Although

Shc:H^(Q) and d2uhldx1dx2EL2(Q) for any uheSh,Shis non-conform-

ing, i.e. Sh$:HA because Sh<£H2(Q). However, the restriction of uhESh

to a finite element Qhk belongs to H2(Qhk), so that the following bilinear

form is well-defined for any uh,uheSh and any u,ueH2(Q) (cf. Babuska

and Zlamal [1]):

(15) <M,, + W, M* + W>*= f f
k=l i,j=l

The following is also well-defined:

(16) I
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Particularly, <M, M>A = <M, H> and ]||u|]|,,= l l l " l l l -
Let us introduce two mappings Jw's(i = l, 2) from S1' into H},(Q).

If we consider a typical rectangular element R = QhJ with nodes Pt's

(/c=l, 2, 3, 4), the distribution of Jhiuh's for uheSl> are given in R by

(17 a)

?(3 - 2X, ) [(1 - X2)uh

(17 b) Jh2uh = (l +2X2)(l -

where X1 and J^2
 are local coordinates of R defined in Fig. 1. Fur-

thermore, it holds in R that

(17 c) iO, = ̂ i^ + ̂ 2^-a-*i)(l-X2W^

We can see that d2Jhiuh/dxf eL2(Q) for any uheSh, and in .R holds the

relation d2Jhiuh/dxf = d 2 u h / d x f ( i = l92). Therefore, Eq. (15) may be re-
written by

(18) <ufc + ii, i/ft + w>,= Zi(3
2(Jww* + «)/ax?f d2(JhiUh + u)ldxfia

+ 2(d2(uh + u)ldxldx2, d2(uh + w)/5x15x2)0 .

We will present some lemmas to clarify the properties of Sh.

Lemma 1. For any uheSh and ueHA hold the inequalities

(19 a)
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(19 b) ^d2(uk + u)ldXldx210^Cmi
JCEfi

(19c) ||3V««* + iO/3*?llfl^^

for |a| = l and i = l, 2.

Proof, See sec. 30 of Mikhlin [6].B

Lemma 2. (uniformity condition) Let $lj be the shape function

in Eq. (14). Then it holds that

(20) sup
xeflhi

/or |/?|^2, where C can be taken independent of i (l^i^Nh) and j.

Proof. This follows from the condition (13) and the relation O^Xl9

Lemma 3. Let uheSh be the interpolate of u

This is well-defined since u is sufficiently smooth and any element of

Sh vanishes on dQ. Then

Proof. We can use the Bramble-Hilbert theorem to derive this

estimate, together with the uniformity condition just established (see

page 143 of StrangandFix [10]). •

Lemma 4. Any uheSh satisfies the relation

(22) \\Jhiuh-uh\\^Ch2\\\uh\\\h (i = l, 2).

Proof. As seen from Eq. (17), Jhiuh is precisely the piecewise linear

interpolation of uh in Xj direction with j = 2 for i = l and j = l for i = 2.

Thus the analysis of Schultz (page 17, [9]) yields

from which follows the desired estimation. •

The finite element approximation uheSh for Eq. (5) is given by
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(23) <w f t, Uh>h = (f, uh)Q (vwheS*),

while that for Eq. (6) is by

(24) <M,, uhyh = ih(uh9 uh)Q (*Uh E Sh) .

The following two theorems on the solvability of these approximate

equations are easy to prove, and hence presented without proofs.

Theorem 3. The finite element solution uh of Eq. (23) exists uni-

quely for any /eL2(O) and satisfies

(25) l l lKjJ^CH/l l f l .

Theorem 4. The approximate eigenvalue equation (24) has as

many eigenvalues and the corresponding eigenfunctions as Lh9 the

dimension of Sh. All the eigenvalues {^hi}^i are positive and they

can be arranged as

(26)

The eigenfunctions {w/,Jf=i can be normalized as

(27) («w

4. Error Estimates for Boundary-value Problem

This section is to deal with error estimation of the finite element

solution for the static problem.

Let us define u%eSh for ueHA by the relation

(28) <u%,uhyh = <u,uhyh C*uheSh).

Such u% exists uniquely in Sh as seen from the discussion of the preced-

ing section. The mapping from HA into Sh introduced in this way is

denoted by Ph. Clearly, |||Pfcii|||̂ |||ii||| and

(29) P*-ii|L2 = |||P*fi-ii|||? + pJk-PJhii|L
2

for any uheSh and ueHA. Therefore PhueSh is the best approximation

of u in the following sense:
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(30) |||P»M-M|||A=min|||«4-«|L.
fiheS"

Let us define a bilinear form by

(31) Bk(u, t7,,) = S (34w/3xf , H,, - JMQja
i= 1

for ueH4(Q) and M f ceS*. Then the following holds.

Lemma 5, Let u and uh be the solutions of Eqs. (5) and (23)

for the same /e L2(fi), respectively. Then

(32) £A(M, uh) = <MA - u, i/h>A = (/, wA)fl - <u, w^>A

/or anj; uheSh.

Proof, Because of the relation AAu=f in O for ueH4(Q) and of

the definition of uh, it holds that

<«*> «*>* = (/» "/»)«

+ £ (d*uldxt,JMiiJ0.

Thanks to sufficient smoothness of w, w;, and Jftfi7ft's, we can apply the

divergence theorem to this equation to show

with the aid of the boundary conditions for u and uh. This completes

the proof. •

The following is an extension of a well-known result for non-con-

forming schemes (see page 174 of Strang and Fix [10]).

Lemma 6. Let u and uh be the exact solutions of Eqs. (5) and

(23), respectively. Then

(33) \\\^-u\\\2
h = l\Phu-u\
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where

(34) Ah(u)=

Proof. Since Eq. (29) holds, we need only to prove Ah(u)=\\\uh

— Phu\\\h. But this is obvious from the relation Bh(u, uh) = (uh — Phu9

uhyh obtained in the preceding lemma. •

Now we can easily prove the following two lemmas by the use of

the results of the preceding section.

Lemma 1. Let Ah(u) be defined by Eq. (34) for UEH4(Q). Then

we have from lemma 4 that

(35) Ah(u)^Ch2\ii\4>0.

Lemma 8. Let u e H4(Q) n H^(Q). Then we have from lemma 3

and Eq. (30) that

(36) lll^-«III^C/i2|ii|4ifl.

The following theorem gives error bounds of the finite element

solution. It also implies that the Zienkiewicz observation (page 190,

[11]) is true.

Theorem 5. Let u and uheSh be the solutions of Eqs. (5) and

(23), respectively. Then

(37 a) \\\eh\\\h^Ch2\\f\\a,

(37 b)

(37 c) max|e/,(x)|:gCfc2l|/||n,
xeQ

(37 d) IU««»-«ll

(37 e) l|3JM«»/3xl-5M/ax(||0gCli2||/||0,

where eh = uh — u and i = l, 2.
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Proof. The first estimation follows from the lemmas in this section,
while the others may be derived with the aid of lemma l.H

5. Error Estimates for Eigenvalue Problem

We will give error estimates to approximation of the first m eigen-
values and the eigenfunctions. Here the positive integer m is of course
not greater than Lh, the dimension of Sh. Since Sh is non-conforming,
care should be taken especially in the evaluation of lower bounds of
eigenvalues. The explanation of this section is focussed on this subject.
In the other aspects, the method of error analysis employed here is
essentially the same as done by Strang and Fix (sec. 6.3, [10]), hence the
related results will be presented without complete proofs.

We assume that the exact and the approximate eigenfunctions are
subjected to Eqs. (10) and (27), and the condition

(38) (I^KM^O

We will use the Rayleigh principle for

(39) A,= min (|||i< |||2/ '\\u\\ $),

and the min-max principle for Xhi ( l ^ f^

(40) Aw= min max (|M«»|
Sh.<=Sh uheSh.

uh#0

In the above, Ei is the space spanned by {Uj}j=l, E± its orthogonal
complement in HA9 and S? an arbitrary i-dimensional subspace of Sh.

Let us define uhieSh(l^i^Lh) by

(41) <uhi, uhyh = ̂ (ui9 uh)Q (%eS*),

which is well-defined thanks to Theorem 3. Then the following holds
from Theorem 5 since ||Ml-||fl=l.

Lemma 9. Let uhi be the approximation of ui defined above.
Then uhi — ui satisfies the same error estimates as hold for uh — u in
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Theorem 5, if \\f\\Q is replaced with A;.

As a result, {uhi}f=l is linearly independent for sufficiently small

h. The subspace of Sh spanned by {uhj}
i
jssl will be denoted by E*.

i
Lemma 10e Let w/,e£^ be expressed by uh= £ fl/wfcj«. Then

(42)

(43)

+ 2Bh(u, ujt)0+ |l«»-« 112,

i i
w/zm? M= Z ajUjEEi, wt= Z

7=1 J=l

Proof. The above follows from Eqs. (6), (32) and (41). For exam-

ple, Eq. (42) may be derived by substituting the relation <wft — w, uhyh

= Bh(u, uh) into the identity

(cf. Lemmas 6. land 6.2 of StrangandFix [10].) •

Lemma 11. Let uh be an arbitrary non-zero element of Sf (1

^f^L,,) such that

(44) (w^

Such uh exists since 5J 15 i-dimensional and the number of constraints

in Eq. (44) is i — l. When f = l, no constraint is imposed on uh. De-

fine ueHA by

(45) < i i , w >

Then u e E j - _ l 9 and

(46) I l l « l l l £ l l « » l
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Proof. W 6 £ f _ ! since <w, w/> = (w/J? Wj)^ = 0 for l^j^-i — 1. Equat-

ing u to u in Eq. (45) yields

"

with the aid of the Schwarz inequality and Eq. (39). Thus the former

of Ineq. (46) is established, while the latter is obvious from Lemma

7.H

Now we can give error estimation to the eigenvalues.

Theorem 6. Let khi be the approximate eigenvalue of A ^ ( l ^ z ^ m ) .

Then, for sufficiently small h, it holds that

(47) |Aw-

where C can be taken to be dependent only on m.

Proof. To obtain an upper bound of AM, we employ the nota-

tions and the results of Lemma 10, to which we add a condition \\u\\ Q
= 1. Then, we can easily see that |||w|||2^4 \\AAu\\a^{9 \\\tf\\\ gl,

\\AAu* \\a^l, and

for any uheSH. Therefore, we have, from the discussion of the preced-

ing section, that

«!«*-« Ill* ^

Applying these estimates to |||tt/Jj?/||Mjo with the aid of Eqs. (42) and

(43), we find
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for sufficiently small h. This is an upper bound of A/l£ because of the

min-max principle.

To obtain a lower bound, we use the same uh and u as in Lemma

11. From Lemma 5, we can show that they satisfy the relation

**(«)) III "JU.

from which follows

with the aid of the estimates (46). Thus, we have, for sufficiently small

from the min-max principle. This completes the proof.

Next, we should give error estimates to eigenf unctions.

Lemma 12. Let {uhi}fei be defined by Eq. (41). Then

(48) III WM- M Jl I = (^-^)Kp u M- "ado

+ ̂ (w«-",, Uhi-UhJn,

(49) A;(«;, uhj)a = Ahj(uhj> Uhi)n = <Uhi> lthj>h

for l£i,j£Lh.

Proof. All of these follows from the definitions of uhi and uhi.

(cf. Lemmas 6.3 and 6.4 of Strang and Fix [10]).

Theorem 7. We assume that h is small enough and i^i^m.

When there is no repeated eigenvalue in Af's, uhi — Ui satisfies the same

error estimates as uh — u in Theorem 5, if \\f\\n is replaced with a

suitable constant dependent only on m. When there is a repeated

eigenvalue, we can choose {ujf^j so that uhi — ui satisfies the same

error estimates.

Proof. As seen from Eq. (48), the essence of the proof lies in
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the estimation of \\uhi — uhi\\a or \\uhi-ut\\Q, for which Eq. (49) may be

effectively employed. The details of the proof are almost the same as

used by StrangandFix (sec. 6.3 [10]). •

6. Numerical Experiments

Some numerical experiments are conducted to show the validity of

the error analysis given in the preceding sections. In the sequel, Q is

chosen a square defined by |^|<l/2 (i = l, 2). All the computations

are performed by the double precision arithmetic on HITAC 5020 F

computer, and the 5x5 product Gauss quadrature formula is employed

for the integrations in each finite element.

6.1. Boundary-value Problem.

We first analyze a simply supported square plate under lateral load-

ing f ( x ) = 4n4 cos (nX}) cos (nx2), for which the exact solution is

u(x) = cos (TTXJI) cos (nx2) -

The square is divided into n x n uniform mesh, the results being obtained

for several values of n. The Gauss elimination method is employed

to solve the linear simultaneous equations.

Table 1 shows the convergence character of eh = uh — u against h = l/n

measured by the maximum norm, L2-norm and ||| |||h. Clearly, all

of these are asymptotically proportional to h2, as predicted by the

Table. 1. Convergence of eh = ufl—u for the boundary-value problem.

h

1/2

1/4

1/6

1/8

1/10
1/20

maK\eh(X)\/h2

xen

0-726

0.804

0.815

0.818

0.820

0.822

\\ek\\alh
2

0.274

0.374

0.394

0.402

0.405

0.410

\\\eh\L/h2

8.44

8.78

8.84

8.86

8.87

8.89
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theory. It is to be noted that the convergence rate of the deflection is

not better than that of moments unlike in the compatible models. In

other words, Nitsche's trick does not work in this problem.

6.2. Eigenvalue Problem.

As a second example, we treat the first approximate eigenvalue A f t l

and the corresponding eigenfunction uhl. The exact ones are, as well

known,

hi=4n4 and u(x) = c

In the calculation, the square is again decomposed into n x n mesh,

and uhi is obtained under the normalizing conditions

l | w * i l l o = l | w i l l i i = l / 2 and (iifcl, ii^O.

The approximate characteristic equations are solved by the subspace

iteration method with two trial vectors.

Tables 2 and 3 are on the convergence characters of AA1 and ehl

= uhl — ul, respectively. Clearly, |A f c l— li\=O(h2), as predicted from the

theory, and AM approaches ^ from below as h tends to 0 unlike in

the case of compatible models. It is here to be noticed that the error

of the approximate eigenvalue is usually O(h4) in compatible models

when the error of the moments is 0(h2) (see sec. 6.3 of Strang and Fix

[10]). It is quite interesting that the order of the deflection error

Table 2. Convergence of the Table 3. Convergence of ehl = uhl — u1 for the
first eigenvalue. eigenvalue problem.

h
1/2

1/4

1/6

1/8

1/10

1/20

**1

343.766

372.252

381.282

384.805

386.504

388.840

1OQ f.'lf.

183.5

278.2

300.8

309.2

313.2

318.6

A

1/2

1/4

1/6

1/8

1/10

1/20

max|e f t l(jc)| //z4

xen>

0.70

0.87

0.98

1.02

1.04

1.07

Ikulli,/*4

0.245

0.268

0.276

0.279

0.281

0.283

l lk*iL/A a

7.91

8.58

8.75

8.81

8.84

8.88
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is O(h4) unlike in the static problem. This is because uhi coincides

with fthl, the interpolate of ul9 in shape (but not in value), whose

maximum and L2-errors are both 0(/i4). (Notice that uhl = -^-^hil

I I ^ A i l l n from this fact and the normalizing conditions. Then the observed

orders may be easy to check.)

7. Concluding Remarks

The convergence of the ACM non-conforming scheme has been

discussed. Almost all the results in this paper hold for plates with

clamped edge conditions, so long as the exact solution is sufficiently

smooth and the shape of domain is exactly represented by rectangular

elements.

As well known, non-conforming method may or may not converge,

and the penalty method proposed by Babuska and Zlamal [1] is an

effective technique to assure the convergence. However, its use appears

to be less necessary in the present finite element model. The difficulty

of the convergence proof lies essentially in the evaluation of the second

term in Eq. (33). Although the patch test may be conveniently used

for this purpose in special type of finite elements (Strang and Fix [10]),

no general theory appears to be available at present. The techniques

developed in this paper are not general enough, but may offer an ef-

fective tool to certain type of finite elements.

The author would like to express his deepest appreciation to Prof.

T. Ushijima, University of Electro-Communications, for his valuable
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