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Formula Manipulations Solving Linear
Ordinary Differential Equations (II)
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Shunro WATANABE*

§ 1. Introduction

Let us consider linear ordinary differential equations of 2nd order
with analytic function coefficients of the form

(1.1)

This equation has been studied by many famous mathematicians, for
example Euler, Gauss, Kummer, Fuchs, Riemann, Schwarz, etc. mostly
in the 19th century. One of the main themes of them was related to

the integration method of (1.1), namely they seek the criterion whether
the general solution of (1.1) is representable by well known functions
using some elementary transformations with respect to the independent
and dependent variables. Their results were mostly concerned with the

equations (1.2) which have only three regular singular points, al9 a2,

oo ([9], [10]).

+ dy + Cx2+Dx + E 0
dx2 ^ (*-«!> (x-fl2) dx (x-ai)

2(x-a2)
2 y

Schwarz, Klein, Cayley and others calculated the representations when
the general solution of (1.2) is represented by algebraic functions ([7],

[8]).
In 1941 Hukuhara applied this idea to the hypergeometric equations

of confluent type
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Dx + E Q
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and using notations similar to Riemann's P-functions, he obtained Ms

results similar to that of (1.2). Also he tried to remove an apparent

regular singular point by proper transformations, and to reduce the

equations to the equations of (1.2) or (1.3) ([!]). In 1949, and 1952

Hukuhara and Ohashi determined all the type of the equation (1.2)

whose general solution is represented by known functions, and all their

representations ([3], [4]).

In section 2 we describe an algorithm which calculates the integra-

tion from the equation (1.1). This algorithm consists of four parts:

(1) the calculations of the local informations such as the form of power

series expansion at a singular point, (2) the transformations of the

equation by changes of variables, (3) the calculations of the general

solution of (1.2) and (1.3), (4) our integration method with a strategy

using the above (1), (2) and (3), mostly consisting of removal methods

of apparent singular points. This algorithm uses the many results of

the mathematicians described above.

The purpose of this paper is to report the experiment which imple-

ments the above algorithm on a computer and executes this program.

We intended to achieve two objectives by this experiment, one is to

prepare an automatic solver of differential equations of a certain range,

and the other is to get some suggestions to the tools for implementing

such algorithm.

To implement such algorithm, it is usually regarded to be unavoid-

able to use programming language of list processing. But considering

all the types of formulas which appear in the process of the execution

of our program, it turned out that we can represent all the formulas

by array structures. For example, (2 + 3^/ —1)/4 and 3x2— 4x + 5 are

translated to (2, 3, -1,4) and (3, -4, 5) respectively. Therefore for

our case, we can write this program by FORTRAN. We must remark

that this program demands relatively small memories and the execution

of this program is fast and it is executable in many computers. In

section 3 we show some remarks to translate a formula to an array,

and in Appendix 2, 3, 4 we show a typical subprogram of FORTRAN
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and some examples of calculation by computer.

A general formula manipulation contains some formulas whose type
cannot be guessed before execution. Where by the term 'type', we

mean a pattern of a formula. For such a case we must adopt some

list processing facilities. But it is advantageous to restrict interpretation

in execution to a small range as far as possible. For developing this

idea we must lay the foundation to our formula manipulations. In section

4 we offer a programming language L for formula manipulations. The

language L is constructed on the basic facilities of ALGOL-60 and the L

has the defining facilities of variables, types, and operations. For exam-

ple we can define types so that (2 + 3^/^:l)/4 and (-3 + 8^:l)/2 have

the same type, or the different types. By the L we can write the pro-

gram which fulfils the pattern recognitions and pattern matching of

formulas, and the automatic activations of operators which depends on

the sets of operation declarations. Let us consider the following exam-

ple,

letter v; integer a, fo;...; v: = a + b;

where letter is a name of a type which could accept any formula. In

our language L the value of v after the execution of v: =a + b is inter-

preted as follows; if the values of a and b are 5, —2 respectively then

the value of v is 3, but if no integer has been assigned to a and b then

the value of v is the character string a + b itself. This interpretation

of a formula leads us to the view point from which the applications of

rules that are usually called as axioms and theorems, are treated natural-

ly. The general treatment of axioms and theorems in formula manipula-

tions are very complicated and difficult, and it seems almost impossible

to implement such a programming system from the practical viewpoint.

But what we want is restricted to the field of mathematics which could

treat polynomials and rational functions of a few variables and their

elementary operations and so on. By these manipulations, many mathe-

matical fields, containing differential and integral calculus, could be

treated by computers. Generally speaking, a set of rules needs one

evaluation algorithm of formulas. But only one evaluation algorithm

is sufficient for our purpose. Our algorithm is characterized by the

facilities that can treat the following rules: if o is + or • then



300 SHUNRO WATANABE

aob = boa ; (aob)oc = ao(boc) ,

therefore in our language L we can define other rules which are consist-

ent with the above two rules ([13] -[20]).

§2. The Integration Algorithm of the Equation (1.1)

begin MAIN program;

j: =0; k: = 0;

where j is a suffix of dependent variable y and k is a suffix of inde-

pendent variable x.

Readw, E;

where n is a problem number, £ is an equation of the form

(E) y" + F(x)y' + G(x)y = ®,

F(x) = q(x)lp(x\ G(x) = r(x)/p(x)2 ,

where X*), (ZW* and K*) are polynomials with integer coefficients, here-
after we use x, y in place of xk9 yjf

1: Determine all of the singular points of E\ we describe them by

al9 a25..-J as? oo, where af's are obtained by factoring the polynomial

p(x) within integer coefficients. We suppose that the degree of the factor

of p(x) is less than or equal to two. Thus each af is a regular singular

point of E and it has one of the following forms.

(S) a, aid,

where a, b, c, and d are integers.

2: Print the equation E and its singular points a lv.., as, oo.

i: =1; n: =0; i is the suffix of a, n is the number of the ap-

parent singular points. If s = 0 then go to 7;, where s is the number

of singular points except infinity.
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where fi0(X) is the characteristic equation of E at x = aiy and /j0(A) is the

polynomial of A whose coefficients have the form of a + b -^Jc.

Calculate two roots Al5 A2 (ReA^ReA^ of/i0(A) = 0;

Print /£0(A) and its factors;
If A!~A2 is not integer or zero then go to 5\

Note that if we put /f0(A) = aA2+/?A + y then Ax— A2= >//?2 — 4ay/a, where
a, /?, 7 have the form of a + b^/c.

m: =A1-A2; gQ: =1;

Calculate and print /^A), ^iCAX-.^^.^A), #m_i(A),/m(A), gr(Z); where

they are defined as follows.

1 P«./• /1 \ •«- t^ y/

n -

where gn(X) is the coefficient of formal power series solution y of E:

H=0

and each grn(A) is a rational function of A whose coefficients are of the

form

If gr(X) is not zero then go to 5;

l.: =0; n: = n + l ;

where /f is the flag which holds the information whether af is apparent

or not, if lt is 0 then apparent.

If A2 is not equal zero then go to 4;

Find the first non zero element g^(X) out of ^(A), #2(A),..., 0m-i(A);,

therefore 2:g/^^m — 1, fa might be used when we try to remove a,-.

Print fa;

4: Print 6a£ is apparent', go to 6;

5: li\ =1; Print 'a£ is not apparent';

6: f: =i' + l; If i^s then go to 3;
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7: Calculate and print the rankr+1 of E at oo; where

r = max (deg (F), deg (G)/2) . (deg = degree)

If r+1^0 then calculate and print the characteristic equation of E

at oo ; if we put F0(x) = xF(x), G0(x) = x2G(x), then it is /^(^

If s<3 then go to 11 else if n = 0 then go to 12;

8: If lt=l then go to 9 else if A2 = 0 then go to 10;

Substitute (x — octY
2yj+1 for y^ of E, and rearrange E to the form

of E, and rename it as El;

(El)

where Fl(x) = ql(x)/pl(x)9 and

If deg (pi) ^ deg (p) then go to 9 else the transformation succeeded.

Print yj+im. =(x — ocf)~'l2iyj-, and print the equation El;

E: =E1; j: =j + l; n: =n — l; s: =5 — 1;

By this transformation af is removed from the singular points0 This

fact is based on the theorem which asserts that if x = ui is the apparent

singular point of E and the exponents A1? A2 are 1, 0 respectively then

x = af is the regular point of E, In this case E have two solutions of

the form

(x-oc)2 + ••-}, fc=l, 2.

9: i: =z + l; if f rg f l then go to 8 else go to 12.

10: v: =min(A1, fa). Deform E as follows

and differentiate this equation by x, then substitute (x — a,)v~1j;J-+1 for

y'j and rearrange this equation to the form of El.

If deg (pi) ^ deg (p) then go to 9 else this transformation succeeded.

Print yj+im. =(x — ̂ ~v+1yrj;j: =j + l; go to 1. This transformation based
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on the following inference: At x = al E has two power series solutions

of the form,

From this fact we can guess that the equation which satisfies y' has

the following solutions at x = ocb

11: If s = 2, 1, 0 then we call subroutine SOLT3, SOLT2, and SOLT1

correspondingly; These subroutines determine whether the general solu-

tion of E is representable by known functions or not, and if it is repre-

sentable then ISOLT: =1, prints the solution else ISOLT: =0.

If ISOLT = 1 then we exit from this main program;

12: Deform E as follows,

(E 2) x2 y" + xF0(x)yr + G0(x)y = 0,

and if F0(x) and G0(x) are rational functions of xl (1 = 2, 3), then replace

xl
k of E2 by xk+l9 we name the equation thus obtained as El. Print

xk+1: =4; go to 1;

end MAIN program;

begin SOLT3;

Input parameters of SOLT3 are singular points al9 a2, oo of E,

and their characteristic equations /ioW = 0?/2o(^) = 05
 an(i /ooo(v) = 03

the rank r+1 of oo.

If r + l>0 then go to 19 else assign 1, p, v as follows.

A: =A!-A2, where

li: = Pi- 1*29
 where Re i*1= Re ̂ 2, /2oOi) = 0> i = l, 2.

v: =v t-v^, where Revx^Rev2 , /ooo(Vi) = 0, i = l, 2.
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In this case the equation which has the singular points, and char-

acteristic equations above mentioned is uniquely determined, and we

denote the general solution of E as

t a2 oo

r 0! v1

2 fi2 v2

and we call this as Riemann's P-function.

If none of A+0-fv, A + 0 — v, A — JLL + V, A — \i — v is an odd integer

then go to 18 else if none of A + 0 + v, A + 0 — v, A — 0 + v, A—0 — v is 1

or —1 then go to 15;

Rewrite suffix so that A2 +^2 + ^2 = 0, and we define

A: =A1-A2, 0: =^1-^2* v: =Vi-v2 ;

Print j; = (x — a1)
A2(x — a2)^2; This based on the formula

a-, oo a2 oo

0 0

A

where A2 + 024-v2 = 0.

If A 7^1 and 0^1 and v^l then go to 13;

If 0=1 then we define M(x)= — x + a1 + a2 else if v=l then we

define M(x) = atx/(x — aj. Print x fc+!: = M(xfe) and exchange A£? 0f, v£

corresponding to this transformation; For example if 0=1 then exchange

A£ and 0£. Thus the new A equals 1.

If 0 = 0 then print 6A + Blog(x-a2y else print M + J3(x-a2)"'; This

based on the following formulas.

oo|at a2 a
j|o o o

[l ^ -

OL1 OL2 00

0 0 0 x

1 0 0
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Go to 14;

13: Print

14: ISOLT: =1; we exit from SOLT3;

15: Exchange the signs of A, ju, v so that A + /X + V is an odd integer

and rewrite the suffixes to satisfy the following conditions: A = A! — A2,

16: n: =(A + ju + v-l)/2; If n = 0 then we set A: = -A, \JL\ = -

v: = -v, A0: = Als jU0: = ju1? go to 16;

m: = — « ; If v is not integer or v<— m or v>— 1 then go to 17;

m: =m + v; If m = 0 then print

go to 14; If m 7^0 then print

17: y = (x — a1)
A°(x — oc^0!)'""1 (x — a1)A+m~1(x — a2Y

+m~l

<A + B\(x — a1)~A"lfl(x--a2)~^~mrfx> L

go to 14; This depends on the following formulas.

a1 a2 oo

y=P = (x-a1)Ao(x-a2/°P 0 0 m x

A \.i v + m

if V + IT^O, —1,. . . , —(m—1) + 1 then

a2 oo o^ a2 oo

0 0 m x = ?"!..", P 0 0 1 x

A — m — 1 fi + m— 1 v + 1

18: Search (A, /x, v) in the following Schwarz's table, if it is found

then S: =the corresponding number else tf: =99; From SI to if 15 is

called as Schwarz's table.
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*
1
2

3

4

5

6
1

8

9

10

11

12

13

14

15

16

17

18

A jLf V

1/2 + fe 1/2 + m r
1/2 + fe 1/3 + m 1/3 + 1

2/3 + fc 1/3 + m 1/3 + 1

1/2 + fe 1/3 + m 1/4+1

2/3 + fe 1/4 + m 1/4+1

1/2 + fe 1/3 + m 1/5 + 1

2/5 + fc 1/3 + m 1/3 + 1

2/3 + fc 1/5 + m 1/5 + 1

1/2 + fc 2/5 + m 1/5 + 1

3/5 + fc 1/3 + m 1/5 + 1

2/5 + fe 2/5 + m 2/5 + 1

2/3 + fc 1/3 + m 1/5 + 1

4/5 + fe 1/5 + m 1/5 + 1

1/2 + fc 2/5 + m 1/3 + 1
3/5 + fc 2/5 + m 1/3 + 1

1/2 + fc 1/4 + m 1/4+1

1/2 + fc 1/3 + m 1/6 + 1

0+fc 0+m 0+1

fc, m, / = integer

r = any complex number

fc + m + J = even integer

fc + m + J = even integer

fc + m + / = even integer
n

n

r/

n

n

ft

ft

ft

ft

n

n

tt

where A, ̂ u, v have the form of ^f+j^/fc/m, i9j9 fc, m are integers.

If #>18 then go to 19;

Select the signs of A, ju, v so that they satisfy the conditions: A

= A0-p3 i* = Ho-q9 v = v0-r9 where 0<A 0 ,^ 0 ,v 0<l and p, q, and r are
zero or positive integers. Make transformation of independent variable

xfe+1=L1(xfe) so that al9 a2, oo are mapped to 09 1, oo respectively; where

y = P

0 1 oo

X = A1-A2, /x = /x1-/

Print xk+i = Li(xk), fc: = fc+ l ; If p + ^f + r is an odd integer and

A0 = l/2 then q: =^ + 1, sw: =1 else sw: =0;

Make transformation xk+i = L2(xk) so that p^^r^r^O, and p, 9,
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and r correspond to 0, 1, and oo;

Print xk+l=L2(xk); k: = fe+l ;

Print yj = x^2(x — iyt2yj + l
m

9 where

0 1 oo

0 d

fi

j: =j + l; If sw = l then print y}= ^/xDxyJ+i'J: =7 + 1;
m/: =(p + q — r)/2, n'\ =(p — q + r)/2, print the formula:

j^Kx-ir-"'--"'^*-!)^^ *=!/*;
where

(0 1 oo

yJ+i=P o o £

7: =7 + 1; Make transformation xfe+1=M(xfc) so that (10, /i0, v0)

corresponds to the entry of Hukuhara-Ohashi's table (type 1~5) or

Schwarz' table (type 6~15); Print x fc+1 = M(xfe); If oo is transformed

to 0 or 1 by this transformation then print yj = x^yj+l or jj. = (x —

1; We define G by

y = P

0 1 oo

0 0 rj x

A

= G(/l, ii, v, 17, x).

If type number of (A, /i, v) is less or equal 5 then print the repre-

sentations of y which had been calculated by Hukuhara and Ohashi

else print the algebraic function z(x), which had been calculated by

Schwarz, Klein, Brioschi, Cayley and others; We call the latter as

Cayley's table. Print

Go to 14;
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Hukuhara-Ohashi's table

, 1/2, v, v/2, x) =

, 1/2, 1/3, -

, 1/3,2/3, -1/6, x) = |

. I1/4

+ 2N/42/3x2/3(l-x)2/3+41/3x1/3(l-x)1/3- '

,1/3,1/4, -1

,1/4,2/3, -l/12,x)=
L" i •

1/4

Cayley's table (#1~#15)
We assume that fc=m = l=0, and l/v = n.

x-1

1
2

3,5
7,8
4
6

9
10
11
12
13
14

15

4zn

(z4 + 2V3fz2-fl)

4z

(z8 + 14z4 + l)3

(z20-228z15+494z10

+ 228z5 + l)
(z-4)3

z(z + 8)3

4(z2-z + l)3

z3(z + 5)2(z + 8)
(z2 + 14z + l)3

(64z + 189)
(64z2 + 133z + 49)

-(5z-27).
(125z3-25z2-265z

-243)3

(zw + l)2

12^/3lz2(z4-!)2

(z+1)2

(z12-33z8-33z4 + l)
(z30-522z25-10005z20

-10005z10 + 522z5 + l)
(z-l)(z + 8)2

(z2-20z-8)
(2z3-3z2-3z + 2)2

(z3+9z2 + 12z-8)

(z3-33z2-33z+l)2

z(4096z3 + 18816z2

+ 25725z + 12005)2

(-3125z5+9375z4 +
18750z3 + 8750z2 +

30750z + 19683)

(z"-l)2

-(z4-2%/3/z2 + l)3

(z-1)2

-108(z5-z)4

-1728(z11 + llz6-z)5

27z2

-64(z-l)3

-27z2(z-l)2

-64(3z-l)
-108z(z-l)4

-27-77(z + l)2

1382400000z3-(z + l)2
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16

17

18

x = ^P(z), where ^3(z) is Weierstrass' pe function.

x=TO>2

x = A(z), where A(z)

A(z) = 0P((l + *)/2)-^P

is the elliptic modular function defined by

19: ISOLT: =0; Exit from SOLT3;

end SOLT3;

begin SOLT2;

Input parameters of SOLT2 are singular points a, oo and the char-

acteristic equations of a and oo, and the rankr+1 of oo. Our equation

E has the following form

(E 3) y" +/(x)/(x - a) • / + g(x)/(x - a)2 • y = 0,

where /(x) and g(x) are polynomials, and a is a rational number.

If r + l > 0 then go to 22;

Let <7 l9 a2 be the two roots of the characteristic equation a(a— 1)

+/(a)cr + #(a) = 0 at a, where /(x) and g(x) are constants (rational num-

bers), and E 3 is the equation of Euler type.

20: If Gi = ff2 then print ^.^(x — &)a{A + B-log(x — a)} else print
y. = A(x - a)ffl + B(x - a)*2;

21: ISOLT: =1; Exit from SOLT2;

22: If r + l > l then go to 23; Print x f c+1=x f c-a; fe: = f c + l ;

The transformed equation has the following form,

where a, b, c9 d, and e are rational numbers.

Let <71? o-2 be the two roots of CT(O-— l) + fo<7 + e = 0, and let Al9 A2

be the two roots of A2 + aA + c = 0.

If A1^A2 (a2^4c) then go to 25 else yj is represented by Huku-

hara's F-function of confluent type,

oo* 0

y = P
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This represents the general solution of E4 under the condition A1=A2 ,

and this has the asymptotic expansions at oo of the form

yt: =

where ^1=jff, j52= —/?.

If fcA1 + d = 0 then go to 24;

23: ISOLT: =0; Exit from SOLT2.

24: Print 3;J- = exp(A1x)j;J-+1; This corresponds to the formulas

oo* 0

lj 0 al x = exp(A1;c)y/+1, and

^ 0 (T2

oo* 0
—A ,

0 0 al x
' A + B°logx, a1=ff2

0 0 G2

/: =/+!; a: = 0; Go to 20;

25: 11,:

In this case jj is represented by Hukuhara's P-function

oo 0

This represents the general solution of E4 under the condition

and this has the asymptotic expansions at oo of the form

If none of fa + ffj is an integer then go to 27;

Put on suffix to /* and 0- so that Hi + ffi is zero or a positive integer;
Let Af correspond to ^;
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If ju1 + (71 = 0 then go to 26 else n: =jU1 + o-
1 —1; Print

yj = e*ix xffi Dn\e(*2~*^x x<T2~ffl+n<A + B\e^1~^2)xxffl~a2~

This based on the following theorem obtained by Hukuhara.

If the two P-functions

' oo 0

Ax ?! a, x

^2 V2 °2 ,

> , Z = P <

' oo 0

AI jtti (TI %

A2 jM2 (T2

satisfy (1) A1-A2 = A/
1-A'2 (2) p = /x/

1-^/
1+tT1-(71, and « = ^2-/

are integers, and if we select positive integers m, m', n, n' so that n'

— n = p, m' — m = q then

z = e*"'*x xa'i Dm'\ e^l~^2^xDn'\ xff2~ffl+m+nDm\e^2~*1^xDn( e~^2Xx~02y }\

where Dk = dk/dxk. Go to 21;

26: Print y. = gA^x

This use the following formula,

oo 0

D

oo

\JLi~G

Go to 21;

27: If A j^ i , or A27^--i then go to 23;

If we can select k so that both p = jiil — i/2 + a1 — k9 and q=^2~ 1/2

+ 01! —fc are integers then we determine /c out of the possible fc's that

gives the minimum of |p| + |g| else go to 23;

If pgO then n': =0 and n: =—p else n'\ =p and n: =0;

If q^Q then m': =0 and m: =— g else m': =g and m: =0;

Print the following formula and its comment,

.̂ = ̂ jc^D^fV'̂ ^
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where Bk(x) is the general solution of the Bessel's equation of order k;

(Bk)

Go to 21;

end SOLT2;
begin SOLT1;
Input parameters of SOLT1 are the equation and the rank r-fl at oo

If r+ l> l then ISOLT: =0 and exit from SOLT1;

If r - f l^ l then our equation is y" + ay' + by = Q.

Calculate the two roots rl9r2 of the characteristic equation

If a2=4b then print yj = er*x(A + Bx) else print yj =

ISOLT : = 1 ; Exit from SOLT1 ;

end SOLT1.

§3. The Implementation of Our Algorithm by FORTRAN

Our algorithm is a typical example of formula manipulations,

therefore it is natural to describe this algorithm by a list processing

programming language. But from the practical view point, it is prefer-

able to use the most usual programming language as FORTRAN. We

decomposed this algorithm to about 60 subroutines, and each subroutine

maps a set of integers to another set of integers. For realizing these

decompositions, we must calculate all the formulas which might appear

in the computation of the algorithm, before its execution. For example,

after the substitution of (x — ̂ iY2yj+i for j7- of E, we must calculate

the representation of Fl(x) and Gl(x) by af, A2, F(x) and G(x). Similar-

ly after the substitution of (x — oci)
v~1yj+l for y'j of E, we must calculate

the representation of Fi(x) and Gl(x) by af, v, F(x) and G(x). Thus if

the number of formulas which must be calculated before computation

is finite, and if the algorithm which is indicated by these formulas can

be translate to the procedure whose input and output parameters are

integer arrays, then we can describe this algorithm by FORTRAN.

These are not always possible and these reducing calculations may be

complicated or long enough to demand a computer. For these cases,



FORMULA MANIPULATION SOLVING DIFFERENTIAL EQUATIONS 313

if we would like to describe those algorithms in a program then we

must use the programming language which has the facilities of list

processing and the facilities that use the formulas obtained by computa-

tions as parts of the program by automatic criteria. In section 4 we

shall offer a programming language L with the facilities above mentioned.

To explain our FORTRAN programming, consider the algorithm

which determines whether a regular singular point is apparent or not.

It is sufficient to show some of the data structures, i.e. integer arrays,

and some of the specifications of the subroutines that are used in the

program.

To simplify our explanation, we assume that F(x) and G(x) are

rational functions with no parameters. But the assumption that the

coefficients of F(x) and G(x) are integers, is essential. First explain our

basic subroutines.

Polynomials of the form (3-1) are represented by the integer array

(3-1 ') of length 20 as follows.

(3-1) a0 + alx + a2x
2-\ ----- hawx", 0f = integer

(3-1') n + 2 a0 a1 a2 ...!«,
I

20

Rational functions of the form (3-2) are represented by the integer

array (3-2') of length 43 as follows.

where a, b, at, bp and k are integers.

(3-20
a

b

n + 2

m + 2

aQ

bo

«i

fti

«2

b2

" i * l
...

1

bm k

21

The specifications of subroutines which correspond to the operations

of the polynomials and rational functions are as follows. First we

explain the kinds of parameters.
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I, J, K9 L, N : integers, NR: rational numbers,
A, B9 C, P, Q, R : polynomials,

Al, Bl, Cl : rational functions whose k part is 1,
A2 : rational functions.

Stibroiitlii.es fable

IQ(I, J, K) : K: = G.C.M. of I and J; I: =I/K; J: = J/K;

PPA(A,B,C) : C:=A + B;

PPB(A,B,C) : C:=A-B;

PPM(A,B,C) : C:=A-B;

PPD(A, B, Q,R,N) : Q: = the quotient of N-A divided by B;

R: =the remainder, N-A=B-Q+R;

N: = bn, and n = deg(A)-deg(B) + l,
PSP(A, B, C) : C: =the result of substitution of B for x of A\

PPDF(A,B) : B:=dA/dx;
PPSI(A, I, NR) : NR: =the result of substitution of I for x of A\

PCF(A, L) : L: =the G.C.M. of all A(i)\ A(i): =A(i)/L;

PF1(A, P, Q, K) : P-Q is the result of factorization of A;

deg(^) = 2, K: =if reducible then 1 else 0;

RA(A1, Bl, Cl) : Cl: =41+J31;
.RCHCCI) : if the numerator of Cl is 0 then the denominator

of Cl is 1;

RMOD(A1, B) : the numerator and the denominator of Al are
replaced by the remainders divided by B;

RM(A1,B1, Cl) : Cl: =A1-B1;

RDF(A2) : A2: =dA2/dx;
RSI(A2,1, NR) : NR: =the result of substitution of I for x of A2;

NR(1) is the numerator, NR(2) is the denominator.

With these subroutines we determine whether a regular singular
point is apparent or not as follows. Input parameters are the equation

E and the singular points al5...,as, oo.

(E) y" + F(x)y' + G(x)y = Q.

E is stored in the integer array SA, and singular points are stored

in the integer array Tl as follows.
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1

«1

«5

2

»!

»3

3

C i

CS

SV

&

4

*i

bs

<(*,

<(*,

5

«i

«5

0

2)

6

0

0

7

»5

G(x

F(x

43

8 9 10

4 ^i

cccccccccc:

4 a S * ?

)

)

11

a\

al

12

0

0

13

d,

d,

14

*i

*i

15

/•i

rf

16

^

^

17 18

A«i l i

^s Is•,5)

If 0)1 = 1 then af is a singular point else af is a regular point. a£x2

+ biX + Cj = 0 defines af, where a,- or 6^0. To simplify our explanation
we assume that a,- is an integer. Deform the equation E to the form

(E4) (x - a,)2/' + (x- oQF0(x)/ + G0(x)y = 0,

and store G0(x) to SA(*, 1), F0(x)-l to SA(*, 2). We consider that SA

represents /(x, A) == A2 4- (F0(x) - 1)A + G0(x). With /(x, A), we calculate

/(a,, A) and store to PA(7) and Tl(7~13, i)-

PA(*)

If we can factorize a^/L2 + a\/l + aI
0 to (#i/l + #oXri^ + roX ^ien store

this to WO.

n 4 a0 01
2

0 d

WQ(*9 1)

, 2)

FQ(*, 1)

F0(*, 2)

3

3

9o

°

?!

^

"y A;

If the diflFerence of two roots of (^iA + ^0)(r1A + r0) = 0 is integer

other than zero then k: =the difference else fe: =0, and if the difference

is zero then v: =2 else v: =1. These are stored into FO. If /c = 0 then

<x(- is not apparent.

We assume that k>Q. With f(x, X) in SA and with
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we can calculate /m(l) and store it to FM(*, m + I) consecutively. We

set 00(A):=1. We assume that /oW,/^),... ,/*(!) and 00(A), 0i(A),...,
Qi-i(fy have been already calculated and these #m(A) are stored in GM(*,

m + 1). We calculate gri(X) by

and store gri(X), the rational function of A, to the integer array of

length 43, then we calculate g£X) by

Thus if gri(A) is divisible by #iA + #0 then ;c = af is apparent else

= MI is not apparent. For we have the relation

in the case of k>0.

FM(*, 1)

FM(*, 2)

FM(*, N)

n°

»i

«N

4

3

3

*8
«4

«s

fl?

«1

JV
"1

«8
0

0

0

0

0

d1

dN

MV,

AW,

A-i(A),

GM(; 1)

GM(*, 2)

GM(*. N)] | »-i(A)

where /m(A) represent the following polynomials.

Our FORTRAN program consists of about 5000 cards, and it needs

about 65k words, where 1 word = 32 bit. Its execution time per one

problem is 1 second at most, and it is almost negligible compared with

the printing time.
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§4. On the Evaluation of Formulas and the Types of Formulas in the
General Formula Manipulations

We propose an evaluation algorithm of any formula / appeared

in v: =f etc. The right hand side of it might express not only a

numerical value but also any formula. Hereafter we call such / simply

a formula. First we recall the evaluation algorithm of / by a human.

We use explicitly or implicitly many rules such as the commutative and

associative law, and use many procedures such as the addition, multiplica-

tion of polynomials, etc.. Moreover in many cases we proceed our cal-

culation as far as possible, and in a few cases we cease our calculation

on the way, in spite of the possibility of proceeding it. For example,

consider the calculation of a definite integral

9 = (bh(x)dx.
Ja

If the value of h(x) is itself, the value of g is the right hand side

itself, on the other hand if the value of h(x) is 3x2 then the value of g

is fc3 —a 3 , moreover if the value of a, b are 1,2 then the value of g

is 7. But in a few cases we wish that the value of g is the formula

\ 3x2dx itself. Here we assume that there are definitions of procedures

which calculate x3 from 3x2, b3 — a3 from x3 and 7 from 23-l3.

Our intention is that these natural evaluations are proceeded without any

indication except the existence or no existence of definitions of proce-

dures.

We shall construct our language L on the basic facilities and nota-

tions and notions of ALGOL-60.

4-1. The Syntax of L

The form of our program illustrated by (B) is called a block, where

Dt, \JL^ and St are called declaration, label, and statement respectively.

(B) beginDI; . . . ; />„ ; [^:]Si; •»; [/v]Smend,

jt^eJV and N is the set of all identifiers. D^:]Sj represents jjLt: St or

S}. The St of iit: 8$ is called the statement whose label is fit. The
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classification of declarations by their objects are as follows: (Id) variable

(2d) type declarator (3d) operation (4d) transformation rule (5d) pro-

cedure or function. The classification of statements are as follows: (Is)

block (2s) assignment (3s) conditional (4s) go to (5s) procedure or func-

tion.

In the following (ld)~(5d) and (ls)~(5s), we will explain the forms

of declarations and statements of L,

(Id) Let j be real, Integer, letter, or a type declarator which was

declared by the form of (2d), then the declaration of variables has one

of the following forms,

X u, o chain j v, o± chain o2 chain j w9...

where %, w, v, w, ul9 u2, y, li^N, and 0, oi9 02eO. O is the set of opera-

tor symbols, 0 = { + , — , °, /, f, *,-•}• J is the name of a Boolean
procedure, and /!,...,/„_! are the actual parameters of y, which are

subformulas of u2.

(2d) Let 01,..., 0?t be the formulas then the declaration of a type

declarator j except integer, real, letter has one of the following forms,

f DT Z is (0,01,...,0?i),
(Dt)

[ DT j is a(gl,...,gri), %, aeN9

where a may be the name of a procedure of function type.

(3d) Let gl,...,gn and hl^.^hm be formulas, then the declaration

of an operation on certain formulas has one of the following forms,

f DO (o, gl,...,gn) is (or, hi,..., hm), o.o'eO
(Do)

[ DO (o, 01,..., gri) is a'(hl9...,hm)9 a,a'eN9

where (0, 01,..., 0«) may be of the form G (gl,...9 gri).

(4d) Let 01,..., gn be subformulas of 0, and y the name of a

Boolean procedure, then the declaration of a transformation rule be-

tween 0 whose type is j and 0i has the following form,

(Dr) DR i 0(y(01,...,0rc)) is
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(5d) Let $?, <pi be type declarators of the form j or o chain j

etc., then the declaration of a procedure has one of the following form.

We call the former the subroutine type and the latter the function type.

procedure n(q>i,...9 <?„); &i9ii —i&nVni si »
(Dp)

procedure a(cpl9...9 (pn)l faVi', ...\$nq>n\ S29

where [i9 a, (pl9...5 <pnEN, St is a statement, S2 must contain at least one

assignment statement of the form a: =••• .

(Is) A block has the form of (B).

(2s) Let V be the set of all variables, and let F be the set of all

formulas, then an assignment statement has the form of v : = <p, or v : =/,

where ve V, 0^F,/eF. We define V as follows. The identifier which

was declared by a type declarator is a variable. Thus u, v, w, ul9 u2 of

(Dv) are variables. Let j be the type declarator defined by (Dt\

and let u be the variable declared by '% u\ and if gi is a variable then

the gi part of u can be referred by u _ gi, and this is also a variable.

Therefore if necessary, we can use the variable of the form u _ g^ _ ... _ g*n.

Let us consider the variable v and w of (Dv)> as we shall see later,

v and w can have the value of the form (o, rl,..., rn), and (ol9 (02,

sll,..., sl^i),..., (o2, 5ml,..., smnj) respectively, where n and m are

determined in the execution time and are referred by lgt(v) and Igt(w).

These n, sij9 and (o2, s/cl,..., sknk) can be referred by v(i)9 w(i, j), and

vv(fe) respectively. And these v(i) etc. are called subscripted variables.

Let / and R be the set of all integers and all real (floating point)
numbers respectively, then we can define F, the set of all formulas, by the

following rules, and gi is called a subformula of (o, gl9...gn) etc.

f 1) I,
(F)

[ 2) if gl,...,gneF then (o9 g!9...9gri)eF9 and

where a may be the procedure name of function type.

(3s) The conditional statements have the following form

If B then SI else S2 ,

where B is a Boolean expression and SI, S2 are statements. A rela-
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tional expression R is a Boolean expression, and if B9 Bl, and B2 are

Boolean expressions then "1 B, Bl A B2, Bl V B2y and B1=B2 are also

Boolean expressions. Let Tp be the set of all types, and T be the function

which maps a formula to its type, the element of Tp. Let ti be an ele-

ment of Tp or T ( f i ) , ( f i e F ) then a relational expression R has one of

the following forms,

(Re) tl<t29 tl^t2, tl = t2,

Let Dt be the set of all type declarators, then we can define Tp

by the following two rules,

f 1) I9R9DtdTp9
(Tp)

[ 2) if fl,..., tneTp then (o, tl,...9 tri)eTp, and a(tl9...9 tri)eTp.

(4s) The form of go to statement is go to \JL{.

(5s) The form of a procedure statement is fji(fl9...9fri) where /ieF

and /j is the procedure name of subroutine type.

4-2. The Semantics of L

(1) We define the function T which maps/eF to its type T(f)eTp9

as follows. We assume that ieI9 reR, and veV.

T(i) = i9 T(r) = r, T(i>) = the type declarator of t?,

,..., T(gn)\ gieF,

9...9 T(gn)\

(T)

Later we shall explain T(v) more precisely.

(2) We define a partial order relation on Tp as follows,

' 1) Integer < z, real < r,

2) if DT x is (o, gl,-.,gn) then j<(0, T(gl)9...9 T(gn))9

3) if DT x Is ff(gl9...9gn) then x<d(T(^l),..., T(gnJ)9

4) o chain J<(0, X, . - - 5 j)? chain Jf <(Z»--- ' Z)»

5) letter<t, where t is any type other than letter,

6)
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7) Z = Z,

8) if %i^tf>i and there is at least one / such that %i«pi then

(o, Jf iv. . , Zn)<(0> S&i>-> 0B), and cr(Zl,..., zn)

(3) We classify formulas by their phases of appearances. A 'pro-

gram formula' is the character string which is written in the proper

place of our program. Let / be a program formula. We call the value

of / just before its evaluation the 'pre-value' of /, and write Fr(/).

Similarly we call the value of / just after its evaluation the 'post-value'

of /, and write Fs(/). Both Fr(/) and Fs(/) depend on the set of

declarations D which effects on / and depend on the history of execution

H until the evaluation of /. Therefore we write Fr(/, D, H), Fs(/, D,

H), but if we could easily guess those D and H then we might omit

those D and H. The explanation of assignment statements are un-

avoidable to define Vr(f) and Fs(/). The conditions that allow to exe-

cute our assignment statement v: =/ are as follows ,

f 1) if T(v)=letter or r(i>)=letter A ••• then T(v)£T(Vs(f))9
(Ac)

[ 2) if T(v) ̂ letter and T(v) ̂ letter A ••• then T(v)< T( Vs(f)).

(4) The definition of pre-value of /:

(1) Fr(i, D, H) = i, Vr(r, D, H) = r, i e I, r e R ,

2) Vr(v,D9 Hd) = v, veV,

(Fr) 3) Vr(v, D, Ha)=Vs(f, D, Ha), ve

4) Vr((o,fl9...,fn), D, H) = (o, Fr(/l, D, H),..., Vr(fn, D, H)),

..,/n), D, H) = a(Vr(fl, D, H)9...9 Vr(fn, D, H)) ,

where H represents an arbitrary history, D represents an arbitrary

set of declarations. Hd represents the interval beginning with the

declaration of v, or the execution of v: =0, ending with the execution

of v: =••• , and excluding this execution. Ha represents the interval

beginning with the execution of v: =/, ending with the execution of an-

other v: =-.., and excluding this execution.

(5) To define Fs(/, D, H), we must use another pre-value of / for
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compilation Vc(f, D, H). The definition is as follows.

f 1) Vc(i, D, H) = i, Vc(r, D, H) = r, IE I, reR,

2) Vc(v, D, Hd) = v, veV,

3) Vc(v, D, #fl) = Vc(f, D9 Fa)9 T(i>) = letter or letter A - ,
(Fc) I

= v , T(t;) 7^ letter and letter A • • •,

4) Vc((oJl,...Jn\ D, H) = (o, Fc(/9 D9 fl),...,

7c(a(/l,...,//i), A H) = a(Vc(f9 D, H),...9 Vc(f9 D, H)) .

(6) Using built-in function 'eval', we define Vs(f9 D9 H) as follows ,

(Ev) Fs(/, D9 H) = eval(Fc(/9 D, H)9 Fr(/, D9 H), D9 H) .

6-1) The function Frc is defined by the relation

Vr(f9D9H)=Frc(Vc(f)9D9H).

6-2) Any variable v which was declared by £j f' may be used

in a definition of operation, then the variable v is called 'formal'

except when it is doubly declared by 'actual v\

6-3) A formula / is called a compound formula if and only if it

has the form (o,/l,...,/n) or cr(/l,...,/n), we call the latter a compound

formula of function type.

6-4) A compound formula / of the form (o,fl,...,fri) is called

active if there is a definition of operation of the form (Do), and /

satisfies the condition: Let g be (o, gl,...9 gn) in (Do), then the system

of equations 01=/19...9 gn=fn with respect to the formal variables <p l 9 . . . 9

(pk in g has at least a solution a = (al9..., ak). We call a the matching

parameter of g for /. Let g(oc) be Vs(g) after the replacement of q)j by

<xj where T(<pj)^T(aij)9 (j= 1, 2,..., k) then 0(a)=/. (Refer to Appendix 1.)

6-5) A compound formula / of the form 0-(/l,...,/n) is called

active if/ satisfies 6-4) replacing 0 by ff(gl, .,., gn) or if there is a

declaration of procedure of function type which has the form

(Fu) <p procedure

where j0, 5^,...,$&„ are type declarators, and / satisfies the following
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conditions :

f if ^£ = letter or $~ letter A ••• then 0t^T(fi) ,
(Ac1)

[ if ^7* letter and $rf letter A ••• then <pt<T(fi) .

(7) With those notions we define the eval as follows.

7-1) eval (i, f , D, H) = i, eval (r, r, D, H) = r, f e I, r e £,

where D and H are arbitrary set of declarations and history.

7-2) eval (t;, /,£,#)=/, *e7,/eF.

7-3) eval (/,/', D, H) = Exc(Frc(V(Vc(f9 D, If)))) after the execu-

tion of the program wl:=fl;"-;wm:=fm, where f=(o9fl9...9fm,

vl9...)9 f=(o, wl,.. .9 wm, vl9...)9 fj are compound formulas, vj are

variables or constants, and wj are variables generated by the system.

T(wj) is the largest type which may accept Vs(fj)9 and which can be

determined in the phase of F.

7-4) When /=a(/l, ...,/«, »!,...), eval (/, /M>, fl) is similarly

defined as in the 7-3).

7-5) Let £ = (<?, &!,..., kn) or cr(/cl,..., fc/i), and let r=F(/c, D9 Jf).

We assume o^ + and 0 = ^ - in a) and b).

a) If k is active due to the declaration (Do) then

r= V(Vc((of, wl, . . .3 wp, hq',...9 Am'))) or r= F(Fc(cr(...)))

after the execution of wl: = hrm
9~-;wp:=hp''99 where hj' is the formula

which is obtained form hj by replacing its formal variables <PI, . . . ,

<pr by the corresponding matching parameters a l9..., ocr of gf for A:. We

assume hl'9...9hp' are compound formulas and hq',...,hmr are variables

or constants, and wj are variables generated by the system.

b) If there is no declaration of operation definition corresponding

to k, or even if there is such declaration, if k is not active then,

r = (o, fcl,..., kn) or r = a(kl,..., kn) ,

c) When o=+ or •, r = Exc(Frc(V(k, D, H))) is determined by the

following procedure: j: = l;

11: fc': =STAND(k)i we denote again fc' = (o, fel,..., fen); if there is

a partition of {1, 2,..., n} = {f1,..., fj U {f / + l , . . . , in} such that
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K = (O, ktl,..., kir) is active due to an operation definition

then k=Vc((o, wj\ fefl + 1,..., kir)) after the execution of WJ: = K,

where V(K, D9 H) is evaluated by the rules of a) and b)

of 7-5) allowing o=+ or • ; y: = y + l; go to 11 else

r: =Exc(Frc(V(k')))\

For brevity we denote this value r=Vs(STAND(k)).

d) STAND is the name of standard procedure of function type

which transforms an o-chain of the form (0, fc1?...5 fc£_1? (0, kiiy...,

kin),...,kn) to the 0-chain (0, fcl9..., fcfl9..., kin.,...9 kn) until the operator

o is removed from all the sub-formulas, and rearrange the sub-formulas

according to the proper rules of precedence.

e) We assume that k is not active in the sense of a), but if there

is an active formula K in the formulas which are transformed from k

by the rules of the form

(Dr) DM 2 0(7(01>---> 0*)) fa 9*,

then we define r=V(k, D, H).

If a formula h = (o, hl,...9hri) satisfies the conditions j<T(7*) and

Vs(y(hl,..., /m)) = true, where y is the Boolean expression whose value

depends only upon T(ht), then h may be identified with hi. There-

fore a formula k could be transformed to its identified formulas k by

replacing k or its sub-formulas with its identified formulas.

7-6) Let fc = cr(fcl,..., fen), or (o, fcl,..., fc/i) and r = Exc(k, D, H).

We define r by dividing to the following cases.

f ) If k is active due to the declaration (FH), then

where £fe is the state just after the execution of S.

g) If there is no declaration for cr, or even if there is such declara-

tion5 k is not active, or k=(o9 &!,..., kn) then

r = 0(kl,...9 kn) or /-=(<?, fcl,..., &«) .

h) The evaluation method described at e) is similarly applicable

to the case of fc=<r(fcl,..., kn).
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§5. An Example of Programming by L

5-1. The Program

We must remark that the formula in L could be written by the so

called external formula in place of the internal formula, for example the

external formula of ( + , a, b) is a + b.

begin comment (1) Substitute y of (Ey) by /-z, then represent Fl,

Gl of (Ez) by F, G,/. (2) Substitute / of (Ez) by (x-a)^ then represent

Fl, Gl of (Ez) by F, G, (x-oc), L (3) Substitute F, G of (Ez) by (x + 3)-

(x2 + x)"1, and (x3 + 2-x2-3)-(x3+2-x2+x)-1 respectively, then !we

represent the coefficients of (Ez) by the rational functions of x, where

(Ey) (y')' + F-y' + G'y = 0, (Ez) (z')' + Fl -z' + Gl -z = 0,

and ' is the differential by x. The results are as follows,

(1) Fl = 2-/-1-

(2) Fl = 2 - A - ( x

(3) (z/)' + 3-x- 1 -z ' + z = 0;

Boolean procedure indep(/, g); letter/, gf;

begin if / contains g then indep: = false else indep: = true end;

letter x, /, g, h, A, ju; letter A indep (x) v;

+ chain letter c; integer k, m, n; integer 1;

DT term is k-x^n;

DT pol is + chain term ; pol /?, q, r ;

DT ratf is p-q\(-l)\ ratf ^9 1;

DT fd is/*^f;

DM polp(lgt(p) = l^p(i)_n = Q) is

DR ratf s(s _ ^=1) is s _ p;

DO m-f+n-f is (m + n)-f ;

DO m-f+f is (m + 1)-/ ;

DO/+/ fa2-/ ;

DO/-C isLMC(/,c) ;

DO O-/ is 0 ;
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DO I-/ Is/ ;

DO/TA-/TAI fa/T(A+jO ;
DO/U-/ Is/T(A + l) ;
DO /•/ Is /T2 ;

DO /TO Is 1

DO /tl Is /

DO ItA Is 1
DO i(/tv) is v/t(v-l)-d/

DO d(/-0) Is Af-g+f-ig
DO dc is DCL(c)

DO dv Is 0

DO p + q bPA(p,q)

D O p - < ? Is PM(j7, <?)
DO p-5-g Is PDfo 4, r, 1)

DO s + r Is JL4(s, 0

DO s-t Is .RM(s, 0

DO st(-l) fa
DO ds is

ratf procedure &4(s, 05 ratf s, f;

RA : = (s_p ° t_q + s_q - t_p) - (s_q • t_q)l( - 1)

ratf procedure RM(s, i); ratf ss t\

RM: =(s_p - t_p) • (s_q - f_g)T(- 1);

ratf procedure RI(s); ratf s; RI: =s _ q-s _ pf( — 1);

ratf procedure RD(s); ratf s;

jRD : = (ds_p • s_^[ + (-!)• s_p • ds_^[) • (s_q • s_

pol procedure P^(p, ̂ f); pol p, q;

begin add p and g, store the result to P^l eud;

pol procedure PM(p, q); pol p, q\

begin multiply p and q, store the result to PM end;

pol procedure PD(p, q, r, «); pol p, q, r; integer /i;

begin «: = (degree of p) ( - degree of g) + l; divide «•]? by ^5 the

quotient is PD, the remainder is rend;

pol procedure PQ(p9 q)', pol p9 q;
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begin the greatest common divisor of p and q is PQ end;
+ chain letter procedure LMC(f, c); letter /; + chain letter c \

begin integer /, n\ n: = lgt(c);
for i:=l step 1 until n do LMC(i): =f'c(i) end;

+ chain letter procedure DCL(c); + chain letter c\
begin integer i, n\ n: = /#£(c);

for /: =1 step 1 until n do DCL(i): =dc(z) end;
ratf procedure RSIMP(s)i ratf s;

begin pol /c; /c: =PQ(s_p, s_q);
s_p: = s_p+fc; s_q: = s_q+fc

end;
•chain letter procedure Cut(ai, bj);

•chain letter ai\ letter bj;
begin integer k, m, n; n: =lgt(ai); m: =1;

for k: = 1 step 1 until « do if ai(k)^bj then
begin Cut(m): =ai(k); m: =m + l end

end;
procedure EQIVR(a, b, c);

+ chain letter a; chain letter b; + chain fd c;
begin integer i,j, k, la, Ib;

la: =lgt(a); Ib: =lgt(b); k: =1;
for j: = 1 step 1 until Ib do
begin integer n; + chain letter w; «: = 1;

for /: = 1 step 1 until la do

if 1 indep(fl(i), 6(7')) then

begin w(ri): =Cut(a(i)5 b(jj)i n: =n+l end

c(k): =w*6(j); fe: =fc+l
end

end;

+ chain letter Ey9 Ez, E; chain letter b; letter ;;, z;

ratf F, Fl, G, Gl, r;

SI: &:=(z,dz,d(dz));

S2: Ey: =G-j ; +

S3: j : = r - z ;

S4:EQIVR(Ey, b, Ez);
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S5: fc:=JZz(3)_/T(-l);
S6: E:=h-Ez;

S7: r: =

S9: G: =(
S10:F1: =RSIMP(E(2));

S11:G1: =RSIMP(E(iy)i

S12:Ez: = Gl-z+Fl-dz + d(dz);
PRINT (Ez)

end;

5-2* The Execution of Our Program
We explain the pre-values and the post-values of the variables under

consideration just after the execution of the statement labelled Si. We
use the mixed representation of formulas, namely some parts of which
are the internal representations and the other parts of which are external

representations.

51) Fr(fe) =(z9dz,d(dz))

52) Vr(Ey) =(+, G-y, F-dy, d(djO)

53) FrQO = r - z

54) Vs(Ey) =( + , G - r - z , F - r - d z , F -z -dr , 2-dr -dz , r • d(dz) , z • d(dr))

Vs(Ez) = ( + , ( + , G • r, F • dr, d(dr))*z, ( + , F • r, 2 • dr)*dz, r*d(dz))

55) Vr(h) =rt(-l)

56) Fr(£) =( + , ( + , G, F-dr-rt(-l), rt(-l)-d(dr))*z,

(+, F, 2-dr-rt(-l))*dz, l*d(dz))

S7)

S8)

S9) Vr(G) =(

510) 7s(£(2)) = (

Fr(Fl) =3-xt(-l)
Sll)

Fr(Gl) =1

512) Fr(£z) =z + 3-x|(-l)-
To show our evaluation algorithm, let us trace the execution of

the assignment statement of (S4), we omit all D and H,

S4) Vs(Ey) =eval(Fc(£j;)J Vr(Ey))



FORMULA MANIPULATION SOLVING DIFFERENTIAL EQUATIONS 329

= eval (( + , G . (r . z), F . d(r . z), d(d(r . z))), ")
= Exc(Frc(V(Vc(( + , wl, w2, w3))))) after the exec, of

wl: = G . ( r - z ) ; w2: = F- d(r - z); w3: = d(d(r- z));

( ( - , G, ( . , / - , z)), ") = (•, G, r, z)

= £jcc(Frc(K(Kc((-f F, w4))))) after the exec, of

w4 : = d(r • z) ; , where T(w4) = letter.

eval (d(r-z), ") = Exc(Frc(V(Vc(&(r . z)))))

= Exc(Frc(V(d(r.z)»)

= Exc(Frc(V(Vc(( + , w5, w6))))) after the exec, of

w5 : = dr - z ; w 6 : = r • dz ;

= z - d r

= r • dz

) = Exc(Frc(V(( - , F, r . dz + z . dr))))

= Exc(Frc(LMC(F, r . dz + z - dr)))

We omit the detail of calculations for F^(w3) and

3) = ( + , 2 • dr . dz, r • d(dz), z . d(dr))

( + , ( . , 2, dr, dz), (-, d(dz)), ( • , z, d(dr))))))

Appendix 1.

Let us consider a system of equations,

flfl=/l,..., ^«=/«, ( g i 9 f i e F 9 i= 1,..., »)

with respect to the formal variables (^i,..., ^>fc which are contained

in #/ and not contained in ft. We use the following procedure which

solves (Eg).

(1) If 01,..., gn are linear with respect to cpl9...(pk, the procedure

is Gauss' elimination method.

(2) If 01,..., 0« are not linear with respect to ( p l 9 . . . , q>k, we seek #/

which contains two formal variables at most. Such equation has the

form
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O, cpi9 /**...) =/i or (0, <pi9 <pj9 /*.,... )=/..

The former could be solved if o=+, . , f, etc., generally the latter

has no solution or has many solutions. But in many cases we can seek

the candidates of the solutions. Thus we can seek the candidates of

the solutions of (Eq), and if one of them really satisfies (Eq), it is

our solution.

Example: Under the following declarations,

letter a, b, c, d, x; actual x;

DO a-c.x^2 + (a.d+b.c).x + b. d is (a- x + b)*(c . x + d);

6- jet 2-f-13.* + 5 matches with a- c - x]2 + (a- d + b- c) - x + b- d, and we
get a system of equations:

.c=l3, b-d=5.

Using the above procedure (2), we get a solution, i.e.

a = 2, 6=1, c=3, rf=5.
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Appendix 2.

O O O O a O O O a O O O O O O O Q Q O O O l A O O O O a O O O O O O G O O C X

U O U O U O O U O O O O O O O U O O O O O O O O O O O O O O O O U O O O C J
U.U_^
X

O CM

O -H ~ *•*
8- 3 ~~

«» T* <ri
a, *
UJ or xrf ^

O ^CD O

* cviro
Cfl ^ CM

CM CD U

O «» ̂
0)

sr
CM

LU

C3 ~ ~ ^
2 o ro CM
«C CM CM

««. ̂ -^x ̂ 4
ca Q < o

CD ^
* ^^ CM

« CV ca -^<~

zr ^ ^ X ^
O < O 2
«-«\ QQ v^^-

f— <3C "» » 2: C3

-
\ Q D Q C M

» *-*COD CM DO OQ -H H Z Z CD CM -H 3: 3 -^ U *-» ̂  CM CM »
CM OO CM 3 O *-« o ^« -H * X

vw ^- * * %-* ^- s: * *>^^s:* «-CM^ * CM v^ o xoo

LU < 3C <C 2 O O CD II II II I! ii It II II II II II 91 II <H CM O o o
zcKin <: z z -H o ~~ »-, ^ ^, ^ ^* ~ »-< -H o^ ov x DC x
•-• \ LU LU 3 » 2: zr s: •< u. ^*xs * «» «H TH -H
i— o cccc- j_ jc / )vo o_a. CD a. o 0.0 uo aovsvo -o ^s-r^*
Z> 3 2 LU LU <t <C •-« ^ Q_ Q_ o Q_ o Q_ O Q. o >-• £E •-• ̂  »^ 2 H- *— H-
Oh-OCJJCD>> ULJ-~ -«-f^ CM ."O-^ st^ L U U J X < < < C
a: z: uj in — • >- ̂  i- CM — » _i »-* _j ^-i »-t_i »-* _j _i ̂  H- i- 13 2: x si
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Appendix 3.

The number of our test equations is about 60, and in this paper
we display only 10 typical equations and their integrations. Bn(x) is
the general solution of Bessel's equation of order n, and D is d/dx.

(2)

(3 ) (x2-x)2y"-2xy = Q,

(5 )

(8) (x2 + l)V' + *(*2+X>/ + 2(^

(9) (x3-x)2y"-x(x2-l)(x2-2)y'+(x6-3x*+2x2)y=Q,

(15) x2y"+4xy'-4x2y=Q, y =

(17) (x3-x)2y"-x(x2 + l-)(x2-l)y' + (x2-l)3y=Q, y=xBl(x)

(19) 4y"+(-

(24) (x3-x)y"+x(x2-l)(-x2+x+l)y'-x3y=Q,

(29) 242x2(x - l)2y" + 24x(x - l)(14x - 16)/ - 1 lx(x - l)y = 0,

y has no expression by the known functions.
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Appendix 4.

PROBLEM C 9)

Y O 9 f + F C X O ) » Y Q I + G C X O ) * Y O = 0

WHERE

C- XS2+ 2 )
F ^X) =

C X$3- X )

C X$4- 3XS2 + 2 )
G CX) a

C X$3- X )$2

SINGULAR POINTS ARE
0 1 - 1 INFINITY

FOCL) = L$2- 3L+ 2

CHARACTERISTIC EQUATION AT 0 IS

LS2- 3L + 2=C L- 1)*C L- 2)=0

FlCL) = 0

GRCL) = 0

F2CL) = C -1L* 1)

G2CL) a 0

SINGULAR POINT 0 IS APPARENT.

FOCL) = C I/ 2)-"-C 2LS2- L )

CHARACTERISTIC EQUATION AT 1 IS

2LS2- L = L *C 2L- 1)=0

»AND NOT APPARENT

FOCL) = C I/ 2)-"-C 2LS2- L )

CHARACTERISTIC EQUATION AT -1 IS

2LS2- L = u *( 2L- 1)=0

•AND NOT APPARENT

RANK OF INFINITY IS 0

CHARACTERISTIC EQUATION AT INFINITY IS

LS2+ 2L+ 1=0
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PROBLEM C

Y0f !+F(XO)*YOf *G(XO)*YO = 0

WHERE

F (X) = 0

C- XS2+
G * \/ \ — ~ » m «

( A J . — — — — -. — — — — — — — — .— -~ — — —— * — — .. — — -. — ..«• —
4

SINGULAR POINTS ARE
INFINITY

RANK OF INFINITY IS 2

X 1 = X OS 2

YQ 1 f+FCXl}*YO f*GCXl>*YO = 0

WHERE

2
F (X) =

C 4X )

C- XS2+ 6X )
G /V^ «- «.~ — — -. — — —-* ««~«.a,f»«B. «.•.«.«.«»«.\ A I » — — — — «-»"— —— — — — •- — «--. —«» — «-

C 4X )$2

SINGULAR POINTS ARE
0 INFINITY

FOCL) = C I/ 2)*( 2LS2- L )

CHARACTERISTIC EQUATION AT 0 IS

2LS2- L = L *( 2L-

,AND NOT APPARENT

RANK OF INFINITY IS 1

CHARACTERISTIC EQUATION AT INFINITY IS

16LS2- 1 =0

YD s EXPCC -I/ 4)»X1)*X1**< I/ 2)«

EXPCC I/ 2)*X1)*X1**< -3/ 2»DXt)
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PROBLEM ( 24)

Y 0 f I + F ( X O ) » Y O I + C < X O ) * Y O = 0

WHERE

(- XS2+
jr C)() = ,-.

C X$3-

G (X) =
C X$3?- X )3i2

SINGULAR POINTS ARE
0 1 - 1 I N F ' I N I T Y

FO(L) = LS2- 2L

CHARACTERISTIC EQUATION AT 0 IS

LS2- 2L = L tfC L-

FKL) = -1L

GJL(|.> = 0

F2<L) = 0

GR(L) = 0

F3CL) = C -1L- 1)

i
G3(L) =

3

SINGULAR POINT o is

AND ITS EXPONENT IS 2

FQ(L5 s ( I/ 4)*( 4LS2- 2L- 1)

CHARACTERISTIC EQUATION AT i is

4LS2- 2L- 1

.AND NOT APPARENT

FO(L) = C I/ 4)*C 4LS^- SL* 1)

CHARACTERISTIC EQUATION AT -1 IS

4L$2- 6L* 1

»AND MOT APFAR-ENT

RANK OF INFINITY is o

CHARACTERISTIC'EQUATION AT INFINITY is

2 L = 0
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Y O f = C X O - 0)$( 1)»Y1

TRANSFORMFD EQUATION BY TYPE 2IS AS FOLLOWS

Yl 1 ?*F<XD>«Yl f*GCXO>*Yl P 0

WHERE

( 4X * 1 )
F (X) = — — -.—*

C XS2- 1 )

C X )
G CX> = — • *

C X$2- 1 )$2

SINGULAR POIWTS ARE
i -i INFINITY

FOCL) = C I/ 4)*( 4LS2* 6L* D

CHARACTERISTIC EQUATION AT i is

4LS2 + 6L* 1

»AND NOT APPARENT

FOCL) = C -I/ 4)*( -4LS2- 2L* 1)

CHARACTERISTIC FQUAT10N AT -1 IS

4L!52* 2L- 1

*AMD NOT APPARENT

RANK OF INFINITY is o

CHARACTERISTIC EQUATION AT INFINITY* IS

LS2- 3L = u

Yl = (XO- !)«*(( -3* 1«S( 5)>/ 4)*

(XO+ !)»»(( -1- 1»S( 5»/ 4)*

DC DC CXO- !)*»(( 2- 1»S( 5))/ 2)*

(XO+ !)»*(( 2+ 1*S( 5)>/ 2)»

(A+8*INT( (XO- 1)**(C -4* i*S( 5)>/ 2)*

(XC+ rt)*»({ -«- 1*SC 5))/ 2)*> DXO»
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