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The Central Limit Theorem for Piecewise
Linear Transformations
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Hiroshi ISHITANI*

§ 0. Introduction

The purpose of the present paper is to give central limit theorems

for piecewise linear transformations ([6]), which are generalizations of

/^-transformations and which belong to a class of number-theoretical

transformations with "dependent digits" (cf. [4]). The central limit

theorems for ones with "independent digits" are studied by many authors

([!]> [7] etc.). However, the cases of "dependent digits" seem to be

not studied. These cases are more complicated than the cases of "in-

dependent digits".

In [2] it is shown that the ^-transformations have Ornstein's weak

Bernoulli property. Then it is easy to see by an analogous way to [2]

that our transformations also satisfy the weak Bernoulli condition.

Therefore Ornstein and Friedman's theorem implies that the natural

extensions of our transformations are isomorphic to the Bernoulli shifts.

But we never know how to construct their Bernoulli generators. Hence

the classical central limit theorems for the Bernoulli shifts imply no

concrete result for our transformations.

We modify the method, which is used in [2] to prove the weak

Bernoulli property of jS-transformations, to show that the natural genera-

tors of piecewise linear transformations satisfy Rosenblatt's strong mixing

condition. Thus we obtain central limit theorems. By virtue of the good

properties of our generators, we obtain concrete results, namely if /

is of bounded variation or Holder continuous, we get the central limit
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theorems for the process {f(Tlx); i = 0, 1, 2,...}. Our results Include

the central limit theorems for /^-transformations as special cases.

The author would like to express his hearty thanks to Prof. Haruo

Totoki, and Mr. Shunji Ito, and Mr. Yoichiro Takahashi for their en-

couragement and advices.

§1. The Piecewise Linear Transformation and Its Symbolical Properties

First of all, we prepare several notations, definitions and properties

of piecewise linear transformations ([6]).

Let jB=(/?o, j8lv.., /?p) be a (p + l)-tuple of real numbers, satisfying

j8fc>l for O^fc^p and ^Zft1^^ £ ft1. We define a partition R
fc=0 fc=0

= {r»}i=o,i,...,p of the interval [0, 1) by

['zft1, i: ft1), i=i,2,...,j»-i,
k=0 k=0

^[Zft1 , 1),

and a mapping T: [0, 1)-»[0, 1) by

xer0 9

Tx = ̂ -IEft1),
fc=0

Then T is called a piecewise linear transformation. If j80 = j81 = -"=j8JI,

this is a jff-transformation.

It is easy to see that the partition R is a generator in the strict
00

sense, i.e. V T~lR = s, where e denotes the partition into individual
i=0

points. The transformation T can be represented by a subshift a on

the one-sided infinite product space ^4N, where A = {09l9...9p}. Define

a mapping n: [0, 1)-»^4N by

(nx)(i)=j, iff

Let 7 be the image 7c([0, 1)) and X its closure in the product space A™
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with the product topology. It is obvious that Y and X are invariant

under the shift a. We also denote the restrictions of a to Y or X by

the same notation a.

We define the lexcographical order in A™. For convention, we set

T"l = lim T*t,
tt i

where maxJf denotes the maximum element of X with respect to this

order. We define a mapping p from X onto the unit interval [0, 1] by

p(co)= 2 /?(o>[0, O)"1 f° Z Pi1*
i=0 k=0

where

i. 0=0)

In this situation, we can show the following three lemmas. They

correspond to Proposition 3.2, Lemma 4.4 and Proposition 3.4 respec-

tively. They can be proved by the same methods as [2], so we omit

their proofs.

Lemma 1. We have the fallowings.

1) von = n°Ton [0,1).

2) n: [0, \~\-+X is an injection and is strictly order-preserving,

i.e. t<s implies that n(t)<n(s).

3) p°n is identity on [0, 1].
4) poa=Top on Y.

5) p: X-+[Q9 1] is a continuous surjection and is order-preserving,

i.e. co<cor implies that p(co)^p(a>').

6) The inverse image p~~1(f) of re[0,1] consists either of one

point n(i) or two points n(t) and sup n(s). The latter case occurs only
s<t

when Tnt = 0 for some n>Q.

7) p(o>) is one-to-one except a countable number of points coeX.

By virtue of Lemma 1, we can get enough informations about
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([0? 1), T) by studying properties of (X, a). Let us analyze (X, a).

First the elements of X can be characterized by

Lemma 2. We have

X = {coeAN\anco^cQp for all n^O},

We call (a0, al,...,an-.1)eAn a word in X, if there is coeX such
that a0 = co(0),..., aw_1=co(n — 1). The concatenation of two words a

=(a05. ..,^-1) and b = (b0,...,bm-l) is defined by

For convention, we introduce the empty word $ and we define

= a^(j) = a for any word a.

Let

Wn = {(a0,...,an.l)\a0 = CQ(Q),...,an-l = co(n-l) for some coeX},

and for wePf f c , fc^

We understand WQ = W$ = {(/>}.

Lemma 38 For any fc^O and any word ueWk, we have

Wn(u)= 0 Wj(u)*a>p[Q9 n-j) U {max Wn(u)} ,

where

r K(o),...,copa-i)) O-^D,
coPCO,;)=

[ (j) (the empty word) (.7=0),

and

0, n-J)\veW](u)}.
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Now, we shall prove the following fundamental estimation, where

we use the notations

for u e Wn, and

£(tt) = the length of the interval p([w]).

Lemma 4. For an arbitrary oc>0, there exists a constant Ca such
that

sup sup |( Z P(v)-l)-R(u)P(u)M-i\£CjT*

for all /i^l, where ^(t;) = ̂ (0)^(1)...^(n_1) and

(1.1) M=
n=0

Proo/. Let w e Wk be fixed. If veW%-j(u)*cop[Q9j) for some O^j
^n— 1, then we have

£(11*1;) = p(max {CD e X\(co(Q),. . ., co(n + fc — 1)) = w*t;})

(On(j+m)— 1
Z

m=0 fc=0

Therefore if w e W°_m*cop[0, m), then using Lemma 3 we obtain

R(u)= D
W6TTn(«)

(1-2) = "Z

Let us consider a formal power series:
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W6 n-j^"'

This series clearly converges for \t\<l and its value is equal to

Z tWo)p[Q9 j)TlTn z t^(u)-1 z frwT1-

Hence, we can deduce from (1.2) that

Z tn Z (}(v)~1= ] _ £ / * } ~-9u(fy>

where

and

(1.3) 0(0= Z ^+1jS(coJO, n))-1

fc=0

But the series in (1.3) converges in a neighborhood of the unit disk and
1-0(0 has only one simple root at t = l in a disk {teC\ \t\<l+s}
for small e>09 because

Noting 0'(1) = ̂ 5 we can see that

veW°(u)

Consequently, /M(r) is analytic in {te€\t^l9 |r|<l + e} and the
singular point t=l is removal. Since fi(u)R(u)^l and

P(a>Jm9
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the oc-th derivative f(
u*\i) of fu(f) is uniformly bounded; precisely speaking

we have

sup sup sup |/la)(OI<
k^O ueWk \t\^l

Using the estimation

o

for 0<r<l and n^O, we obtain

gr~» sup |/<«

sup sup sup n(n-l)...(7i-a + l)|( Z p(v)-1)-p(u)R(u)M-1\<+<x>,

which proves the lemma.

§2. An Invariant Measure and the Strong Mixing Condition

We shall introduce an invariant measure of a piecewise linear trans-

formation defined in §1. First of all, notice that the Lebesgue measure

on [0, 1) is transformed to the measure dp on X by the correspondence

given by Lemma 1. Let us define an operator S by

aeA;a*coeX

where 0(o>) is a function on X. Then, we can easily get the following

lemma.

Lemma 5. We have

Jx jx

for any (j)(a})eL1(dp) = L1(X, dp) and ^(a>)eL°°(Z, dp).

We omit the proof, because it can be shown in the same way as

the case of ^-transformation (c.f. [2], Lemma 5.1). This lemma implies
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that the measure fj,(A)=\ h(oj)dp(co) is invariant under a if and only if
JA

Sh(co) = h(co) (a.e.). Furthermore, we can easily check that

,n—O

fulfils Sh(co) = h(co) and \ h(co)dp(co) = l (e.f. [6]), where M is given by
Jx

(1.1) and /^(ctf) denotes the indicator function of the set A. Thus, we

get an invariant measure of a

Lemma 1 implies that j^p"1 is invariant under T. For simplicity, we

denote /^p"1 by ^ and Efl(f) = \fdfi,

In the sequel, «^"(co(0),..., w(n — 1)) stands for the sub-cr-field gener-

ated by co(0),..., co(w —1). Now we can prove the key lemma:

Lemma 6. For any 8>Q and any positive integer k, there exists

yd(k) such that

and

for all non-negative integer n and all ^(ctf)e^*(a}(0),..., co(n — 1)).

Proof. Lemma 3 guarantees that

k + M - J

Let us define
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for m^k + n. Then, we have

E" E

= 11 <AII co E"
'

Since 2 $00" * is uniformly bounded because of Lemma 4, we have

where ^min = min{^0, j?!,..., j9p}>! and Xt is an absolute constant.

We now assume m<k. Then, since the function (/>(o>) depends only

upon the first n coordinates, we get

S*+»(m)#o>)=
y-o

Let

= - r j

Using Lemma 4, we have

E JSKCO,;))-1/^,^,^) E /Kur^x
j = 0 I P - / ^ ^ ^

x|( E /KiO-1)-/^)^")

Eo j8(cop[0, j)

where C, is given in Lemma 4. Combining Lemmas 3 and 4, we can
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easily prove that sup 2 P(UY1 ̂ K2< +00.
n^O ueWn

Consequently,

On the other hand, it is clear that

for some K3>0. Taking m = [fc/2] and a>(2 + <5)/(5, we get our asser-
tion.

We have prepared enough to show the strong mixing condition

([1], [5])-

Lemma 1, For any <5>0 and any positive integer k, there exists
ad(k) such that

and

t-l
/or all fe^l, i^l, ^ee^"( V T'-'jR) anJ a/1 measurable set B.

j=o

Proof. It is enough to prove our assertion for sufficiently large i,

since ^u is invariant under T. For an arbitrary positive integer fe, there

obviously exist a positive integer mk and a function hk(co) such that

/zfc(co) depends only on (o>(0),..., o)(mfe— 1)) and

where yg(fc) is given in Lemma 6. Then we have

Ip - ,
x
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x xp - i*(<D)ft ((o)dp((o)

- \ I -
J X

= \ [s
•/A

P-
J X

If i^mfc, then Jp-M(co)/zfc(a))e ^(cyCO),..., co(f— 1)). So we can make use
of Lemma 6 and we get

n r

which proves Lemma 7.

§3. Central Limit Theorems

Now we are in the position to state our results. Let

for d>0 and

f 1 (z>0)9
*o(z> =

1 0 (zgO).

First, combining Lemma 7 in §2 and Theorem 18.6.2 in [1], we get
the following

Theorem 1. //
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(1) /(OeL2+%u) = L2+<5([0, I),/*) for some <5>0,

(2) f ll/-£,(/l V r-'K)||L.(|l)< + GO,
k=l i=0

then

(3.1)

and

1(3.2) lim
n-*oo ^y72 i=0

at every continuity point z of ^(z).

Next we shall be concerned with the central limit theorem with
respect to Lebesgue measure L The following relations between the
invariant measure \JL and Lebesgue measure 1 can be easily shown, using
Lemmas 5 and 6, and noticing l/cg/i(co)^c for some c>0.

Lemma §e We have

for all measurable set B in [0, 1) and all positive integer k. Hence

for all gELl(X) = Ll(\$, 1), l)=L1(fj) = L1([0, 1), 0) and all fc^O. Notice
that yd(k) is given in Lemma 6.

Let

fc=o

"

Lemma 9* For any /eL1(A) = L1(/i) and any real number T, we have
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lim |
«-* oo

And the convergence is uniform in the wide sense.

Proof of Lemma 9. We have

+ |£A[exp(f

1-

+ E>. . . . _
fc=0

- f

+ E,

Using Lemma 8 and the ergodic theorem, and putting r = [logn], we

get the assertion of Lemma 9.

Thus we get the following

Theorem 2. Under the conditions (1) and (2) of Theorem 1, (3.1)

holds and we have

(3.3) lim "
k=0

continuity point z of $d(z).

Remark 1. If v is an absolutely continuous measure with respect
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to A and dv/dh is uniformly continuous, then we can prove an analogous

assertion to Lemma 8, i.e.

for all measurable set B and all positive integer k, where s(fc)-»0 as

If Z£(^)< + 005 then we can get the central limit theorem with
fc=i

respect to v in the same way as the proof of Theorem 2. Even if
oo

£ e(fc) = oo, we can prove the central limit theorem

lim v{4- "£
W-»00 ( / l fc=0

by a little changing of the method.

Finally we get the following concrete result.

Theorem 3. // either

(a) f(f) is a function of bounded variation,

or

(b) f ( t ) is Holder continuous,

then the conditions (1) and (2) of Theorem 1 are satisfied, and conse-

quently the conclusions of Theorems 1 and 2 hold.

Proof, (a) Since 0=-?±J-<2, it is clear that || • ||L.(M)^|| • ||La(M).
fc-i

Therefore we calculate ||/-£M(/| V T"'JR)||L2(M) in the sequel.

Let Var(/; r) denote the total variation of f ( t ) on the interval r,

and Var/=Var(/; [0, 1)). Putting Rk= \l T^R, we have
i=0
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where

for every reRk, since l/c^/i(co)^c and the diameters of reRk are less
than (/?»,„)-*. Thus we get

which proves our assertion.
(b) Instead of || • \\Le(fl), we shall estimate || • ||L°°(/i). We have

= max ess. sup

:£ max ess.sup f— ̂  ( \ f(t) -f(s) \ p. (rfj)T
reRk ter L H\r) Jr J

Since f(f) is Holder continuous, we have

for some a>0, K>0 and for all t, ser.
Consequently, we get

Clearly, this is enough to conclude Theorem 3.

Remark 2. If there exists a positive integer q such that
q-2

then it is easy to see that (T, V T~kR) is a mixing Markov endomor-
k=0

phism. Hence, the natural generator satisfies the uniformly mixing condi-
tion (c.f. [1]), and so the central limit theorem holds for a wider class
of functions. For example, if

for some e>0, then the conclusions of Theorems 1 and 2 hold for /.
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