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Neighborhoods of a Compact Non-Singular
Algebraic Curve Imbedded in a 2-Dimensional

Complex Manifold

By

Osamu SUZUKI*

Introduction

Let C be a compact non-singular algebraic curve imbedded in a

2-dimensional complex manifold S. In this paper we consider the fol-
lowing problem:

Under what conditions does there exist a non-constant holomorphic

function defined on a small neighborhood of Cl

The signature of the normal bundle Nc is not sufficient to solve

our problem (see, Table in § 6 and Theorem 2 in § 5). Hence we have

to introduce the concept of a regularly half pseudoconvex neighborhood

system of C (for definition, see (1.1)). Then the necessary and suf-

ficient condition is given in the following

Main Theorem. There exists a non-constant holomorphic function

defined on a neighborhood of C if and only if either (1) JVC<0 or (2)

NC is of finite order (for difinition, see § 1) and C has a regularly

half pseudoconvex neighborhood system.

Therefore we can conclude that our problem is completely solved

by using the normal bundle and pseudoconvexity of a neighborhood

system of C. Detailed results will be summarized in Table in §6.

The author would like to express his gratitude to Professor S. litaka

for his encouragement during the preparation of the present paper.

Communicated by S. Nakano, September 19, 1974.
* Graduate School, University of Tokyo, Tokyo.
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§ 1. Notations

First we recall terminology on complex line bundles. Let £ be a

complex line bundle on S which is expressed as E = {f^} with respect

to some open covering {U^} of 5. 0(E) (resp. ff(E)) denotes the

sheaf of germs of holomorphic (resp. C°°-differentiable) sections of

E. A metric {a^} of £ is a system of positive C°° -functions aA on UA

satisfying

^=IA,I2«A on l ^n l

E is called positive if there exists a metric {aA} such that the hermitian

matrix (A^) defined by

*pdz%/\dz* on each 17 A

is positive definite where (zj, zf) denotes a system of local coordinates.

In the case where E is topologically trivial line bundle, E is called of

finite order if there exists a positive integer k such that Ek = E®E

®-"®E (/c-times tensor product) is analytically trivial. If not, it is

called of infinite order. A curve C imbedded in 5 determines a complex

line bundle as follows: Let {C/A} be a locally finite open covering of

S which admits a system of local coordinates (ZA, jRA) on £/A. In the

case where Cn l / A ^^ we assume that R^ is a defining equation of C.

Hence letting

we obtain a 1-cocycle {/AM} which determines a complex line bundle

[C]. The normal bundle JVC is defined by [C]|c. A metric {0A} of

[C] determines a C°°-function jp and a neighborhood system V£ of C

as follows:

VE={peS: F(p)<e} for small e>0.

We make the following definition:
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Definition (1.1). C has a regularly half pseudoconvex neighborhood

system VE = {F<s} if there exist a metric {a^} of [C] and a system of

local coordinates (ZA, jRA) on 17 A such that

where

By 0(F£)(resp. ^(K£)) we indicate the algebra (resp. field) of holo-

morphic (resp. meromorphie) functions on F£. In what follows functions

are assumed to be of C°°-class. A domain D with D C S is called

(strongly-)pseudoconvex if at any point pedD there exist a neighborhood

U and a (strongly-)pseudoconvex function (p on U satisfying D n U

= {cp<0}. By s-pseudoconvex domains (resp. functions) we mean strongly-

pseudoconvex domains (resp. functions). Similarly (s-)pseudoconcave do-

mains are also defined.

§2. The Necessity Part of Main Theorem

We fix a metric {aA} of [C] and consider VE for 0<e«i as a small

neighborhood of C. Assume that @(VE)£C holds.

At first we consider the following case:

(a) Any non-constant holomorphic function / wihch vanishes on

C satisfies

In this case we have the following:

Proposition (2.1). Nc is negative.

Proof. Take such a function /. Then {/=0} = Cl lC where C

is a (possibly reducible) curve. Let k be the order of / at C. Then

</>A =//#;[ determines a holomorphic section of [C]~fe on VE. Restricting

{(Pi} to C we get a section of Nck, which induces a positive divisor on

C. The following Proposition is well known (see, H. Grauert [1] and

H. Rossi [8]):

Proposition (2.2). (1) // Nc is negative, then C has an s-pseudo-

convex neighborhood system, and so C is an exceptional curve in the
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sense of H. Grauert [1]. (2) // JVC is positive, then C has an s-

pseudoconcave neighborhood system.

Proof. We prove the first part of (1). The proof (2) is similar

and may be omitted. By definition there exists a metric {q^} of Nc

satisfying . ff-TA >Q on C fl U^. Extending this metric on F£, we
^A^Ahave a metric {a^} of [C]. Set «A = aAe/(F) with a convex increasing

function %. Choosing #'(0) sufficiently large and replacing s by a smaller

constant s9 we get a negative metric {«A} on F£. Let F = aA |KA |2 and

FE = {F<e}. Then we obtain an s-pseudoconvex neighborhood system

F£. To prove the second part of (1), we shall construct a contracting

mapping as follows: Referring to [C]-1>0 and the completeness of

\l/ = l/(l -- J on F£, by S. Nakano's theorem (see, S. Nakano [6],

p. 169, Theorem 1) we have

Hq(VE9 0([C]-m)) = 0 for m ̂  m0 and q ̂  1 ,

where m0 is a certain positive integer. Then following K. Kodaira [5]

there exists a positive integer ra0 such that for any integer m with m^

m0, (1) for any pair of points p, q in Fe there exists a section (peH°(VE,

0([C]~'n)) satisfying (p(p)^Q and (p(q) = Q and (2) for any point peVE

n C/A and constants cl9 c2 and c3, there exists a section il/eH0(VE,

0({C\"m)} with

*i(p) = c i , ( p ) = c2 and A_(^) = C 3 .

Since {^?A} e//°(F£9 ^([C]~m)) determines a holomorphic function /=

(p^K'j1 on Fg, from (1) and (2) we can derive (!') for any pair of

points p, q in F£ — C there exists a function / such that f(p) + 0, /(g) = 0

and /=0 on C and (2') for any point peC there exists /j and /2 such

that f(/i^/2) _^Q on [/(p)_c where £7(p) is a small neighborhood of
^U;i> Ru

p. By (1;) we have a system of global holomorphic functions /i,/2vj/«
n

such that A {/j = 0} = C. Moreover, using (2;) we can find / n +i , / n +2j - . - 5

/, such that *r
r = (/i,/2v-.J/r): ^-^Cr is a proper mapping on F*

= ¥f71(7)
<5) which is also maximal rank on F|-C, where Dd is a small

polydisc at 0. Adding more functions / r+i,/ r+2vj/m
 an<i replacing
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*Fr by fw = (/i,/25-..?/m)> we may assume that in view of (!') every fibre
is connected. Thus we obtain a desired contracting mapping.

Consequently, in the case of (a), putting ^m(Ff):=Ff, we have a

2-dimensional normal Stein space Ff satisfying 0(Ff) = 0(Ff).
Remark. Conversely if C has an s-pseudoconvex neighborhood

system, then Nc is negative (see, H. Grauert [1], p. 355, Satz 9). But

in the case of finite order, C may have an s-pseudoconcave neighborhood

system (see, Theorem 3).

The remaining case is the following:

(/?) There exists a holomorphic function / on Fe satisfying {/=0}

= kC with some positive integer k.

Replacing F£ by F| = {pGF£: |/(p)|<<5} with a small constant <5, we

may assume that g=f\vl is a proper mapping onto a disk Dd. Using
Stein factorization of g we obtain d?(Ff)^0(B) where D denotes the

unit disk. As in the case (a), set {(p^=f/R^}. Then {<p^} e H°(F| ,

0([C]~m)). In this case {(p^} vanishes nowhere and so Nck is analytically

trivial. Any branch of cp^k defines a function on V \, which is also

denoted by the same letter. Defining zJ = zA and Rf = (p^kR^ we have

another system of local coordinates (zf , R%) on 17A. Moreover,

(2.3) ddF = dR%/\dRf where F=\Rf\2.

We remark that in (2.3), {aK=l} can be chosen as a metric of [C] and

so the necessity part of Main Theorem is hereby proved.

Corollary (2.4). // there exists a curve C on S such that Nc is

positive or Nc is of infinite order, then

§3. Holomorphtc Foliations and Regularly Half Pseudoconvexlty

Let @ be a 1-dimensional holomorphic differential system on S.

co = 0 denotes its pfaffian equation. In what follows we assume that ^

is completely integrable. Then for any peS there exists one and

only one maximal integral manifold £fp through p, which is called

a leaf of ^. We call J5" = {<?%} a holomorphic foliation. Given two

foliations ^r
l and J^2

 on S> J^ is said to be equivalent to J5^ when
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their leaves coincide completely. & is called a closed foliation if every

leaf is a closed submanifold in S. We say that J5" is globally integrable

when J5" is equivalent to a foliation defined by a global holomorphic

function on S.

Theorem 1. // C has a regularly half pseudoconvex neighborhood

system, then there exists a holomorphic foliation on VE for a small e.

Proof. From (1.1)

(3.1) F

(3.2) M^

(3.3) 8R^Z^F = 0 and

By (3.2) we have

(3.4) F = aQ(RJ + ak
h=l fe=l

Therefore

which is a holomorphic function of ZA when RA is fixed. On the other

hand (3.3) implies that dZjiF is also a holomorphic function of jRA when

ZA is fixed. Hence by Hartogs' theorem it is a holomorphic function of

ZA and RA. Thus

(3.5) afc(KA) = >feJ#i (fc=l, 2, 3,...).

Put zA = 0 in (3.1) we have a0(KA) = flA(0, jRA)|,RA|2. Put #A = 0 in (3.4)

and taking (3.5) into account, we see that ak>Q = Q (k=l, 2,...). This
shows that F and the first and the second terms of the right hand of

(3.4) can be divided by R^ and its quotient is a C°°-function on l/A.

Thus Safe(l^A)zJ must be also divided by R^ and its quotient also must

be a C°°-function on t/A. Consequently we obtain that akJ = Q(k=l,

2,... and j = 0, !,...)> which imply
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This yields

and

dF __ dF dRi
dZfl dR, dz^

d2F d2F
dz.fiz,,

dRx
 2

~ a " o n
oz

By the assumption we have - A =0. Hence

R*=f»(RJR,> on I/, n i/,.

Therefore dR^^dR^ on U,(]U^ where ^=/^ + J^k/^. Making

e smaller, we may assume that ^^0 on F£. Then we have a holo-

morphic foliation J^ on VE by the following equation:

CD = 0 where co = ^RA ,

which is denoted by J^F.

Corollary. Under the assumption in Theorem 1, F and {/A/J can

be expressed as follows:

(3.6) F = ai(Rj\Ri\2,

(3.7) R^fM-R*-

Remark 1. The concept of regularly half pseudoconvexity can

be generalized to a compact kahler manifold imbedded as a divisor in

another complex manifold.

Remark 2. As for the degeneracy of holomorphic functions and

the foliation structure, see A. T. Huckleberry and R. Nirenberg [4].

§4. The Sufficiency Part of Main Theorem

Given a curve C with a regularly half pseudoconvex neighborhood,
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then (3.6) and (3.7) hold with respect to the coordinates (ZA, R^) on l/A

given in (2.4) and the foliation J^F is obtained. Let {U%} be a finite

open covering of VE defined by Uf = {(z^ R^): |zA|<p, F<s} where p

is a positive constant. For each A, we choose a point jpl0) = (zl0), #10))

eUf and define Dle) as follows: D{E) = ¥E n {zA = z!0)}5 which may be

assumed to be a small disk. First from (3.6) and (3.7) we infer that

if F attains a value c at a point in ^, then F(p) = c for any point

pe^ for each leaf ^E^F, This implies that for any point peVE9

the leaf through p is completely contained in Ve. Fix a point peC

n 1/8 and consider a C°°-path y = {y(0: O^ f^ l} such that y(Q) = p and

yciC. By y~l we denote a path {y(l — t): Q^t^l}. Now we take an

analytic set {R0 = c0} in F£ n U* for a constant c0 and define a con-

tinuation of {#o = co} along y as follows: Take tQ such that y0 = {y(t):

Ogr<f0}c:l7g and y(*0) U £%. Choose l/f with t06l/*. Next choose

*! and l/J such that ^ = {7(0: ^o^^^J^^i, T^i) ^ t/? and 7(^)5 l/J.
By repeating this process we have (y0, 1/8), (?i, C/?),..., (ym, t/*), where

7m = {y(0- ^m- i = ^=l)} c^ra' For each y£ we define inductively an ana-
lytic set {R. = ct} on l/f by the condition

Hence we have an analytic set S(c0) in V= \J Uf as follows:

We call S(c0) the continuation of {R0 = c0} along y in F. By the com-

patibility condition of {/̂ }, S(c0) does not depend on the choices of

{Uf}. As for the continuation the following holds:

Proposition (4.1). For any path yczC, define Omio(y)'- D0(e)-*Dm(s)

by Smf0(y)(c0) = cm. Then 0miQ(y) is a biholomorphic mapping and 0m>0(0)

= 0. Moreover, if y is homotopic to y'9 then Omio(y) = 0mto(yr)-

The proof is easy.

Proposition (4.2). // C has a regularly half pseudoconvex neigh-

borhood, then there exists a metric {a^} on VE and a system of local
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coordinates (ZA, R^) on l/J such that (1) R^ = f^Rfl where |/A/J = 1
and (2) F = d^\R^\2 defines a regularly half pseudoconvex neighborhood

o f C .

Proof. We choose a path yAc:C such that y^(0) = p^ e U* and yA(l)

= p(
A

0)e[/|. By (4.1) we have a biholomorphic mapping ^,0(7 A) '• ^o(£)
->DA(e), whose inverse is denoted by cp^. We can define a new local

coordinates (ZA, R^) on C7A as follows :

Now take any point pe[ / fn(7* . Choosing a path <5A (resp. (5^) in l/f

nl/* such that S^(0) = p and 5A(l) = Jpi°) (resp. ^(0) = p and ^(l) = p^0)),
we have a closed path yi^ = ^1°<5u°<5j1o'y;i. We replace y^ by a path

yAM in C which is homotopic to y^. We may assume that the homotopy

class of y^ does not depend on the choices of p and 5^ d^. By (4.1)

00j0(yAM) is a biholomorphic automorphism of D0(s), which we write as

(p^. Then with some constant a^ it can be written as

<M#o) = oV#0 where |aA/l| = 1 .

Accordingly

R ( P } = 'R) for e £ / n l / .

We define {^(tf,)} by (pM^tMRi. Then (^CR^O everywhere.

In view of R^p) = (px(f^(R^'^n(p)) for pe l7 A nl / M ? we obtain

which implies that {aA/i} is equivalent to [C]. It is easily seen that

flA = flA|<£A|2 satisfies the assertion (2) in (4.2).

Now we prove the sufficiency part of Main Theorem. If Nc is nega-

tive, then 0(F£)^C by (2.2). If C has a regularly half pseudoconvex

neighborhood, by (4.2) it may be assumed that |/A/J = 1. Since N% = 1,

{flu} is analytically trivial on C. Hence there exists a system of non-
vanishing holomorphic functions {aA} on l/A n C such that

(4.3) /S^VI1-
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In view of 1/̂ 1 = 1, we have a harmonic function h = \a^\ on C. Then

aA must be constant. Therefore (4.3) holds on F£. Recalling f^ = RJR^9

we get a holomorphic function

f=K*R\ on VB.

We remark that {/=0} = /cC.

§ 5. Examples

In this section we consider two examples due to H. Grauert [2]

and M. Otuki [7] respectively.

Example 1. Let C be a compact Riemann surface of genus g (g ̂  1)

and let E be a topologically trivial line bundle on C. n denotes the

natural projection of E. We cover C by an open covering {FA} such

that E\Vi is analytically trivial. The local coordinate of FA and the

fiber coordinate of 7r~1(FA) are denoted by ZA and £A respectively. By a

well known lemma we may assume

So we have a tubular neighborhood system T£ of the zero section,

T£ = {(zA, £A): IC;il2<e}- We infer that TE is always a regularly half
pseudoconvex neighborhood system of C. We define a differential system

& by

Since 1/̂ 1 = 1, & is well defined on TE and a holomorphic foliation &

is obtained on TB.

Theorem 2. (1) // E is of finite order, then & is globally in-

tegrable and @(Te) = @(D) where D is the unit disk. (2) // E is of

infinite order, ^ can never be a closed foliation and 0(Te) = C.

Proof. By regularly half pseudoconveity of TB9 (1) is a direct

consequence of Main Theorem. For the proof of (2) assume that !F

would be a closed foliation. Then a leaf yp through peTEnn~1(
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can be expressed as {^ = c^} on TBr\n~l(V^)9 where cA = CA(p)- Since

\f^\ = l,^p has finite intersection points with any fiber n~1(p),peC.

The connected components of Sf p on n~l(V^nTe are denoted by {A(j}}

(i = l, 2,..., fe) where X{4° = {CM = c{l
0}. Note that fe does not depend

on \JL. For each \i we prepare /c copies of n~^(V^)r\Te which are de-

noted by W(j^ (i=l, 2,..., k) whose local coordinates are denoted by

(ZA, #0- We identify a point jpA
j) = (ZA, #>) e WV> with a point p</>

= (z/l, C^e^ by the following conditions: (1) n(p^) = n(p^) (2)

cP=fiA" and (3) &)=f*An' Then we have a k-fold unramified
covering manifold T£. The natural projection is denoted by co. By

construction there exists an unramified covering C over C, o>': C-»C5

such that Te coincides with a tubular neighborhood of (»'*(£). Then

co'*(JE) admits a trivial section, which contradicts the assumption of

infinite order. For the proof of the second part of (2) we consider

/e0(Te). Since |/ |̂ = 1,/ can be expressed as follows:

on
m=0

where the 0A
m) are constants on FA. If / were non-constant, {/=c}

would be an analytic set in Tc whose irreducible component could be

expressed as {^ = b} with some constant b on rTl(V^. This contradicts

the non-closedness of &. Thus we obtain 0(T£)^C. This is an

alternative proof of the theorem of H. Grauert [2]:

Remark. In Example 1, C has always a regularly half pseudoconvex

neighborhood system Tfi. This implies that regularly half pseudoconvexity
is not a sufficient condition for the existence problem.

Example 2. Hopf surfaces are defined in the following manner :

Let C2 = {(zl5z2)} and W = C2-{(0, 0)} and consider a holomorphic
automorphism of W

(5.1) g: (zl5 z2) - > (a^+Az?, a2z2),

where al5 a2 and A are constants and m is a positive integer with the

conditions (o^— <x5)A = 0 and 0<|a1|^|a2|<l. Then G = {#":neZ} acts

on W properly discontinuously, which determines a compact surface
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S = W/G. The surface thus obtained is called a Hopf surface, n denotes

the natural projection, n: W->5. The curve {z2 = Q} is always invariant

by G, which defines a non-singular elliptic curve C on S. Furthermore,

in the case where A = 0, {z1=0} also induces another elliptic curve

Cl. The following is essetially due to M. Otuki [5].

Theorems. (I)// A = 0, then C (or C^ has a regularly half

pseudoconvex neighborhood system VE. Moreover, (i) if VL\=VL*2 with

some positive integer k and j9 then 0(F£) = 0(D) and (ii) if (x,\^ocJ
2

for any pair of non-zero integers k and j, then 0(FE)^C. (2) //

/MO, C has an s-pseudoconcave neighborhood system and ]Vg = l. More-

over,

Proof. We prove (1) only in the case of C. We write \aii\ = p9

|a2| = cr and define T by cr = pT. By (5.1) F=\z2\
2/\z\\2 is invariant by

G. So F is a function on S — Cx and F£={F<e} is a neighborhood

system of C. Define a differential system @ on FP£ = 7i~1(F£) by

where one of the branchs of z\ is fixed. Then @ is completely in-

tegrable and induces a foliation & on JF£. Every leaf is nothing but

the analytic continuation of the analytic set {z2 = z\c} for |c|2<£, which

is denoted by £fc. Since g*a> = ha) where ft = a2/aT
l9 we get a foliation

^ = {n(^c): \c\2<s} on F£ from & ''. Note that n(^c) has no intersec-

tion points with <9Fe. In the case of (i) t=j/k holds. Then we have

a global holomorphic function f=(z2/z\)k on F£. The foliation defined

by / is equivalent to &. By the Stein factorization, we obtain

). In the case of (ii), i is irrational. So we have

) = {F=|c|2}, where n(^c) denotes the closure of n(&>c) in 5.
Take a holomorphic function / on F£, then / must be bounded on

7r(c9*c). Since the universal covering surface of n(^c) is isomorphic to

C, we see that / is constant on n(&*c). Hence by the theorem of

identity we see that / is constant on F£. To prove (2), it is sufficient to

show

S* = C*xC* where S* = S-C.
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Set C2 = {(Z15 Z2)},D = C2-{Z2-0} and define <£>: D->W-{z2 = 0} by

$(Zl3 Z2) = (Z1Z'2
I, Z2). Then $ is a biholomorphic mapping. With

this identification g can be expressed as Z\ =Z1+A / , Z2 = oc2Z2 where

A' = A/a3. The universal covering manifold of D is isomorphic to C2

= (w, t;) and the covering projection is written as co: (w, ̂ -^(Zj, Z2)

= (w, ey). Therefore its covering transformation group is generated by

<7 ( 1 ) :

Also g (2 ) = co*(g) can be written as follows:

u' = u + A

Using a suitable linier transform in C2 we may assume that g (1) and
g(2) are |n tjie following form:

Set G^1^^1)": neZ} and G(2> = {^(2)": /ieZ}, then

Ng = l can be proved as follows: ^ = z2
(m+1)rfz1 /\dz2 is a meromorphic

2-form on W which is invariant by G. So \l/ can be seen as a form

on S. This implies that the canonical line bundle Ks of S can be

written as follows:

Referring to Kc=l, we obtain JVg=l by the adjunction formula.

Remark 1. The finite order condition is not sufficient for the

existence problem.

Remark 2. For another example of a compact curve C such that

(1) JVC is of finite order and (2) C has a s-pseudoconcave neighborhood

system, see R. Hartshorne [3], Example 3.2, p. 232.
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§6. Conclusions and Remarks

By the discussions above we obtain

(1) if Nc is negative, C has an s-pseudoconvex neighborhood sys-

tem VE and there exists a 2-dimensional normal Stein space F* satifying

<TO = W) by (2.2),
(2) if Nc is positive, by (2.2) C has an s-pseudoconcave neigh-

borhood system and 0(Fe)^C by (2.5),

(3) in the case where Nc is topologically trivial,

(i) if Nc is of finite order, 0(F£)^0(D) if and only if C has a

regularly half pseudoconvex neighborhood system. Moreover, Theorem

3 shows that there exists a CcS having an s-pseudoconcave neighborhood

system even if Nc satisfies the condition of finite order.

(ii) if Nc is of infinite order, then 0(F£)^C by (2.5). Theorem

2 shows that there exists a curve CcS having a regularly half pseudo-

convex neighborhood system even if Nc satisfies the condition of infinite

order.

We summarize these results in the following Table:

Table

1
normal bundle

negative

positive

topologically
trivial

finite
order

infinite
order

pseudoconvexity of a
neighborhood system F£

j-pseudoeonvex

•s-pseudoconcave

regularly half pseudoconvex

otherwise (s-pseudoconcave
cases may occur)

(regularly half pseudoconvex
cases may occur)

the Remmert
reduction of F£

2-dimensional
normal Stein space

P

D

P

P
i

Remark 1. When a compact curve C with NC>Q is imbedded in

a 2-dimensional compact compex manifold S, S must be a projective

algebraic manifold. Moreover, for any neighborhood F of C,

SuT(S).
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Remark 2. Let C be a compact curve which has a pseudoconvex

neighborhood system Vp = {F<p} where F is a certain pseudoconvex

function on a neighborhood of C. Moreover, suppose that C is of

infinite order. Then 0(Fp)^C, but there exists many meromorphic

functions on Vp for a small p. In fact, making p smaller, we may

assume that there exists a divisor C which is transversal with C. In

the similar manner as in (2.2) we see that [C]>0 for a small constant

p. Using Nakano's theorem [4], we see that there exists a positive

integer n0 satisfying H*(VP, 0([C]")) = 0 for q^l and n^n0. Then

Vp can be imbedded by sections of [C]" in a project]ve space. This

shows that Vp is meromorphically separable.

Remark 3. In the case of a non-singular non-compact curve im-

bedded in S, it can be proved that it has always a Stein neighborhood

system by using H. Grauert's Lemma (see, H. Grauert [1], p. 340, Satz

5).
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